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Introduction

Non-linear diffusion or Variable Conductance Diffusion
(VCD) processes can be used as to filter away noise while
preserving boundary information.  However, adjustment of
the control parameters is not well understood.  By
approaching the control of VCD systems through a
multiscale statistical analysis, information about the image
is revealed regarding the strength of boundaries and their
influence with regard to the local geometry of the object.
This information can then be used to monitor and guide the
diffusion process.

Background

Several approachs to computer vision begin with a set of
governing constraints and equations, and construct the
mathematics and superstructure for vision based upon these
axiomatic principles.  One such approach toward vision is
based upon diffusion as a plausible model of vision.
Grossberg describes a model that includes a boundary
detection system and a system by which feature values
undergo a process of "filling-in"  [Grossberg, 1985].  The
properties of diffusion in such a context of visual
processing are particularly well principled, and fit this
construction well.  In particular, the Gaussian curve and its
derivatives are solutions to the heat equation, an equation
which governs diffusion behavior. The treatment of images
through multiple scales has been modeled using Gaussian
operators (and Gaussian derivatives) of increasing spatial
variance to better understand the nature of images at
differing resolution or measurement apertures [Romeny,
1991ab][Florack, 1993].

An extension beyond isotropic diffusion as an analytical
tool is the notion of multiscale non-linear or Variable
Conductance Diffusion (VCD)[Whitaker, 1993ab].  The
work of Whitaker is preceded by the concepts of
"anisotropic diffusion," an analytical process where images
are often treated at pixel resolution [Perona, 1988].  The
fixed inherent scale of this process generates instabilities
arising from noise with high spatial frequency.  The
multiscale properties of VCD allow it to perform
smoothing operations in the presence of noise, while
preserving boundary information inherent in the image.

The practical aspects of VCD in medicine are being
explored at many institutions, where non-linear diffusion
filters often serve a pre-processing role before traditional
Statistical Pattern Recognition (SPR) classifiers are
applied.  In particular, filtering mechanisms provided by
Guido Gerig [Gerig, 1991ab] are in use at the Harvard
Brigham and WomenÕs Surgical Planning Laboratory as
part of a classification procedure for the processing of MR
and X-ray CT data.

However, the control of VCD systems has often been
difficult; the nature of the diffusion parameters are only
partly understood.  Seemingly insignificant changes in
control constants can drastically modify the behavior of the
image as the diffusion process progresses.  The VCD
process as well as the properties of the noise contained
within the image can be studied through statistical pattern
recognition.  Traditional statistical pattern recognition is
performed at the maximum outer scale of the image, where
histograms and clustering are analyzed across the entire
range of observed pixels [Duda, 1973].  A multiscale
statistical analysis illuminates elements of the relationship
between scale and object shape.  By using critical values
revealed in the analysis, images may be reconstructed at
"natural" boundaries, accounting for the size and shapes of
the objects within the image.  This approach begins with
an adaptation of traditional measurements of distributions
of random variables [Olkin, 1980] to a multiscale view of
image processing.

Sampling and Scale

Consider an array of observed values, I(x), where for
purposes of discussion the location specified by parameter
x is in Â1, but can easily be generalized to Ân . The
values may be sampled using a neighborhood function,
h(x), using the convolution operation, I(x) Ä h(x), where

I(x)Ä h(x) = h(t)I(x - t)dt
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We choose our sampling function with care, specifying a
function that is invariant with respect to spatial translation
and spatial rotation (i.e. is independent of the value and
orientation of x) [Florack, 1993].  One such family of
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functions is the Gaussian (or Normal) distribution and its
derivatives.  Therefore, let

h(x) = G(x,s) =
1
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where the parameter s represents the width of the sampling
aperture, or put another way, s represents the scale at which
measurements of I(x) are made.  One way of interpreting
the ideas presented above is through the language of
statistics.  Specifically, let us consider the measurement
made using the Gaussian sampling kernel to be the average
or expected value of I(x) over the neighborhood defined by
the aperture value s.  This implies that the local mean over
this neighborhood can be defined by

Local Mean:

m I x,s( ) = E I(x),s = P(I(x))I(x) =
neighborhood s( )

å G(x - y,s)I(y)dyò

where E I(x),s   is read as the expected value of I(x)
measured with aperture s and P(I(x)) is the probability of
observing the value I(x).

Beyond the calculation of a local mean, it is
straightforward to calculate a value for the local variance
and the related standard deviation over the neighborhood
specified by the scale s.

Local Variance:

m I
2( ) x,s( ) = E I(x)- m I x,s( )( )2 ,s

= P I(x)- m I x,s( )( )2æ
è
ç

ö
ø
÷ I(x)- m I x,s( )( )

neighborhood s( )
å

2

= G(x - y,s) I(y)- m I x,s( )( )2 dyò

= G(x - y,s) I(y)( )2 dyò - m I x,s( )( )2

Local Standard Deviation:  s I x,s( ) = m I
2( ) x,s( )

Other Central Moments:  Observe that the third and fourth
local central moments are easily calculated in a similar
fashion.

m I
3( ) x,s( ) = G(x - y,s) I(y)- m I x,s( )( )3 dyò

= G(x - y,s) I(y)( )3 dyò - 3m I x,s( ) G(x - y,s) I(y)( )3 dyò

+ 3 m I x,s( )( )2 G(x - y,s)I(y)dyò - m I x,s( )( )3

= G(x - y,s) I(y)( )3 dyò - 3m I x,s( )m I
2( ) x,s( ) - m I x,s( )( )3

m I
4( ) x,s( ) = G(x - y,s) I(y)- m I x,s( )( )4 dyò

= G(x - y,s) I(y)( )4 dyò
- 4m I x,s( ) G(x - y,s) I(y)( )3 dyò

+ 6 m I x,s( )( )2 G(x - y,s) I(y)( )2 dyò

- 4 m I x,s( )( )3 G(x - y,s)I(y)dyò

+ m I x,s( )( )4 G(x - y,s)dyò

= G(x - y,s) I(y)( )4 dyò - 4m I x,s( )m I
3( ) x,s( )

- 6 m I x,s( )( )2m I
2( ) x,s( ) - m I x,s( )( )4

As specified before, the selection of the Gaussian
distribution as the sampling kernel was driven by a desire
for the sampling filter to be invariant with respect to
particular transformations of x.  It may be desirable to
analyze the sampled measurements of the array of I(x)
values in dimensionless units (i.e. invariant with respect to
certain transformations of I).  Note that the third and fourth
central moments shown above have dimension equal to the
degree of the moment and the units of measurement.  (i.e.
if the pixel value reflects lumens as a unit of measure, the
third central moment is measured in (lumens)3 )
Dimensionless measures may be obtained by normalizing
the central moments with multiples/exponents of the
standard deviation.  The resulting measures are described as
skewness and kurtosis.  Their local manifestations, given a
sampling aperture s, may be defined as

Local Skewness:  g I
3( ) x,s( ) =

m I
3( ) x,s( )

s I x,s( )( )3

Local Kurtosis:  g I
4( ) x,s( ) =

m I
4( ) x,s( )

s I x,s( )( )4

Although these higher moments are of considerable
interest, the remainder of this discussion will address the
nature of scale, noise and boundary measures as they
pertain to VCD.

Boundaries and Scale

Boundaries of objects of varying size exhibit different
responses when measured with differing Gaussian filters (a
range of derivative of Gaussian kernels)  through changing
scale.  The Laplacian of the Gaussian, in particular, elicits
a medialness response from objects contained within the
image with varying scale  [Fritsch, 1993].

Figure 1 shows a computer generated phantom image of
a teardrop shape.  The measured signal to noise ratio (SNR)
within that image has been constrained to 4 to 1.  The
images of Figure 2 are three local statistical measurements
made of the teardrop using an aperture whose spatial
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Figure 1 - A Teardrop with Signal to Noise of 4:1

Figure 2: Local Statistical measures of the teardrop from fig. 1.
(left:  local means, center: local variance, right:  local skewness)

standard deviation is 3 pixels wide.  Figure 2 left shows the
local mean values.  Figure 2 center reflects the measured
variances of the original teardrop.  Figure 2 right shows
local skewness.

A Laplacian of a Gaussian with measurement aperture s
is applied to the variance values to measure the derivative
of the variance with respect to changing scale s.  Local
areas whose measured variances do not change rapidly with
increasing scale reflect coherent regions of either
background or of signal (objects).  Using this type of
analysis, an optimal scale for object or local measurement
may be determined.

A modified VCD algorithm

Using the local statistical analysis presented above, a
modification of the Whitaker VCD method has been
developed.  Whitaker uses a diffusion equation

¶I
¶t

= Ñ · g ÑI(x, t)ÄG x,s(t)( )( )ÑI( )

g ÑI(x, t)ÄG x,s(t)( )( ) = e
-

ÑI(x,t )ÄG x,s( t )( ) 2

k2

The control parameter k is the conductance parameter and it
remains constant.  It controls the rate of the variable
conductance given a perceived intensity gradient at aperture
s(t).  The aperture G(x,s(t)) is a Gaussian sampling kernel

whose scale or aperture, s(t) is monotonically decreasing
with time t.

By analyzing the images with the local statistical
operators of variance and means, a local measure of the
SNR may be made in a spatially adaptive fashion.  The
sample aperture may be controlled by seeking the largest
scale at which local variance may be minimized.  This in
effect allows the best estimation of both the mean intensity
as well as the variance of the noise.  Therefore we replace
s(t) with s(It(x)) where

s I t (x)( ) Þ
¶m It

(2) x,s( )
¶s

= 0

This constraint selects the largest scale where noise may be
accurately estimated without the interference of intensity
gradients introduced by boundaries.   In practice, a zero
value is never achieved, so a small threshold is used to
select values of s that represent local minima of noise.

Conductance should be relative to the probability that
the perceived intensity gradient is either noise or an object

boundary.  Given s(It(x)), we can compute m It
(2) x,s I t x( )( )( ) ,

the local variance at the optimal measurement scale.
Gradient measurements are normalized with the expected
noise distribution.  That is, the conductance parameter k is
replaced with the measured variance, making the
conductance function

g ÑI(x, t)ÄG x,s I t x( )( )( )( ) = e
-

ÑI(x,t )ÄG x,s It x( )( )( )
2

mIt
(2) x,s It x( )( )( )

Implementation

Each of the statistical measurements may be made using
the convolution operation.  Each of the higher moments
are polynomial expressions of either the local means, the
observed intensities, or combinations of the lower order
moments.

At each iteration, statistical measurements at a range of
scales were generated, and the values of the variance and
local means were evaluated across increasing apertures size.
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Figure 3:  Results from the modified VCD (Top - before, Bottom - after; from left to right, I(x), m I x,s( ) , m I
(2)

x,s( ) )

Laplacian of Gaussian measurements were made of the
variance, reflecting the change in variance with respect to
increasing aperture size s, and a s I t x( )( )  was selected that

represented a local minimum in the noise.  Each
conductance value therefore is spatially varying depending
on the local nature of the image  Although slow, the
operation can be simplified to polynomial combinations of
the primary local mean and the observed intensity values,
making the process tractable.

Results
Figure 3 shows the results of the modified VCD system on
a simple object with SNR of 1:1.  The object reflects
features of differing scale, with the connecting bar between
the two circles often dropping out during isotropic
analysis.  Using the modified VCD, no individual
parameters were set for the image.  Instead, measurement
aperture was selected at each iteration for optimal
estimation of mean and variance values.  Notice the large
amount of noise in the original image reflected by the
relatively high measured variances (right top corner).  After
VCD, the noise is reduced somewhat, and the improvement
in SNR may be characterized by the lower local variances
(lower right corner).  It is also important that the mean
values of object and background remain constant.
Perturbations of intensity as a filtering side effect will
often result in poor classification if the object recognition
tools depend on absolute intensity.  The steady means are
reflected in the center before and after images, where
measured local means remain essentially unchanged.

Figure 4 shows results for the VCD system applied to a
medical MRI image.  The original image (shown in the

upper right corner) is not easily classified using intensity
windows.  Although there are clear separations in intensity
among the various tissue values, noise that contributes to
the misclassification of certain pixels (lower left corner).
The VCD filtered images are depicted on the right.

Future Work
In earlier work, I have shown how VCD can be applied to
multiparameter images, in particular those produced by
MRI, by basing spatial dissimilarities on distance measures
in feature space that are defined according to SPR, i.e.
according to probability distributions of these feature
vectors that are estimated from sets of training pixels.
Using the covariant probability distributions among
multiple parameters as a basis for the dissimilarity
measures that affect conductance in VCD generates a more
robust means for reducing noise while preserving boundary
information [Yoo, 1993].

While the resulting user-supervised SPR-constrained
VCD filtering mechanism provides a principled means of
measuring dissimilarity or gradients of possibly
incommensurable within-pixel data parameters, there
remains the problems associated with the variations of
local intensity and the non-stationary nature of intensity
and contrast in MR images.  The development of local
multiparameter statistical systems will address these issues
and will require the generation of local measures of
covariance, implying a matrix in the place of the current
scalar measures of variance.
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Figure 4:  Results from the modified VCD system on an MRI image.  (left- original, right - after VCD, top - I(x),
bottom, classification of grey matter using an intensity window classifier)
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