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To identify genetic variants influencing plasma lipid concentrations, we first used genotype imputation and meta-analysis to
combine three genome-wide scans totaling 8,816 individuals and comprising 6,068 individuals specific to our study (1,874
individuals from the FUSION study of type 2 diabetes and 4,184 individuals from the SardiNIA study of aging-associated
variables) and 2,758 individuals from the Diabetes Genetics Initiative, reported in a companion study in this issue. We
subsequently examined promising signals in 11,569 additional individuals. Overall, we identify strongly associated variants in
eleven loci previously implicated in lipid metabolism (ABCA1, the APOA5-APOA4-APOC3-APOA1 and APOE-APOC clusters,
APOB, CETP, GCKR, LDLR, LPL, LIPC, LIPG and PCSK9) and also in several newly identified loci (near MVK-MMAB and
GALNT2, with variants primarily associated with high-density lipoprotein (HDL) cholesterol; near SORT1, with variants primarily
associated with low-density lipoprotein (LDL) cholesterol; near TRIB1, MLXIPL and ANGPTL3, with variants primarily associated
with triglycerides; and a locus encompassing several genes near NCAN, with variants strongly associated with both triglycerides
and LDL cholesterol). Notably, the 11 independent variants associated with increased LDL cholesterol concentrations in our study
also showed increased frequency in a sample of coronary artery disease cases versus controls.

Coronary artery disease (CAD) and stroke are the leading causes of
morbidity, mortality and disability in industrialized countries, and the
prevalence of these diseases is increasing rapidly in developing
countries1. A main underlying pathology is atherosclerosis, a process
of cumulative deposition of LDL cholesterol in the arteries supplying

blood to the heart and brain that eventually leads to impaired or
absent blood supply and myocardial infarction or stroke1. Consistent
and compelling evidence has demonstrated association between lipo-
protein-associated lipid concentrations and cardiovascular disease
incidence worldwide2–4. Whereas high concentrations of LDL
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cholesterol are associated with increased risk of CAD, high concentra-
tions of HDL cholesterol are associated with decreased risk of CAD.
Specifically, it has been estimated that each 1% decrease in LDL
cholesterol concentrations reduces the risk of coronary heart disease
by B1% (ref. 5), and each 1% increase in HDL cholesterol concen-
trations reduces the risk of coronary heart disease by B2% (ref. 6). A
recent meta-analysis of data on 150,000 individuals, including 3,000
with CAD-related deaths, shows that the two factors are independently
associated with CAD risk7. There is evidence that a high concentration
of triglycerides is an additional, independent risk factor for cardio-
vascular disease8,9, although whether this association is causal is still
under debate.

Smoking, diet and physical activity all have a role in determining
individual lipid profiles. Still, family studies suggest that in many
populations, about half of the variation in these traits is genetically
determined10,11, and it is clear that LDL cholesterol, HDL cholesterol
and triglyceride concentrations are strongly influenced by the genetic
constitution of each individual. Furthermore, genetic variants that
increase LDL cholesterol concentrations—such as rare variants in the
LDL receptor (LDLR) and apolipoprotein B (APOB) genes and
common variants in the apolipoprotein E (APOE) gene—have also
been associated with increased susceptibility to coronary heart dis-
ease12. Thus, the available evidence demonstrates not only that genetic
variants account for a substantial fraction of individual variation in
lipid concentrations, but also that lipid concentrations are associated
with the risk of CAD.

Although several genes and genetic variants have been found that
associate with individual variation in lipid concentrations, additional
variants influencing these traits remain to be identified. As with other
complex traits, identification of genes influencing lipid concentrations
is likely to be much enhanced by large sample sizes. Thus, we decided
to combine genome-wide association scan data from two of our

studies, including 1,874 individuals from the FUSION study of type 2
diabetes13 and 4,184 individuals from the SardiNIA study of aging-
associated variables10,14, with data on 2,758 individuals from the
Diabetes Genetics Initiative15,16. Here, we describe results of a com-
bined analysis of the three genome-wide association scans involving a
total of 8,816 individuals and our follow-up assessments of up to
11,569 individuals, which were done in order to verify common
genetic variants associated with plasma concentrations of LDL cho-
lesterol, HDL cholesterol and triglycerides. Our results identify 425
independent common variants associated with individual variation in
lipid concentrations (each with P o 5 � 10�8). Some are located in
previously implicated loci, indicating that our approach was valid, and
others are found in loci where genetic variants have not been
previously implicated in lipid metabolism. Our results also provide
promising, albeit not definitive, evidence of association between
several other common variants and lipid concentrations. In a compa-
nion manuscript, Kathiresan and colleagues from the Diabetes Genet-
ics Initiative report results of their own follow-up genotyping of SNPs
selected on the basis of our combined analysis of the three scans, their
original analyses, and previously published reports. Their independent
follow-up samples and genotyping further support the newly identi-
fied loci reported here.

RESULTS
Genome-wide association scans
To survey the genome for common variants associated with plasma
concentrations of HDL cholesterol, LDL cholesterol and triglyceride
concentrations, we conducted genome-wide association scans on two
different populations. In one scan, after we excluded markers on the
basis of quality-control filters (see Methods), we examined 304,581
SNPs with minor allele frequency (MAF) 41% from the Illumina
HumanHap300 BeadChip and a GoldenGate panel designed to

Table 1 Characteristics of samples used in genome-wide and follow-up analyses

Demographics Median trait concentrations (quartile ranges)

Samples

Phenotyped individualsa

(% female)
Geographic

origin

Median age

(quartile range)

Median BMI

(quartile range)

HDL-C

(mg/dl)

LDL-C

(mg/dl)

Triglycerides

(mg/dl)

Genome-wide analyses (n ¼ 8,816)

FUSION

Type 2 diabetics 773 (41%) Finland 63.0 (11.1) 29.8 (6.1) 44.9 (15.9) 135.6 (44.5) 150.6 (106.3)

Controls 1,101 (48%) Finland 62.0 (14.5) 26.6 (5.0) 54.6 (21.7) 141.1 (44.9) 103.7 (60.2)

SardiNIA 4,184 (57%) Sardinia (in Italy) 42.4 (28.0) 24.9 (6.4) 62.7 (18.6) 124.6 (47.6) 70.0 (54.0)

DGI 2,758 (51%) Finland, Sweden 62.8 (15.5) 27.3 (5.4) 46.2 (15.9) 148.3 (51.8) 121.7 (81.9)

Follow-up samples (n ¼ 11,569)

FUSION

Type 2 diabetics 970 (41%) Finland 60.0 (11.0) 30.2 (6.5) 49.1 (17.0) 123.5 (51.6) 139.1 (90.4)

Controls 1,249 (39%) Finland 59.0 (10.5) 26.4 (4.9) 56.1 (21.3) 138.4 (46.1) 103.2 (55.8)

ISIS

Myocardial infarction

survivors

1,254 (28%) United Kingdom 52.0 (14.0) 26.0 (6.0) 40.6 (12.4) 144.0 (48.4) n/a

Controls 1,252 (35%) United Kingdom 48.0 (14.0) 24.0 (5.0) 49.9 (16.3) 124.2 (41.4) 132.0 (102.8)

HAPI 861 (46%) United States 43.0 (22.0) 25.9 (5.9) 55.8 (18.0) 139.1 (56.0) 68.5 (38.0)

SUVIMAX 1,551 (62%) France 50.0 (9.0) 23.3 (4.1) 61.9 (21.9) 135.8 (41.4) 80.0 (41.6)

BWHHS 3,358 (100%) United Kingdom 69.0 (9.0) 26.9 (6.1) 61.9 (23.2) 158.3 (54.2) 141.8 (90.4)

Caerphilly 1,074 (0%) United Kingdom 57.0 (8.0) 26.1 (4.1) 51.5 (17.0) 142.3 (54.3) 132.9 (102.8)

aIndividuals known to be on lipid lowering therapies were excluded; see Methods.
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improve coverage around type 2 diabetes (T2D) candidate genes
in 1,874 Finnish individuals from the Finland–United States
Investigation of NIDDM Genetics (FUSION) study13. In a second
scan, after quality-control filtering, we examined 356,539 SNPs (MAF
4 5%) from the Affymetrix 500K Mapping Array Set in 4,184
individuals from the SardiNIA Study of Aging10,14. The Sardinian
sample is organized into a number of small- to medium-sized
pedigrees. We took advantage of this relatedness to reduce genotyping
costs: we genotyped 1,412 individuals with the Affymetrix 500K
Mapping Array Set (organized into groups of 2–3 individuals per
nuclear family) and then propagated their genotypes to the remaining
individuals, who were genotyped using only the Affymetrix 10K
Mapping Array14,17,18 (see Methods). To increase statistical power,
we also contacted the authors of a previously published study15 to
obtain results for 347,010 SNPs (MAF 4 5%) genotyped in 2,758
Finnish and Swedish individuals from the Diabetes Genetics Initiative
(DGI) using the Affymetrix 500K Mapping Array Set. Further details
of the DGI study and independent follow-up analyses are provided in
a companion manuscript16. All three initial scans excluded individuals
taking lipid lowering therapies, for a total of 8,816 phenotyped
individuals (Table 1). Informed consent was obtained from all

study participants and ethics approval was obtained from the
participating institutions.

Because the three studies used different marker sets with an
overlap of only 44,998 SNPs across studies, we used information on
patterns of haplotype variation in the HapMap CEU samples (release
21)19 to infer missing genotypes in silico and to facilitate comparison
between the studies13. Imputation analyses were carried out with
Markov Chain Haplotyping software (MaCH; see URLs section in
Methods). For our analyses, we only considered SNPs that were either
genotyped or could be imputed with relatively high confidence; that is,
SNPs for which patterns of haplotype sharing between sampled
individuals and those genotyped by the HapMap consistently indi-
cated a specific allele. Comparison of imputed and experimentally
derived genotypes in our samples yielded estimated error rates of
1.46% (for imputation based on Illumina genotypes) to 2.14%
(imputation based on Affymetrix genotypes) per allele, consistent
with expectations from HapMap data. For additional details of
quality-control and imputation procedures, see Methods and Supple-
mentary Table 1 online.

We then conducted a series of association analyses to relate
the B2,261,000 genotyped and/or imputed SNPs with plasma
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Figure 1 Summary of genome-wide association scans. The figure summarizes combined genome-wide association scan results in the top 3 panels (plotted

as –log10 P value for HDL cholesterol, LDL cholesterol and triglycerides). Loci that were not followed up are in gray. Loci that were followed-up are in green

(combined dataset yielded convincing evidence of association, P o 5 � 10�8), orange (combined dataset yielded promising evidence of association,

P o 10�5), or red (combined dataset did not suggest association, P 4 10�5). The three panels in the bottom row display quantile-quantile plots for test

statistics. The red line corresponds to all test statistics, the blue line corresponds to results after excluding statistics at replicated loci (in green, top panel),

and the gray area corresponds to the 90% confidence region from a null distribution of P values (generated from 100 simulations).
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concentrations of HDL cholesterol, LDL cholesterol and triglyceride
concentrations. For each SNP, lipid concentrations were regressed onto
allele counts in a regression model that also included gender, age and
age2 as covariates. For the FUSION sample, we analyzed T2D cases and
controls separately, and added additional covariates accounting for
birth province and study subset. For the DGI sample, we analyzed cases
and controls together using an additional covariate to indicate diabetes
status. For SNPs genotyped in the lab, allele counts were discrete (0, 1
or 2), whereas for SNPs genotyped in silico, allele counts were fractional
(between 0.0 and 2.0, depending on the imputed number of copies of
the allele for each individual; see Methods). To allow for relatedness in
the FUSION and SardiNIA samples, we estimated regression coeffi-
cients in the context of a variance component model that modeled
background polygenic effects17. As usual20,21, modeling polygenic
effects is important in the context of an association study such as
this one, because ignoring relatedness among sampled individuals can
lead to misleading P values and inflated false-positive rates.
Figure 1 shows the results of a meta-analysis of the initial scans from

all three studies, comprising a total of 8,816 participants. The genomic
control22 parameters for this meta-analysis were 1.04, 1.02 and 1.01 (for
HDL cholesterol, LDL cholesterol and triglycerides, respectively),
suggesting that population stratification and unmodeled relatedness
had negligible impact on our association results. Stage 1 results indicate
strong association with lipids for 18 loci where at least one SNP exceeds
the arbitrary threshold of P o 5 � 10�7 (Table 2). Several loci
previously implicated in lipid metabolism show strong evidence for
association, including regions near CETP (strongest association
at rs3764261, P o 10�18, HDL cholesterol concentration increase
of 2.42 mg/dl per A allele), LPL (rs12678919, P o 10�10, 2.44 mg/dl
increase per G allele), LIPC (rs10468017, P o 10�10, 1.76 mg/dl in-
crease per T allele), ABCA1 (rs4149274, P B7.4 � 10�8, 1.51 mg/dl
increase per G allele) and LIPG (rs4939883, PB1.4 � 10�7, 1.87 mg/dl
increase per C allele) associated with HDL cholesterol concentrations;
the APOE-APOC1-APOC4-APOC2 cluster (rs4420638, Po 10�20, 8.02
mg/dl increase per G allele), APOB (rs515135, P o 10�13,
6.08 mg/dl increase per C allele) and LDLR (rs6511720, P o 10�9,
8.03 mg/dl increase per C allele) associated with LDL cholesterol
concentrations; and near the APOA5-APOA4-APOC3-APOA1 cluster
(rs964184, P o 10�15, 18.12 mg/dl increase per G allele), GCKR
(rs1260326, P o 10�14, 10.25 mg/dl increase per T allele) and LPL
(rs6993414, P o 10�12, 14.20 mg/dl increase per A allele) associated
with triglyceride concentrations. At several of these loci, the SNP
showing strongest association was in linkage disequilibrium (LD)
with previously identified variants (r2 4 0.80) or had itself been
previously reported to show association. However, at other loci—in
particular, the regions near LIPC, LIPG, LDLR and APOB—strongly
associated SNPs were in only weak LD with previously identified
variants (r2 o 0.30) and thus were likely to represent new signals
(Supplementary Table 2 online). At the GCKR locus, the strongest
observed association was with a coding SNP, consistent with the
results of a recent detailed analysis of the region (S. Kathiresan and
M. Orho-Melander, personal communication). In addition to SNPs in
these known loci, several other SNPs showed strong association in our
initial genome-wide analysis. For example, SNPs near the GRIN3A,
GALNT2, CELSR2-PSRC1-SORT1, NCAN-SF4 and TRIB1 genes
all had P values o5 � 10�7 for at least one of the three lipid traits
in our initial analysis (Table 2). We observed association with
distinct gene sets for each of the three traits, consistent with the modest
degree of correlation between the traits (the correlation between HDL
and LDL cholesterol was essentially zero in our samples, the correlation
between HDL cholesterol and triglycerides was approximately –0.4 and

the correlation between LDL cholesterol and triglycerides was 0.3 in the
SardiNIA sample and 0.1 in FUSION).

Follow-up of initial findings
To further evaluate these and other promising findings from our initial
scan, we examined a subset of SNPs in six additional cohorts of
European ancestry, totaling 11,569 individuals (Table 1). These
follow-up analyses were conducted in several stages. In a first round
of follow-up analysis, SNPs included on the Affymetrix arrays (geno-
typed in SardiNIA and DGI) and imputed or genotyped in FUSION
were selected for follow-up on the basis of a preliminary meta-
analysis. We selected a total of 100 SNPs in this manner for examina-
tion in the ISIS23,24, HAPI25,26 and SUVIMAX27,28 samples, and
67 SNPs for examination in FUSION stage 2 samples. Once imputa-
tion of HapMap SNPs was completed for SardiNIA and DGI samples
and an additional meta-analysis carried out, we examined nine
additional SNPs in loci not selected for initial follow-up in the
FUSION stage 2 and SUVIMAX samples. Finally, we genotyped a
single SNP in each of the 21 loci showing promising evidence for
replication in the initial stage 2 samples in the Caerphilly29,30 and
BWHHS31 samples (Supplementary Fig. 1 and Supplementary
Methods online).
Table 3 provides a summary of the stage 2 results and a combined

analysis of the data from both stage 1 and stage 2. The table includes
the SNP with the strongest association signal at each locus and a
selection of additional SNPs that also show strong association but only
weak LD with the most strongly associated SNP (r2 o 0.30). All loci
with a P value o5 � 10�7 in our initial analysis were confirmed
except for the association signal near GRIN3A. Supplementary
Table 3 online provides stage 2 results for all SNPs, and Supplemen-
tary Table 4 online provides more detailed results for the SNPs
highlighted in Table 3.

Overall, we observed the strongest evidence for association (P o
10�20) between HDL cholesterol and SNPs in CETP (rs3764261,
rs1864163 and rs9989419; the three are in weak LD with each
other), LIPC (rs4775041) and LPL (rs10503669); between LDL cho-
lesterol and SNPs in the APOE-APOC cluster (rs4420638), near the
CELSR2-PSRC1-SORT1 (rs599839), LDLR (rs6511720) and APOB
(rs562338) genes; and between triglycerides and SNPs near the
GCKR (rs780094), APOA5-APOA4-APOC3-APOA1 (rs12286037)
and LPL (rs10503669) genes (P values and effect sizes are shown in
Table 3). In each case, we observed strong evidence for association in
both stages of genotyping (P o 5 � 10�7). The association of LDL
cholesterol concentrations with the CELSR2-PSRC1-SORT1 locus is
particularly notable, because variants in the region have not been
previously implicated in lipid metabolism (Supplementary Fig. 2c
online). There is no obvious connection between the genes closest to
the association signal, CELSR2 and PSRC1, and lipid metabolism. One
possibility is that rs599839 or an associated variant influences expres-
sion of SORT1, a nearby gene that mediates endocytosis and degrada-
tion of lipoprotein lipase32. In our sample, allele A at rs599839 was
associated with an increase of 5.48 mg/dl in LDL cholesterol concen-
trations. Notably, the same rs599839 allele has recently been associated
with an increased risk of CAD in an independent study33, suggesting
that the association to CAD risk might be mediated by the effect on
LDL cholesterol concentrations.

Another tier of loci also remains significant after adjustment for
1,000,000 independent tests. This tier includes additional SNPs for loci
within the previous tier and also SNPs near ABCA1, LIPC, LIPG and
PCSK9 (Table 3). Of note, although polymorphisms in all of these
genes have a well-established role in lipid metabolism, some of the
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signals we identified do not overlap with established associations and
likely point to new risk alleles (Supplementary Table 2). For example,
in PCSK9, variants previously associated with LDL cholesterol con-
centrations have r2 o 0.10 with the variants identified here (Supple-
mentary Table 2). Other examples of newly identified risk alleles
include LIPG (rs2156552), LIPC (rs4775041) and LDLR (rs6511720).

This tier also includes six loci where genetic variants have not
previously been implicated in lipid metabolism. We found association
between HDL cholesterol and SNPs near GALNT2 and near MVK and
MMAB (Supplementary Fig. 2a,b); between LDL cholesterol and
triglycerides and SNPs in an extended region near NCAN and CILP2
(Supplementary Fig. 2d,h); and between triglycerides and SNPs near
TRIB1, MLXIPL and ANGPTL3 (Supplementary Fig. 2e–g). Among
genes in these six regions, we observed the clearest connections to
cholesterol and lipoprotein metabolism for MLXIPL, which encodes a
protein that binds and activates specific motifs in the promoters of
triglyceride synthesis genes, and for ANGPTL3, whose protein homo-
log is a major regulator of lipid metabolism in mice34. Rare variants in
a related gene, ANGPTL4, have been associated with HDL and
triglyceride concentrations in humans35. A connection to lipid
metabolism has also been observed for MVK and MMAB, two
neighboring genes that are regulated by SREBP2 and that share a
common promoter36. MVK encodes mevalonate kinase, which
catalyzes an early step in cholesterol biosynthesis, and MMAB
encodes a protein that participates in a metabolic pathway that
degrades cholesterol.

In the other three loci, we did not find any established connections
to cholesterol metabolism. The signals near GALNT2 and TRIB1 each
overlap a single gene. GALNT2 encodes a widely expressed glycosyl-
transferase that could potentially modify a lipoprotein or receptor.
TRIB1 encodes a G-protein–coupled receptor-induced protein involved
in the regulation of mitogen-activated protein kinases37 and may
regulate lipid metabolism through this pathway. In contrast, the
association signal near NCAN extends for over 500 kb and encom-
passes 20 genes. In our combined data, rs16996148 (an Affymetrix
array SNP near CILP2) was selected for follow-up and showed strong
association with both LDL cholesterol (P B 2.7 � 10�9) and trigly-
cerides (P B 2.5 � 10�9). The allele that is associated with increased
LDL cholesterol concentrations is also associated with increased
triglyceride concentrations, consistent with the modest positive corre-
lation between the two traits but in contrast to other SNPs associated
with both LDL cholesterol and triglycerides that showed association
with only one of the traits in our sample. Notably, in the analysis of our
three genome-wide association scans and imputed HapMap SNPs, a
nonsynonymous coding SNP in the NCAN gene (rs2228603, Pro92Ser)
showed the strongest evidence for association (P B 1.8 � 10�7). This
SNP was not included in our initial follow-up analysis, which con-
sidered only SNPs on the Affymetrix arrays, but it was in strong LD
with rs16996148 (r2 ¼ 0.89). NCAN is a nervous system-specific
proteoglycan involved in neuronal pattern formation, remodeling of
neuronal networks and regulation of synaptic plasticity38, with no
obvious relation to LDL cholesterol or triglyceride concentrations.

Table 2 Summary of GWAS meta-analysis stage 1 results (includes all signals with P o 5 � 10�7)

Locus Association signal Corroborating signals (P o 10�6) Nearby genes

SNP Chr

Position

(Mb)

Allele

(+/�)

Freq

(+)

Effect

(mg/dl) P value SNPs

LD groups

(r 2 o 0.2)

(Relative position)

(�upstream, +downstream)

HDL cholesterol (n ¼ 8,656)

rs3764261 16 55.6 A/C 0.29 2.42 2.8 � 10�19 14 2 CETP (–2.4 kb)

rs12678919 8 19.9 G/A 0.12 2.44 1.3 � 10�11 84 2 LPL (+19.5 kb)

rs10468017 15 56.5 T/C 0.32 1.76 8.6 � 10�11 18 2 LIPC (–45.7 kb)

rs1323432 9 101.4 A/G 0.87 1.93 2.5 � 10�8 4 1 GRIN3A (Intron 6); PPP3R2 (–5.7 kb)

rs4149274 9 104.7 G/A 0.69 1.51 7.4 � 10�8 20 1 ABCA1 (Intron 5)

rs4939883 18 45.4 C/T 0.86 1.87 1.4 � 10�7 2 1 LIPG (+47.9 kb)

rs4846914 1 226.6 A/G 0.62 1.15 2.9 � 10�7 4 1 GALNT2 (Intron 1)

LDL cholesterol (n ¼ 8,589)

rs4420638 19 50.1 G/A 0.16 8.02 3.2 � 10�21 2 1 APOE/APOC cluster

rs515135 2 21.2 C/T 0.83 6.08 3.1 � 10�14 116 3 APOB (�19.1kb)

rs602633 1 109.5 G/T 0.80 6.09 4.8 � 10�14 8 1 CELSR2 (+3.1kb); PSRC1 (+668 bp);

SORT1 (�30 kb)

rs6511720 19 11.1 C/A 0.91 8.03 6.8 � 10�10 1 1 LDLR (Intron 1)

rs2228603 19 19.2 C/T 0.93 6.46 1.8 � 10�7 3 1 NCAN (Pro92Ser)

Triglycerides (n ¼ 8,684)

rs964184 11 116.2 G/C 0.12 18.12 1.5 � 10�16 29 2 APOA5 (+11.2 kb)

rs1260326 2 27.6 T/C 0.40 10.25 1.5 � 10�15 52 2 GCKR (Leu446Pro)

rs6993414 8 19.9 A/G 0.46 14.20 1.4 � 10�13 85 2 LPL (+78.1 kb)

rs2954029 8 126.6 A/T 0.56 6.42 2.8 � 10�8 15 1 TRIB1 (+40.3 kb)

rs10401969 19 19.3 T/C 0.92 12.28 2.3 � 10�7 5 1 NCAN (+44.7 kb); SF4 (Intron 8)

The table summarizes association signals observed in the analysis of lipid concentrations in three GWAS scans. Chromosome assignments, position and gene annotations all refer to
the March 2006 Genome Build (UCSC). Alleles are ordered such that the first allele (+) is associated with increased lipid levels. Effect sizes are measured as additive effects, which
correspond to the average change in phenotype when one (–) allele is replaced with one (+) allele. Corroborating signals refer to the number of additional SNPs within 1 Mb with
P o 10�6. The number of LD groups (r2 o 0.2) among these corroborating signals was calculated using LD information from the HapMap CEU sample. P values in bold exceed a
threshold of 5 � 10�8, which corresponds to a false-positive rate of 0.05 after adjustment for 1 million independent tests, comparable to the number of independent common SNPs
in the Phase II CEU HapMap. For each locus, the most strongly associated SNP is indicated together with its position relative to nearby genes, with a focus on genes previously
implicated in lipid metabolism. In the nearby gene column, positions are relative to the transcription start for the nearest gene.
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A final tier of genes has one or more SNPs with a P value o10�5

when stage 1 and stage 2 data are considered together (Table 3).
Among these genes is LCAT, which encodes a protein with
a well-established role in lipid metabolism, and for which
well-characterized, but rare, genetic variants have been shown to

considerably affect lipid concentrations39. Our signal supports a
single unconfirmed report of a common variant influencing HDL
concentrations40. Two other association signals of note are located
near the B3GALT4 and B4GALT4 genes. Similarly to GALNT2,
these genes encode glycosyltransferases, and thus our results may

Table 3 Summary of most significant stage 1 and stage 2 results

Association P values Sample sizes

SNP Chr Pos(Mb)

Alleles

(+/�)

Freq

(+)

Effect

(mg/dl)

Stage 1

(two-sided)

Stage 2

(one-sided)

Combined

(two-sided) Stage 1 Stage 2

Nearby

genes

SNPs associated with HDL cholesterol

rs3764261 16 55.6 A/C 0.69 3.47 2.8 � 10�19 6.4 � 10�43 2.3 � 10�57 8,656 8,072 CETP

rs1864163 16 55.6 G/A 0.80 4.12 3.0 � 10�17 4.3 � 10�28 6.9 � 10�39 8,656 3,684 CETP

rs9989419 16 55.5 G/A 0.65 1.72 8.0 � 10�16 1.8 � 10�17 3.2 � 10�31 8,656 6,981 CETP

rs12596776 16 55.5 G/C 0.13 1.26 3.7 � 10�5 1.0 � 10�4 2.8 � 10�8 8,656 7,030 CETP

rs1566439 16 55.6 C/T 0.45 0.96 2.0 � 10�5 2.1 � 10�4 3.3 � 10�8 8,656 4,881 CETP

rs4775041 15 56.5 C/G 0.67 1.38 2.8 � 10�9 9.6 � 10�13 3.2 � 10�20 8,656 11,426 LIPC

rs261332 15 56.5 A/G 0.19 1.41 1.7 � 10�9 1.3 � 10�7 2.3 � 10�15 8,656 6,956 LIPC

rs10503669 8 19.9 A/C 0.10 2.09 3.2 � 10�10 9.4 � 10�11 4.1 � 10�19 8,656 11,431 LPL

rs2197089 8 19.9 A/G 0.42 1.38 3.4 � 10�8 3.2 � 10�5 1.0 � 10�11 8,656 3,644 LPL

rs6586891 8 20 A/C 0.34 1.00 3.5 � 10�5 9.7 � 10�6 2.9 � 10�9 8,656 7,017 LPL

rs2144300 1 226.6 T/C 0.40 1.11 6.6 � 10�7 4.0 � 10�9 2.6 � 10�14 8,656 11,406 GALNT2

rs2156552 18 45.4 T/A 0.84 1.20 8.4 � 10�7 7.1 � 10�7 6.4 � 10�12 8,656 11,437 LIPG

rs4149268 9 104.7 C/T 0.355 0.82 3.3 � 10�7 2.2 � 10�5 1.2 � 10�10 8,656 11,327 ABCA1

rs2338104 12 108.4 G/C 0.45 0.48 1.9 � 10�6 7.6 � 10�4 3.4 � 10�8 8,656 11,399 MVK/MMAB

rs255052 16 66.6 A/G 0.17 0.74 1.5 � 10�6 0.0087 1.2 � 10�7 8,656 4,534 LCAT

rs1323432 9 101.4 A/G 0.88 �0.03 2.5 � 10�8 0.82 7.7 � 10�4 8,656 8,176 GRIN3A

SNPs associated with LDL cholesterol

rs4420638 19 50.1 G/A 0.82 6.61 3.2 � 10�21 4.9 � 10�24 3.0 � 10�43 8,589 10,806 APOE/C1/C4

rs10402271 19 50 G/T 0.67 2.62 9.8 � 10�6 1.5 � 10�5 1.2 � 10�9 8,589 6,519 APOE/C1/C4

rs599839 1 109.5 A/G 0.77 5.48 1.2 � 10�13 2.7 � 10�21 6.1 � 10�33 8,589 10,783 CELSR2/PSRC1/SORT1

rs6511720 19 11.1 G/T 0.90 9.17 6.8 � 10�10 3.3 � 10�19 4.2 � 10�26 8,589 7,442 LDLR

rs562338 2 21.2 G/A 0.18 4.89 1.2 � 10�11 3.6 � 10�12 5.6 � 10�22 8,589 10,849 APOB

rs754523 2 21.2 G/A 0.28 2.78 7.0 � 10�7 1.3 � 10�6 8.3 � 10�12 8,589 6,542 APOB

rs693 2 21.1 A/G 0.42 2.44 1.2 � 10�7 0.0034 3.1 � 10�9 8,589 3,222 APOB

rs11206510 1 55.2 T/C 0.81 3.04 7.5 � 10�6 5.4 � 10�7 3.5 � 10�11 8,589 10,805 PCSK9

rs16996148 19 19.5 G/T 0.89 3.32 2.4 � 10�6 8.3 � 10�5 2.7 � 10�9 8,589 10,841 NCAN/CILP2

rs2254287 6 33.3 G/C 0.38 1.91 2.9 � 10�6 0.0015 5.1 � 10�8 8,589 7,440 B3GALT4

rs12695382 3 120.4 A/G 0.90 2.23 4.9 � 10�6 0.0067 1.0 � 10�6 8,589 10,802 B4GALT4

SNPs associated with triglycerides

rs780094 2 27.7 T/C 0.39 8.59 1.7 � 10�14 2.0 � 10�19 6.1 � 10�32 8,684 9,723 GCKR

rs11127129 2 28.0 C/G 0.79 3.77 2.0 � 10�4 3.2 � 10�4 4.7 � 10�7 8,684 9,700 RBKS/GCKR

rs12286037 11 116.2 T/C 0.94 25.82 1.1 � 10�7 1.6 � 10�22 1.0 � 10�26 8,684 9,738 APOA5/A4/C3/A1

rs662799 11 116.2 G/A 0.05 16.88 4.3 � 10�8 2.7 � 10�10 2.4 � 10�15 8,684 3,248 APOA5/A4/C3/A1

rs2000571 11 116.1 A/G 0.17 6.93 4.7 � 10�5 8.7 � 10�5 5.7 � 10�8 8,684 3,209 APOA5/A4/C3/A1

rs486394 11 116.0 C/A 0.28 1.50 1.7 � 10�4 0.0073 7.4 � 10�6 8,684 3,597 APOA5/A4/C3/A1

rs10503669 8 19.9 C/A 0.895 11.57 1.4 � 10�9 1.6 � 10�14 3.9 � 10�22 8,684 9,711 LPL

rs2197089 8 19.9 G/A 0.58 3.38 3.1 � 10�11 0.0029 1.1 � 10�12 8,684 3,202 LPL

rs6586891 8 20.0 C/A 0.66 4.60 2.4 � 10�4 5.0 � 10�4 1.1 � 10�6 8,684 3,622 LPL

rs17321515 8 126.6 A/G 0.56 6.42 6.8 � 10�8 1.0 � 10�6 7.0 � 10�13 8,684 5,312 TRIB1

rs17145738 7 72.4 C/T 0.84 8.21 4.1 � 10�6 5.0 � 10�8 2.0 � 10�12 8,684 9,741 MLXIPL

rs1748195 1 62.8 C/G 0.70 7.12 2.3 � 10�4 5.4 � 10�8 1.7 � 10�10 8,684 9,559 ANGPTL3

rs16996148 19 19.5 G/T 0.92 6.10 6.3 � 10�7 2.4 � 10�4 2.5 � 10�9 8,684 9,707 NCAN/CILP2

rs4775041 15 56.5 C/G 0.67 3.62 7.3 � 10�5 2.9 � 10�5 1.6 � 10�8 8,684 8,462 LIPC

rs2144300 1 226.6 C/T 0.60 4.25 4.9 � 10�4 2.4 � 10�4 7.9 � 10�7 8,684 8,473 GALNT2

The table summarizes association signals after follow-up of the promising SNPs in stage 2 samples. Column 1 headings are as described for Table 2, with the addition of one-sided
P values for the stage 2 samples, in which we tested for the same direction of effect as Stage 1—consistent with current best practice for replication of GWAS findings. The effect
sizes shown were estimated from stage 2 samples only. SNPs with a combined (stage 1 + 2) P value o10�5 were included, although we also show GRIN3A for completeness
because it was significant in the initial scan. Rows corresponding to SNPs with a combined P value o 5 � 108 are in boldface. SNPs in this table may not match those in Table 2,
which only displays the strongest signal in each locus. The discrepancy also reflects our bias towards genotyped Affymetrix 500K SNPs in the Stage 2 follow-up. Association P values
for each of the six stage 2 samples are shown in Supplementary Table 4.
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implicate glycosyltransferases as having a previously unrecog-
nized influence on variation in lipid concentrations: it is
possible that they affect lipid concentrations by modifying lipo-
protein receptors41.

A summary of evidence for association between HDL cholesterol,
LDL cholesterol and triglycerides and all markers genotyped or
imputed in our initial survey of the genome is available online (see
URLs section in Methods). This should enable other investigators to
combine our results with their own data or to select SNPs for follow-
up in other samples. As an example of the utility of this resource, in a
companion report, Kathiresan and colleagues16 used the DGI data and
the meta-analysis resource to select a set of SNPs for examination in a
sample of 418,000 individuals. They report convincing statistical
evidence for six newly identified loci at P o 5 � 10�8, all of which
overlap with those in our study.

Association with coronary artery disease
In view of the well-established associations between lipid concentra-
tions and CAD, we examined whether the alleles associated with lipid
concentrations in the present study were also associated with CAD in
the Wellcome Trust Case Control Consortium (WTCCC) sample of
B2,000 CAD cases and an expanded reference panel of B13,000
British individuals42 (including B3,000 random controls and B2,000
cases for each of five common diseases). Given the relatively modest
changes in LDL cholesterol concentrations associated with the alleles
we identified (changes of B2–9 mg/dl per allele), we expected that a
subset of SNPs might also be associated with a small increase in
susceptibility to CAD. Notably, the results show that all of the alleles
that were associated with increased LDL cholesterol concentrations in
our sample were more common among CAD cases than in the
expanded reference panel (Table 4). Among eleven independent alleles
(r2 o 0.30 between nearby alleles) associated with increased LDL
cholesterol concentrations in our sample (all with P o 10�6 in our
sample), all eleven showed increased frequency among CAD cases
(P ¼ 2�11 ¼ 0.0005). The increase was significant (Po 0.05) for eight
of the SNPs, and nearly so (P o 0.06) for another two (Table 4,
penultimate column). Although the associated risk estimates are small

(relative risk increases of 1.04–1.29 per allele, see Table 4), it is
extremely unlikely (P o 10�11) that 10 of the 11 SNPs would show
suggestive association with CAD at P o 0.06 by chance, making the
connection between LDL and associated SNPs and CAD particularly
worthy of note. Overall, although we observed a correlation between
the strength of the observed association with CAD and the impact of
each allele on LDL cholesterol concentrations (Spearman correlation
coefficient r ¼ 0.71, P ¼ 0.015), we also found some alleles that had a
strong association with LDL cholesterol but no significant association
with CAD (for example, rs562338 in the APOB locus). We did not find
a similar pattern of association for alleles associated with the other
lipid traits (Supplementary Table 5 online), although alleles asso-
ciated with increased triglyceride concentrations near TRIB1 (for
example, at rs17321515) were also associated with increased risk of
CAD (P ¼ 0.0008). Although the data suggest that nearly all alleles
associated with increased LDL cholesterol concentrations will be
associated with increased risk of CAD (given a large sample size),
the converse is not true, as expected. Alleles at the chromosome 9
locus that show strong association with CAD, coronary heart disease
and myocardial infarction33,42–44 do not seem to influence lipid
concentrations in our sample (P ¼ 0.31 for association between
LDL cholesterol and the SNP most strongly associated with CAD,
rs1333049, in our stage 1, and P 4 0.50 for HDL cholesterol and
triglycerides). Additional studies will show whether these variants are
also associated with longevity45, stroke46 and the other health out-
comes associated with LDL cholesterol concentrations.

DISCUSSION
Genes at the loci implicated in our study affect the entire cycle of
formation, activity and turnover of lipoproteins and triglycerides.
Thus, they encode many of the apolipoproteins themselves (APOE,
APOB and APOA5), but they also encode a transcription factor
activating triglyceride synthesis (MLXIPL), an enzyme involved in
cholesterol biosynthesis (MVK), transporters of cholesterol (ABCA1)
and cholesterol ester (CETP), a lipoprotein receptor (LDLR), potential
receptor-modifying glycosyltransferases (B4GALT4, B3GALT4 and
GALNT2), lipases (LPL, LIPC and LIPG) and a protein involved in

Table 4 Association between coronary artery disease and LDL cholesterol–associated SNPs

Association with coronary artery disease (WTCCC)

Locus LDL-C association (current study) Expanded reference set CAD cases

SNP Chr

Position

(Mb)

Alleles

(+/�)

P value

(two-sided) n

Frequency

of LDL+ allele n

Frequency of

LDL+ allele

P value

(one sided) OR (95% CI) Nearby genes

rs4420638 19 50.1 G/A 3.0 � 10�43 12,281 0.184 1,926 0.209 1.0 � 10�4 1.17 (1.08–1.28) APOE/C1/C4

rs10402271 19 50.0 G/T 1.2 � 10�9 12,256 0.319 1,921 0.339 0.0068 1.10 (1.02–1.18) APOE/C1/C4

rs599839 1 109.5 A/G 6.1 � 10�33 12,292 0.778 1,923 0.808 1.3 � 10�5 1.20 (1.10–1.31) PSRC1/SORT1

rs6511720a 19 11.1 G/T 4.2 � 10�26 12,301 0.890 1,926 0.902 6.7 � 10�4 1.29 (1.10–1.52) LDLR

rs562338 2 21.2 G/A 5.6 � 10�22 12,288 0.824 1,924 0.830 0.18 1.04 (0.95–1.14) APOB

rs754523 2 21.2 G/A 8.3 � 10�12 12,292 0.332 1,926 0.353 0.0042 1.10 (1.03–1.18) APOB

rs693 2 21.1 A/G 3.1 � 10�9 12,292 0.520 1,924 0.536 0.028 1.07 (1.00–1.14) APOB

rs11206510 1 55.2 T/C 3.5 � 10�11 12,284 0.807 1,925 0.825 0.0042 1.13 (1.03–1.23) PCSK9

rs16996148 19 19.5 G/T 2.7 � 10�9 12,182 0.915 1,921 0.922 0.055 1.11 (0.98–1.26) NCAN/CILP2

rs2254287a 6 33.3 G/C 5.1 � 10�8 12,301 0.385 1,926 0.399 0.039 1.07 (0.99–1.14) B3GALT4

rs12695382 3 120.4 A/G 1.0 � 10�6 12,292 0.865 1,924 0.874 0.051 1.09 (0.98–1.20) B4GALT4

The table summarizes association between coronary artery disease and the alleles associated with LDL-C concentrations in our study. Evidence for association was evaluated in the
Wellcome Trust Case Control Consortium panel and was not adjusted for additional covariates, because these are not available for the bulk of study participants. Rows corresponding
to SNPs that show association with LDL cholesterol with P o 5 � 10�8 in our sample are in boldface.
aExpected genotype counts for rs6511720 and rs2254287 were imputed in the WTCCC samples, averaged over cases and controls to estimate allele frequencies and then analyzed using logistic
regression to estimate odds ratios. The approach results in unbiased estimates of the odds ratio but can result in estimates of case and control frequencies that are ‘shrunk’ towards the null.
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cholesterol degradation (MMAB), an inhibitor of lipase (ANGPTL3)
and a possible endocytic receptor for LPL (SORT1). Notably, some of
the loci we identify (near TRIB1 and in the large region surrounding
NCAN, for example) include no obvious functional candidates, and
further studies to pinpoint the genes and mechanisms involved could
lead to important new insights about lipid metabolism.

In multiple regression models, the variants identified here together
accounted for only about 5–8% of the variation in the three lipid traits
in the populations studied, leaving much of the heritability of these
traits unexplained. The missing genetic factors might be accounted for
by a much longer list of loci with common variants of small effect, by
rare variants of large effect that have been missed by the association
approach, or by interactions between these and other genetic and
environmental factors. To clarify the overall role of the loci reported
here, it will be critical to resequence the exons and conserved regions
in a large number of individuals, in order to identify and evaluate all
potential variants within each gene or cluster of genes. This resequen-
cing effort will help identify the functional variants involved in each
region. In addition, resequencing may identify nonsense, nonsynon-
ymous or other changes that are associated with variability in lipid
concentrations, clarifying the identity of the genes involved in regions
with multiple candidates. Resequencing of certain candidate genes has
shown that such rare variants can sometimes be identified in indivi-
duals at the extremes of lipid concentration distributions47; thus,
focused studies of the regions identified here in individuals with
dyslipidaemia could be particularly informative.

Several of the loci newly identified in this report are potentially
attractive drug targets. Furthermore, the ability to stratify individuals
on the basis of specific genetic profiles may provide future benefits for
optimization of therapy, given that lipid lowering drugs are already
widely prescribed to help manage individual lipid profiles and reduce
the risk of cardiovascular events2. For monogenic forms of diseases that
lead to dysregulation of HDL cholesterol, LDL cholesterol or triglycer-
ide concentrations, it is clear that individuals with different mutations
require different therapeutic regimens48,49. Thus, it is our hope that
common variants at the loci identified here will lead to development of
novel therapeutics and influence optimal treatment profiles for each
individual, resulting in improved management of blood lipid concen-
trations and reduction of cardiovascular disease risk.

METHODS
Genome-wide association scans. We used standard protocols to genotype the

Illumina 317K HumanHap 300 BeadChip and Affymetrix 500K and 10K

Mapping Array Sets in the FUSION and SardiNIA samples, respectively. We

collaborated with the authors of a previously published study15 to integrate

their results into our analysis. To facilitate comparison of results among the

three studies, and to better assess the effects of unmeasured variants, we first

identified stretches of haplotype shared between individuals in our sample and

those in the HapMap CEU sample and then used these shared stretches to

impute missing genotypes. This resulted in a total of B2,261,000 SNPs that

were either genotyped or imputed with high confidence in all three samples.

Association analysis. We first analyzed each study independently. For each

marker, we identified a reference allele and calculated statistics summarizing its

evidence for association with HDL cholesterol, LDL cholesterol and triglycer-

ides. Association models include gender, age and age2 as covariates, and addi-

tional covariates appropriate to each study. These statistics were then combined

across studies taking into account both the number of phenotyped individuals

in each study and the direction and magnitude of the estimated effect.

Follow-up. SNPs from the loci showing the strongest evidence for association

in the genome-wide scans were selected for analysis in follow-up samples. In

our initial round of follow-up, we favored SNPs that were successfully

genotyped in both the DGI and SardiNIA studies. As in the analysis of the

initial scans, we first conducted analyses within each sample separately and then

combined the resulting summary statistics by meta-analysis.

Coronary artery disease analysis. Individual genotype data for this analysis

were obtained from the WTCCC website. We first imputed all relevant untyped

SNPs using the HapMap CEU as a reference population and carried out tests

for association with a likelihood-ratio test.

URLs. Association data, http://www.sph.umich.edu/csg/abecasis/public/

lipids/; Markov Chain Haplotyping Package, http://www.sph.umich.edu/csg/

abecasis/MaCH.

Note: Supplementary information is available on the Nature Genetics website.
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