Production of ¹⁸F-Labeled Radiopharmaceuticals

Part 1
(PET radiochemistry lecture #4)

Contents of Lecture

- Properties of fluorine
- Production of fluorine-18
- Classical radiofluoridation methods
- 'Electrophilic' radiofluorination chemistry
 - labeling agents
 - labeling chemistry

Some Properties of Fluorine

- Electronic

	Н	F	Cl	Comment on F
Electronic configuration	$1s^1$	2s ² 2p ⁵	3s ² 3p ⁵	More electrons than H! F is isoelectronic with OH
Electonegativity (Pauling)	2.1	4.0	3.0	Major effects on neighboring groups (pKa and reactivity)
Electron affinity (kJ/atom) ^a	73	328	349	e-pair repulsions important with F!
Ionisation energy (kJ/g atom) ^b	1260	1612	1200	F ⁺ less likely than X ⁺

$$a X^+ + e^- \longrightarrow X$$

Some Properties of Fluorine

- Steric

	Н	F	Cl	Comment on F
Atomic radius (Å)	0.53	0.42	0.79	F similar to H
Van der Waal's radius (Å)	1.20	1.47	1.75	F intermediate

^b X + e⁻ → X⁻

Some Properties of Fluorine

- Bonding

	Н	F	Cl	Comment on F
Bond energies of C-X (kJ/mole) ^a	400	464	~ 320	Greater thermal stability
Bond lengths of C-X (Å)b	1.091	1.317	1.766	Steric effect less important with F than Cl
H-bonding	$\sqrt{}$	$\sqrt{}$	X	F may mimic OH
Preference as a leaving group	H+	F-	Cl-	Contrasting chemistry

^a For CX₄

Properties of Fluorine

- Lipophilicity

	H	F	Cl	Comment on F
Alkyl-C-X (ΔlogP)	0.23	-0.38	0.06	F not lipophilic
Aryl-C-X (ΔlogP)	0.23	0.37	0.94	F not very lipophilic

LogP = log of partition coefficient (P) between octanol and water

^d Covalent radii in CX₄

Decay Characteristics of ¹⁸F

18F decay: 96.9% by β⁺-emission

3.1% by EC

Decay product: 18O

Half-life: 109.8 min

Maximal positron energy: 0.635 MeV

Maximal positron range: 2.4 mm in water

Why is Fluorine-18 Useful for Imaging?

- Half-life of ¹⁸F allows the study of longer processes than ¹¹C
- The positron range is shorter than for ¹¹C
- Aryl C–F bonds are generally stable in vivo
- Many drug molecules contain F, and are possible candidates for isotopic labeling, and for radioligand or radiotracer development
- Compounds may be labeled by adding groups containing ¹⁸F (non-isotopic labeling)
- A mono-fluoro derivative of an endogenous compound may pass as a steric equivalent *in vivo*, to the extent that it is accepted as a substrate by the first enzyme encountered on its metabolic pathway

[18F]2-Fluoro-2-deoxy-D-glucose (FDG)

- FDG mimics endogenous glucose in that it is susceptible to phosphorylation by hexokinase
- However, unlike glucose-6-phosphate, the generated 2fluoro-glucose-6-phosphate resists further enzymatic transformation and so becomes entrapped intracellularly
- FDG is therefore widely used to measure regional glucose metabolism with PET

$[^{18}F]L$ -6-Fluoro-DOPA (FDOPA)

- FDOPA mimics the anti-Parkinsonian drug, L-DOPA
- FDOPA is taken up into brain dopaminergic neurons, and is decarboxylated
- Placement of the 18 F in the remote 6 position has least affect on the $p\mathrm{K}_{\mathrm{a}}$ of the OH groups, and hence the radiotracer is handled by the decarboxylase enzyme in a very similar manner to the parent drug, L-DOPA
- FDOPA is widely used in PET neurological studies to mark dopaminergic neurons

[18F]L-6-Fluoro-DOPA (FDOPA)

- Neuronal uptake

Data for Some Important Reactions Producing ¹⁸F

Reaction	Target isotope	Threshol energy (MeV)	cross	maximal cross section	target yield
¹⁶ O(³ He,p) ¹⁸ F plus ¹⁶ O(³ He,n) ¹⁸ Ne ^a	99.76 99.76	0 3.8	~ 400	~ 8	1.35 ($E_{3He} = 35 \text{ MeV}$)
¹⁶ O(α,pn) ¹⁸ F	99.76	23.2	~ 136	36	$1.00 (E_{\alpha} = 40 \text{ MeV})$
¹⁸ O(p,n) ¹⁸ F	0.205	2.5	~ 700	5	$4.07 (E_p = 8 \text{ MeV})$ $8.88 (E_p = 16 \text{ MeV})$
20 Ne(d, α) 18 F a 18 Ne Decays to 18 F	90.5 With a half	0 life of 1.6	~ 230 7 s	6	1.89 (E_d = 8 MeV) 2.81 (E_d = 10 MeV)

Production of CA [18F]Fluorine (1)

- By deuteron irradiation of neon-0.1% fluorine

20
Ne(d, α) \longrightarrow 18 F* $^{\prime}$ hot atom'

- Deuteron irradiation of neon with added fluorine ($\sim 0.1\%$ v/v) at a pressure up to 25 bar in a nickel target gives CA [18 F]fluorine
- High beam currents (e.g. 50 μ A) of 10 MeV deuterons or
- low beam currents (e.g. 20 μA) of 17 MeV deuterons give useful activities

Production of CA [18F]Fluorine (1)

- By deuteron irradiation of neon-0.1% fluorine (cont'd)

- Nucleogenic ¹⁸F (¹⁸F*) may exchange with added fluorine or diffuse to the target wall to be adsorbed as nickel fluoride
- > 0.1% fluorine (60–250 μ mol) is needed for efficient exchange
- Monel or nickel targets, passivated with fluorine (1%) during irradiation, give good recovery (~ 70%) of radioactivity as [18F]fluorine

Production of CA [18F]Fluorine (2)

- Via proton irradiation of ¹⁸O-enriched oxygen

- Proton irradiation of [18O]oxygen in a nickel target, followed by cryogenic recovery of the precious target material, leaves 18F attached to the target walls
- Re-irradiation of the target filled with a noble gas plus fluorine gives CA [18F]fluorine
- This process gives greater activity and specific radioactivity than the 20 Ne(d, α) 18 F reaction; ~ 60% of the radioactivity is recovered with only 30 μ mol of added fluorine.

Production of CA [18F]Fluorine (3)

- Via proton irradiation of ¹⁸O-enriched water

- [18F]Fluorine can be produced at a high CA specific radioactivity (~ 20 GBq/µmol; 500 mCi/µmol) from NCA [18F]fluoride
- The final stage involves an electrical discharge for exchange of fluorine-18 between [18F]fluoromethane and a trace of added fluorine

Production of CA '[18F]Hydrogen Fluoride'

- ¹⁸F can be produced by the ²⁰Ne(d,α)¹⁸F reaction on Ne containing 15% H₂ in Inconel targets
- To retrieve the radioactivity in anhydrous form the target must be heated and flushed with a noble gas
- However, reproducible and efficient recovery is notoriously difficult to achieve unless carrier is generated within the target by some means, for example by adding CF₄ to the target gas
- The recovered radioactivity is putatively anhydrous [18F]HF, but may, on the basis of its thermal properties, be some other chemical form, such as [18F]NH₄F

Production of NCA '[18F]Hydrogen Fluoride'

• NCA "anhydrous [¹⁸F]hydrogen fluoride" may be produced by the ¹⁸O(p,n)¹⁸F reaction on ¹⁸O-enriched oxygen, followed by cryogenic recovery of the target material and recovery of the radioactivity from the target by heating during a hydrogen sweep

NCA [18F]Fluoride (1)

- By proton irradiation of ¹⁸O-enriched water

- Targets may use < 1 mL of ¹⁸O-enriched water
- Target materials containing Cr, Fe or Co are undesirable, as they possibly produce unreactive [18F]metal fluorides, but Ni, Ti and Ag are acceptable
- Though ¹⁸O-enriched water is expensive, it can be re-used after distillation or after recovery of the [¹⁸F]fluoride by, for example, adsorption on an anion exchange column
- The process is intrinsically high yielding
- Very high specific radioactivities can be achieved from fluoridefree water

NCA [^{18}F]Fluoride (1)

- By proton irradiation of ¹⁸O-enriched water (cont'd)

$NCA [^{18}F]Fluoride (2)$

- By irradiation of natural water

- NCA [18 F]fluoride can be produced by irradiating water with high energy (> 24 MeV) α -particles, or, for higher yield, lower energy 3 He $^{2+}$ ions.
- These processes are low yielding relative to the proton irradiation of oxygen-18 and are seldom used.

Some Typical Production Parameters for ¹⁸F

Production reaction	Irradiation conditions		Main product(s	Main Typical product(s) yield		Typical specific radioactivity		
	(MeV, μA, min)				(GBq)		(GBq/µmol)	
d on ²⁰ Ne (0.1% F ₂)	14,	15,	120	¹⁸ F-F	13.6	~ 0.2	(CA)	
d on 20 Ne $(15\% \text{ H}_2)^a$	11.25	, 25,	60	$\mathrm{H}^{18}\mathrm{F}$	9.25		(NCA)	
d on 20 Ne $(6.7\% \text{ H}_2)^b$	11.25	, 25,	60	$^{18}F_{aa}$	9.25	>370	(NCA)	
3 He on $H_{2}^{16}O$	36,	40,	60	18 _F - aq. 18 _F -	14.8	138	(NCA)	
$\alpha \text{ on H}_2^{16}\text{O}$	30,	35,	60	$^{18}\text{F}^{-}_{aa}$	1.48		(NCA)	
$p on H_2^{-18}O$	15,	20,	60	18F- aa.	44	370	(NCA)	
p on ¹⁸ O-O	19,	20,	20	¹⁸ F-F	44		(CA)	

^a Activity recovered by heating target while flushed with helium.

^b Activity recovered by washing evacuated target with water.

Classical Methods for Radiofluorination

- Balz-Schiemann Reaction
- Modified Balz-Schiemann Reaction
- Wallach-type Reaction

Balz-Schiemann Reaction

- An [¹⁸F]aryldiazonium tetrafluoroborate is prepared by exchange of tetrafluoroborate with [¹⁸F]fluoride
- This salt is then decomposed pyrolytically

Balz-Schiemann Reaction (cont'd)

- The radioactivity is partitioned equally between the F atoms of the desired [18F]fluoroarene and the byproduct, [18F]boron trifluoride
- The process is therefore CA with a maximal theoretical yield of 25%
- Many compounds have been labeled in this manner, particularly amino acids such as L-phenylalanine, L-tryptophan, Ltyrosine and L-DOPA
- Yields are often much lower than theoretical
- The method is regiospecific; all isomers of the amino acids can be prepared
- The method is quite tolerant of functionality

Modified Balz-Schiemann Reaction

$$N_2^{+}BCl_4^{-}$$

Exchange

Pyrolysis

$$\Delta$$

$$+ [^{18}F]BFCl_2 + BCl_3 + N_2 + C$$

- •An [¹⁸F]aryldiazonium fluorotrichloroborate is prepared by exchange of tetrachloroborate salt with [¹⁸F]fluoride
- This salt is then decomposed pyrolytically
- The process is NCA

Wallach-type Reaction

$$N=N-N$$
or
 $Cs^{18}F$
 $acid$,
heat

- The decomposition of an aryltriazene by [18F]hydrogen fluoride or anhydrous [18F]caesium fluoride in acidic media, is used to prepare [18F]fluoroarenes
- Piperidinylaryltriazenes are often used
- The method is regiospecific and NCA
- An intermediate in the reaction scavenges all available anions giving various products including hydrogen-substituted product, leading to difficult separation
- Yields tend to be very low except for simple substrates

'Electrophilic' Radiofluorination

- 'Electrophilic' its meaning with respect to fluorine
 - On thermodynamic grounds, the free electrophilic species F⁺ is not recognised to exist in solution, even transiently
 - However, F bound to an electron-withdrawing group is often regarded as a source of F⁺, since such compounds often lead to the products expected from electrophilic addition or substitution in olefins and arenes, respectively
 - These reactions are frequently classed as 'electrophilic' even though this is not always justified by their possibly complex mechanisms
 - For convenience the term 'electrophilic' is used here to denote fluorinations giving the products expected from formally 'electrophilic-type' additions or substitutions

Some 'Electrophilic' Radiofluorination Agents

[18F]Fluorine	$(^{18}F-F)$	CA
[18F]Halogen fluorides	(' ¹⁸ F-I'; ' ¹⁸ F-Br')	NCA
[¹⁸ F]Xenon difluoride	(¹⁸ FXeF)	CA
[¹⁸ F]N-F compounds	$(R_2N^{-18}F)$	CA
[18F]Perchloryl fluoride	$(ClO_3^{18}F)$	CA
[¹⁸ F]Acetyl hypofluorite	(MeCOO ¹⁸ F)	CA

Fluorine (F₂) - Properties

- Fluorine participates in 'electrophilic' additions and substitutions but is also extremely and violently reactive in oxidations and non-selective free radical reactions
- The low solubility of fluorine in many solvents can result in reactions at the liquid-gas interface
- This phenomenon and the exothermic nature of these reactions can lead to local hot spots and unwanted side reactions
- Any degree of regioselectivity in the direct fluorination of organic compounds is therefore difficult to achieve

[18F]Fluorine (18F-F) - Properties

- [18F]Fluorine from the ²⁰Ne(d,α)¹⁸F reaction is already diluted about 500-fold with neon, which renders it sufficiently controllable for some low temperature applications
- Nonetheless, radiofluorinated mixtures are generally obtained and radiochemical yields tend to be low
- Furthermore, only a limited range of adequately resistant solvents, having generally poor capacity for fluorine, may be employed.
- Examples are freon, dichloromethane, anhydrous hydrogen fluoride, trifluoroacetic acid, glacial acetic acid and water

'[18F]Halogen Fluorides'

- Preparation

• '[18F]Halogen fluorides' (Br¹⁸F, I¹⁸F) have been prepared *in situ* from NCA [18F]fluoride and halogenating agents, such as *N*-bromosuccinimide and *N*-iodosuccinimide.

[18F]Xenon Difluoride

- Preparation

By direct reaction of xenon with fluorine

• Radiochemical yield is 43-70%

By 'exchange'

$$^{18}\text{F}^{\text{-}} + \text{XeF}_2 \longrightarrow \text{F}^{\text{-}} + ^{18}\text{FXeF}$$

- High radiochemical yield (90%) can be obtained
- Specific radioactivity is low

[18F]N-F Compounds

- Preparation

- *N*-fluoro-2-pyridone, *N*-fluoro-pyridinium triflate and *N*-fluoro-trifluoromethane-sulphonamide have been labeled in good yield (~50%)
- Little radiochemistry has so far been described with these agents

[18F]Perchloryl Fluoride

- Preparation

$$^{18}\text{F-F}$$
 $\xrightarrow{\text{KClO}_3}$ $\xrightarrow{\text{ClO}_3^{18}\text{F}}$

- Radiochemical yield is 23%
- Virtually no usage

[18F]Acetyl Hypofluorite

- Preparation

- Reactions of [18F]F₂ with a potassium acetate-acetic acid complex or sodium acetate trihydrate give near theoretical radiochemical yields (50%)
- [18F]Acetyl hypofluorite is soluble in a wide range of inert solvents (*e.g.* CF₃CO₂H, AcOH, MeOH, MeNO₂, DMF, dioxane, CH₂Cl₂, CHCl₃, CFCl₃, CCl₄, hexane)
- Acetyl hypofluorite may be regarded as a 'taming carrier' for fluorine

'Electrophilic' Addition

- [¹⁸F]Fluorine to alkenes

Syn addition

Further reactions

$$\begin{bmatrix} R_{R}, & F & F \\ R', & R'' \\ R', & R'' \end{bmatrix}$$

$$\begin{bmatrix} R_{R}, & F & F \\ R', & R'' \\ R', & R'' \end{bmatrix}$$

$$\begin{bmatrix} R_{R}, & F & F \\ R', & R'' \\ R', & R'' \end{bmatrix}$$

Reaction works best if R or R'is electron-donating and can stabilise a positive charge

'Electrophilic' Addition

- [18F]Fluorine to alkenes (cont'd)

Proposed electron transfer mechanism

• This mechanism perhaps accounts better for product distribution in many reactions, without invoking an improbable heterolytic scission of the F-F bond

'Electrophilic' Addition

- Some radiopharmaceuticals prepared by addition of $[^{18}F]$ fluorine to alkenes

'Electrophilic' Addition

- Preparation of FDG by [18F]fluorine addition

- *Syn* addition to the least hindered face of the substrate occurs preferentially
- Hence, FDG is produced in ninefold greater yield than its 2-epimer, [18F]2-fluoro-2-deoxy-D-mannose
- Radiochemical yield is 10%

'Electrophilic' Addition

- [18F]Acetyl hypofluorite to alkenes

Proposed single electron transfer mechanism

Subsequent elimination

'Electrophilic' Addition

- Preparation of FDG by [18F]acetyl hypofluorite addition

• The fluorination of 3,4,6-tri-O-acetyl-D-glucal in freon with [18F]acetyl hypofluorite, rather than [18F]fluorine, followed by hydrolysis, doubles the radiochemical yield of FDG to 20% and reduces the yield of the epimer byproduct to 1%

[18F]XF Addition to Alkenes

- The Markovnikov addition product dominates over the anti-Markovnikov product
- The reaction can be performed CA or NCA

Aromatic Radiofluorination (1)

- By [18F]fluorine - mechanism

- Some arenes can be directly fluorinated in low but useful yields
- For low temperature ($-78\,^{\circ}$ C) additions of dilute fluorine (0.76% in N_2) to a large excess of substituted benzene, the substitution pattern is as expected for electrophilic substitution and supports the proposal of a polar substitution mechanism (above)

Aromatic Radiofluorination (2)

- By [18F]fluorine in trifluoroacetic acid

• Direct treatment of the amino acids in trifluoroacetic acid with [18F]fluorine at 0°C leads to substitution predominantly *ortho* to the strongest electron-donating group

Aromatic Radiofluorination (3)

- By [18F]fluorine in anhydrous hydrogen fluoride

HO

OH

HO

$$18_{\text{F-F, HF}}$$

HO

 18_{F}
 18_{F}
 18_{F}
 18_{F}
 $18_{\text{CO}_{2}}$

H

 $18_{\text{CO}_{2}}$

- Direct radiofluorination of L-DOPA in anhydrous HF gives ~ 25% of fluoroarenes with the 2-, 5- and 6-fluoro isomers of L-DOPA in the ratio of 7: 1: 12
- Recycle HPLC gives pure FDOPA in 3% radiochemical yield
- Radiochemical yield is enhanced 3-fold in the presence of BF₃

Aromatic Radiofluorination (4)

- By [18F]acetyl hypofluorite

Addition-elimination mechanism (in freon)

- Acetyl hypofluorite reacts directly with arenes, but only well with those that are activated by an electron-donating substituent, especially alkoxy, acetylamino and hydroxy
- *Ortho* fluorination generally occurs in strong preference to *para* fluorination.
- An addition-elimination mechanism has been proposed to account for the dominance of *ortho* substitution in freon

Aromatic Radiofluorination (4)

- By [18F]acetyl hypofluorite (cont'd)

Single electron transfer mechanism (in acetic acid)

[18F]Fluorodemetallation

- At aryl carbon-metal bonds

- *Ipso* displacement of a metal (M) from a metalloarene by [18F]fluorine or [18F]acetyl hypofluorite is a regioselective route to many [18F]fluoroarenes
- M may be Sn, Si, Ge or Pb from Group IV or Hg
- Generally, fluorodemetallation is fast, high yielding, regioselective and facile, even on rings containing deactivating substituents
- The success of this reaction is derived from the weakness and greater polarity of the aryl C–M bond relative to the aryl C–H bond

[18F]Fluorodemetallation

- Mechanism proposed for fluorodemercuration

[¹⁸F]Fluorodemetallation - General features

- Reactivity is aryl-Hg ~ aryl-Sn > aryl-Ge ~ aryl-Si i.e. in inverse order of aryl C–M bond strength.
- Fluorodemercuration with acetyl hypofluorite is regiospecific
- Aryl-tri-*n*-butyltins treated with [¹⁸F]fluorine or [¹⁸F]acetyl hypofluorite give *ipso*-substituted [¹⁸F]fluoroarenes in similarly high radiochemical yield (measured from [¹⁸F]fluorine).
- Electron-withdrawing substituents (*e.g.* 4-CF₃, 4-CN) reduce the yield of ring radiofluorination in aryltrimethyl-tin, germanium and -silicon compounds

[18F]Fluorodemetallation - Synthesis of FDOPA

- FDOPA can be isolated in 12% radiochemical yield (decay corrected)
- Similar radiosytheses have been devised with alkyl-tin and alkyl-silicon leaving groups

[¹⁸F]Fluorodemetallation

- At alkenyl-metal bonds

- Radiofluorodestannylation, though not possible at an alkyl C-Sn bond, because of the high bond strength, is possible at an alkenyl C-Sn or alkenyl C-Si bond
- The radiochemical yield in the above example is 18%

Conclusions

- The use of CA [¹⁸F]fluorine and its electrophilic derivatives, particularly [¹⁸F]acetyl hypofluorite, are the only well-established methods for introducing ¹⁸F into electronrich arenes
- These labeling agents retain their importance mainly on this basis, despite their disadvantages of low specific radioactivity, possibility of only moderately high production and at least 50% waste of initial radioactivity