Skip Navigation

HazMap: Occupational Exposure to Hazardous Agents
HazMap Home SIS Home NLM Home

as Search Agents Search Diseases Search Jobs Full Text Search


Haz-Map Home on-tab Custom Search on-tab Help on-tab Web Glossary on-tab Reference on-tab
left corner Browse Haz-Map
right corner
Agent Name RARE EARTH METALS
Alternative Name Class
Major Category Metals
Synonyms Scandium (Sc), Yttrium (Y), Lanthanum (La), Cerium (Ce), Praseodymium (Pr), Neodymium (Nd), Promethium (Pm), Samarium, (Sm), Europium (Eu), Gadolinium (Gd), Terbium (Tb), Dysprosium (Dy), Holmium (Ho), Erbium (Er), Thulium (Tm), Ytterbium (Yb), Lutetium (Lu); [Ullmann]
Category Rare Earth Metals
Description 17 metals with atomic number ranging from 21-71; [Ullmann]
Sources/Uses Rare earth minerals are the source of these metals and include: bastnaesite, monazite, xenotime, and gadolinite. Since the rare earth metals occur together in the same minerals and their chemical and physical properties are similar, isolation of the individual elements is technically difficult and costly. [Ullmann] Used in alloys for control rods in nuclear reactors, permanent magnets, and cigarette lighter flints; Also used in laser crystals, glass coatings, superconducting ceramics and metals, and magnetic memory for computers; Cerium oxide is used as a polish for glass lenses. [Hendrick, p. 179] Used in metallurgy, catalysts, colorants of glass and ceramics, magnets, and phosphors; Used in zeolite cracker catalysts to improve gasoline yield; in the paint industry as dryers; and in the textile industry; [Ullmann]
Comments The characteristic oxidation state of rare earth elements is 3+. Europium oxidizes readily, but the other rare earth elements react with oxygen in air at room temperature slowly. All of the rare earth metals ignite in air at elevated temperatures. [Ullmann] Since the rare earth metals have high radiodensity, some of pneumoconioses reported are thought to be benign pneumoconioses. Cases were reported among workers exposed to cerium oxide and other lanthanoid metals in the glass manufacturing, lens polishing, and photoengraving industries. Findings have included small nodular lung opacities by chest x-ray, restrictive and obstructive defects by spirometry, and respiratory tract symptoms. Unfortunately, there is very little histopathology data on these cases. [Harber, p. 501-2] The 14 lanthanide elements are associated with "rare earth pneumoconiosis," a condition most commonly reported among workers who were exposed to the fume from carbon arc lamps, and also reported in lens polishers and workers manufacturing cerium oxide polishing powder. The carbon arc lamp uses blends of lanthanide minerals as a metal core to stabilize the arc. With use of the carbon arc lamp, the carbon rod and metal core are eventually vaporized to form respirable fume and dust. Carbon arc lamps are used in movie projection, lithography, photoengraving, and floodlights. Respiratory symptoms in exposed workers were first reported in the 1930s. It is debated whether or not the stable lanthanides can cause pneumoconiosis. Some scientists believe that the lung disease is caused by radioactive contaminants such as thorium-238 and cerium-44. Recent animal studies support the view that the stable lanthanide elements can cause granulomatous and fibrotic lesions in the lungs. [Hendrick, p. 178-9]
Adverse Effects
Fibrogenic Yes
Links to Other NLM Databases
Toxicity Information Search TOXNET
Related Information in Haz-Map
Diseases Occupational diseases associated with exposure to this agent:
Processes Industrial Processes with risk of exposure:
Activities Activities with risk of exposure:





Specialized Information Services   U.S. National Library of Medicine,
8600 Rockville Pike, Bethesda, MD 20894
National Institutes of Health
Privacy/Disclaimer Notice
Customer Service: tehip@teh.nlm.nih.gov
Last updated: January, 2009