
Recommendations for

Adopting External Data Models into caBIG:

Tales from the Trenches

Tahsin Kurc, Patrick McConnell, Xin Zheng, and Brian Davis

VCDE and Architecture Workspace

Abstract
A number of external groups have developed and are developing standards for
representation of information in their respective domains. These standards may define the
structure of data elements (data objects) and/or information model(s) for the domain.
There are benefits to adopting external data standards in caBIG such as bringing in
established data models, facilitating interaction with legacy systems, and enabling
external groups to leverage caBIG information sources. In this paper, we examine some
examples of external standard adoption efforts in caBIG. We investigate the issues that
were faced in these efforts, what approaches were taken, and what caBIG and external
tools were employed. Based on our investigation, we see two two basic approaches to
bringing an external standard into caBIG. The first is to try to model and/or semantically
annotated the standard in its entirety. This generally allows for maximal interoperability
with legacy systems since the standard data model is maintained. An alternative is to
model a subset of the data model in UML and then model the entire data object as a
single attribute. This allows for interoperability at the semantic level required by caBIG
while maintaining some compatibility with legacy systems. A key conclusion learned in
our effort is that when adopting a standard, the team should acquire at least a basic
understanding of the usefulness of the external standard and its intended use in caBIG.
They should not blindly follow onerous adoption strategies in a one-size fits all manner.

ABSTRACT .. 1
1. INTRODUCTION... 3

1.1. GOALS IN ADOPTING EXTERNAL STANDARDS.. 4
1.2. BACKGROUND.. 5
1.2.1. MZXML ... 5
1.2.2. BIOPAX AND OWL ... 6
1.2.3. MAGE ... 6

2. METHODS.. 7
3. RESULTS .. 8

3.1. MZXML ... 8
3.2. BIOPAX... 10
3.3. MAGE ... 11
3.4. LESSONS LEARNED .. 12

4. RECOMMENDATIONS.. 13
4.1. INCORPORATING AN XML SCHEMA ... 13
4.2. INCORPORATING AN OWL ONTOLOGY... 16
4.3. INCORPORATING AN OBJECT MODEL ... 16
4.4. GENERAL RECOMMENDATIONS.. 17
4.5. RECOMMENDATIONS FOR POSSIBLE INFRASTRUCTURE EXTENSIONS/ENHANCEMENTS.............. 18

5. CONCLUSIONS ... 18

1. Introduction

A key characteristic of the caBIG program is its effort towards syntactic and semantic
interoperability across resources in the caBIG environment. This is critical to achieving
programmatic access to resources (syntactic interoperability), while ensuring that
information exchanged between two entities can be interpreted correctly (semantic
interoperability). To this end, the caBIG program is developing standards, including

o Common data elements standards: agreement and standardization on data
elements that represent information captured and referenced by applications and
studies,

o Vocabulary and ontology standards: agreement and standardization on basic
concepts, terminologies, and definitions related to cancer research, and

o Information models standards: agreement and standardization on associations
between data elements.

o Aligning with messaging standards

The caBIG community has also produced compatibility guidelines that describe the
requirements for a data or analytical resource to be caBIG compatible and how they
should adopt the caBIG standards1.

Standardization efforts are not unique to the caBIG program. Several groups within the
cancer research community as well as in other areas of biomedical research have
developed and are developing standards to facilitate unified access to and exchange of
information in their respective fields. Examples of these efforts include mzXML for
proteomics data2, BioPAX for biological pathways3, MAGE-OM/MAGE-ML for
microarray data4, DICOM5 for radiology, and HL76 for clinical, financial, and
administrative information. In order to achieve a wider application of caBIG technologies
and better interoperability with external groups, it is desirable that caBIG have
mechanisms and tools in place to be able to adopt (and adapt) external data standards as
needed.

caBIG has adopted processes to address the semantic and syntactic interoperability
requirements7. The processes lead to a set of artifacts that are required from each
software system to enable semantic and syntactic compatibility (eg, UML models, XMI
files, and CDEs, all stored in the caDSR, APIs). The issue is that standards (such as
standard UML models, standard domain-specific vocabulary and ontology, and data
exchange standards) developed outside of caBIG (eg, mzXML, BioPAX) do not

1https://cabig.nci.nih.gov/guidelines_documentation/caBIGCompatGuideRev2_final.pdf
2 http://sashimi.sourceforge.net/software_glossolalia.html
3 http://www.biopax.org/
4 http://www.mged.org/Workgroups/MAGE/mage-om.html
5 http://medical.nema.org/
6 http://www.hl7.org/
7 https://cabig.nci.nih.gov/guidelines_documentation

necessarily construct the artifacts required for caBIG compatibility, nor is their
generation trivial.

In this working group effort, we focus on adoption of external information/data standards
in caBIG. In this document, we use the term “information standard” or “data standard”
to refer to standards developed by a community in order to represent information
captured in a particular domain; an information standard can be used to store, search
for, and exchange information in a unified way. We do not cover messaging standards in
this work. In the rest of the document, we use “external information standard” and
“external standard” interchangeably. We investigate how the current set of processes and
artifacts required for caBIG compatibility should be used to support the adoption of
external information standards, as well as what issues remain to be addressed. We look at
three example cases of adoption of external information standards, namely mzXML,
BioPAX, and MAGE-OM. We present the experience and problems faced in these
example cases and develop an initial set of guidelines for adoption of external standards.

1.1. Goals in Adopting External Standard Data and Information
Models

There are several reasons for and benefits in adopting or adapting external standards in
caBIG:

o Bringing established domain models into caBIG.

Information modeling is not a trivial process. It requires good understanding of the
domain and the data management, data access, data exchange, and data analysis
requirements of domain users. Developing comprehensive data and information
models to represent information captured in an application domain involves
contributions of a community of users, oftentimes by forming a standards
body/group. The caBIG community can leverage such standardization and modeling
efforts by adopting external standards in caBIG.

o Interfacing with legacy systems.

In many cases there are a (large) number of legacy systems developed around
standard data models. These legacy systems have been in use for many years.
Adoption of external standards could make it easier to interact and interface with
legacy systems.

o Enabling integration of data represented in external standards and caBIG datasets.

In most cases an external standard is used to represent information captured in a
particular application domain and information model. Adoption of external standards
with caBIG data models would allow researchers using external data types to
semantically integrate their datasets with other datasets in caBIG.

With these motivating factors in mind, this whitepaper provides recommendations and
processes to adopt standards external to caBIG.

1.2. Background

The caBIG community has developed compatibility guidelines that define the
requirements for resources (e.g., applications, tools, and services) to enable and ensure
compatibility with other resources. These guidelines describe four different levels of
maturity (Legacy, Bronze, Silver, and Gold) that quantify the degree of syntactic and
semantic interoperability of a resource1. Silver Level maturity is a critical requirement
that significantly reduces obstacles to programmatic access to the functionality of the
resource and correct interpretation of the information it serves. Silver Level maturity
indicates that the resource can produce and/or consume objects, whose definitions and
semantic meanings draw from information models, common data elements, and
controlled vocabularies and ontologies that have been accepted by the caBIG community
and are publicly available.

The compatibility process involves 1) development of structured UML domain models
as described in the caCORE Software Development Kit (SDK) documentation, 2)
annotation of the UML domain model definitions with publicly available vocabularies,
and 3) registration of the annotated model (as XMI and CDEs) in the caDSR. In addition,
XML schemas corresponding to the classes registered in the caDSR should be published
in the GME so that the objects that are instances of the data types can be exchanged in the
Grid environment in a caBIG compliant way (i.e., as XML documents conforming to
XML schemas registered in the GME).

1.2.1. mzXML

mzXML is a data standard for encoding raw mass spectrometry data. The primary
experimental data are the m/z (mass to charge ratio) and intensity values stored as a two-
dimensional array that is encoded in base 64. In addition, there are a number of metadata
elements related to the instrumentation used to produce the data, algorithmic processing
steps, the technique to prepare the sample for injection into the mass spectrometer,
instrumentation parameters used when running the experiment, and data integrity.
mzData is an alternate standard to mzXML and has many of the same fields, and work is
underway to merge the two standards.

mzXML has a number of characteristics that make it interesting for consideration for
caBIG adoption. First, mzXML has a data model described by XML Schema but no
object model. This makes it challenging to actually bring the standard into caBIG
because the caBIG compatibility process requires an object model in UML to be used to
register CDEs and concepts. Second, mzXML itself has a number of attributes that are
semantically interesting to consumers (such as the metadata-related elements), but the

actual experimental results (m/z-intensity pairs) are not semantically interesting being
that they are simply a binary blob. Querying into such data in a grid setting is neither
practical nor useful. Finally, though not strictly related to the caBIG compatibility
process, it is interesting to note that most applications find it difficult to work with
mzXML documents because of the unwieldy nature of their vast size, a typical
experiment potentially generating gigabyte-size mzXML document. This should be
considered in the standardization process in case a modification of the standard would
make it more useable.

1.2.2. BioPAX and OWL

BioPAX (Biological Pathway Exchange) is a community effort to create a standard
format for biological pathway data. The BioPAX format is defined in OWL (Web
Ontology Language) and currently consists of two levels (Level 1 Ontology and Level 2
Ontology). These ontologies include support for expressing metabolic pathways,
signaling pathways, protein-protein interactions, and molecular interactions. The Level 2
Ontology is the most recent release, which extends Level 1 Ontology with support for
expressing molecular interactions and protein post-translational modifications. Several
pathway databases and software systems use BioPAX as their data exchange format (e.g.,
BioCyc, Reactome, BioModels database, Cytoscape, Patika, p-tools, and PathCase).

BioPAX uses OWL to represent its Ontology. OWL is based on the RDF (Resource
Definition Framework), which provides a model for objects and relationships between
objects. OWL extends RDF by incorporating additional vocabulary to describe classes,
properties, relations between classes, cardinality, equality, etc. Unlike XML Schema,
which defines a hierarchy among objects based on parent-child relationship, OWL and
RDF can describe graphs, which represent objects and relations between them. An
introduction to OWL in the context of biomedical applications can be found at
http://www.medicalcomputing.net/owl1.html.

1.2.3. MAGE

MicroArray and Gene Expression (MAGE) is a widely used/accepted standard for
representing gene expression microarray data. MAGE was proposed in November 2000
by the Microarray Gene Expression Data (MGED) Society to facilitate the exchange of
microarray information between different data systems. It was adopted by the Object
Management Group (OMG) in January 2002.

MAGE consists of two primary parts: an object model (MAGE-OM) defined in UML and
an XML document exchange format (MAGE-ML) defined by a DTD (Document Type
Definition) derived directly from the object model. Additionally, an MGED ontology has
been developed by the MGED Society to provide standard terms for the annotation of
microarray experiments.

Many institutions and vendors provide MAGE-compliant microarray data management
systems and data acquisition/analyzing tools. Most of these systems/tools import or
export microarray data in XML format, using tags defined by MAGE-ML DTD. Many
caBIG applications are designed to interface with such MAGE complaint systems.
Therefore, it was very important to adopt MAGE as a caBIG data standard. The UML
object model, XML data exchange format, and well defined vocabulary also made
MAGE an attractive candidate for caBIG adoption, because they fit into caBIG’s notion
of using XML Schema, CDEs, and concepts to describe data structures and semantics.

Despite the fact that MAGE seems to have the artifacts (annotated UML model, DTD,
and XML stream as message) needed to become a caBIG data standard, there are a
number of challenges for MAGE to be adopted into caBIG. First, despite the fact that
most of the microarray user use MAGE-ML DTD as the tool for MAGE standard, caBIG
best practices require the adoption team to start with MAGE-OM object model. A
MAGE-ML DTD equivalent XML schema could be generated later using the caCORE
SDK for data exchange purpose. However, most microarray data are exchanged in XML
files compliant with MAGE-ML DTD, therefore a separate tool has to be developed to
utilizing the MAGE-ML DTD for data validation. This step is not a caBIG standard
practice, but it enables caBIG to interface with other non-caBIG/legacy systems. Second,
a well annotated object model with good class/attribute naming conventions is needed to
create and register CDEs in the caDSR. In addition, each class must have at least one
attribute. The MAGE OM has 132 classes that conform to best practice naming
conventions; however, the model contains 51 classes without single attribute and 16
classes inherit from classes among the above mentioned 51 classes, resulting total 66
classes without any attribute. Furthermore, 9 MAGE OM classes were modeled with 2nd
or 3rd level inheritance and the multi-level inheritance can not be handled by current
caDSR loading tools. Finally, 4 MAGE-OM class attributes were not successfully
registered in caDSR due to the names of those attributes, resulting in 2 MAGE-OM
classes missing. As a result, 77 out of 132 MAGE-OM classes were not loaded. Some
MAGE classes and attributes have their own annotation, which is different from
definitions of concepts in the EVS-NCI Thesaurus (the public repository for annotating
UML models). This situation leads to ambiguous definitions of similar or same objects
in caBIG. If the original MAGE annotation were to be kept, the routine caBIG semantic
integration practice would need to be changed.

2. Methods

Information and object models must meet the silver level compatibility requirements in
order to be caBIG compliant. So, we have performed a cursory and abbreviated silver
level compatibility review on each of the example cases. We investigated how the
external data standards in these example cases could be adopted with existing caBIG
compatibility processes. The examples represent three different classes of external
standards efforts:

o mzXML is a de-facto community standard for mass-spectrometry data. It has a
standard XML schema representation. It represents the class of standards where
an XML schema exists.

o BioPAX is an evolving standard for representing biological pathway data. It is
represented in OWL. This example represents the class of standards expressed in
an ontology language.

o MAGE is a standard for MicroArray and Gene Expression data. MAGE has an
XML DTD representation as well as an object model. It represents the class of
standards that have an existing object model.

In these examples, we have looked at 1) how each standard was adopted and what
approaches were taken, 2) what caBIG and external tools were used, and 3) what issues
arose during the adoption process, which of these issues were addressed, and which
issues remain to be addressed. For mzXML, which has an XML schema representation,
and MAGE, which has an object model representation, we have also investigated what
issues arose as far as the caBIG compatibility guidelines and best practices are concerned.

3. Results

3.1. mzXML

The goal of the mzXML standardization effort was to bring the mzXML data standard
into the caBIG community. The approach taken is to create an object model that both
mimics the data model and is semantically well-defined. To these ends, a number of
rules for mapping XML Schema constructs to UML classes and attributes (in XMI) are
defined, and a Java program is written to execute these rules (see Figure 1). The resulting
XMI file is registered in the caDSR with concepts registered in the EVS- NCI Thesarus.

Figure 1. Summary rules used for mapping the mzXML XML Schema to an object
model.

In order to minimize the impedance mismatch between the data model and the generated
object model, a number of caBIG modeling best practices were broken or not fully met:

• Empty classes: Because of the hierarchical nature of XML, it is often the case
that a complex type contains only complex types. This generates a class with
only associations to other classes (and no attributes), which is not semantically
useful in caBIG.

• Naming: There are a number of best practices related to the naming of classes,
attributes, and associations that were not met because the names of types and
attributes in the XML Schema were kept. These include:

o Names should be singular, not plural
o Attribute names should not include the name of the enclosing class
o Abbreviations should not be used (unless widely accepted)
o Names should have good semantic meaning

• Cardinality: In XML Schema, it is common for simple attributes to have a
cardinality of maxOccurs to be unbounded. This is easy to represent in UML
with a cardinality of *; however, this is not easy to represent in the caDSR using
Java-based types. Thus, attributes with unbounded cardinality are mapped to
arrays.

In order to follow a number of caBIG modeling best practices, a number of mismatches
to the data model are introduced:

• Naming: Class names are changed to start with an upper-case letter, and attribute
names were changed to start with a lower-case letter. Complex types that ended
with the word type are stripped of that word. In order to meet caCORE SDK
constraints, the names of associations with cardinality greater than 1 are appended
with the word “Collection”.

• Data types: A number of XML Schema data types do not exist in the caDSR and
so are mapped to some other basic type that does exist (e.g. xs:duration is mapped
to String). Any restrictions implemented by the extension of a simple type are
lost.

• Structure: Classes with a single attribute are removed, and the attribute is added
to the classes that associated its encapsulating class. An attribute named value is
added to a class that is derived from a complex type that extends a simple type. In
order to meet caCORE SDK compatibility, an attribute named id is added to each
class.

The result of this mapping is an object model that is both semantically acceptable as well
as close enough to the original XML Schema that data which validates to the schema can
be mapped into the object model.

3.2. BioPAX

BioPAX has an OWL representation. It is expressed in XML, but has a number of
specific tags to be able express classes and semantic relationships between classes.
The overall goal of the review is to determine how to represent OWL and therefore
BioPAX in caBIG using the compatibility process and create artifacts (UML model, etc.).

Tools exist to create a UML model from an OWL representation. An example set of steps
to convert OWL to UML is provided at http://www.biopaxwiki.org/cgi-
bin/moin.cgi/Converting_OWL_To_UML. These steps are described for the Protege
2.1.2 software (an open-source ontology editor and knowledge base framework,
http://protege.stanford.edu/) with a UML plug-in
(http://protege.stanford.edu/plugins/uml). Protege with the UML plug-in automates
MOST of the process for converting from OWL to UML; however, some manual editing
of the resulting UML model needs to be done in order to remove default OWL/RDF
classes created during conversion.

Manual editing of the UML model (generated from an OWL document) is needed for
caBIG adoption. Some of the issues faced by the developers during the UML modeling of
BioPAX are listed below. We should note that the annotation of BioPAX with caBIG
data types has not been completed; that is, the models have not been loaded to caDSR
yet.

1. The UML model generated from the OWL-to-UML mapping may contain
associations with no directionality. Two or more associations may contain the

same source and target classes. In those cases, the associations should be edited
manually to ensure that the role names are different in each association.

2. The meanings and names of classes and attributes generated through the OWL-to-
UML mapping as well as those edited manually should be verified to ensure that
the concepts in EVS fully and correctly describe these meanings.

3. Enumerated value domains needed to be created in the model. This was a problem
in earlier versions of caCORE SDK, but the Semantic Integration Workbench
(SIW) now can help with enumerated types.

4. The current version of caCORE SDK code generator cannot generate APIs and
object classes from the models in the state they are generated through the OWL-
to-UML mapping process. The problem is that the generated class attributes and
names may contain hyphens. It is suggested that the naming guidelines defined in
the Programmer’s Guide be followed.

5. Each class should contain an “id” attribute, which is used by the API.

The initial effort for adoption of BioPAX aimed to register the entire BioPAX
representation in caDSR. The cPath project in caBIG has taken a different approach
(cPath is an open-source pathway database software and uses BioPAX as one of its data
exchange formats). Their approach has stemmed from the fact that BioPAX does not
have an XML schema and developing a schema for the BioPAX ontology is not trivial.
Moreover, the UML model developed for BioPAX did not satisfy several of the query
use cases. Thus, instead of attempting to model the entire BioPAX model, a subset of
attributes and ontology elements have been selected; the subset has data elements that are
more likely to be queried by clients. These selected data elements have been registered in
caDSR and the corresponding XML schema has been generated. In addition to the
selected subset of data elements, the registered object contains a “string data element”.
This data element is used to store the BioPAX document so that when a client queries the
data using the harmonized subset of data elements, it can retrieve the entire pathway
information represented in BioPAX ontology.

The cPath approach is acceptable as far as the compatibility requirements/guidelines are
concerned. An object is registered in caDSR and clients can access a cPath data source
using this registered object. However, this approach assumes the client will be able to
decode and consume the “string” data element that stores the BioPAX document. The
approach also limits the types of queries that can be issued against the data, since only a
subset of data elements are harmonized. However, this is a good approach to quickly
bring data sources that use an external standard into the caBIG environment. It reduces
the effort for adoption since it involves adoption of a selected subset of the data standard
instead of the entire standard.

3.3. MAGE

The motivation for introducing MAGE standard into caBIG is to enable all microarray
data managing tools and analysis services to interface with other non-caBIG/legacy
systems that compliant with MAGE standard. The approach is to register MAGE-OM

into caDSR and generate all CDEs and XML schema necessary for semantic
interoperability and data exchange. To accomplish this goal, the following steps were
executed:

• MAGE OM version 1.1 was selected for caBIG adoption (XMI file can be
downloaded from OMG web site
http://www.omg.org/technology/documents/formal/gene_expression.htm)..

• MGED ontology, concept for describing microarray experiments, was loaded into
EVS for MAGE model semantic annotation.

• In case of class inheritance, the attributes in parent class were inherited in all
children classes. However, multiple-level inheritance was not handled properly.

• Annotate each MAGE-OM class attribute manually using MGED Ontology and
other EVS concepts.

• Some attributes were added into original empty classes.
• Created CDE for each MAGE-OM class attribute. However, 4 attributes with

name “value” were missing
• Created data model according to MAGE-OM and manually mapped the tables to

classes in a XML file.
• Developed a separate application, caArray MAGE ML Loader (caAMEL), to

validate the in-coming MAGE-ML file according to MAGE-ML DTD and load
data into caARRAY database and create a similar web application to extract
MAGE-ML file from the caBIG system.

The MAGE standard adoption team made following decisions, while registering MAGE
model into caDSR to exercise the caBIG best practices. The final outcome is a altered
MAGE model.

• Some CDE names are different from their corresponding attribute names.
• 66 MAGE-OM classes are not registered in caDSR, therefore can not be reused

by the caBIG community.
• Attributes are added to certain classes in order to register them into caDSR.

The following issues were identified during the MAGE-OM adoption process and the
team planned to reload the model to solve these issues.

• Class attributes were not inherited by grand- and great-grand-children classes. 9
MAGE classes were currently missing due to this reason and they should be
recovered during next load.

• No CDE was created for attributes with name “value”, even the attributes were
well annotated in UML model. This may due to the limitation of the tools used for
the process.

• Necessary attributes, such as ID, should be added to current empty MAGE-OM
classes.

3.4. Lessons Learned

In a given external standard adoption effort, there are likely to be mismatches between
the external standard representation and the caBIG object model. This should be expected
as external standards bodies will develop their standards to meet the requirements of their
respective communities and using the data modeling approaches accepted or employed

by those communities. This is an important issue that should be taken into consideration
when seeking to adopt an external standard, especially if data will be exchanged between
caBIG compliant systems and legacy systems that expect data in the external standard
representation. It is important to note that a large mismatch between the external data
standard and the caBIG harmonized object model may require implementation of
complex transformation tools and services.

In the case of adoption of an OWL ontology, the availability of tools that support
mapping from OWL to UML reduced the amount of effort. However, these tools should
be used with care, as the resulting UML output may not be compatible with caBIG tools
and may require manual editing to clean up the model. In addition, care should be taken
to eliminate/correct directionless associations and to ensure that class names and class
attributes do not contain symbols such as hyphens, since the current set of caCORE SDK
tools cannot generate code if such symbols are part of the class and attribute names.

Even with the availability of tools the overall adoption process can be lengthy because of
the need to manually edit the UML output and to modify the model to harmonize with
existing caBIG object models. It also may require considerable effort to generate an XML
schema, if the original ontology representation did not have one. An alternative approach
might be to select a subset of ontology terms, classes, and attributes (relationships) and
harmonize them with caBIG common data elements. In the harmonized object model, an
“external data element” entry (e.g., a String value) can be included to encode the entire
result in the external data standard representation.

A critical question in any effort to adopt an external standard is to ask is how the
standard is to be used in caBIG. For example, is mzXML to be used as a data exchange
standard, or is it meant to provide a well structured UML model that can be re-used by
other caBIG applications? is BioPAX to be used as a UML model (for object re-use), or
as a standard ontology (for defining pathway information), or as data exchange standard
(e.g., to facilitate interaction with external/legacy applications)? We think that there may
be different artifacts and guidelines for each different type of external information
standard (e.g., data exchange standard, vocabulary or ontology standard).

4. Recommendations

4.1. Incorporating an XML Schema

The result of the mzXML mapping effort is a workflow for mapping an XML Schema to
a UML model (see Error! Reference source not found.). This workflow attempts to
minimize the syntactic differences between the data and object models while maximizing
the semantic quality of the object model:

1. Map XML Schema to UML based on mzXML mapping rules
2. Perform an evaluation of object model based on interoperability guidelines, best

practices, and adoption

3. Modify the mapping rules and/or the model, keeping in mind the consequences of
mismatch with the data model

4. Evaluate mismatch between object model and data model based on the work
necessary to perform a mapping

5. If mismatch too great:
a. Define a new data model
b. Define a translation service between new data model and standard data

model
6. If mismatch acceptable

a. Implement translation between object model and data model
7. Register object model in the caDSR, concepts in EVS, and XML Schema(s) in

GME – Please note that registration of XML schemas in GME is not required for
the Silver level compatibility, but for the Gold level compatibility.

The first key decision step is 2, where the modeler must evaluate the object model. He
must determine whether the model meets the caBIG semantic and syntactic
interoperability guidelines and best practices. If it does not, he must either change the
model directly or change the mapping rules. The second key decision step is 4, where the
modeler must evaluate the mismatch between the data model and the object model. He
must determine whether a translation between the models is possible or even makes
sense. If not, then he must define a new data model and then create a service to translate
between the data standard and the new data model. This course of action is not as
desirable because caBIG tools and services will not be directly compatible with legacy
applications because the translation service must be used as a go-between. In either
event, the end result is a model defined in the caDSR.

Figure 2. Workflow for mapping an XML Schema to an object model. The workflow
starts at the top and ends in the bottom with a number of produced artifacts and the
registering of a model in the caDSR.

4.2. Incorporating an OWL ontology

1. Use existing tools to create UML models
2. Do manual editing of the UML models for semantic integration with other

existing models in the caDSR.
3. Try to minimize mismatch between OWL ontology based model/representations

and the model/representation for harmonization based on interoperability
guidelines and best practices.

4. Be careful about associations. They should be directional.
5. Create enumerated value domains as needed based on the original OWL ontology.
6. Be careful about attribute names and class names. The caCORE SDK does not

handle hyphens in names when generating code mappings.

The cPath approach described in Section 3.2 can be employed as an alternative solution
(possibly as a mid-term solution).

1. It allows relatively quick adoption of an external standard.
2. It maintains the original representation through a “string” attribute.
3. However, it does not generate a representation as strongly-typed as might be

desired. A client program is expected to understand the format of the information
stored in the string attribute.

4. Queries are limited by the subset of data elements that are harmonized.

4.3. Incorporating an Object Model

The work flow for incorporating an existing object model into caBIG system is no
different from the routine practices adopted by caBIG, except for the fact that we do not
have the full freedom to modify the object model in the semantic integration steps.
However, some alternations are necessary to register MAGE OM in the caDSR. The
approach for adopting an existing external object model is the same as for adopting an
existing external XML schema or OWL ontology: attempt to minimize the differences
between the “caBIGfied” object model and the original models, while maximizing the
semantic quality of the final object model. The following practices are suggested for
incorporating an existing object model into caBIG:

1. Evaluate the original object model (manually or with the help of SIW) based on
compatibility guidelines and best practices. Make necessary changes to ensure
that the format and the quality of the model meets caBIG best practices (naming
convention for ClassName, attributeName, and direction and naming of the
associations). The final outcome of this step is a “caBIGfied” object model.

2. Document the discrepancy between the original object model and “caBIGfied”
object model and the resulting difference in the data model.

4.4. General Recommendations

There are two basic approaches to bringing an external standard into caBIG. The first is
to try to model and/or semantically annotated the standard in its entirety. This generally
allows for maximal use of the standard in terms of representation of information and
facilitates better interoperability with legacy systems, since the standard data model is
maintained. However, one viable alternative, as demonstrated by the BioPAX effort, is
to model a subset of the data model in UML and then model the entire data object as a
single attribute. For example, key metadata attributes necessary to query for the object
and decode the underlying data model should be modeled. Then, the data standard itself
would be modeled as a single attribute with a primitive data type, such as string. This
allows for interoperability at the semantic level required by caBIG while maintaining
some compatibility with legacy systems. Both these approaches to modeling existing
standards are not mutually exclusive; however, if they are both employed, then a
translation service should be developed so that the two different models can be used
interchangeably in workflows.

Figure 3. Example simplified and full models with translation service.

Consider an example external standard, StandardX. As illustrated in Figure 3, when
adopting this standard, it is possible to generate a simplified model of the standard as a

single class called StandardX with an attribute called standardXValue. The
standardXValue attribute contains the actual standard encoded in a string. Other
metadata attributes are also included, such as id and projectName. These along with the
associated metadata object of Biospecimen can be used to provide information for
querying and decoding of the adopted model. This strategy is similar to the approach
taken by the cPath project in the BioPAX effort. In this case, the translation service is
relatively simple, since it only needs to extract the content of the standardXValue
attribute. The disadvantage of this approach is that only a subset of the standard model is
made available for querying and manipulation by caBIG clients. The alternate strategy is
to model the entire standard in an object model. The root class here happens to be
StandardX, and associations to ClassA, ClassB, ClassC, and Biospecimen exist, which
comprise the actual data elements found in the standard. This strategy allows us to
capture the entire information model represented by the standard. However, it is possible
that the adopted model as registered in caDSR/EVS will not match the external standard,
due to modifications for harmonization with other existing caBIG common data elements
and controlled vocabularies. In that case, the translation service will likely be more
complicated, since it now needs to operate on a finer level of mapping (e.g., at the
attribute level) between the original standard and the adopted model.

4.5. Recommendations for Possible Infrastructure
Extensions/Enhancements

A number of tooling and infrastructure extensions and enhancements could be made to
ease the adoption of external information standards into caBIG. One key area of
enhancement is in the tooling for conversion of external standards to UML. For example,
tools were created to convert the XML Schema for mzXML into a caBIG-compatible
UML. This tool could be extended for more general use. There are a number of tools for
converting OWL into UML, but currently they all require manual editing to meet caBIG
modeling best practices. These open source tools could be enhanced to include many of
the caBIG criteria used for evaluating compatibility. At the infrastructure level,
enhancements to more natively support translation could be created. For example, there
is an application currently being developed named GeneConnect that builds upon the
caGrid data service infrastructure and will translate between the various genomic
identifiers. This idea could be extended to translating between models, in addition to
identifiers. For example, a translation service framework could be developed to support
translation between the model in caBIG of an adopted external standard and the original
external standard, if the adoption process modifies the external standard.

5. Conclusions

In this paper, we have examined three example efforts to adopt external information
standards into caBIG. These efforts span a range of standards, including one based on
XML schemas, one based on OWL ontology representation, and one with an object-
model.

A key conclusion and lesson learned is that when adopting a standard, the team should
acquire at least a basic understanding of the usefulness of the external standard and its
intended use in caBIG. An adoption effort should be examined in the context of use cases,
which are intended to be addressed by adopting the external standard.

Our investigation of these examples showed that there exist caBIG tools as well as
external tools that can help reduce the effort in the adoption process. However, it still
takes considerable effort to adopt complex, large standards. The potential mismatch
between the external standard and the caBIG harmonized object model should also be
taken into account when adopting the external standard, as mapping between the caBIG
object representation and the external standard representation may require support for
complex translation tools and services.

A feasible, albeit less than ideal, approach is to adopt only a portion of the standard and
include a data element (referred to here as an “external data element”) attribute in the
resulting object model to store the data in the external data standard form as well. The
external data element attribute can be used to communicate data between caBIG and
legacy applications that expect external data representation, without needing to
implement a translation tool or service. If the portion of the external data standard to be
adopted is carefully chosen, a sufficient amount of information encoded in the external
data representation can be made available to caBIG clients.

