Benign Disposal of Arsenic Treatment Residuals:

Phase 1 - Assessment

SBRP/EPA/Univ.Arizona Teleconference September 2, 2004

Changes and Impacts

- 2001revised arsenic in D.W. standard
 - •10 ppb MCL (from 50 ppb)
 - Implementation by 2006-2012
- Predicted impacts
 - •4000 new utilities impacted (>95% small)
 - •8M lb solid residuals annually (30,000 # As /yr)
 - Present and future Superfund/RCRA sites
- Residuals hazard assessment
 - Toxicity characteristic leaching procedure (TCLP)
 - Waste extraction test (WET)

Our Corollary Research

- Treatment systems evaluation (IHS funding)
- Removal technology development (AZ State funding)
- Residuals assessment (SBRP/AZ State funding)
 - Adequacy of TCLP and WET
 - How high should the bar be?
 - Alternative test development
 - Other contaminants and scenarios
- Residuals stabilization (SBRP/AWWARF/AZ State funding)

Residuals Assessment Tests

Guiding Premise: test induces leaching as or more aggressively than conditions of non-hazardous waste disposal

	TCLP	WET	Mature Landfill
pН	4.95	5.05	7-9
Bioactivity	abiotic	abiotic	biotic
Duration	18 hr	48hr	weeks/months
Active Reagent	acetate	citrate	Mix of organics & inorganics
Redox Condition	oxidizing	neutral	reducing

Solid Media Leaching

Immediate Findings

- TCLP vs. WET Variables (batch test mode)
 - agitation method (tumbler (T) > shaker (W))
 - •headspace $(N_2 (W) > air (T))$
 - •duration (48 hr (W) > 18 hr (T))
 - •reagent (citrate (W) > acetate (T))
- Landfill vs. St'd. Variables (batch test mode)
 - •pH (6.8 (LL) $> \sim 5$ (T&W))
 - •TOC (above 160 ppm (LL) > below 60 ppm (T&W))
 - •ORP (below 50 mV (LL) > above 50 mV (T&W))
- Study limitations
 - batch vs. continuous flow
 - abiotic vs. biotic
 - •excess (non-reactive) vs. limiting (reactive) substrate

Next Steps for As Residuals

- •Simulate landfills/repositories to determine appropriate performance bar
- Develop tractable protocols based on engineering critical leaching mechanisms to clear bar
- Evaluate (technically & economically) treatment options, including potential for stabilization
- Develop/evaluate hybrid (conventional & innovative) disposal options

Broader Implications

- Arsenic as an elemental contaminant
 - no destructive technologies
 - media and speciation transformations only
 - •surrogate for heavy metals, metalloids, radionuclides
- Arsenic as a redox-sensitive, oxyanion
 - •inverse pH behavior to metals
 - microbially mediated fate and transport
 - •typically most mobile in reduced form
 - surrogate for V, Mo, Se, S, CI, N, P
- Arsenic as a 'natural' contaminant
 - primarily non-anthropogenic sources
 - naturally diffuse but anthropogenically concentrated
 - surrogate for Rn, U, Se, S, F, Br, V

Prerequisites to Prevention

- Correlate & calibrate leaching tests to various disposal scenario's (address baseline definition)
- Apply to spectrum of technologies and contaminants
- Develop and apply residual stabilization methods/economics
- Apply whole life analysis of elemental contaminants (solid/liquid/atmospheric considerations)

AA Adsorption Edge

- Co Initial arsenic concentration in solution
- C Equilibrium arsenic concentration in solution

Sludge Leaching Tests

Simulated Landfill

GFH Column Results

Equilibrium As Concentration: 25.66ppb