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Abstract

In this work parametric and non-parametric statistical methods are proposed to analyze Diffusion Tensor Magnetic Resonance

Imaging (DT-MRI) data. A Multivariate Normal Distribution is proposed as a parametric statistical model of diffusion tensor data

when magnitude MR images contain no artifacts other than Johnson noise. We test this model using Monte Carlo (MC) simulations

of DT-MRI experiments. The non-parametric approach proposed here is an implementation of bootstrap methodology that we call

the DT-MRI bootstrap. It is used to estimate an empirical probability distribution of experimental DT-MRI data, and to perform

hypothesis tests on them. The DT-MRI bootstrap is also used to obtain various statistics of DT-MRI parameters within a single

voxel, and within a region of interest (ROI); we also use the bootstrap to study the intrinsic variability of these parameters in the

ROI, independent of background noise. We evaluate the DT-MRI bootstrap using MC simulations and apply it to DT-MRI data

acquired on human brain in vivo, and on a phantom with uniform diffusion properties.

Published by Elsevier Science (USA).
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1. Introduction

Applications of Diffusion Tensor Magnetic Reso-

nance Imaging (DT-MRI) [3] have grown significantly

in recent years. This is because from the measured ef-

fective diffusion tensor, Deff , one can calculate new and
useful parameters such as the trace of the diffusion

tensor [4], trace(Deff ), the relative and fractional aniso-

tropies, the three principal diffusivities, and other rota-

tionally invariant quantities calculated from them [5].

Additionally, from the principal directions of the diffu-

sion tensor one can determine fiber direction [3] and

even follow fiber tract trajectories [6–14]. Nevertheless,

only recently have attempts been made to quantify sta-
tistical uncertainties of tensor-derived quantities or to

characterize statistical distributions of diffusion tensor

data and of quantities derived from them [15–21].

Knowing the uncertainties, higher moments, and prob-

ability distributions of various DT-MRI parameters

could improve our ability to glean more information

from DT-MRI data and to design DT-MRI experiments

more efficiently, particularly longitudinal or multi-site
studies.

The main goals of this work are (i) to propose the

appropriate parametric statistical model of artifact-free

diffusion tensor data containing only thermal Johnson

noise (i.e., with no motion and other artifacts), and to

test the parametric model using Monte Carlo (MC)

methods, and (ii) to develop, apply, and assess the effi-

cacy of non-parametric methodologies to analyze ex-
perimental DT-MRI data. In this paper the assessment

is performed only on the diffusion tensor elements and

some simple, local, voxel-based parameters derived from

them. This non-parametric methodology described here

can also be used on other voxel-based quantities, as well

as non-local, region-based quantities (e.g., lattice index

[21] or fiber tracts [14,22]).
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2. Theory

2.1. Parametric model for noise in DT-MRI

Background noise in magnitude reconstructed MRI

images is known to conform to a Rician distribution

[23,24], which can be written as

pðM ;A; rÞ ¼ M
r2

e�ðM2þA2Þ=2r2I0
MA
r2

� �
; ð1Þ

where I0ðxÞ is the modified Bessel function of the first

kind, M is the magnitude, A is the parameter that con-

trols the mean of the distribution, and r is the standard

deviation of the experimental noise. In DT-MRI, com-

ponents of the diffusion tensor are estimated from noisy
diffusion weighted (DW) magnitude images using re-

gression analysis, generally multivariate linear regression

of the log-linearized DW magnitude signals [25]. In this

work we propose the appropriate parametric distribution

of noise in diffusion tensor data within a voxel, assuming

that the magnitude images are Rician distributed.

For signal-to-noise (S/N) ratios greater than 3, the

Rician distribution is well approximated by a Normal
distribution with mean

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ r2

p
, and variance r2,

which is the variance of the signal in each of the quad-

rature channels [23,24]. However, the relationship be-

tween the magnitude of the NMR signal and the

diffusion tensor components in the absence of noise is

nonlinear. Thus, arriving at an analytical expression for

the noise distribution of the individual diffusion tensor

elements is problematic. However, since regression
analysis is usually performed using a large number of

independent diffusion weighted signals or images (i.e.,

>7), we expect that the distribution of the diffusion

tensor elements will be Gaussian owing to the Central

Limit Theorem, even for small S/N ratios. This result

applies for both linear and nonlinear regression (due to

a property of least square minimization). In other

words, we expect that the probability distribution of the
six independent components of Deff , which can be

written as a 6-dimensional vector, are distributed ac-

cording to a Multivariate Normal distribution.

This distribution is described by two parameters: a

6� 6 covariance matrix, R, and a 6-dimensional mean

vector, l ¼ fDxx;Dyy ;Dzz;Dxy ;Dxz;Dyzg. For a random

vector x ¼ fDxx;Dyy ;Dzz;Dxy ;Dxz;Dyzg the Multivariate

Normal distribution is written as

pðxjl;RÞ ¼ jRj�1=2

ð2pÞ3
e�1=2ðx�lÞTR�1ðx�lÞ: ð2Þ

For both log-linear and nonlinear regression, which are
commonly used in DT-MRI, an approximate relation-

ship between R in Eq. (2) and r of DW images in Eq. (1)

can be derived [25]. In multivariate linear regression, the

6� 6 covariance matrix can be expressed as

R ¼ ðBTR�1
M BÞ�1

; ð3Þ

where B is the experimental B-matrix (6� NM) described

in Section 3.1.3, and RM is the NM � NM (diagonal) co-

variance matrix containing the experimental variances
of each of the NM independent measurements. The di-

agonal terms of RM are usually weighted by the square

of the magnitude of the corresponding MR signal-to-

correct for distortions introduced in log-linearized data

[26]. Approximate expressions can also be derived for

nonlinear regression which uses a large number of ob-

servations [27,28].

If a homogeneous and sufficiently large region of
interest (ROI) containing identically distributed diffu-

sion tensors can be found, estimating R and l is

straightforward. However, this is generally not possible

in practice, since material properties and composition of

a tissue are usually not known a priori, and uniformity

cannot be assumed. Instead, such estimates can be ob-

tained using non-parametric empirical statistical meth-

ods, one of which is described in Section 3.

2.2. Non-parametric analysis using bootstrap

Even when we know the parametric distribution of

noise in diffusion tensor data, for most useful DT-MRI

parameters, estimates of errors and probability distri-

butions cannot be calculated since their parametric

distributions are not known a priori. Generally, this is
because these quantities are complicated nonlinear

functions of the diffusion tensor elements. Therefore,

using an empirical approach like the bootstrap is re-

quired.

As a general non-parametric approach to analyze

DT-MRI data, we propose a particular implementation

of the bootstrap method [29,30]. Bootstrap analysis is an

empirical, non-parametric technique commonly used to
obtain various uncertainty measures of a given statistic

when the underlying statistical model is not known. Fig.

1 illustrates graphically the general bootstrap procedure,

in which many bootstrap estimates (h�i ) of a given sta-

tistic h are obtained by randomly drawing with re-

placement from the original sample. These estimates are

used to obtain the standard errors, bias, confidence in-

tervals, probability distributions, and other measures of
uncertainty for a given statistic. In the same way we use

ordinary samples to infer statistical properties of a

population, we use bootstrap samples to infer the

properties of our sample. The bootstrap estimate of the

standard error (SE) is the non-parametric maximum

likelihood estimate of the true SE. The bootstrap can

also be used to determine the bias in the estimate of a

given statistic.
In this work we propose the acquisition scheme in a

DT-MRI experiment that enables us to analyze DT data

using the bootstrap method. The implementation of this
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bootstrap scheme, that we call the DT-MRI bootstrap is

described below.

3. Methods

3.1. DT-MRI methods

3.1.1. Generation of synthetic DWI data

A set of DWIs generated using Monte Carlo methods

is also obtained. Using assumed ‘‘ideal’’ diffusion tensor

data within an imaging volume, known Gaussian noise

is added in quadrature to the NMR echo, as described

elsewhere [21]. A wide range of imaging parameters and

b-matrices was simulated, including the imaging pa-

rameters of the human data acquisitions described be-
low, and, for each, a set of noisy DWIs was generated.

3.1.2. Diffusion weighted image (DWI) acquisition

Healthy volunteers were scanned using a 1.5 T GE

Signa Horizon EchoSpeed scanner equipped with a 2.2

G/cm gradient set, according to an approved NIH

clinical protocol. A set of DWIs were acquired in six

isotropically distributed directions, using an interleaved,
spin-echo, echo-planar sequence, employing navigator

echo correction, as described in [31]. For each direction

the measurement was repeated n ¼ 4 times. DWI pa-

rameters were as follows: FOV¼ 22 cm, TE¼ 78 ms,

TR> 5 s with cardiac gating, voxel size ¼ 3:5mm�
1:75mm� 1:75mm, data matrix ¼ 128� 128. The

strength of diffusion weighting as measured by trace(b)

(where b is the b-matrix [25,32–34] calculated for each
DWI) was varied from approximately 0 to 1000 s=mm2.

To validate the bootstrap approach we performed

DT-MRI scans on two different uniform phantoms, one

performed on the 1.5 T scanner described above, and the

other on a 3 T GE scanner with a 4G/cm gradient set.
The uniform phantom was a cylindrical glass container

filled with a highly viscous polyvinyl alcohol (PVA)

solution (1% concentration) with uniform diffusion

properties. We used different numbers of gradient di-

rections, each having a large number of repetitions. The

phantom data shown in this paper were acquired using

12 gradient directions plus a non-diffusion weighted set,

each repeated 14 times.

3.1.3. Estimation of the diffusion tensor from DWIs

The effective diffusion tensor, Deff , is estimated in

each voxel from DWIs in which diffusion gradients have

been applied in at least six oblique, non-collinear di-

rections, as specified by the symmetric 3� 3 b-matrix, b

[25]. This quantity should not be confused with the ex-

perimental B-matrix, which is 6� NM matrix, where NM

is the number of measurements containing the six in-

dependent elements of b in each row. From the B-matrix

and the NM measured diffusion-weighted signals, Deff is

estimated using weighted multivariate linear regression

(regress routine in IDL, Research Systems), or Leven-

berg–Marquardt nonlinear regression [25]. Theoreti-

cally, the estimated parameters are expected to conform

to a Multivariate Normal distribution for both regres-
sions, and approximate expressions for the errors in the

estimates can be derived, which can be found in many

textbooks on regression analysis and are not repeated

here [35,27,28].

There are many ways to design a DT-MRI experi-

ment since one has control over the diffusion gradient

strength, direction, and gradient pulse parameters,

which are all embodied in b. In order to use the boot-
strap the DWI acquisition must be repeated several

times for each choice of b, as described below.

3.2. DT-MRI bootstrap analysis

Fig. 2 illustrates our implementation of the bootstrap

in DT-MRI indicating how to perform the bootstrap

analysis for a particular DT-MRI experimental design
which consists of NM DWIs defined by the corre-

sponding b-matrices, b, and in which there are M non-

collinear diffusion gradient directions. Together with the

b-matrix with zero diffusion weighting, this yields

NS ¼ M þ 1 distinct b. For the ith distinct b-matrix, bi,

the measurement is repeated ni times, designated as

subset Si. All such subsets, Si; i ¼ 0; . . . ;M constitute the

original design of the experiment and thus NM ¼
PM

i¼0 ni.
In some designs all of the b-matrices can be distinct

(ni ¼ 1, for all i); however, to perform bootstrap analysis

at least some of the b-matrix subsets must have ni > 1.

In our bootstrap implementation we require all b-matrix

subsets to have more than one image acquired, and thus,

in many situations, the actual bootstrap measurements

will not conform to the original measurement design.

Fig. 1. A graphical illustration of the bootstrap samples obtained by

drawing with replacement from the original sample. By repeating the

process N times, one can obtain N bootstrap estimates (h�i ) of a given

statistic h. These estimates can then be used to obtain the standard

errors, confidence intervals, probability distributions, and other mea-

sures of uncertainty of a given statistic.

S. Pajevic, P.J. Basser / Journal of Magnetic Resonance 161 (2003) 1–14 3



The difference is that the number of repeated acquisi-

tions for each subset will now be ri, such that ri P ni and
we require, ri > 1 for all i. Note, if the original design

uses sufficiently large ni values, no additional images

need to be acquired just for the sake of the bootstrap

analysis.
Naturally, the reliability of the bootstrap estimate

increases monotonically with ri. From the bootstrap

measurements the NB individual bootstrap sets will be

drawn randomly with replacement (Dw/R), each

matching the structure of the original set, i.e., the subset

Si in the bootstrap sets will contain exactly ni measure-

ments (ri ¼ ni for all i). This is important since the sta-

tistical properties of DT-MRI data are dependent on the
values of ni and the total number of images acquired.

Since acquiring additional repeated images for per-

forming bootstrap analysis is expensive, we are interested

in knowing how to choose optimal values for ri. We

postulate that with an increasing number of different

gradient directions fewer repeated images are needed and

that the total number of distinct combinations that a gi-

ven setup inFig. 2 can produce is ameasure of the richness
of the bootstrap samples. We tested this hypothesis with

extensive MC simulations of the DT-MRI bootstrap

methodology in which the number of different gradient

directions,M, as well as the number of repetitions, ni ¼ n
for all i, were varied. The bootstrap estimates were made

repeatedly, and with each new MC evaluation, the origi-

nal diffusion tensor was rotated randomly.

Although, the bootstrapping procedure described
here is usually performed on any single voxel within an

imaging volume, it can be extended to include several

voxels in a ROI, which we generally call ROI bootstrap.

We distinguish two different implementations of the

ROI bootstrap: (i) The compound ROI bootstrap (C-ROI

bootstrap) and (ii) the pooled ROI bootstrap (P-ROI
bootstrap).

The C-ROI bootstrap is used when the ROI is as-

sumed to have homogeneous diffusion and statistical

properties. Thus the ri images acquired for each subset

Si will actually be a collection of all corresponding DW

values for the voxels in that ROI. The estimation power

of the standard error and other statistics, using the C-

ROI bootstrap is much greater than that of the simple
ROI analysis. If the ROI is not homogeneous, the C-

ROI cannot determine the underlying probability den-

sity distribution of the voxels in the ROI due to the

Central Limit Theorem, i.e., the bootstrap estimate of

such distribution is biased to be Gaussian. This property

of the C-ROI bootstrap can be used to study the power

of the single voxel bootstrap in detecting deviations

from Normality.
To determine the underlying distribution in the ROI

qualitatively, one should use the P-ROI bootstrap,

where the bootstrap estimates from each voxel in the

ROI are pooled together. In the limit of large number of

bootstrap replicates, NB, this is equivalent to choosing a

voxel randomly first and then Dw/R only the DW values

for that voxel. We use the P-ROI bootstrap only qual-

itatively, since pooling the bootstrap samples from sev-
eral different original samples will overestimate

variability. In the case of a simple bootstrap for an ROI

that has identically distributed voxels the estimate of

standard deviation is larger by a factor of
ffiffiffi
2

p
(41%).

Although, both the single voxel bootstrap method-

ology, and the C-ROI bootstrap, tend to give Normally

distributed estimates of the underlying probability den-

sity function (PDF) of Deff , they can be used to estimate
the probability distribution of the quantities derived

from the diffusion tensor, which are often not Normally

distributed. We use the bootstrap methodology, as well

as MC simulations, to investigate the probability dis-

tributions of the eigenvalues of the diffusion tensor,

k1; k2; k3 (ordered by magnitude), of trace(Deff ), and of a

measure of diffusion anisotropy, the relative anisotropy

(RA) [36]

RA ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðkÞ

p
=hki; ð4Þ

where hki ¼ traceðDeffÞ=3, is the average of the three
eigenvalues, and VarðkÞ is the eigenvalues variance [37]

VarðkÞ ¼ ðk1 � hkiÞ2 þ ðk2 � hkiÞ2 þ ðk3 � hkiÞ2

3
: ð5Þ

All these quantities derived from the diffusion tensor are

local, voxel-based. We consider the non-local, region-

based quantities in Section 5.

3.3. Testing Normality

To determine whether a Multivariate Gaussian dis-
tribution is the appropriate parametric statistical model

Fig. 2. A graphical illustration of the proposed DTI bootstrap. In this

scheme, the original design to be studied needs to be extended in some

situations to accommodate bootstrap analysis. The bootstrap mea-

surements that need to be acquired preserve the number of distinct b-

matrix groups, or subsets Si (total number is M þ 1). The only differ-

ence between the original design and the bootstrap measurements

design is that the number of repetitions for each group is usually in-

creased and is now ri, instead of ni. From this pool of ri bootstrap
measurements, ni are drawn with replacement (Dw/R) for each subset

Si to form a single bootstrap set. This Dw/R is repeated NB times.
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of ideal diffusion tensor data, we generated noisy diffu-
sion tensor data using the MC simulations of the DT-

MRI experiments in which the noise in the DWIs

conforms to a Rician distribution. Specifically, we test

whether Deff conforms to the parametric model given in

Eq. (2). We simulated different types of diffusion pro-

cesses. Both isotropic and anisotropic diffusion tensors

with values within the range found in living human

brain were used [38]. A wide range of S/N values (de-
fined as the S/N value for the unweighted signal,

trace(b)¼ 0), was used (1–100); other imaging parame-

ters were explored too (e.g., the number of images ac-

quired for regression NM was varied from 7 to 100).

If the eigenvalues of the tensor conform to a Normal

distribution then we expect VarðkÞ in Eq. (5) and RA2 to

conform to the scaled central chi-square distribution,

i.e., v2ðsx; mÞ. Here, m is the number of degrees of free-
dom, and the scale parameter s accounts for the fact that

VarðkÞ is not normalized, and that RA2 is normalized by

hki2 instead of having each individual term normalized

by its r2 in the standard definition of v2. Throughout the
rest of the paper we will call this distribution simply the

v2s distribution. Note that, even if the distribution of

eigenvalues slightly deviate from Normality, VarðkÞ and
RA2 could still conform to the v2s distribution. We test
this hypothesis using Monte Carlo simulations.

Finally, we compared the sample covariance matrix

elements to the theoretically predicted values using

standard linear regression error analysis [25].

3.4. Estimating true variability in the tissue

Because diffusion properties can vary from voxel to
voxel, the spatial heterogeneity can be a source of sta-

tistical variability in an ROI. The single voxel bootstrap

methodology provides intravoxel estimates of experi-

mental noise, which can be used with the ROI estimates

of noise to obtain the true variability of various DT-

MRI derived parameters. Since the spatial variability

and experimental variability of DWIs are assumed to be

statistically independent we can express the true stan-
dard deviation of a property of the tissue as

rT ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2
ROI � r2

E

q
; ð6Þ

where rROI is the ROI estimate of the standard devia-

tion, and rE is the effective experimental intravoxel

standard deviation for the ROI. If ri is the standard
deviation for the ith voxel in the ROI then rE can be

expressed as

rE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

NROI

XNROI

i¼1

r2
i

vuut ; ð7Þ

where NROI is the number of voxels in the ROI. In

practice, the ri are the bootstrap estimates of the stan-

dard deviation within each voxel. This equation is gen-

erally valid for situations with independent sources of
noise. However, when the actual rT is negligible, nega-

tive arguments of the square root in Eq. (6) can appear,

due to the randomness of the estimates of rROI and rE,

which are now close to each other. Zeroing the argu-

ment of the square root for such cases produces a biased

estimate.

If rE is estimated using the DT-MRI bootstrap, static

systematic errors that do not change as measurements
are repeated (e.g., Nyquist ghosts, eddy-currents, etc.)

will not be captured and will cause the true tissue vari-

ability to be overestimated in Eq. (6). If the spatial

variability of those static systematic errors, rS, could be

measured independently then the rE used in Eq. (6),

rE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2
B þ r2

S

q
, where rB is the bootstrap estimate of

experimental error. In this work we perform measure-

ments on phantoms with uniform diffusion properties,

which can give us an estimate of rS. We do not have an

estimate of rS for human data and, thus, the values of

rT we report in Section 4 are overestimated.

4. Results

4.1. Monte Carlo simulation results

Monte Carlo simulations of DT-MRI experiments

demonstrate that the six independent components of
Deff are distributed according to a Multivariate Gauss-

ian. In Fig. 3 we juxtapose empirical probability distri-

butions of the diffusion tensor components (open circles)

and Multivariate Gaussian fits (solid lines) for

l ¼ f1104; 661; 329; 180; 135; 77glm2=s, S/N¼ 20, and

28 DW images. Monte Carlo simulations gave similarly

good fits to the Multivariate Gaussian distribution for

all paradigmatic tissue types in human brain, and all
simulated experimental setups, even in cases when S/N is

slightly less than 2 and only 7 images are used in the

regression. All the cases in which the deviation from

Normality is observed are not of practical interest

(S=N � 1, and NM ¼ 7).

We obtain estimates of the sample covariance matrix

empirically, using bootstrap analysis or Monte Carlo

methods, and analytically, using a linear regression
model prediction given by Eq. (3). The linear model

estimates of log-linearized data are biased at low S/N,

particularly the variances of the diagonal elements of the

tensor. We found that the standard linear regression

predictions underestimate the diagonal elements of the

covariance matrix by approximately 20% for S/N¼ 20.

The prediction for the standard deviation of the trace is

approximately one half of that determined from the
samples.

Our ability to predict R degrades as diffusion atten-

uation (i.e., trace(b)) increases to the point where the

NMR signal approaches the background noise level
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(very low S/N). This is because in the low S/N regime,

the log-linearized data deviate significantly from the

linear model with additive noise. The use of weighting

factors for correcting this [26] is only approximate, and
does not completely restore the predictive power of the

linear regression formula. Thus, it is important to have a

non-parametric estimate of errors, such as bootstrap

estimates.

Fig. 4a shows the Monte Carlo simulations of the

slightly anisotropic diffusion tensor (k1 ¼ 750lm2=s,
k2 ¼ 700lm2=s, k3 ¼ 650lm2=s, and the corresponding

RA¼ 0.058) for three different experimental situations
in terms of the number of gradient directions, and the

number of repetitions, each having signal-to-noise ratio,

S/N¼ 25. The empirically obtained probability density

function (PDF) for the square of the relative anisotropy,

RA2, is fitted to the v2s distribution with the degree of

freedom parameter, m, and the scale parameter, s. Sim-

ilarly, Fig. 4b shows the MC simulations of the same

experimental situations but for a more anisotropic ten-
sor (k1 ¼ 1050lm2=s, k2 ¼ k3 ¼ 525lm2=s, and the

corresponding RA¼ 0.35).

Fig. 5 shows the true probability density function (a)

of trace(Deff ) and (b) of a tensor component Dxx (thick

dashed line), where 8 repetitions were used for each of

the 6+ 1 directions. Juxtaposed are two bootstrap esti-

mates of the corresponding PDFs of trace(Deff ) and Dxx

obtained from two different samples of DWIs used for
bootstrapping. This figure indicates that the bootstrap

gives reliable estimates of the variance and the shape of

the PDF, but not the mean. This result is expected since

the mean of a given statistic depends on the mean of the

original bootstrap sample, and on the intrinsic bias of a

given statistic. The diffusion tensor components and

trace are not biased and the peak of the PDF in Fig. 5

coincides with the estimate of the original sample. On

the other hand, the peak in the PDF for RA does not

correspond to the RA of the original sample, since RA is
biased statistic. Also, the spread of the peaks of the in-

dividual PDFs is an illustration of why P-ROI produces

biased (larger) estimate of the true variability, because it

includes the same variability twice.

We also used MC simulations to study the relation-

ship between the quality of the bootstrap estimates and

the number of gradient directions and measurement

repetitions. We simulated experimental setups with the
number of directions chosen from {7,10,13,25,61,113}

and the number of repetitions from {2,3,4,5,7,10,14,20}.

The results we show are for the simulated data with ei-

genvalues f800; 700; 600glm2=s and with S/N¼ 25, but

Fig. 3. Probability distributions of the components of Deff obtained

from Monte Carlo simulations. The mean vector is l ¼ f1104;
661; 329; 180; 135; 77glm2=s, S/N¼ 20, and NM ¼ 28. The solid line

indicates a fit to a Gaussian distribution. The distributions represent a

histogram obtained using 50,000 Monte Carlo replicates of a DT-MRI

experiment. DD is the range of diffusion values displayed in the graph.
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R
A

2 )
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   RA
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Fig. 4. Probability distributions of the square of the relative anisotropy

(RA). The figures were obtained by fitting the v2s distribution to the

empirical density distributions obtained fromMonte Carlo simulations

of (a) a nearly isotropic tensor with eigenvalues f750; 700; 650glm2=s,

(RA¼ 0.058, RA2 ¼ 0:0034) and (b) an anisotropic tensor with ei-

genvalues f1050; 525; 525glm2=s, (RA¼ 0.35, RA2 ¼ 0:125).
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similar results are observed for a wide range of simu-

lated tensors and experimental parameters. As a mea-

sure of the quality of the bootstrap estimate of a given

statistic, hB we chose the coefficient of variation defined

as CVðhBÞ ¼ SDðhBÞ=EðhBÞ. The standard deviation

and the expectation values were determined empirically
using many Monte Carlo repetitions of the experiment.

Our hypothesis that with an increasing number of dif-

ferent gradient directions, fewer ri images are needed

does not hold for all of the statistics, e.g., for the

SD(trace) in Fig. 6d. As additional verification of this

finding, we use another measure of the quality of the

bootstrap estimates, which compares the bootstrap es-

timate of the PDF of a given statistic to the true one
(empirically determined using MC). The measure we

plot is the it p-value obtained from the Kolmogorov–

Smirnov (KS) test when comparing the two distribu-

tions, shown in Fig. 7 for SDðDxyÞ and SD(trace). The

new measure is consistent with the previous one.

4.2. Bootstrap estimation results

4.2.1. Uniform phantom

Fig. 8 shows the images of the trace for two different
PVA phantoms. Fig. 8c and d demonstrate that the

measured trace(Deff ) of the uniform phantoms was in

fact not very uniform. In all attempts we were unable to

obtain phantom data with sufficient uniformity, suitable

for verification of the bootstrap results. These non-

uniformities are present to a certain extent in every

DT-MRI measurement and are due to susceptibility

differences, Nyquist ghosts, partial volume effects, eddy-
currents, etc. Thus, it is not surprising that the estimates

of SD(trace) obtained from a large ROI in the uniform

phantom were much larger than the bootstrap estimates.

For the phantom acquired on the 1.5 T scanner the

ROI estimates were 50% larger than the single voxel

bootstrap estimates, while for the 3 T scanner data the

estimates were 150% larger.

 

Fig. 5. Comparison of the true distribution (thick dashed line) of (a)

trace(Deff ) and (b) the diffusion tensor component, Dxx, to two inde-

pendent bootstrap estimates of the same distribution (circles and dia-

monds). The means of the distribution differ but the bootstrap

estimates of the standard error and the shape of the distribution are in

good agreement. The original DWI sample used for bootstrap analysis

was simulated using a typical experimental B-matrix and a diffusion

tensor with l ¼ f1100; 0; 0; 500; 0; 500glm2=s, i.e., a tensor with

traceðDeff Þ ¼ 2100lm2=s.
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Fig. 6. How the quality of the bootstrap estimates depends on the

number of different gradient directions and the number of repetitions

for each of the directions. Figures (a), (c), and (d) show the dependence

of the precision of a given bootstrap estimate on a given statistic, hB,
expressed through CV ¼ SDðhBÞ=hB. The statistics used are (a) stan-

dard deviation of an off-diagonal element, SD(Dxy ); (c), standard de-

viation of relative anisotropy, SD(RA); and (d) standard deviation of

the trace, SD(trace). Figure (b) shows the bias of the estimates,

bias ¼ ðhB � htrueB Þ=htrueB expressed as a percent.
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Fig. 7. Another measure of the quality of the bootstrap estimate. The

measure is the p-value obtained from the Kolmogorov–Smirnov test

when comparing (a) PDF(Dxy ) and (b) PDF(trace). Note that the

larger the p-value, the more accurate the bootstrap estimate.
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To make an indirect validation of the bootstrap ap-

proach we studied the dependence of the ROI estimate

on the size of the ROI (in terms of the number of voxels
within ROI, nvox). Since, for the smaller ROIs, the es-

timate of SD is imprecise (for Normal data error ¼
100%=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðnvox � 1Þ

p
) we placed many approximately

circular ROIs with nvox voxels randomly across the

uniform phantom. An average from 300 such estimates

is plotted in Fig. 9 (open circles) vs. nvox. We see that

extrapolating this curve to nvox ¼ 1 yields an estimate

very close to the value of the single voxel bootstrap es-
timates, whose range is designated by the dashed lines.

4.2.2. Human data: single voxel bootstrap

We also tested the bootstrap method using experi-

mental DT-MRI patient data (repetitions n ¼ 4), both

with the single voxel bootstrap, and with the ROI

bootstrap. We found that the DT-MRI bootstrap esti-

mate of PDF(Deff ) in the majority of voxels is a Multi-
variate Normal distribution. Fig. 10 shows typical

results for the white matter voxels, and similar results

were observed in gray matter. The cerebrospinal fluid

(CSF) voxels, although often conforming to the Normal

distribution, were much more likely to deviate signifi-

cantly from it.
Off-diagonal elements were more likely to deviate

from a Normal distribution than the diagonal elements.

Off-diagonal elements may be more susceptible to noise

because their relationship to the NMR signal is not as

direct as that of the diagonal elements. While diagonal

elements can be observed with only one diffusion

weighting gradient, the observation of the off-diagonal

elements requires at least two different gradient direc-
tions. We attribute deviations from Normality in the

diffusion tensor elements to motion and other systematic

artifacts, which are exogenous to the Rician noise

model, and difficult to describe parametrically.

Fig. 11 shows estimates of the PDF for trace(Deff ) in

gray matter, white matter, and CSF. The gray and white

matter distributions are very well described by a uni-

variate Gaussian [39]. The CSF distributions in many
situations qualitatively fit the Normal distribution, but

are rejected by rigorous tests of Normality, such as the

KS test, including the distribution shown in this figure.

Fig. 8. The trace of the diffusion tensor shown for two different uniform phantoms: (a) acquired with a 3 T scanner and (b) with a 1.5 T scanner.

Black corresponds to trace¼ 0, and white to Max(trace). Figures (c) and (d) show the same data except that black corresponds to the min(trace) value

within the phantom. The black-white range in the scaled images (c) and (d) is approximately 10 times narrower than the full range of values shown in

(a) and (b). The images illustrate that the ‘‘uniform’’ phantoms were not truly uniform.
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Similarly, Fig. 12 shows estimates of the PDF for

trace(Deff ) for the three tissue types, and for the cases

where clear deviation from Normality is observed. These

cases illustrate how the bootstrap methodology could be

used for detecting systematic artifacts in DT-MRI data.

In white matter voxels that we studied this deviation
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Fig. 9. Plot of the estimates of SD of trace for the uniform phantom

acquired on a 3 T scanner. The ROI estimate of SD for a given ROI

size is actually an average estimate collected from 300 different ROIs of

the same size and placed randomly within the uniform phantom. The

straight, parallel, dotted lines in the figure represent a range of the

bootstrap estimates of SD(trace) collected over 20 randomly selected

voxels. The dashed line with open triangles represents test results ob-

tained by applying the same procedure to a simulated, truly homoge-

neous ROI with simulated r ¼ 50lm2=s which indicates that the

significant drop in the value of estimated SD is not an artifact of the

procedure.

Fig. 10. The probability density function of the diffusion tensor for a

voxel within white matter, obtained by applying the single voxel

bootstrap to the human data. This is a typical result, for both, white

and gray matter voxels, for which deviation from Normality is rarely

observed. The solid line indicates fit to a Gaussian distribution. The

numbers indicate the mean value of a given diffusion tensor component

in lm2=s. The DD is the range of diffusion values displayed in the

graph.

Fig. 11. A single voxel bootstrap estimate of the probability density

function of the trace of the diffusion tensor. The graphs indicate that

the trace(Deff ) is Normally distributed. This is true for most, but not all

voxels. The CSF bootstrap analysis was much more likely to deviate

from Normality than the gray or white matter voxels.
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Fig. 12. A single voxel bootstrap estimate of the probability density

function of the trace of the diffusion tensor for three different tissue

types and for the voxels that clearly deviate from Normality. For each

tissue type two examples are shown. The solid lines indicate fits to a

Gaussian distribution to a given PDF. The fit to CSF data represented

by open circles is not shown because it failed due to a long tail of this

distribution, extending up to the trace value of 12,000lm2=s.
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occured in approximately 2% of voxels studied, in gray
matter for 5% of voxels, and in CSF for 25% of voxels.

4.2.3. Human data: ROI bootstrap

Fig. 13 shows some of the ROIs used for the ROI

bootstrap. In Fig. 14a the probability distribution of

trace(Deff ) obtained within a single voxel, located ap-

proximately in the center of the ROI CC, is fit very well

by a Gaussian with r ¼ 130lm2=s. This ROI CC is
drawn in corpus callosum, and in close proximity to

cerebrospinal fluid (CSF) to include the partial volume

effects. Fig. 14b shows a probability distribution of

trace(Deff ) obtained with the C-ROI bootstrap and the

P-ROI bootstrap. The ROI standard deviation of the

trace is rCC ¼ 902lm2=s, which is much larger than any

of the single voxel bootstrap estimates of

SDðtraceÞ ¼ 116� 24lm2=s, for the voxels in the ROI
CC. Both the C-ROI and the P-ROI bootstrap estimates

of the PDF(trace) reveal the existence of different sta-

tistical modes, which explains the high value of the ROI

estimate of r.
Fig. 15 shows the results obtained using single voxel,

the C-ROI and the P-ROI bootstrap analysis of Dxy . The

ROIs are drawn carefully within purportedly uniform

white matter (internal capsule, see the ROIs IC1 and
IC2 in Fig. 13). Fig. 15c also demonstrates that the C-

ROI bootstrap does not reveal the bimodal distribution,

when both IC1 and IC2 ROIs are analyzed simulta-

neously; instead, it produces an effective Normal distri-

bution (thick solid line). The large spread of each mode,

in comparison to a single voxel estimate, indicates that,

in general, it is very difficult to find an ROI which has
homogeneous diffusion properties, hence, it is rarely
advisable to perform ROI analysis of diffusion tensor

elements. The situation improves somewhat when the

Fig. 13. ROIs used for the demonstration of the ROI bootstrap dis-

played as black areas on images of lattice anisotropy index (left) and

trace (right). The ROI CC (labeled on the trace image only, but dis-

played on both images) is selected within corpus callosum and close to

CSF and is intentionally drawn sloppily to increase the partial volume

effects. It contains 20 voxels. The ROIs IC1 and IC2 are drawn care-

fully within the internal capsule on both hemispheres. The IC1 ROI

contains 12 voxels and IC2 contains 13 voxels.

Fig. 14. Comparison of the probability density function of trace(Deff )

for (a) single voxel bootstrap and (b) C-ROI and P-ROI bootstrap for

voxels within in the corpus callosum, but close to CSF. The bars in (a)

represent the histogram of the trace values in CC ROI (three of the

voxels fall outside the displayed range). The ROI bootstrap analysis

reveals the existence of different statistical modes, which suggests that

any ROI statistic, such as ROI standard deviation, is very inaccurate.
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Fig. 15. A bootstrap estimate of the probability density function of

diffusion tensors in an ROI drawn within the internal capsule. The

open circles designate analysis on IC1; open triangles designate anal-

ysis on IC2. The solid thick line in (b) and (c) indicates analysis of the

compound ROI (ICTOT) consisting of all voxels in IC1 and IC2. Note

that the C-ROI analysis on ICTOT produces effective Normal distri-

bution, despite the underlying bimodal distribution in ICTOT.
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rotationally invariant quantities are used, but they also
show a significant spread when the ROI bootstrap is

used. Fig. 16 shows results of applying bootstrap anal-

ysis to investigate the distribution of the eigenvalues of

the diffusion tensor for voxels and ROIs containing

white matter, gray matter, and CSF. The C-ROI esti-

mates of SE of the rotationally invariant quantities (ei-

genvalues) also overestimates the single voxel estimates,

indicating the presence of non-homogeneities in the used
ROIs. In isotropic media, such as gray matter and CSF,

there is a significant difference among the means of the

three eigenvalues. Moreover, there is negative skewness

of the distribution of the largest eigenvalue, and the

positive skewness of the smallest eigenvalue, although

this is not clearly visible on the graph.

Fig. 17 shows the bootstrap estimates of the proba-

bility distribution of the square of relative anisotropy,
RA2 (see Eq. (4)), a voxel-based measure of anisotropy.

Some other measures of anisotropy, such as the lattice

index[21] which are not voxel-based, are more difficult to

analyze using the bootstrap methodology. The distri-

bution of RA2 is well-described by the v2s distribution, as
confirmed using the KS test for this distribution. This

experimentally confirms the results of MC simulations

of DT-MRI measurements, showing that the VarðkÞ in
Eq. (5), and the RA2, conform to the v2s distribution (see

Fig. 4).

The distribution in Fig. 17, obtained within the CSF

compartment, deviates significantly from the expected v2s
distribution; this is attributed to artifacts in the original

DWI data, which could be due to CSF flow and/or the

decreased sensitivity of the DTI experiment to measure
accurately the diffusion of CSF.

4.2.4. Estimates of tissue variability

Using the bootstrap analysis we can assess the vari-

ability of parameters derived from the diffusion tensor,

by using Eq. (6), with the caveat that those estimates

could contain the systematic artifacts described above.

We selected many ROIs in different regions of the brain
and measured the rT and rE for several rotationally

invariant quantities. If the ROI is drawn carefully, the

experimental error is comparable to the variability in the

tissue. For example, the standard deviations we ob-

tained from the trace bootstrap analysis on these ROIs

are: in corpus callosum rT ¼ 248� 22lm2=s and

rE ¼ 122� 5lm2=s, in gray matter regions rT ¼ 280�
25lm2=s and rE ¼ 110� 6lm2=s, in CSF rT ¼ 410�
95lm2=s and rE ¼ 225� 11lm2=s. In a region that is

drawn across both white and gray matter (brain pa-

renchyma) we obtain a statistically insignificant change

of true variability i.e., rT ¼ 270� 24lm2=s and

rE ¼ 120� 5lm2=s. This is a statistical confirmation of

the previous finding that the trace is uniform in human

brain parenchyma [38]. Although the rT in CSF appears

larger than in the parenchyma, note that the percent
variability of the trace in CSF is smaller owing to a five

times larger trace (10,000 lm2=s vs. 2100 lm2=s). These
results demonstrate the use of Eq. (6). A more detailed
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Fig. 16. Bootstrap estimate of the probability density function of dif-

fusion tensor eigenvalues within (a) a single voxel and (b) corre-

sponding ROIs (the white matter ROI was IC1, shown in Fig. 13). It is

evident that the ROI estimates of variability and those of a single voxel

disagree. This disparity points to a significant intrinsic variability of

the rotationally invariant quantities.

Fig. 17. Single voxel bootstrap estimates of the probability density

function of RA2 for the main tissue types: (a) gray matter; (b) white

matter; and (c) CSF. (d) Two examples where the voxel suffers from

motion or other artifacts and does not conform to the Multivariate

Normal Distribution.
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study on the intrinsic tissue variability of the variety of
the diffusion tensor based quantities is under way.

5. Discussion

Knowing the parametric distribution of the tensor

enables us to design and apply a variety of statistical

tests to assess the significance of their differences be-
tween voxels or their spatial variability within different

tissue regions. For example, the Multivariate Normal

distribution of Deff implies that trace(Deff ) is distributed

according to univariate Normal distribution [39]. This

allows us to formulate hypotheses about the moments of

trace(Deff ) within particular voxels or within ROIs, and

to test them quantitatively for the first time. Since the

first demonstration of trace images [3], it has been
widely reported that trace(Deff ) is uniform in normal

brain parenchyma, drops substantially in ischemic re-

gions during acute stroke and increases significantly in

chronic stroke; however, whether these variations in a

given region were due to alterations in a tissue�s physi-
ologic state, its physical properties, or background

noise, is hard to determine. With a parametric distri-

bution for trace(Deff ) in hand, we can test clinically or
biologically relevant hypotheses, such as whether

trace(Deff ) is uniform in normal brain parenchyma,

whether it drops significantly in ischemic areas, or

whether it is significantly elevated in diseased areas of

brain parenchyma. This framework has already been

described in [39] and illustrates the power of hypothesis

testing in characterizing the variability of trace(Deff ).

We also confirmed that RA2 is distributed according
to the v2s distribution, or equivalently the relative an-

isotropy index, RA, is distributed according to the

scaled central v-distribution vsðx; mÞ � v2s ðx2; mÞ. Very

good fits to v2s were obtained for different levels of ex-

perimental precision and for different types of diffusion

(isotropic and anisotropic). However, the values for the

degrees of freedom obtained from the fits are very often

not integers, complicating the interpretation of m.
Although our experiments with the uniform phan-

toms did not produce the desired experimental verifi-

cation (except indirectly, see Fig. 9), we still consider

the bootstrap a reliable methodology for estimating

errors and other statistics of DT-MRI quantities. We

have verified using extensive Monte Carlo studies that

the DT-MRI bootstrap can produce reliable estimates,

some of which are summarized in Figs. 5–7. The results
on the uniform phantom clearly show that when using

Eq. (6) for estimating the true variability of the tissue,

the static systematic artifacts that appear consistently

in every repeated measurement, such as Nyquist

ghosts, will not be interpreted as measurement noise,

but will falsely increase the intrinsic variability of the

tissue.

The requirement of the DT-MRI bootstrap that the
same DWI acquisition be repeated one or more times for

each choice of b, is a potential drawback since it has

been suggested that applying gradients in more than 6

directions is beneficial for estimating the diffusion tensor

[18,40]. However, we do not propose using the bootstrap

scheme with every measurement, but rather as a special

procedure for the evaluation of the noise properties of a

given experimental DT-MRI design. Additionally, we
showed in Figs. 6 and 7 that when studying protocols

which contain many distinct non-collinear directions,

for some of the statistics, fewer repetitions will be re-

quired for each direction to achieve the same reliability

of the bootstrap. But, as can be seen in those figures, a

simple relationship between the number of directions,

the number of repetitions, and the quality of the boot-

strap estimates is not apparent and depends on other
details of experimental design (B-matrix, etc.). Finding

how a particular experimental design influences the

precision of the bootstrap goes beyond the scope of this

paper and will be the subject of future work. For ex-

ample, sudden changes in the quality of the bootstrap

estimates when going from 13 to 25 directions may be

caused by utilizing different methods for generating a

non-collinear set of B-matrices. Additionally, one can
question whether the measures of bootstrap quality that

we use are appropriate. One conclusion that can be

drawn from Figs. 6 and 7 is that increasing the number

of repetitions consistently improves the bootstrap esti-

mates.

The bootstrap method is particularly helpful in ex-

amining potential artifacts that arise in the acquisition

or the analysis of DT-MRI data. For example, the
skewness of the eigenvalue distributions, and the bias in

their means seen in Fig. 16, are consistent with an arti-

fact described by Pierpaoli et al. [21,38] that arises when

eigenvalues are sorted within each voxel by size. Meth-

ods attempting to remedy it have been discussed in

[41,19].

As Figs. 12, 17, and indirectly Fig. 14, indicate, the

Central Limit Theorem does not ‘‘hide’’ some of the
more severe deviations from the Rician model. We at-

tribute those deviations to motion and other systematic

artifacts, which suggests that testing for a deviation

from Normality is a way to detect systematic artifacts in

DT-MRI data. But, note that due to the Central Limit

Theorem, smaller motion and other artifacts can still be

‘‘hidden’’ in a new effective Normal distribution, as was

demonstrated using a bimodal data set and C-ROI
bootstrap (Fig. 15).

The bootstrap method is also very suitable for DT-

MRI because reliable estimates of measurement errors

can be obtained within a single voxel. Even regions

thought to be homogeneous may possess heterogeneous

diffusion properties. As seen above in Figs. 15 and 16,

aggregating voxels within a ROI just increases the SE of
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a measured quantity. This is due to the fact that the
probability distribution of the measured random vari-

able has two components. One comes from noise in the

measurement (experimental noise) and the other comes

from the inherent spatial variability of the measured

quantity within the imaging volume. In DT-MRI these

two components have different noise distributions. As

reported in Section 4 the true spatial variability (rT) for

trace(Deff ) in gray matter, white matter or CSF is
comparable to the experimental variability. Hence,

when performing the hypothesis tests on ROIs both

sources of noise have to be taken into account. In many

situations the spatial variability of a given statistic

within an ROI is not Normally distributed and thus

parametric hypothesis tests cannot be used. However,

the bootstrap confidence intervals and hypothesis tests

can be constructed in such cases. We do not describe the
details of implementation of such tests here since the

focus is on proposing and describing the implementation

of the bootstrap methodology. We also demonstrated

that estimates of the uncertainty and of the probability

distributions of measured and calculated variables in

DT-MRI can be obtained using bootstrap analysis,

provided a sufficient number of images is used in the

bootstrap resampling scheme. In fact, without using the
bootstrap method within a single voxel, these estimates

cannot otherwise be obtained. A standard estimate of

the SD of a certain quantity in a DT-MRI study from

the n repetitions of an acquisition having the same b-

matrix is very imprecise, because typically, n � 10.

The bootstrap methodology described here can easily

be extended to study non-local, region-based quantities.

One such quantity is the lattice index [21], another scalar
measure of anisotropy that includes the neighboring

voxels in its evaluation. Thus, to obtain a bootstrap

estimate for a single voxel, all of the neighboring voxels

have to be bootstrapped too. In another example, de-

termining the uncertainty of an estimated fiber tract

trajectory requires the inclusion of not only the voxels

through which a particular fiber tract passes, but also all

of the voxels through which the fiber tract could po-
tentially pass due to inherent variability [22]. The safe

approach for bootstrapping the non-local measures is to

create a bootstrap replicate of the whole imaging vol-

ume (all of the voxels). This approach, however, has

enormous computational demands and, in many situa-

tions, is not viable. The performance and reliability of

the bootstrap estimates of the non-local quantities are

not studied here.
Generally, the main drawback in using the bootstrap

is the computation time required to run it, which is

proportional to NB. For example, for NB ¼ 1000, the

bootstrap analysis takes about a half second per voxel

on a SPARC ULTRA-60 workstation when imple-

mented in IDL. On parallel computers, however, the

bootstrap method can be implemented very efficiently.

In the long term, we do not see computation time as a
limitation in bootstrap analysis of DT-MRI data.

6. Conclusion

We find parametric and non-parametric statistical

methods, particularly used in conjunction, powerful

tools in the analysis of DT-MRI data and in the design of

DT-MRI acquisitions. We have shown, using Monte

Carlo simulations, that the appropriate parametric
model for diffusion tensor data is the Multivariate Nor-

mal distribution. We also propose an implementation of

bootstrap analysis, the DT-MRI bootstrap. We apply it

to data from human subjects, confirming that, in the

majority of voxels, tensor components are distributed

according to a Multivariate Normal distribution. We

show how estimates of the probability distributions,

outliers, confidence levels, and bias for statistics that
arise in DT-MRI can be obtained, and hypotheses tests

can be performed using the bootstrap. Using Monte

Carlo simulations we confirm that the DT-MRI boot-

strap provides reliable estimates of such quantities. The

reliability of the bootstrap estimates depends on the

number of different gradient directions and the number

of repeated measurements for each direction, but the

relationship is not simple. In many situations, however,
the total number of distinct combinations that boot-

strapping allows is a good measure of its reliability, and,

in all cases, increasing the number of repetitions im-

proves the performance of the DT-MRI bootstrap. An

important finding of our study is that the total intra-

voxel variability observed for in vivo diffusion data is not

explained solely by the background Johnson noise. Un-

derstanding the sources of this additional variability
more deeply, whether it be physiological and/or due to

systematic artifacts, is an interesting and important

problem demanding further study.

Acknowledgments

The authors would like to thank Alan Barnett and

Carlo Pierpaoli for providing us with experimental DT-
MRI data used for bootstrap analysis, Ferenc Horkay

for providing us with the PVA solution phantom, and

Richard Shrager for providing the Matlab code used for

the B-matrix design in some of our simulations.

References

[1] S. Pajevic, P.J. Basser, Non-parametric statistical analysis of

diffusion tensor MRI data using the bootstrap method, in:

ISMRM Proceedings, 1999, p. 1790.

[2] S. Pajevic, P.J. Basser, Parametric description of noise in diffusion

tensor MRI, in: ISMRM Proceedings, 1999, p. 1787.

S. Pajevic, P.J. Basser / Journal of Magnetic Resonance 161 (2003) 1–14 13



[3] P.J. Basser, J. Mattiello, D. LeBihan, MR diffusion tensor

spectroscopy and imaging, Biophys. J. 66 (1) (1994) 259–267.

[4] P. vanGelderen, H.M. deVleeschouwer, D. DesPres, J. Pekar, P.C.

van Zijl, C.T.W. Moonen, Water diffusion and acute stroke,

Magn. Reson. Med. 31 (1994) 154–163.

[5] P.J. Basser, Inferring microstructural features and the physiolog-

ical state of tissues from diffusion-weighted images, NMR

Biomed. 8 (7–8) (1995) 333–344.

[6] V.J. Wedeen, T.L. Davis, R.M. Weisskoff, R. Tootell, B.R. Rosen,

J.W. Belliveau, White matter connectivity explored by MRI, in:

Proceedings of the First International Conference for Functional

Mapping of the Human Brain, Paris, 1995, p. P1.36.

[7] P.J. Basser, Fiber-tractography via diffusion tensor MRI (DT-

MRI), in: ISMRM Proceedings, Sydney, AU, 1998, p. 1226.

[8] S. Mori, B.J. Crain, P.C.M. van Zijl, 3d brain fiber reconstruction

from diffusion MRI, in: Proceedings of International Conference

on Functional Mapping of the Human Brain, Montreal, 1998.

[9] D.K. Jones, A. Simmons, S.C.R. Williams, M.A. Horsfield, Non-

invasive assessment of structural connectivity in white matter by

diffusion tensor mri, in: ISMRM Proceedings, Sydney, AU, 1998,

p. 531.

[10] S. Mori, B.J. Crain, V.P. Chacko, P.C.M. van Zijl, Three-

dimensional tracking of axonal projections in the brain by

magnetic resonance imaging, Ann. Neurol. 45 (1999) 265–269.

[11] T.E. Conturo, N.F. Lori, T.S. Cull, E. Akbudak, A.Z. Snyder, J.S.

Shimony, R.C. McKinstry, H. Burton, M.E. Raichle, Tracking

neuronal fiber pathways in the living human brain, Proc. Natl.

Acad. Sci. USA 96 (1999) 10422–10427.

[12] D.K. Jones, A. Simmons, S.C.R. Williams, M.A. Horsfield, Non-

invasive assessment of axonal fiber connectivity in the human brain

via diffusion tensor MRI, Magn. Reson. Med. 42 (1999) 37–41.

[13] R. Xue, P.C.M. van Zijl, B.J. Crain, M. Solaiyappan, S. Mori, In

vivo three-dimensional reconstruction of rat brain axonal projec-

tions by diffusion tensor imaging, Magn. Reson. Med. 42 (1999)

1123–1127.

[14] P.J. Basser, S. Pajevic, C. Pierpaoli, J. Duda, A. Aldroubi, In vivo

fiber tractography using DT-MRI data, Magn. Reson. Med. 44

(2000) 625–632.

[15] M.E. Bastin, P.A. Armitage, I. Marshall, A theoretical study of

the effect of experimental noise on the measurement of anisotropy

in diffusion imaging, Magn. Reson. Imaging 16 (1998) 773–785.

[16] J.S. Shimony, R.C. McKinstry, E. Akbudak, J.A. Aronovitz, A.Z.

Snyder, N.F. Lori, T.S. Cull, T.E. Conturo, Quantitative diffu-

sion-tensor anisotropy brain MR imaging: normative human data

and anatomic analysis, Radiology 212 (1999) 770–784.

[17] K.M. Martin, N.G. Papadakis, C.L. Huang, L.D. Hall, T.A.

Carpenter, The reduction of the sorting bias in the eigenvalues of

the diffusion tensor, Magn. Reson. Imaging 17 (1999) 893–901.

[18] N.G. Papadakis, D. Xing, C.L. Huang, L.D. Hall, T.A. Carpen-

ter, A comparative study of acquisition schemes for diffusion

tensor imaging using MRI, J. Magn. Reson. 137 (1) (1999) 67–82.

[19] P.J. Basser, S. Pajevic, Statistical artifacts in diffusion tensor MRI

(DT-MRI) caused by background noise, Magn. Reson. Med. 44

(2000) 41–50.

[20] S. Skare, T. Li, B. Nordell, M. Ingvar, Noise considerations in the

determination of diffusion tensor anisotropy, Magn. Reson.

Imaging 18 (2000) 659–669.

[21] C. Pierpaoli, P.J. Basser, Toward a quantitative assessment of

diffusion anisotropy [published erratum appears in Magn Reson

Med 1997 jun;37(6):972], Magn. Reson. Med. 36 (6) (1996)

893–906.

[22] M. Lazar, K.M. Hasan, A. Alexander, Bootstrap analysis of DT-

MRI tractography techniques: streamlines and tensorlines, in:

ISMRM Proceedings, Glasgow, Scotland, UK, 2001, p. 1527.

[23] R.M. Henkelman, Measurement of signal intensities in the

presence of noise in MR images, Med. Phys. 12 (2) (1985)

232–233.

[24] H. Gudbjartsson, S. Patz, The Rician distribution of noisy MRI

data [published erratum appears in Magn Reson Med 1996

aug;36(2):332], Magn. Reson. Med. 34 (6) (1995) 910–914.

[25] P.J. Basser, J. Mattiello, D. LeBihan, Estimation of the effective

self-diffusion tensor from the NMR spin echo, J. Magn. Reson. B

103 (3) (1994) 247–254.

[26] P.R. Bevington, Data Reduction and Error Analysis for the

Physical Sciences, McGraw-Hill, New York, 1969.

[27] C.R. Rao, Linear Statistical Inference and its Applications, Wiley

and Sons, New York, 1965.

[28] G.A.F. Seber, C.J. Wild, Nonlinear Regression, Wiley and Sons,

New York, 1989.

[29] B. Efron, Bootstrap methods: another look at the jackknife, Ann.

Statist. 7 (1979) 1–26.

[30] B. Efron, An Introduction to the Bootstrap, Chapman & Hall,

New York, 1993.

[31] A. Virta, A. Barnett, C. Pierpaoli, Visualizing and characterizing

white matter fiber structure and architecture in the human

pyramidal tract using diffusion tensor MRI, Magn. Reson.

Imaging 17 (8) (1999) 1121–1133.

[32] J. Mattiello, P.J. Basser, D. LeBihan, Analytical expression for the

b-matrix in NMR diffusion imaging and spectroscopy, J. Magn.

Reson. A 108 (1994) 131–141.

[33] J. Mattiello, P.J. Basser, D. LeBihan, The b-matrix in diffusion

tensor echo-planar imaging, Magn. Reson. Med. 37 (1997)

292–300.

[34] J. Mattiello, P.J. Basser, D. LeBihan, Analytical calculation of the

b-matrix in diffusion imaging, in: Diffusion and Perfusion Mag-

netic Resonance Imaging, Raven Press, New York.

[35] T.W. Anderson, An Introduction to Multivariate Statistics, Wiley

and Sons, New York, 1984.

[36] P.J. Basser, C. Pierpaoli, Microstructural and physiological

features of tissues elucidated by quantitative-diffusion-tensor

MRI, J. Magn. Res. B 111 (1996) 209–219.

[37] P.J. Basser, New histological and physiological stains derived

from diffusion-tensor MR images, Ann. N.Y. Acad. Sci. 820

(1997) 123–138.

[38] C. Pierpaoli, P. Jezzard, P.J. Basser, A. Barnett, G.D. Chiro,

Diffusion tensor MR imaging of the human brain, Radiology 201

(3) (1996) 637–648.

[39] P.J. Basser, S. Pajevic, Quantitative statistical tests for assessing

changes in the trace of the diffusion tensor: Clinical and biological

implications, in: ISMRM Proceedings, Philadelphia, 1999, p.

1789.

[40] D.K. Jones, M.A. Horsfield, A. Simmons, Optimal strategies for

measuring diffusion in anisotropic systems by magnetic resonance

imaging, Magn. Reson. Med. 42 (3) (1999) 515–525.

[41] K.M. Martin, N.G. Papadakis, C.L. Huang, L.D. Hall, T.A.

Carpenter, The reduction of the sorting bias in the eigenvalues

of the diffusion tensor, Magn. Reson. Imaging 17 (6) (1999)

893–901.

14 S. Pajevic, P.J. Basser / Journal of Magnetic Resonance 161 (2003) 1–14


	Parametric and non-parametric statistical analysis of DT-MRI data
	Introduction
	Theory
	Parametric model for noise in DT-MRI
	Non-parametric analysis using bootstrap

	Methods
	DT-MRI methods
	Generation of synthetic DWI data
	Diffusion weighted image (DWI) acquisition
	Estimation of the diffusion tensor from DWIs

	DT-MRI bootstrap analysis
	Testing Normality
	Estimating true variability in the tissue

	Results
	Monte Carlo simulation results
	Bootstrap estimation results
	Uniform phantom
	Human data: single voxel bootstrap
	Human data: ROI bootstrap
	Estimates of tissue variability


	Discussion
	Conclusion
	Acknowledgements
	References


