
In many settings there are tensions between
efficiency and equity in deciding on optimal
pollution control strategies. Within the con-
text of benefit-cost analysis, efficiency may be
related to implementing the least-cost control
strategy to achieve a given health benefit, or
alternatively, to maximizing net benefits.
Similarly, equity can involve procedural fair-
ness (i.e., equal involvement in public pro-
ceedings) or equity in the distribution of
outcomes (Jacobson et al. 2005). Inequity
consists of those inequalities that may be con-
sidered unjust or unfair (Macinko and
Starfield 2002). Although there are multiple
interpretations of these terms, we focus here
on efficiency as maximizing the public health
benefits of a control measure, and on equality
in the distribution of those benefits across at-
risk individuals as the dimension of equity
that can be included in quantitative analysis. 

Given these definitions, although efficiency
is incorporated into any health benefits analy-
sis, equity and related distributional issues are
often omitted (Yitzhaki 2003). Most regula-
tory impact analyses have focused exclusively
on aggregate benefits [U.S. Environmental
Protection Agency (EPA) 1999a, 1999b] with-
out formally considering the geographic or
demographic distributions of these benefits. In

parallel, many studies of equity or environ-
mental justice did not quantify health risks,
instead focusing on proximity to sources
(Burke 1993; Pollack and Vittas 1995;
Sheppard et al. 1999), emissions (Millimet
and Slottje 2002a, 2002b; Perlin et al. 1995),
or concentrations (Lopez 2002). Studies that
quantified risk inequality (Apelberg et al.
2005; Morello-Frosch and Jesdale 2006) or
proposed a framework to do so (Finkel 1990,
1997) focused on characterizing baseline
distributions of risk rather than the benefits of
control strategies, and the appropriate
methodology may differ in this context. The
lack of a systematic framework to simultane-
ously consider efficiency and equity in a deci-
sion context may imply that decisions are
based largely on maximization of societal ben-
efits without formal consideration of equity
implications.

To address these limitations, we developed
a framework by which risk inequality could be
formally quantified within health benefits
analysis (Levy et al. 2006). Briefly, we pro-
posed that quantitative indicators of inequal-
ity, similar to those used to measure income
inequality, could allow decision makers to con-
struct an optimal efficiency–equality frontier
and avoid policies that are dominated across

both dimensions. Based on an axiomatic
approach, we selected the Atkinson index
(Atkinson 1970) as the most appropriate indi-
cator for health benefits analysis, focusing on
the change in this indicator under different
control scenarios. Other indicators were con-
sidered useful for sensitivity analyses (the Gini
coefficient, mean log deviation, and the Theil
entropy index). 

Quantitative measures of risk-based effi-
ciency and equality may be useful in many
contexts, including the evaluation of national-
level policies to control emissions from power
plants in the United States. In theory these
policies could involve site-specific control
requirements or cap-and-trade programs.
Cap-and-trade programs are designed primar-
ily for economic efficiency but operate under
the presumption that health benefits would be
similar regardless of the distribution of emis-
sions (Farrell and Lave 2004). However, given
differences in atmospheric conditions and
population patterns, how emission controls
are distributed geographically could influence
the magnitude and distribution of benefits.
Sulfur dioxide (SO2) emission trading related
to the Title IV Acid Rain Program (U.S. EPA
2007) resulted in greater health benefits than a
hypothetical program without trading, based
on the geographic distribution of controls
(Burtraw and Mansur 1999). 

Regardless of efficiency claims, environ-
mental justice advocates and communities
housing power plants have expressed concern
that unrestricted emission trading does not
decrease and may exacerbate environmental
inequities (Solomon and Lee 2000). Previous
analyses (Corburn 2001; Swift 2001) focused
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on the possibility of emissions hot spots associ-
ated with Title IV and whether low-income or
minority populations tended to have lesser
emission reductions in proximate facilities.
While these studies concluded that there were
no hot spots, they used a procedural rather
than an outcome-based concept of equity and
therefore did not address the question of
changing patterns of health risks. The benefits
analysis of Title IV (Burtraw and Mansur
1999) indicated that certain geographic areas
received health benefits while others had health
disbenefits. However, without a more formal
analysis, it is difficult to determine whether
health inequality increased, decreased, or
stayed the same, or to ascertain the potential
impacts of future policies. Given the framing
of the debate about national power plant con-
trols, an outcome-based focus implies that an
evaluation of how various distributions of
emission controls correspond to changes in
health benefits and in the spatial inequality of
health risk would be informative for the design
of future emission control programs. 

In this analysis, we focus on the various
ways by which emissions reductions for power
plants in the United States could be distrib-
uted to meet hypothetical national emissions
caps for SO2, nitrogen oxides (NOx), and pri-
mary fine particulate matter (particulate mat-
ter with a diameter < 2.5 µm; PM2.5). For
each control scenario, we estimate both the
public health benefits and the change in the
spatial inequality of health risk. We consider
the sensitivity of our conclusions to the pollu-
tants evaluated, the inequality indicators
selected, and other factors.

Methods

Control scenarios. Given our objective of eval-
uating potential efficiency–equality tradeoffs,
we needed to construct a number of control
scenarios that spanned the efficiency–equality
space and were interpretable. First, we estab-
lished a national target emissions cap for all
three pollutants. The Clear Skies Initiative
(U.S. EPA 2003a) called for United States
power plant SO2 emissions of 3 million tons
and NOx emissions of 1.7 million tons by
2018. The Clean Air Interstate Rule (CAIR)
(U.S. EPA 2005a) called for power plant SO2
emissions of 3.5 million tons and NOx emis-
sions of 2.2 million tons by 2015. Alternative
proposals have suggested caps of 2.2 million
tons of SO2 and 1.5 million tons of NOx (U.S.
EPA 2001). As power plant emissions in 1999
(the base year for our analysis) were 12.6 mil-
lion tons of SO2 and 5.7 million tons of NOx
(U.S. EPA 2003b), we consider 75% reduc-
tions in each to be generally representative of
proposed regulations. Although primary PM2.5
was not incorporated into these proposals,
controlling these emissions is plausible, given
available technology and fuel options, and we

consider a 75% reduction for consistency (but
present our findings both with and without
primary PM2.5 emissions). 

For our control scenarios, our objective is
not to simulate economic conditions and
resulting plant behaviors or to consider the
impact of current or pending regulations but
simply to consider ways in which an aggregate
75% reduction could theoretically be distrib-
uted. We constructed some specified control
scenarios that either reflect straightforward
control policies or would provide bounding
estimates of efficiency or equality regardless of
their viability (Table 1). For example, all
plants could have 75% emission reductions
(scenario A) or all plants could meet a target
emission rate per unit heat input, with vari-
able percentage reductions (scenario B).

Scenarios C through P (Table 1) represent
bounding values rather than realistic control
scenarios and may miss important combina-
tions of emissions reductions. To develop other
scenarios, we used a simulation approach. For
each pollutant, we allowed each plant to poten-
tially have no change, control to a target emis-
sion rate per unit heat input, control halfway
between current emissions and the target rate,
or control to half the target rate. Or, a plant
could shut down, eliminating all emissions.
We iterated randomly across these options for
all plants, and in each iteration, retained the
scenario if total emissions of each of the three
pollutants were within 5% of the target
national emissions cap. We constructed 20 of
these intermediate control scenarios.

Source–receptor matrix. To link these emis-
sion changes with changes in ambient concen-
trations, we apply a source–receptor (S-R)

matrix that has been used in previous regulatory
impact analyses (U.S. EPA 1997, 1999a). S-R
matrix is a reduced-form model that provides
the relationship between emissions of PM2.5 or
particle precursors and county-level PM2.5 con-
centrations. It is based on the Climatological
Regional Dispersion Model (CRDM), a sector-
averaged Gaussian dispersion model that
includes wet and dry deposition and first-order
chemical conversion of SO2 and NOx to sulfate
and nitrate particles. 

S-R matrix includes county-specific cali-
bration factors to adjust initial model outputs
to reflect ambient monitoring data. Data
from the U.S. EPA Federal Reference
Method and Speciation Network monitors
were spatially interpolated to county cen-
troids, and the ratios between these values and
the initial model outputs were used to
develop calibration factors (Abt Associates
2006). The calibration factors had a median
value of 0.9, indicating that relatively little
bias was found in initial S-R matrix outputs,
although there was some spatial variability
(5th percentile of 0.5, 95th percentile of 1.4,
range of 0.11–3.5).

Power plant characteristics. We estimated
emissions from the Emissions and Generation
Resource Integrated Database (EGRID; U.S.
EPA 2005b) and the National Emission
Inventory (NEI; U.S. EPA 2005c). EGRID
contained information on annual NOx and
SO2 emissions as well as heat input and elec-
tricity generation. We used power plant char-
acteristics from 1999 for comparability with
other available data. NEI provided informa-
tion on annual PM2.5 emissions. Power plants
were omitted from our analysis if they had
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Table 1. Specified control scenarios for power plant simulation.

Scenario Definition

A 75% reductions in SO2, NOx, and primary PM2.5 from all plants
B Reductions in SO2, NOx, and primary PM2.5 from all plants to meet the average target emissions 

in pounds per million Btu, with plants currently below the target constrained to no 
emissions increases

C Elimination of plants until all caps are met, starting from the highest health benefit per unit 
emissions of SO2, going down

D Elimination of plants until all caps are met, starting from the highest health benefit per unit 
emissions of nitrogen dioxide (NO2), going down

E Elimination of plants until all caps are met, starting from the highest health benefit per unit 
emissions of PM2.5, going down

F Elimination of plants until all caps are met, starting from the lowest health benefit per unit 
emissions of SO2, going up

G Elimination of plants until all caps are met, starting from the lowest health benefit per unit 
emissions of NO2, going up

H Elimination of plants until all caps are met, starting from the lowest health benefit per unit 
emissions of PM2.5, going up

I Elimination of plants until all caps are met, starting from the highest background PM2.5
concentration, going down

J Elimination of plants until all caps are met, starting from the lowest background PM2.5
concentration, going up

K Elimination of plants until all caps are met, starting from the highest SO2 emitters, going down
L Elimination of plants until all caps are met, starting from the highest NO2 emitters, going down
M Elimination of plants until all caps are met, starting from the highest PM2.5 emitters, going down
N Elimination of plants until all caps are met, starting from the lowest SO2 emitters, going up
O Elimination of plants until all caps are met, starting from the lowest NO2 emitters, going up
P Elimination of plants until all caps are met, starting from the lowest PM2.5 emitters, going up



been deactivated before 1999, if emissions
data were unavailable, or if concentration
modeling had not been conducted for all
three pollutants within S-R matrix. The
resulting database included 425 power plants,
with total emissions in 1999 of approximately
11.8 million tons of SO2, 5.0 million tons of
NOx, and 600,000 tons of primary PM2.5,
indicating that our model captures most
national power plant emissions. 

Demographics and concentration–response
functions. We focus on premature mortality,
as it contributed a majority of PM2.5-related
benefits in previous health impact analyses
(U.S. EPA 1999b, 2004). We derive our con-
centration–response function from the
American Cancer Society cohort study (Pope
et al. 2002), as this study has been used for the
primary estimates in other health impact
analyses (U.S. EPA 1999b, 2004) and has the
largest and most geographically diverse popu-
lation of available cohort studies. 

For all-cause mortality, Pope and colleagues
reported that mortality rates increased by 6%
(95% confidence interval, 2–11%) for a
10-µg/m3 increase in annual average PM2.5
concentrations (using average concentrations
across the study period), for a population age
30 and older. We collected population data for
each county from 2000 Census data (U.S.
Census Bureau 2005) and gathered background
mortality data for each county from the CDC
WONDER database, provided by the Centers
for Disease Control and Prevention (CDC
2005). To provide more stable estimates, all-
cause mortality data were aggregated across the
years 1990–1998. 

Inequality indicators. In this section, we
briefly describe the Atkinson index and the
additional indicators relevant for sensitivity
analysis, with more detailed information
available in Appendix A and elsewhere (Levy
et al. 2006). 

The quantitative expression for the
Atkinson index is

where xi represents the health risk for each
individual, n represents the number of indi-
viduals affected, and ε is an explicit inequality
parameter (ε of 0 implies no societal concern
about inequality, with increasing values indi-
cating greater aversion toward inequality).
With the Atkinson index, the risk analyst
need not decide a priori what the societal
viewpoint about inequality should be, and
can instead consider if policy decisions are
sensitive to the value of ε. 

The Atkinson index ranges from 0 to 1,
with 0 representing complete equality and 1
representing maximum inequality. Because

we are concerned about changes in inequality
associated with control strategies, we focus on
the difference between the Atkinson index of
the precontrol distribution of concentrations
or health risks and the Atkinson index given
postcontrol concentrations or health risks. 

In sensitivity analyses, we also consider the
Gini index, the mean log deviation, and the
Theil entropy index. The Gini index is defined
as one-half the relative mean difference, or the
average of the absolute differences between all
pairs of values. The Gini index has a number of
limitations in the context of health benefits
analysis (Levy et al. 2006) but allows us to con-
sider sensitivity to the approach for individual
comparisons and aggregation. The mean log
deviation is the average of the logarithm of the
ratio between the mean health risk and the
individual health risks xi. The Theil entropy
index is similarly structured, averaging the
product of the ratio between the individual
health risks xi and the mean health risk and the
logarithm of this ratio. Both these terms are in
the same family of indicators as the Atkinson
index and capture similar general concepts but
without an explicit inequality aversion parame-
ter and with other limitations (Levy et al.
2006). More detail about the calculation of the
inequality indicators is provided in Appendix A.

Sensitivity analyses. Although quantitative
uncertainty analysis is beyond the scope of this
analysis, we test the sensitivity of our conclu-
sions to key model assumptions. For our base
case, we quantify mortality benefits consider-
ing control of SO2, NOx, and PM2.5 jointly
and using the Atkinson index to quantify spa-
tial inequality. A decision must also be made
about the relevant baseline against which to
compare changes in mortality rates. Omission
of baseline distributions of risk would lead to
somewhat arbitrary determinations of inequal-
ity (Levy et al. 2006), but multiple baselines
could be considered—all-cause mortality,
PM2.5-related mortality, or power plant
PM2.5-related mortality could be the outcome
for which policymakers would hope to reduce
inequality across the population with this
hypothetical regulation. We consider PM2.5-
related mortality in our base case. 

For our sensitivity analyses, we consider
pollutants separately and jointly, model trade-
offs for concentrations and health effects, and
consider different definitions of baseline and
different inequality indicators. We also present
results calculating the inequality of the change
in risk rather than the change in the inequality
of risk: Atkinson (precontrol—postcontrol)
rather than Atkinson (precontrol)–Atkinson
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Figure 1. Annual average PM2.5 concentrations and SO2 emissions from 425 power plants in the United States.
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Figure 2. Annual mortality benefits and change in risk inequality for power plant control scenarios (A),
along with distribution of risk for baseline conditions and selected control scenarios (B) (indicator =
Atkinson index, ε = 0.75; pollutants = SO2, NO2, PM2.5; baseline = PM-related mortality). Blue dots in A
represent intermediate control scenarios, and letters represent defined scenarios listed in Table 1.
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(postcontrol). This approach effectively ignores
baseline conditions and is not theoretically jus-
tified but helps us understand whether this
erroneous approach leads to different conclu-
sions. We present our primary results with ε =
0.75 for the Atkinson index, an illustrative
value in the middle of the range typically
found in the literature (Atkinson 1970;
Kawachi and Kennedy 1997) but test values
across a broad range.

Results
Figure 1 presents the spatial patterns of
annual average PM2.5 concentrations across
the United States as well as the SO2 emission
rates of the power plants in our analysis. Most
of the high-emitting power plants are in the
eastern United States, where PM2.5 concen-
trations are generally elevated. 

We first consider the scenarios to simulta-
neously control SO2, NOx, and primary

PM2.5, and apply the Atkinson index with
ε = 0.75, calculating inequality based on
changes in mortality risk from a baseline of
PM2.5-related mortality. As indicated in
Figure 2, the estimated public health benefits
of the policies range from approximately
17,000 to 21,000 fewer premature deaths per
year across control scenarios. Of this total,
approximately 14,000–17,000 are associated
with secondary sulfate particles. Given this, it
is not surprising that the scenario with the
greatest benefits (scenario C) involves control-
ling the plants with the highest health benefits
per ton of SO2 emissions first. Policies requir-
ing uniform emission reductions or for each
plant to reach a target emission rate tend to
fall in the middle of the efficiency spectrum,
similar to the intermediate control scenarios. 

As the y-axis in Figure 2 represents the
Atkinson index for postcontrol conditions sub-
tracted from the Atkinson index for precontrol
conditions, positive values indicate reductions
in inequality and points toward the upper right
represent more efficient and more equitable
outcomes. Scenarios with greater health bene-
fits generally also most reduce spatial inequality
(Figure 2). This is because the power plants
with maximum population exposure reduc-
tions per unit emissions of SO2 tend to be in
the areas with highest ambient PM2.5 concen-
trations (Figure 3). The two policies on the
optimal frontier involve controlling the plants
with the highest health benefits per ton of SO2
emissions first (scenario C) or controlling the
plants with the highest background PM2.5 con-
centration first (scenario I)—whether one
prefers one policy over another depends on
one’s willingness to trade efficiency for equal-
ity. All other policies are strictly dominated.

Within our sensitivity analyses, we first
considered the application of the Atkinson
index with different values of ε as well as the
other inequality indicators, holding other
assumptions as in Figure 2. Of note, compar-
ing the absolute values of the different
inequality indicators to one another is not
directly interpretable; the key question is
whether the optimal policies are robust to the
choice of indicator. Although there was some
modest reordering of control strategies, the
general conclusions remained robust, with
only scenarios C and I on the optimal frontier
(Figure 4). We present results for ε ranging
from 0.25 to 3 (the range generally used in
the literature), but conclusions are similar for
higher values as well.

Considering the influence of the choice of
baseline highlights some important issues
(Figure 5). Although the optimal strategies are
identical for different mortality-related base-
lines, the Atkinson index changes to a greater
extent for power plant PM2.5-related mortality.
Postcontrol power plant-related PM2.5 mortal-
ity is close to zero in some locations, and the
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Figure 3. Power plant sulfate intake fractions and ambient PM2.5 concentrations. Intake fraction is a unit-
less measure representing the sulfate population exposure per unit emissions of SO2, normalized by a
nominal population breathing rate.
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Figure 4. Sensitivity of efficiency–equality tradeoff conclusions to choice of inequality indicator, with
model otherwise specified as in Figure 2. Inequality indicators: (A) Atkinson index, ε = 0.25; (B) Gini coeffi-
cient; (C) Atkinson, ε = 1.5; (D) Theil entropy index; (E) Atkinson, ε = 3; (F) mean log deviation.
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Atkinson index and other indicators are sensi-
tive to near-zero values. Of greater significance
is the fact that ignoring baseline conditions
leads to substantially different conclusions, in
which the scenarios previously considered to
most improve equality are now considered to
be least equitable. This is because scenarios
such as C and I focus controls in geographic
areas that have elevated baseline exposures and
risks, so that the benefits are spread less uni-
formly but serve to reduce existing inequalities. 

We additionally examined whether the
conclusions differed when considering con-
centrations rather than health effects (with
population-weighted concentration change as
the efficiency measure and inequality in con-
centrations as the equity measure), with no
significant difference in the findings (results
not shown). Omission of primary PM2.5 emis-
sions from the analysis, which more closely
mirrors some of the proposed national cap-
and-trade programs, led to similar conclusions
(Figure 6). Not surprisingly, the optimal poli-
cies differed if only single pollutants were con-
sidered (i.e., controlling only NOx emissions),
but the findings similarly illustrated bounding
estimates for efficiency by controlling the
maximum/minimum health benefits per unit
emissions and bounding estimates for equality
by controlling the power plants in high/low
ambient PM2.5 settings first. 

Finally, if we allow multiple parameters to
vary simultaneously, our conclusions are
largely unaffected. For example, under all
combinations of inequality indicators, choice
of baseline, and use of concentrations or
health risks (controlling all three pollutants),
scenario I remains the most equitable,
whereas scenario C remains the most efficient. 

Discussion and Conclusion

Our analysis demonstrates good concordance
between national power plant emission reduc-
tion patterns that maximize health benefits
and those that best reduce spatial inequality in
the distribution of air pollution-related risks.
This concordance will not always exist. It is
clear that reducing risks for the highest-risk
individual first would both maximize effi-
ciency and minimize inequality, presuming no
differences in the costs or feasibility of con-
trols. However, pollution control strategies are
targeted at sources rather than at individuals.
In this context, tradeoffs are likely, as the fac-
tors that influence efficiency differ from the
factors that influence equality. Our finding is
based on the spatial coincidence between pop-
ulation risk reductions (largely a function of
downwind population density at long dis-
tance) and individual risk reductions (largely a
function of high ambient PM2.5 concentra-
tions close to the power plant). As shown in
Figure 6, this coincidence is stronger for some
pollutants (SO2) than for others (NOx). 

We also demonstrated within our analysis
that these conclusions were robust across
numerous model configurations as long as
baseline conditions are appropriately incor-
porated. In particular, the optimal policy
choices did not vary with ε; if the conclu-
sions were sensitive to ε, follow-up studies
would be needed to determine the values that
best capture priorities of stakeholders and
decision makers.

Another interesting finding is that the dif-
ference in health benefits across the control
scenarios is small in relative terms, with only a
22% difference between the minimum and
maximum benefits. This can be attributed to
the fact that the emission reductions are sub-
stantial enough to require controls at many
facilities, reducing the variation between sce-
narios in spite of larger variations in plant-
specific benefits (Figure 3). That being said, a
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Figure 5. Sensitivity of efficiency–equality tradeoff conclusions to choice of baseline, with model other-
wise specified as in Figure 2. Baselines: (A) All-cause mortality; (B) PM-related mortality; (C) power plant
PM-related mortality; and (D) no baseline. The y-axis in D represents the inequality indicator itself rather
than a change in the inequality indicator, and the axis is inverted so that more equitable scenarios remain
in the upper-right quadrant of the graph.
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Figure 6. Sensitivity of efficiency–equality tradeoff conclusions to pollutants included in the model, with
model otherwise specified as in Figure 2. Pollutants included in the model: (A) primary PM only; (B) NOx
only; (C) SO2 only; and (D) SO2 and NOx only.
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22% difference does reflect an absolute differ-
ence of nearly 4,000 deaths per year, which
could be significant in determining optimal
policies. In addition, if not all power plants
were controlled at the same time, the differ-
ences between the scenarios would increase if
discount rates were applied to benefits in
future years.

Although our findings are generally robust,
a number of limitations are important to recog-
nize. First, we have only addressed one dimen-
sion of equity, by focusing on spatial variability
in county-level mortality risks with a national
focus. More conventionally, equity considera-
tions in an environmental justice context con-
sider racial and ethnic disparities, which are
omitted from this analysis. Inclusion of effect

modifiers such as educational attainment (Pope
et al. 2002) or evaluation of morbidity out-
comes with known demographic patterning
could significantly influence spatial patterns of
risk (Levy et al. 2002) and any conclusions
about equity, especially if methods are used to
decompose inequality between and within dif-
ferent subpopulations (Levy et al. 2006).
Although these factors are clearly important,
much of the outcome-based debate related to
national power plant control strategies has
revolved around spatial equity. In general, the
equity measure utilized should be the one most
informative to the decision-maker within the
context of the policy question. In applications
in which other dimensions of equity are cen-
tral, particularly those involving mobile sources

(where the spatial extent of impact is lesser and
local socioeconomic and demographic factors
may be more influential), other measures
should be used. 

In addition, for our results to be useful for
decision making, the costs of control need to
be included, with realistic control strategies
rather than bounding values and randomly-
generated scenarios. With plant-specific con-
trol costs, we could compare net monetized
benefits with changes in the spatial inequality
of risk (noting that cost information cannot
be used directly in our inequality indicator).
Considering other dimensions of equity, such
as the distribution of costs across power plant
companies or consumers, would lead to a
more comprehensive and relevant analysis,
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Appendix A.

As indicated in the text, we use four inequality indicators within our
analysis. We apply the Atkinson index for our primary analysis, and
we use the Gini coefficient, the mean log deviation, and the Theil
entropy index for sensitivity analyses. In each case we apply the indica-
tor to the precontrol distribution of risks, then to the postcontrol dis-
tribution of risks, with the difference between these values used to
construct the efficiency–equality frontiers. Within this appendix, we
provide an illustrative calculation for each of the indicators (including
multiple values of ε for the Atkinson index).

The formulas for the four inequality indicators are listed below:

Atkinson index ,

where ε = inequality aversion (range from 0 to infinity),

Gini index ,

Mean log deviation , and

Theil entropy index .

Now suppose there were 10 geographic regions affected by a con-
trol strategy, with the baseline and postcontrol distributions of risk as
presented in Table A1. Note that the baseline risks roughly correspond

to the deciles of PM2.5-related mortality risks in our analyses, and the
three control scenarios are meant to illustrate the implications of con-
trols focused on the bottom, middle, and top of the distribution (with
approximate 10% risk reductions). For simplicity, we presume equal
numbers of people in each risk bin. 

Table A2 shows the resulting values of each of the inequality
indicators, including the Atkinson index for multiple values of ε. 

First, it should be noted that the absolute values are less signifi-
cant than the relative differences between the precontrol and postcon-
trol scenario. The Atkinson index can take on any value from 0 to 1,
depending on the value of ε, and the other three inequality indicators
represent different conceptualizations of equity. 

In all cases, controlling risks at the bottom of the distribution (the
lower-risk individuals) led to an increase in the inequality indicators,
implying increased inequality of risk. Similarly, in all cases, control-
ling risks at the top of the distribution (the higher-risk individuals)
led to a decrease in the inequality indicators, implying reduced
inequality of risk. 

Controlling risks in the middle of the distribution was seen as ben-
eficial for some inequality measures and not for others. In particular,
inequality increased according to the mean log deviation, the Theil
entropy index, Gini coefficient, and Atkinson index for ε = 0.5. For
higher values of ε, inequality according to the Atkinson index
decreased. This can be explained by the fact that, for higher values of
ε, the Atkinson index most heavily penalizes large differences between
low values and the mean, and the “control in the middle” scenario has
lessened the distance between the mean and the bottom of the distrib-
ution, although it has simultaneously increased the distance between
the mean and the top of the distribution. As indicated in the text, this
emphasizes that the Atkinson index is a somewhat indirect measure for
capturing concern about high-risk individuals, as changes in ε most
directly indicate the degree of concern about low-risk individuals. 

Table A1. Baseline and postcontrol distributions of risk.

Baseline Risk, control at: 
Decile risk Bottom Middle Top

1 3.4 × 10–4 3.1 × 10–4 3.4 × 10–4 3.40 × 10–4

2 6.8 × 10–4 6.1 × 10–4 6.8 × 10–4 6.80 × 10–4

3 8.0 × 10–4 7.2 × 10–4 8.0 × 10–4 8.00 × 10–4

4 8.9 × 10–4 8.9 × 10–4 8.0 × 10–4 8.90 × 10–4

5 9.9 × 10–4 9.9 × 10–4 8.9 × 10–4 9.90 × 10–4

6 1.1 × 10–3 1.1 × 10–3 1.0 × 10–3 1.10 × 10–3

7 1.2 × 10–3 1.2 × 10–3 1.1 × 10–3 1.20 × 10–3

8 1.3 × 10–3 1.3 × 10–3 1.3 × 10–3 1.20 × 10–3

9 1.4 × 10–3 1.4 × 10–3 1.4 × 10–3 1.30 × 10–3

10 1.8 × 10–3 1.8 × 10–3 1.8 × 10–3 1.60 × 10–3

Table A2. Values of each of the inequality indicators. 

Baseline Risk, control at: 
Inequality indicators risk Bottom Middle Top

Atkinson, ε = 0.5 0.038 0.044 0.040 0.032
Atkinson, ε = 1.5 0.127 0.146 0.127 0.112
Atkinson, ε = 3 0.282 0.319 0.272 0.259
Atkinson, ε = 5 0.445 0.483 0.426 0.423
Mean log deviation 0.084 0.097 0.085 0.072
Theil 0.072 0.083 0.077 0.061
Gini 0.207 0.222 0.215 0.185



and methods should be developed to synthe-
size these elements into a single decision
framework.

Our findings are also dependent on the
validity of S-R matrix. Although S-R matrix is
simplified relative to state-of-the-science dis-
persion models, it has yielded similar health
impact estimates as more advanced models
(Abt Associates et al. 2000; Levy et al. 2003).
It also has the benefit of explicit calibration
with ambient monitoring data. Moreover,
given the numerous sources and control sce-
narios in our analysis, a more intensive model
would have been infeasible. We can corrobo-
rate our modeling to a limited extent by com-
parison with similar analyses of the benefits of
national cap-and-trade programs. For exam-
ple, the U.S. EPA analysis of CAIR used
CMAQ to estimate benefits of 17,000 fewer
premature deaths per year, with population-
weighted PM2.5 concentration reductions of
about 1.2 µg/m3 (U.S. EPA 2005d). Our cor-
responding estimates (for SO2 and NOx con-
trol only) of 15,000–18,000 fewer premature
deaths and 1.3–1.6 µg/m3, for a slightly more
stringent emissions cap, compare favorably
with these estimates, although this validates
our efficiency measures to a greater degree
than our equity measures (which rely on spa-
tial concentration patterns). S-R matrix also
does not include the influence of NOx emis-
sions on ozone formation. Including ozone-
related health benefits could theoretically
influence our findings, although previous
studies have shown that PM2.5 dominates
monetized benefits (U.S. EPA 2005d).

In addition, although we conducted mul-
tiple sensitivity analyses, some alternative
assumptions could have significantly influ-
enced our findings. In particular, if definitive
information were available about the relative
toxicity of different particle constituents, our
conclusions could differ. That being said,
Figure 6 demonstrates that control scenario I
is on the optimal frontier for all pollutants
and therefore would be robust across different
toxicity assumptions. Alternative assumptions
about concentration–response function non-
linearities or regional differences in concentra-
tion–response functions could also have
important effects. In particular, thresholds in
the concentration–response function would
reduce the benefits outside the Midwest,
potentially enhancing the differences between
control scenarios but likely not changing the
optimal control scenarios. Nonlinearities and
large variations in baseline risks would also
lead to greater differences between concentra-
tion-based conclusions and risk-based conclu-
sions, thereby enhancing the importance of
risk-based indicators. As the epidemiologic
evidence did not provide strong support for
any of these factors, we did not formally
incorporate them into sensitivity analyses, but

they could be considered in future analyses as
the evidence base evolves. Of note, other
uncertain parameters (like the magnitude of
the concentration–response relationship)
would not influence the core conclusions
about optimal control strategies. More gener-
ally, formal uncertainty analysis related to
both efficiency and equity measures would be
required for any future decision making in
this setting.

A final concern is related to the inequality
indicators themselves. Although the indicators
we used agree with an axiomatic approach
proposed previously (Levy et al. 2006), there
are some limitations. The parameter ε in the
Atkinson index most influences sensitivity to
low values, but in a health risk inequality con-
text, we are more concerned about high val-
ues, so this represents an indirect mechanism
for expressing concern about different seg-
ments of the risk distribution. We also
observed the sensitivity of all indicators to val-
ues near zero, which can be influential given
certain definitions of baseline. Because of
these issues, development of novel inequality
indicators specific to health benefits analysis
may be warranted, although our conclusions
were not sensitive to the statistical formula-
tion of the inequality indicator.

More generally, although our framework
helped to identify policies on the optimal
frontier and policies that were strictly domi-
nated, it is difficult to know to what extent
decision-makers should be willing to trade off
a given increase in health benefits for a given
decrease in an inequality indicator. Further
research is needed into the interpretation of
small changes in inequality. 

Limitations aside, our analysis provides
some useful insights. First, our scenarios pro-
vide both bounding values and an indication
of the types of targeted control strategies that
would be most beneficial. For example, if the
initial allocation of permits in a cap-and-trade
program were weighted to encourage greater
emission reductions in zones with high con-
centrations or high health benefits per unit
emissions, it would increase the likelihood of
both maximizing health benefits and mini-
mizing spatial inequality in PM-related risk.
More generally, our analysis provides insight
about the power plants that are the best can-
didates for controls from a health benefits and
health equality perspective. Coupled with
control cost information, these insights could
be used to design an optimal control regimen.
Finally, from a methodologic perspective, we
have demonstrated the viability of developing
efficiency–equality tradeoff frontiers in the
context of health benefits analysis. These tools
can be applied retrospectively (i.e., to Title
IV) or prospectively to determine optimal
policy options, taking into account both
efficiency and equality.
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