Production of ¹⁸F-Labeled Radiopharmaceuticals

Part 2 (PET Radiochemistry, Lecture #5)

Main Contents of Lecture

• Reactivity of NCA [¹⁸F]fluoride

 Radiofluoridation chemistry Aliphatic nucleophilic substitution Aromatic nucleophilic substitution In benzenes

In pyridines

• Derived labeling agents Aliphatic

One carbon

Two carbon

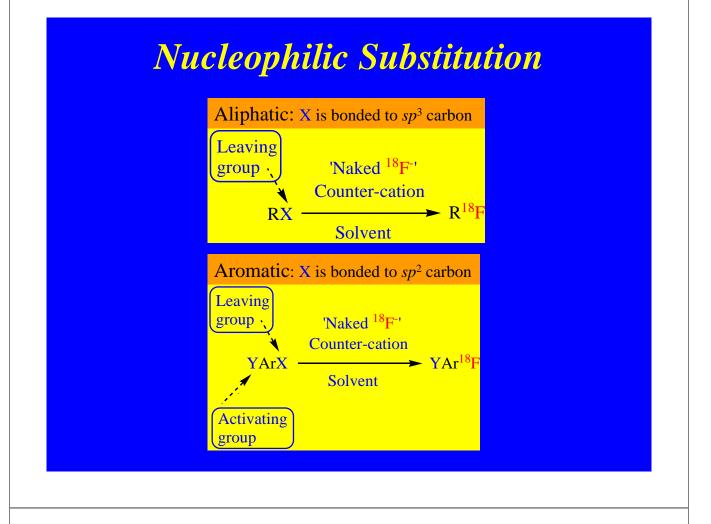
Aromatic

Macromolecule labeling

Reactivity of Fluoride

• In aqueous solution, fluoride ion is highly hydrated $[F(H_2O)_n]$

- The water of hydration 'quenches' the negative charge
- Aqueous fluoride is therefore a poor nucleophile
- Removal of all (or nearly all) of the water of hydration creates 'naked' fluoride (F-), a powerful nucleophile in dipolar aprotic organic media

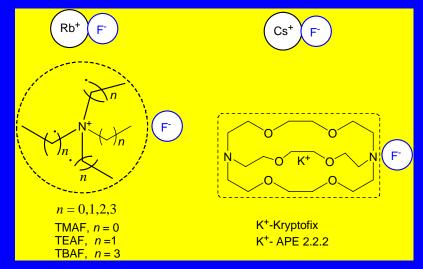

Nucleophilicity for 'naked' halides: $F^- >> Cl^- > Br^- > I^-$

Note: 'Naked' fluoride is also a powerful base

Solvation Energies of Halide Ions in Water and DMSO

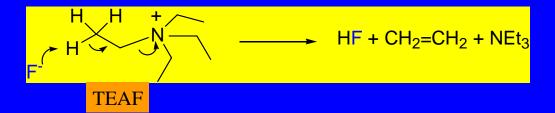
Water	DMSO	
- ΔH _{sol} (kcal/mol)		
123	102	
89	80.3	
81	76.1	
72	70.0	
F⁻(H ₂ O) _n	F ⁻ (Me ₂ SO) _n	
Hydrogen bonding	No hydrogen bonding	
	- ΔH, 123 89 81 72 F ⁻ (H ₂ O) _n Hydrogen	

F-


Influence of Stepwise Desolvation on Nucleophilic Substitution

n-Octyl-O-SO ₂ Me		F ⁻ (H ₂ O)n hlorobenzene 60 °C	n-Octyl-F
	n	Relative rate	
	8.5 6.0	1	
	4.0	2	
	3.0	9	
	2.6	20	
	1.8	52	
	1.5	96 800	
	0.0	822	

Generation of Reactive NCA [¹⁸F]Fluoride


- Several procedures are commonly used for the generation of reactive NCA [¹⁸F]fluoride from aqueous cyclotronproduced [¹⁸F]fluoride. These share a common strategy: dissolution of the [¹⁸F]fluoride with a large counterion in a polar aprotic solvent
- Generally, water is removed by distillation from an added base e.g. Rb₂CO₃, CsCO₃, Et₄N⁺OH⁻ (TEA⁺OH⁻), n-Bu₄N⁺OH⁻ (TBA⁺OH⁻), [K-18-crown-6]⁺-carbonate or [K-APE]⁺-carbonate
- Final drying of the NCA [¹⁸F]fluoride complex may be achieved by repetitive addition of acetonitrile and evaporation of the generated acetonitrile-water azeotrope

Solubilization of 'Naked' Fluoride

Separation of charge and weak solvation promote strong fluoride nucleophilicity (and basicity) in polar aprotic solvents

'Naked' Fluoride as Base

- Anhydrous fluoride is a very strong base
- Anhydrous *tetra-n*-alkylammonium fluorides are intrinsically unstable (and difficult to obtain)

Vessel Considerations for Reactions of NCA [¹⁸F]Fluoride

Reaction vessels need to be chosen to permit efficient resolubilization after drying of the NCA [¹⁸F]fluoride salt

- Vigorous drying tends to adhere the NCA [¹⁸F]fluoride to the walls of the vessel, hindering resolubilization for further reaction
- Reactions are often performed in sealed small-volume pyrex, glassy carbon or platinum vessels
- In general glassy carbon and platinum vessels allow efficient resolubilization
- Resolubilization efficiency may depend on solvent and base

Solvent-base System for Reaction

Solvent

The choice of solvent is important for the success of any reaction with NCA [¹⁸F]fluoride. Ideally, the solvent should be:

- Stable to base ('naked' fluoride is a strong base)
- Aprotic (to avoid protons, H-bonding)
- Non-nucleophilic (to avoid competitive reactions)
- Polar (for high solvent power)
- High boiling
- Thermally stable

Base

Base must be added to

- Retain NCA [¹⁸F]fluoride in solution (prevent protonation to volatile H¹⁸F)
- Provide bulk counter anion to bulk cation

Solvents for Aliphatic Nucleophilic Substitution

Solvent		B.pt. °C
• Dichloromethane		40
• THF		67
• Acetonitrile	Favored	82
• DMF		153
• <i>o</i> -Dichlorobenzene		180
• DMSO	Useful for high reaction	189
	temperature	
	Prone to decompose below	
	its boiling point	
	Can act as an oxidant	
Nitrobenzene		211
• Tetramethylenesulfo	ne (sulfolane)	285

Solvents for Aromatic Nucleophilic Substitution

- Here protophilic solvents favor reaction, particularly DMSO and sulfolane
- In practice DMSO is probably the most useful solvent
- The reactions are generally more difficult than aliphatic substitutions and often require the high temperatures that are possible with DMSO and sulfolane

Choice of Added Base

Criteria for the choice of added base for nucleophilic substitutions with NCA [¹⁸F]fluoride are not yet clearly established

- TBA+OH-
- [K-APE]⁺ carbonate
- [K-APE]⁺ oxalate
- Cs_2CO_3
- Rb₂CO₃

Potential instability Versatile Less basic than carbonate Less effective than those above? Less effective than those above?

Choice of Leaving Group

Aliphatic nucleophilic substitution

 $\frac{\text{Halides}}{\text{I}^- > \text{Br}^- > \text{Cl}^- > \text{F}^-}$

<u>Sulphonates</u>: mesyl (MeSO₃⁻), triflyl (CF₃SO₃⁻), tosyl (p-MeC₆H₄SO₃⁻)

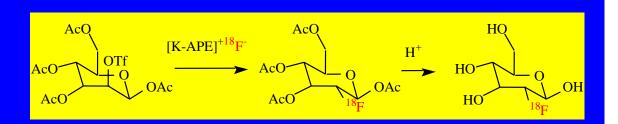
<u>Cyclic leaving groups</u>: cyclic sulphate, cyclic sulphamate

High radiochemical yields can be obtained

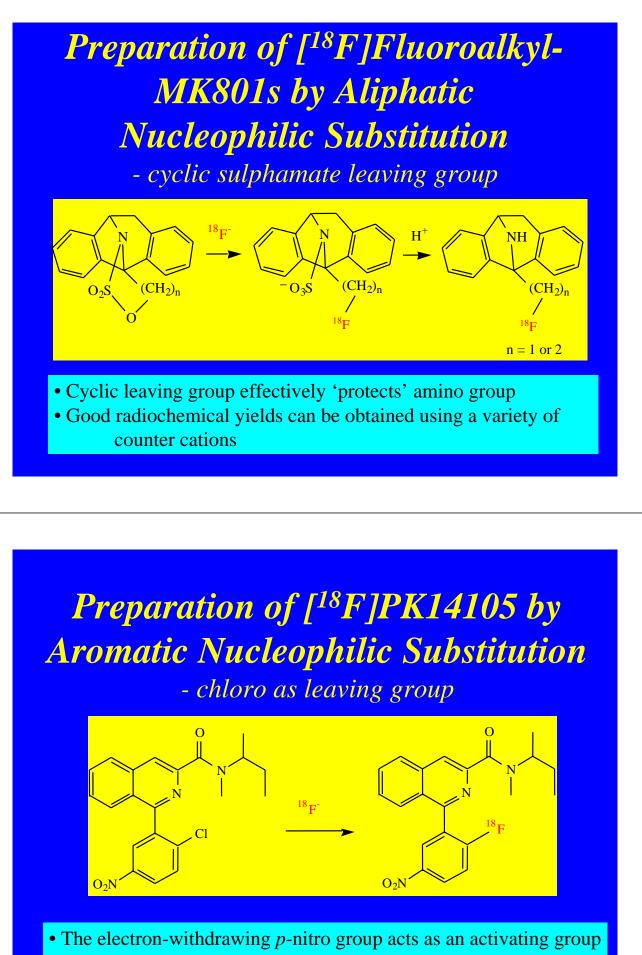
Choice of Leaving Group

Aromatic nucleophilic substitution

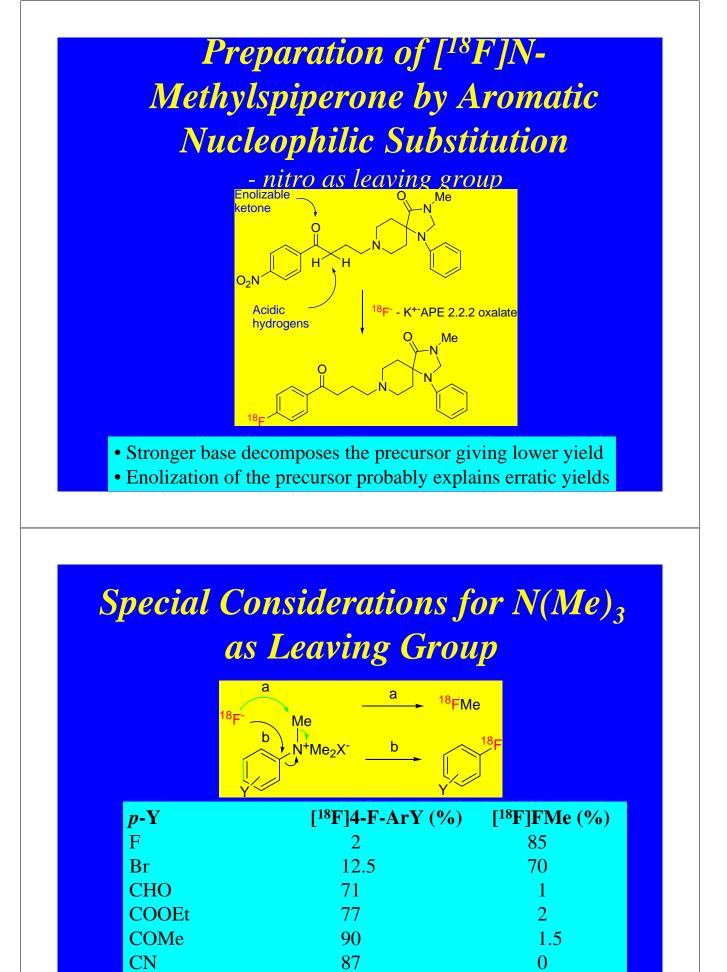
Activation is required by at least one electron-withdrawing substituent: *e.g.* NO₂, CN, COR, CONH, CO₂R or CHO *ortho* or *para* to the leaving group, which is generally: NO₂, Br, Cl or N⁺Me₃
High radiochemical yields are obtained on simple substrates, but are more difficult to achieve on structures that are larger and sensitive to base

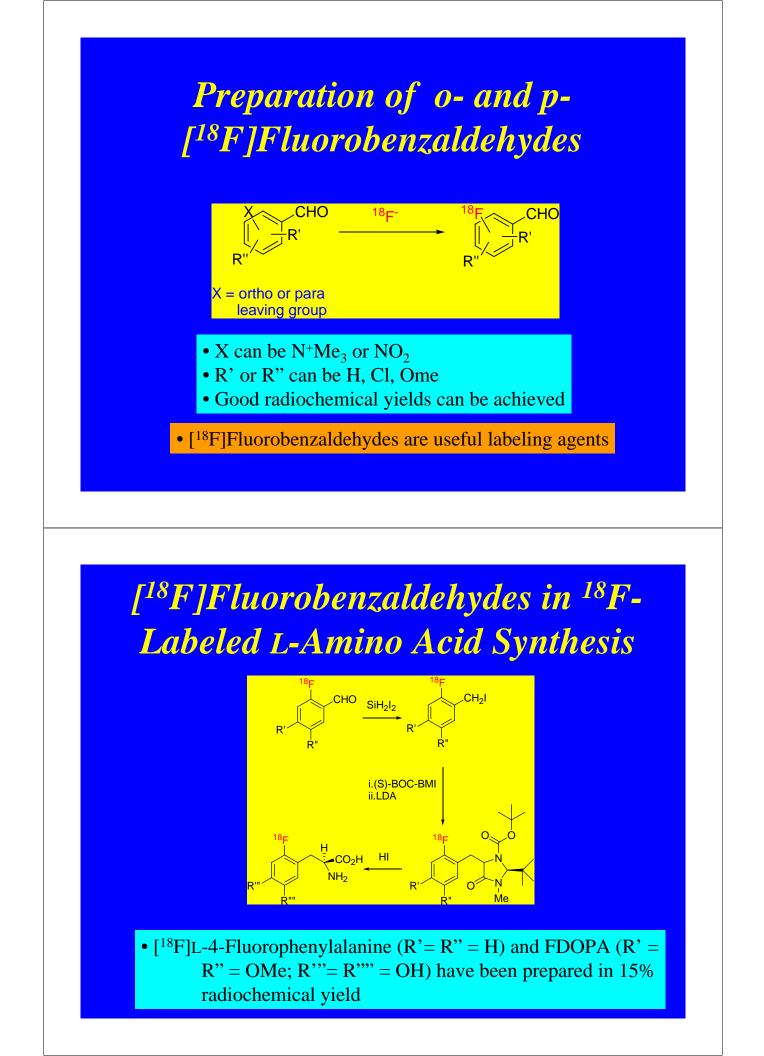

Other Structural Features Required of Precursor

• Generally the precursor (RX or YArX) should not contain structural elements that can reduce the nucleophilicity of 'naked' fluoride:


> No acidic groups (ArOH, CO₂H..) No enolizable groups (-CH₂CO-) No hydrogen bonding groups (OH, NH)

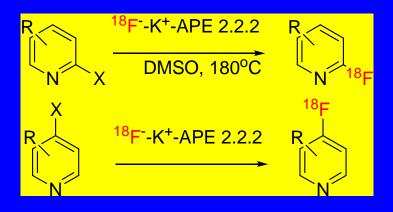
- The precursor should not contain labile F atoms (a source of carrier)
- The precursor should not be base-sensitive
- The precursor should be stable to storage in the dry state


Preparation of FDG by Aliphatic Nucleophilic Substitution - triflate leaving group

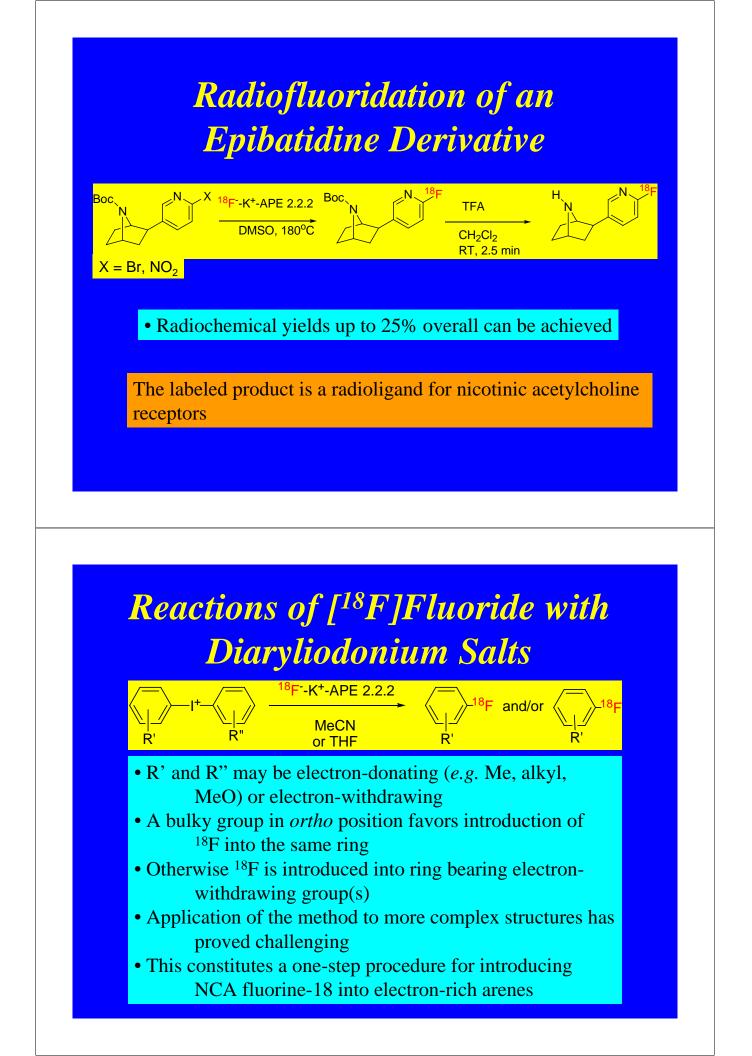

This (and subtle variations) are the most efficient radiosyntheses of FDG known


• The product and precursor are difficult to separate

 NO_2



[¹⁸F]Fluoroarenes from [¹⁸F]Fluorobenzaldehydes


This constitutes a two-step procedure for introducing NCA [¹⁸F]fluoride into non-activated (electron-rich) rings
Radiochemical yields are 70-80% overall

Radiofluoridation of Pyridines

• X may be Cl, Br, NO₂, N⁺Me₃ (R = H, or structure residue)

• Radiochemical yields up to 96% may be obtained with N^+Me_3

¹⁸F⁻-K⁺APE 2.2.2

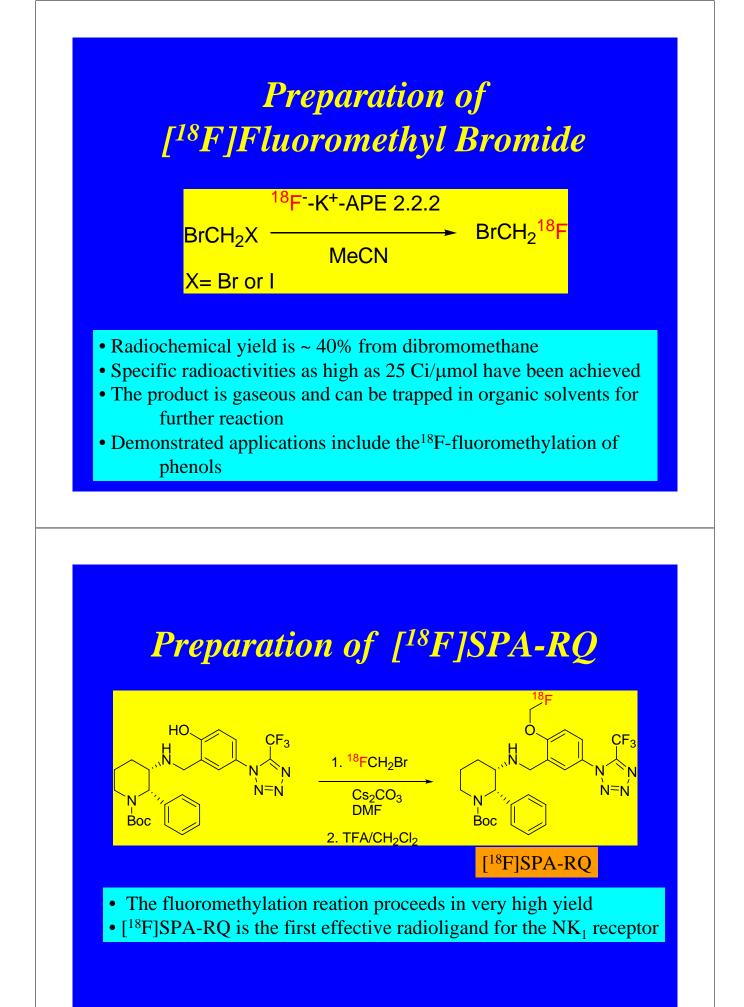
→ ¹⁸FF₂CCH₂F

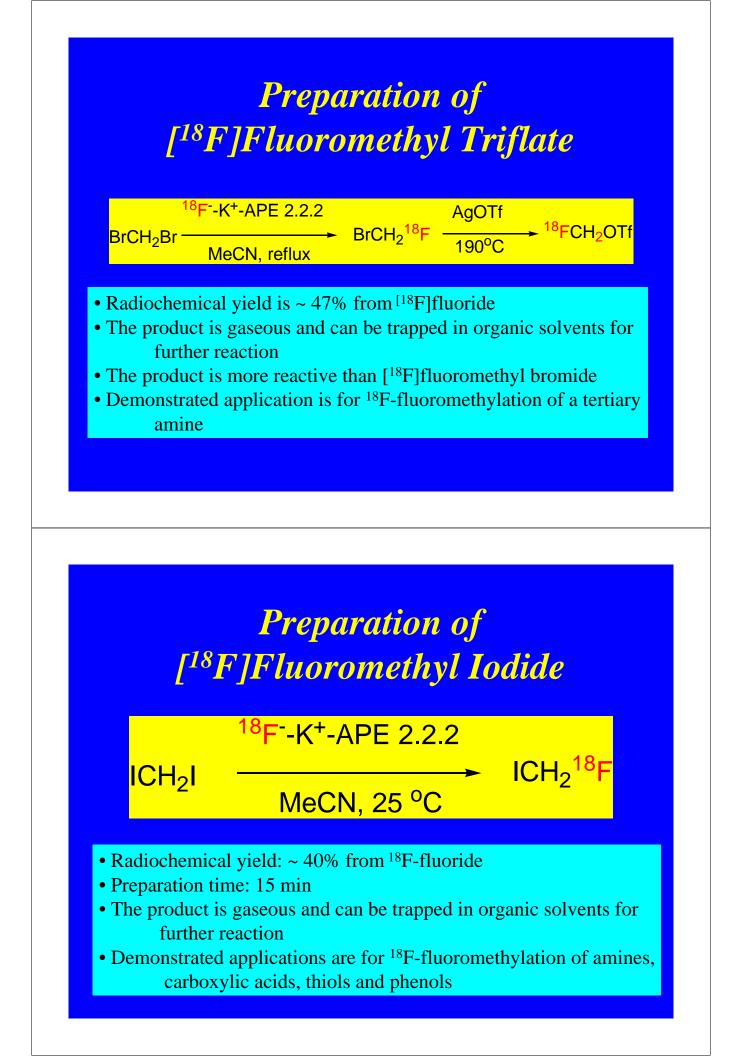
• A rare example!

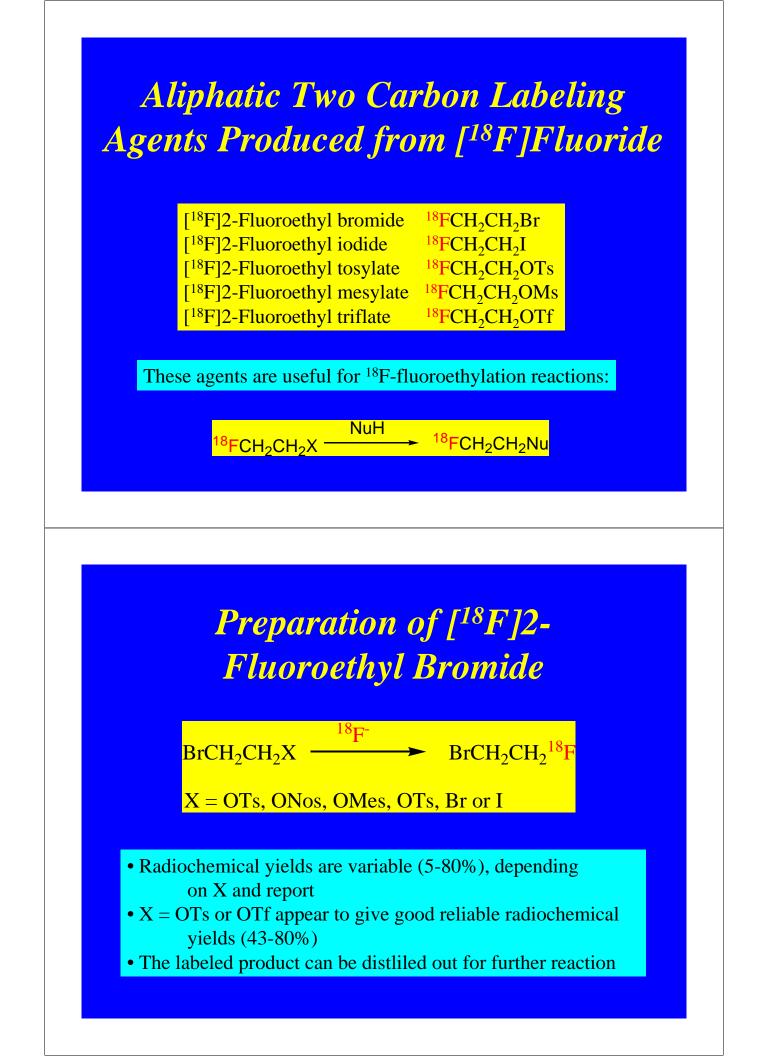
 $CF_2 = CHF$

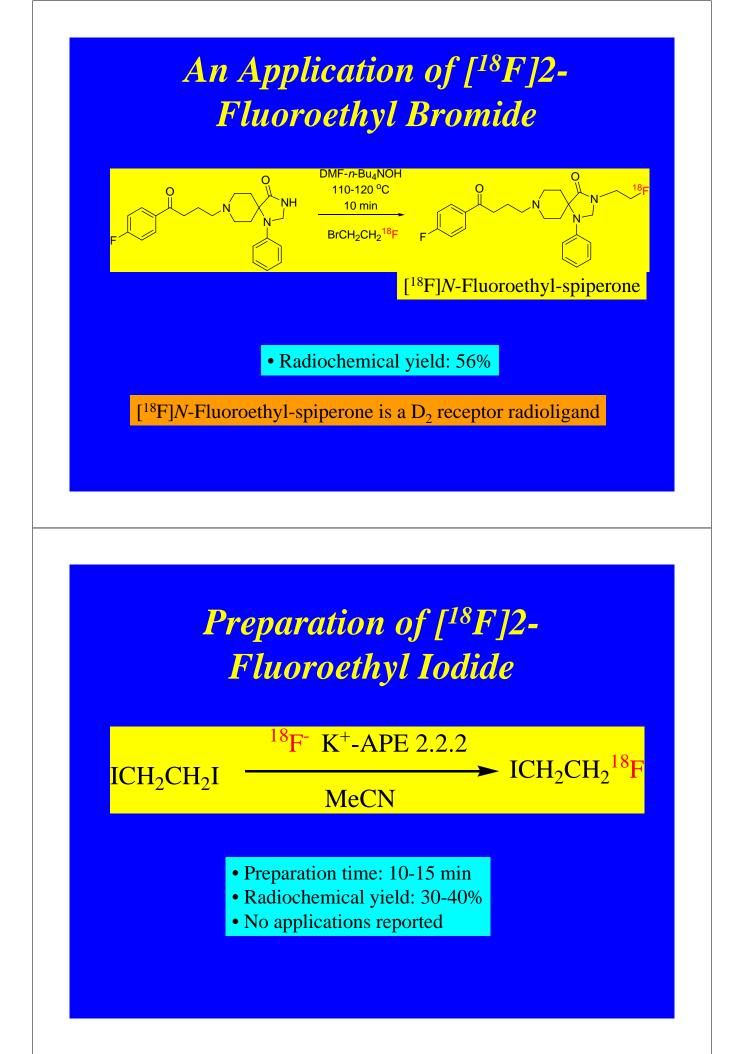
• The proton must come from the solvent of from APE 2.2.2

MeCN


The gaseous product has been used as a radiotracer of the *in vivo* disposition and human safety of the aerosol propellant HFA 134a (KleaTM)


Aliphatic One Carbon Labeling Agents Produced from [¹⁸F]Fluoride


[¹⁸F]Fluoromethyl bromide¹⁸FCH2Br[¹⁸F]Fluoromethyl triflate¹⁸FCH2OTf[¹⁸F]Fluoromethyl iodide¹⁸FCH2I

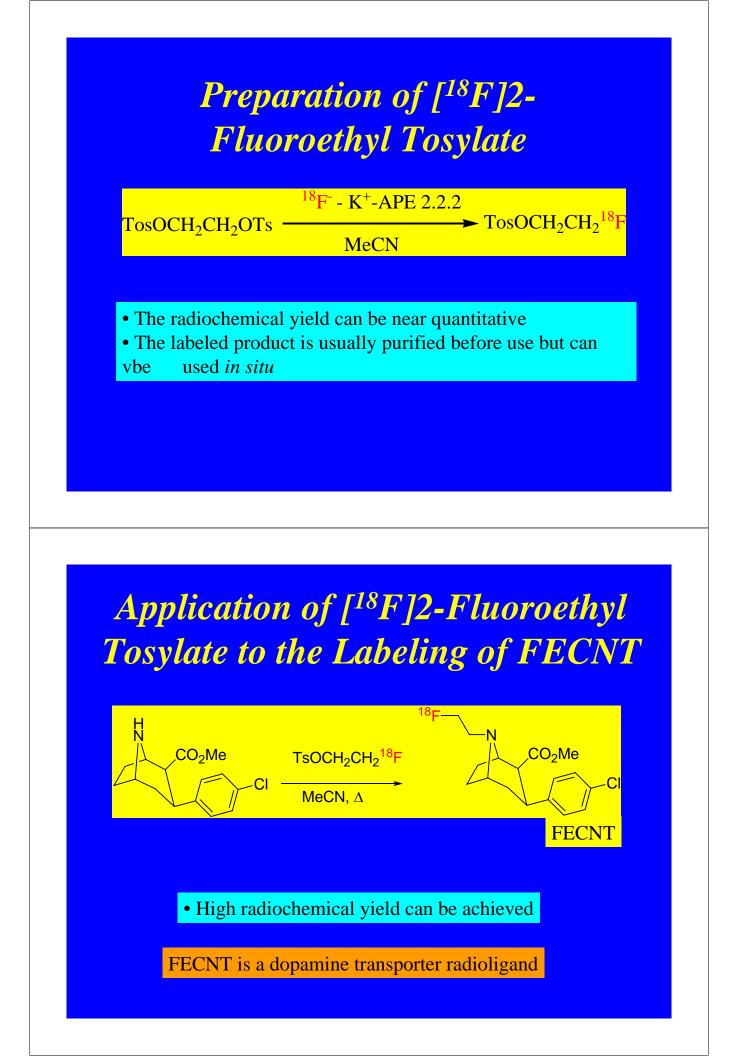

These agents are useful for ¹⁸F-fluoromethylation reactions:

$$\frac{\text{NuH}}{\text{^{18}FCH}_2\text{X}} \xrightarrow{\text{^{18}FCH}_2\text{Nu}} \frac{\text{^{18}FCH}_2\text{Nu}}{\text{NuH} = \text{ArOH, RNH}_2\dots}$$

 $^{18}\text{F}^{-}\text{K}^{+}\text{-APE }2.2.2$

TfOCH₂CH₂¹⁸F

TfOCH₂CH₂OTf

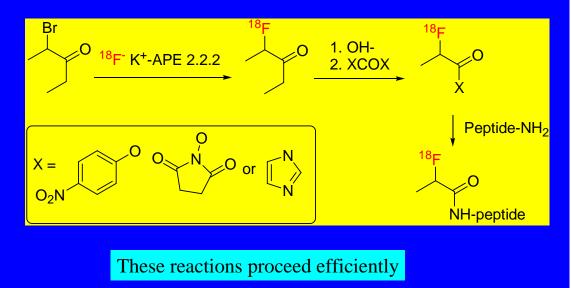

MeCN

- Preparation time: ~ 10 min
- Radiochemical yield: 36%
- Applied to ¹⁸F-fluoroalkylation of amines (*des*-ethylraclopride and other benzamides)

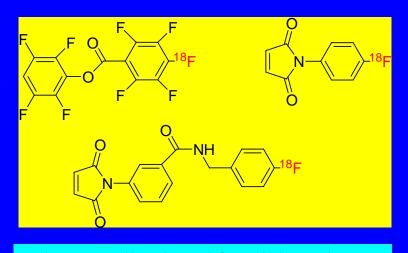
 $M_{sOCH_{2}CH_{2}OMs} \xrightarrow{} M_{sOCH_{2}CH_{2}}M_{sOCH_{2}CH_{2}}M_{sOCH_{2}CH_{2}}M_{sOCH_{2}CH_{2}}M_{sOCH_{2}CH_{2}}M_{sOCH_{2}CH_{2}}M_{sOCH_{2}CH_{2}}M_{sOCH_{2}CH_{2}}M_{sOCH_{2}CH_{2}}M_{sOC}M_{sOCH_{2}}M_{sOCH_{2}}M_{sOCH_{2}}M_{sOCH_{2}}M_{sOC}M_{s$

• No applications reported

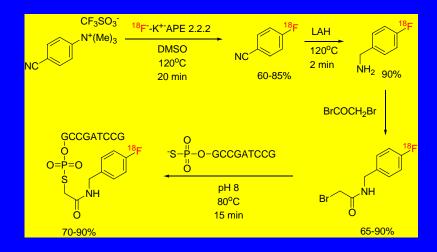
Longer Chain Aliphatic Labeling Agents Produced from [¹⁸F]Fluoride


[¹⁸F]2-Fluoropropyl bromide ¹⁸FCH₂CH₂CH₂Br
[¹⁸F]2-Fluoropropyl iodide ¹⁸FCH₂CH₂CH₂L
[¹⁸F]2-Fluoropropyl tosylate ¹⁸FCH₂CH₂CH₂OTs
[¹⁸F]2-Fluoropropyl mesylate ¹⁸FCH₂CH₂CH₂OMs
[¹⁸F]2-Fluoropropyl triflate ¹⁸FCH₂CH₂CH₂OTf

• These are prepared by methods similar to those used to prepare the shorter chain alkylating agents


Labeling of Macromolecules with Fluorine-18

Labeling of proteins Labeling of oligonucleotides



Some other Protein ¹⁸F-Labeling Agents

• These are all activated for mild reactions with nucleophiles in peptides/proteins

Oligonucleotide Labeling

Overall radiochemical yield:: 40%(decay-corrected)Preparation time: 220 min

Conclusions

- NCA [¹⁸F]fluoride can be produced in high activities (multi-Ci) and high specific radioactivity
- NCA [¹⁸F]fluoride can be used efficiently in labeling reactions
- There are still some obstacles to the use of NCA [¹⁸F]fluoride for labeling *e.g. in* electron-rich aryl rings, in *m*-orientation to substituents
- [¹⁸F]fluoride can be used to prepare a range of useful mainly (electrophilic) labeling agents