
Rtools: Tools for Software Management

in a

Distributed Computing Environment

Helen E. Harrison, Stephen P. Schaefer, Terry S. Yoo

MCNC
Post Office Box 12889

Research Triangle Park, NC 27709

ABSTRACT

We have implemented a software management tool-set which addresses
the problems of compilation and distribution of software across multiple
architectures in a mixed-vendor distributed environment. This package,
which we call rtools, is made up of: a central database, a compilation
tool, and a distribution tool. We describe the system in detail and look at
possible implementations of rtools in other environments. The system is
currently managing software which spans three operating system
versions on two architectures and twenty-two hosts.

Published in Nemeth, Evi and Sam Leffler, eds. USENIX ’88 (Proceedings of the 1988 Summer
USENIX Technical Conference and Exhibition, San Francisco, 20-24 June 1988) 1988,
Berkeley CA: Usenix Association, pp. 85-94.

1. Introduction

Rtools, an automated software management system, relieves the tedious and sometimes difficult
chores of recompiling and updating large quantities of software in a heterogeneous distributed
environment. An environment that includes a mix of architectures, a large quantity of source code to
maintain, and a large number of machines presents problems which are different from those in an
environment with a smaller number of machines. There are many approaches to automating software
maintenance. We have tried several of them, having greater success with those approaches that did not
require modification of the individual software subsystems. In implementing the rtools tool-set we strove
to improve the overall administration of software and facilitate the handling of object and executable
files, while maintaining the integrity of the existing system.

A First Approach Using Makefiles

A first cut at automating the recompile and redistribute process used rnake(1)1. Makefiles were
modified to accommodate compilation for multiple architectures. They also contained targets to
distribute executable files to all appropriate machines. A standard template for the enchanced makefile
structure was used to aid programmers in managing the large amounts of additional information
introduced by the problems of remote compilation and distribution.

To aid in remote installation, we originally wrote rinstall, a utility whose operation was much like
install(1). Rinstall was a front end to rdist, the Berkeley Unix™ file distribution utility. In addition to
the usual facilities of install, rinstall allowed one to specify a list of machines upon which to install a
file.

Problems

The makefiles used in this approach were complex and difficult to maintain. We had to rewrite
every makefile to include the ability to compile and install programs on machines which may have been
neither operating-system nor binary compatible with the source machine. For instance, the old makefile
for the well known public domain program shar was over a hundred lines and 2K characters long for a
program with only two C source files and two manual pages. At that size, it supported only two operating
systems. The effort required in the recent acquisition of UltrixDn as a supported system exposed many
shortcomings in using makefiles as the control point for file creation and distribution.

Furthermore, rinstall proved insufficient for our needs. It worked in a linear manner, taking one file
and installing it on several machines. Rinstall did not take full advantage of the power available in the
Berkeley rdist utility. It did not check modification dates, nor did it transfer multiple files over the same
connection.

What was adequate for an environment of four or five machines running a single implementation of
Unix, is not sufficient for our growing environment of over thirty hosts of differing architectures and five
versions of Unix.

The Solution

Our objective was to unite our existing tools into a usable package that used the strengths of those
tools to the best advantage.

UNIX is a registered trademark of AT&T.
ULTRIX is a registered trademark of the Digital Equipment Corporation.

3

We recognized that make was never intended to be used to control the management of software at
the level we required. Its strengths lie in its ability to efficiently and correctly create binary files. To
alleviate the inadequacies of make for our task, we separated the problem into two distinct tasks: creating
binaries and installing them.

Likewise rdist is generally adequate for putting several objects on several machines. However, rdist
has some of the same maintenance requirements as make. In particular, it requires that a separate control
file be created for every distribution directive. In order to circumvent the problems of maintaining large
numbers of control files, we specify a central point of distribution control.

The result is rtools: a system built around make and rdist, which separates compilation and
distribution. With rtools makefiles need only create executables; other means are used to distribute and
install them. Rtools creates and installs binaries based on information in a central database, hiding the
details of remote compilation and installation for other architectures from the user and from the
makefiles.

Design Overview of Rtools

Splitting the functional lines of the file creation process and the file distribution process is a
conceptual step above the previous method of handling both creation and distribution in the makefiles of
each source code subsystem. The major elements associated with this system are: a database which
maintains necessary software management information, rcreate which handles the creation/compilation
of object/executable files, and rput which deals with the distribution of those same files (see figure 1).

In essence, rcreate and rput are simple programs that drive the individual system elements. Each
calls tools that extract information from the database and pass that information to the intermediate tools
which in tum process the database information into directives for standard Unix facilities. From there, the
creation or distribution process is completed using well known Unix tools, drawing on the information
provided by the rtools system.

Throughout this project we utilize existing facilities where possible, taking advantage of the Unix
filter paradigm and the tools available with the Unix 4.3BSD release, avoiding the replacement of any

Figure 1 - A representation of the Rtools design

4

functionality that could be integrated from system utilities such as make or rdist. The tool-set uses
standard input and standard output to interface the individual utilities and depends heavily on the Boume
Shell for internal cohesiveness.

2. Shadow Trees

For storage of the distributable files, we create "object trees" which mimic the organization of the
source code directory /usr/src (see figure 2). There is one object tree for each different architecture or
operating system. We called the directories where object files are stored, "Shadow Trees", because their
structure is a projection of the source code tree.

Each object tree, or "shadow tree", is a subdirectory of /usr/obj. The correspondence of the trees
detemmines exactly where the executable for a particular architecture may be found, given the location of
its source code. For instance, the source code for a program called batch, might reside in the file
/usr/src/local/std/batch/batch.c. The resulting object file, compiled for a Convex C-1 computer would be
the file: /usr/obj/convex/local/std/batch/batch.o.

3. Control Database

All the information for remote compilation and distribution formerly kept in makefiles is now
centrally located in a single control database. A reason for using a single central database is that some
information is common to both the compilation and the distribution process. Furthermore, by removing
that information from the makefiles rtools is able to abstract the distributed nature of the environment
away from the compilation tools.∗

In hindsight, this is a simple concept. It is also easy to implement but will be difficult to maintain as
the database grows. Until proper database support tools are devised, some aspects of maintaining the
information will remain awkward.

Figure 2 - Rtools Directory Structure

∗ The Tektronics "Utek Build Environment" makes similar use of a central database for its source management, but with a different goal. Their
system provides a soft~vare development environment, while rtools is designed for software maintenance.2

5

Records

There is one record for each distributed file (see table 1). Each record in the control database is
divided into ten fields. The data in the fields control the selection and utilization of individual records.
Each record can be selectively accessed through one of two data extraction tools. They mask away
information unnecessary for some particular step in the distribution or installation process.

Fields

Each record contains the following fields:

• Host List
This field contains a host list, describing the systems for which the current record applies.

• Installation Class
Currently, the installation class is one of "bin", "lib" or "man". Other classes may be
appropriate as the database develops.

• Target Architecture
The architecture or operating system for which this file is to be prepared.

• Shadow Directories
Distributed objects/executables reside in a directory subtree appropriate to their target
architecture. By its nature, this field denotes the path for both the source directory and the
object directory for the file described by the current record.

• Make Target
This field contains the target that directs make to create the file locally, in preparation for
distribution.

• Local File Name
Usually identical to the make target

• Remote Destination Name
This field is the fully qualified (e.g. /usr/local/gnu/bin) path name of the destination
directory and filename on the remote host.

• Owner, Group, and Mode Fields
These three fields specify the eventual owner, group designation and file permission mode
on the remote machines.

Field Used In Example
Host List file creation & distribution natasha boris

Target Architecture file creation & distribution convex
Installation Class file creation & distribution bin
Shadow Directory file creation & distribution local/std/batch

Make Target file creation only batch
Local File Name file distribution only batch

Remote Distribution Name file distribution only /usr/local/std/bin/batch
Owner file distribution only bin
Group file distribution only bin
Mode file distribution only 755

Table 1 - A database record

6

4. Rcreate: The Binary Creation Tool

Rcreate, the rtools compilation utility, must accomplish three tasks. First, it must acquire
information about the current location of source files and the final destination of the executables.
Through rmakeneed a data access program, the database provides all the necessary information. Second,
it must compile software for remote machines, accommodating different operating systems and different
architectures. The final requirement is that it place all object and executable files within the appropriate
shadow tree.

In rtools, we made no additional enhancements to make. Instead we augment the make process with
a superstructure of shell directives. Rcreate makes use of a our local distributed computing utilities.
FREEDOMNET,3,4 developed at the Research Triangle Institute, is a distributed computing system that
transparently provides both remote execution and remote file access across heterogeneous architectures.
We use FREEDOMNET not only for maintaining sources in one virtual place, but also for remote
compilation on different architectures. Specifically for its second task, rcreate uses the FREEDOMNET
utility excr which makes the process's notion of the root directory (/) relative to the remote machine. Excr
preserves all of the current environment, including the current working directory, while all of the
programs invoked, in particular compilers, execute on the foreign machine.

To accomplish the third task, rcreate employs build*, - a make utility also developed at RTI.5 Build
provides the ability to search multiple source directories specified in the environment variable VPATH. It
also maintains a correct VPATH through recursive invocations in subdirectories. It also has the ability to
augment the VPATH variable dynamically as scripts within the makefile change directories and again
invoke make/build. Rcreate uses this mechanism to maintain the separation between the source and
object.

Rcreate itself is a pipeline of other tools: rmakeneed - the database data extraction utility, rmake -
the compilation coordinator, and the Boume shell to invoke build..

Rmakeneed

Rmakeneed is a database projection tool. It bridges the information in the database with a script
generator and serves as the source for the compilation pipeline. Its function is to extract the information
required to create files for machines throughout the distributed environment. The output has the form of
directives for the rmake utility.

Rmake

It is in the rmake step that the distributed nature of the environment is introduced into the make
process. Rmake takes the database projection from rmakeneed and produces a shell script with the proper
environment variables, etc. to excr to a machine of the appropriate architecture and run build for each of
the specified make targets. It should be stressed that the "make-in"" utility is not affected by this step.

Build

Build is called when the shell script produced by rmake is run. The previous steps of creating an ad
hoc compilation environment allows build to proceed in a normal fashion, oblivious to the nature of the
distributed environment in which it is working.

* Build is a "view path searching version of makedeveloped at AT&T Bell Laboratories6 and reimplemented ar the Research Triangle Institute. It
uses the environment variable 'VPATH' which specifies the directory trees to search when looking for makefiles and source files.

7

5. Rput: The Distribution Tool

Rput is the rtools file distribution utility. It runs rdist using information from the rtools database.
Rput obtains the information required to produce the distfile from rmaintneed. It pipes the result to
rmaint, which creates the distfile, which is in turn piped to rdist. Rdist takes a specification of what files
should be put where on a set of hosts. That specification is often in a file called a "distfile". Rtools needs
only a well defined subset of the extensive capabilities of rdist; by generating distfiles ad hoc, we avoid
maintenance of many hundreds of distfiles containing information mostly redundant with respect to each
other or with respect to the contents of the control database.

Rmaintneed

Rmaintneed is a database access tool whose output includes directives for rmaint. Like rmakeneed,
rmaintneed serves as the head of its process pipeline. However, the information extracted by rmaintneed
is specific to the distribution process.

Rmaint

The labor saving tool of the distribution process is rmaint. Rmaint automatically generates distfiles
for the rdist program, hiding the details of rdist syntax from rmaintneed It takes distribution
specifications on its stdin and puts the distfile on its stdout.

Rdist

The actual distribution of files is performed by rdist. This powerful tool relieves much of the
burden of verifying modification dates, connecting to remote machines, and handling the security issues
surrounding distributed environments.

6. Rtools in Other Environments

We consider the design of the system to be more useful than any particular program comprising it.
The shell scripts are almost trivial, but they obviously rely heavily on some powerful tools that were
already implemented. A similar system could be implemented for a different environment using other
commonly available tools. Here we discuss some of the details of implementing elements of the rtools
package in other environments.

Distributed File Systems

Perhaps the most striking feature used by the rtools package is the FREEDOMNET excr utility. We
surmise that Excr could be emulated in other distributed file systems by mounting directories of the
source machine onto a target machine, and then invoking a compiler on the target machine, perhaps with
rsh (Berkeley remote shell).

In the absence of a remote file system, some elements of the rtools design could be implemented
using other Unix concepts (e.g. remote daemons for compilation and tar or cpio for file transfer). One
might also examine the traditional alternative of using cross compilers.

Using Make/Build

Build is more subtly important: it allows a minimum of intervention into a working makefile to
adapt it to a variety of situations. The make delivered with 4.3BSD also recognizes the VPATH variable

8

but without the ability to change when invoked in another directory. Such recursive calls of make happen
surprisingly often—it appears in over fifty of the software subsystems delivered with source to 4.3BSD.
Nmake, a fourth generation make utility in the AT&T Toolchest7, may also cope with this situation.

Using Rdist

Rput depends heavily on rdist. In its absence, one might implement a work-alike using rsh and tar,
but there are important considerations that rdist addresses properly, such as having the loop over
machines outside the loop over files, and the network security issues involved in a utility that will install
sensitive programs (and what program isn't?).

We should mention here a local change to rdist: when the intended user on the remote host has not
given permission for the user at the local host to gain access automatically with an appropriate .rhosts
file, our version of rdist will prompt for the appropriate password. The behavior of the Berkeley version
of rdist was to simply deny permission.

We also added options to allow more flexibility in maintaining remote files, namely set owner,
group, and mode, do comparisons, and install even if the file has not been modified.

Information Management

We chose a database format that required the least possible work in creating database tools. After
more experience with the system, we may decide that more formal and better controlled database tools
would be worth the investment, at which point we could turn to a traditional DBMS to manage the data
and to produce the input expected by rmake and rmaint.

7. Conclusions

Rtools is in production use and is currently managing software in an environment that includes
4.3BSD, Ultrix, and Convex 4.1 Unix implementations. We plan to add rtools support for Sun Unix 3.5
in the immediate future, and possibly Apple Unix later.

We have a powerful tool with simple syntax after a modest programming effort. It succeeds even
with complicated software systems with many machine dependencies and large numbers of components,
such as GNU emacs. It has automated an error-prone and tedious task, allowing us to support a consistent
environment in a more timely and reliable manner. It frees support staff to concentrate their attention
elsewhere.

9

Background

The Microelectronics Center of North Carolina is a non-profit corporation involved in cooperative
research and education that unites the resources of five participating universities, the Research Triangle
Institute and a $40 million research facility. MCNC research programs focus on integrated circuit design,
simulation and testing, as well as semiconductor materials, devices, and fabrication processes. MCNC
works with its industrial affiliates to accelerate the transfer of this basic research into commercial
application.

The MCNC computer facilities include 2 VAX 8650's, one VAX 11/750 and an assortment of
Microvax II's running 4.3 BSD Unix™, 2 Convex C-1's (4.2BSD variant), a MegaOne automated wafer
tester (4.2BSD variant), several Vaxstation 2000 and Microvax GPX's running Ultrix 2.0, one Sun-3/260,
and other miscellaneous workstations. The machines are networked together on 2 local ethernets: one for
the main computing center and one for outlying workstations. We expect the number of workstations to
increase greatly in the coming years.

In addition, MCNC created and currently maintains a state-wide microwave network connecting the
participating institutions, providing broadband circuits for data communication, and two-way color video
channels for interactive teleclasses and conferencing. MCNC maintains gateways for the ARPANET and
SURANET, providing internet access for the southeast regional area We support nearly 400 registered
internet hosts, including departments at the Research Triangle Institute, NC State University,
UNC-Chapel Hill, Duke University, UNC-Charlotte, NC A&T University, and the Triangle Universities
Computation Center. (We plan to add departmental access to Wake Forest University, Winston Salem
State University, UNC-Asheville, and Eastern Carolina University.) MCNC has a full time system
support staff of 6 full-time programmers, 2 operators, and an electronics technician.

References

1. Helen E. Harrison, "Maintaining a Consistent Software Environment," Proceedings of the Large
Installation System Administrators Workshop, (April, 1987).

2. Alan McIvor, "UTek Build Environment," Proceedings of the Summer USENIX Conference, pp. 437
443 (1987).

3. Bob Warren, Tom Truscott, Kent Moat, and Mike Mitchell, "Distributed Computing using RTI's
FREEDOMNET in a Heterogeneous UNIX Environment," Proceedings of the UNIFORUM
Conference, pp. 115-126 (1987 j.

4. Tom Truscott, Bob Warren, and Kent Moat, "A State-Wide UNIX Distributed Computing System,"
Proceedings of the Summer USENIX Conference, pp. 499-513 (1986).

5. Kent Moat, "Design of build: A Path Searching make," Technical Memorandum, Research Triangle
Institute,, Research Triangle Park, NC 27709 (1986).

6. Verlyn Erickson and John Pellegrin, "Build - A Software Construction Tool," AT&T Bell
Laboratories Technical Journal, July-August, 1984.).

7. Glenn S. Fowler, "The Fourth Generation Make," Proceedings of the Summer USENIX Conference,
pp. 159-174 (1985).

