
Production of 18F-Labeled 
Radiopharmaceuticals

Part 1
(PET radiochemistry lecture #4)

Contents of Lecture

• Properties of fluorine
• Production of fluorine-18
• Classical radiofluoridation methods
• ‘Electrophilic’ radiofluorination chemistry

- labeling agents
- labeling chemistry



Some Properties of Fluorine
- Electronic

H F Cl Comment on F 

Electronic configuration 1s1 …2s22p5 ..3s23p5 More electrons than H!
F is isoelectronic with OH

Electonegativity (Pauling) 2.1 4.0 3.0 Major effects on neighboring 
groups (pKa and reactivity)

Electron affinity (kJ/atom)a 73 328 349 e-pair repulsions important 
with F! 

Ionisation energy (kJ/g atom)b 1260 1612 1200 F+ less likely than X+

a X+ + e- X 
b X + e- X-

Some Properties of Fluorine
- Steric

H F Cl Comment on F

Atomic radius (Å) 0.53 0.42 0.79 F similar to H

Van der Waal’s radius (Å) 1.20 1.47 1.75 F intermediate



Some Properties of Fluorine
- Bonding 

H F Cl Comment on F

Bond energies of C-X (kJ/mole)a 400 464  ~ 320 Greater thermal 
stability

Bond lengths of C-X (Å)b 1.091 1.317   1.766 Steric effect less 
important with F 
than Cl

H-bonding √ √ X F may mimic OH

Preference as a leaving group H+ F- Cl- Contrasting 
chemistry 

a For CX4

d Covalent radii in CX4

Properties of Fluorine
- Lipophilicity 

H F Cl Comment on F
Alkyl-C-X (ΔlogP) 0.23 -0.38 0.06 F not lipophilic

Aryl-C-X (ΔlogP) 0.23    0.37 0.94 F not very lipophilic

LogP = log of partition coefficient (P) between octanol and water



Decay Characteristics of 18F

18F decay: 96.9% by β+-emission 
3.1% by EC 

Decay product: 18O
Half-life: 109.8 min 
Maximal positron energy: 0.635 MeV

Maximal positron range: 2.4 mm in water

Why is Fluorine-18 Useful for 
Imaging?

• Half-life of 18F allows the study of longer processes than 11C
• The positron range is shorter than for 11C
• Aryl C–F bonds are generally stable in vivo 
• Many drug molecules contain F, and are possible candidates 

for isotopic labeling, and for radioligand or radiotracer 
development

• Compounds may be labeled by adding groups containing 18F 
(non-isotopic labeling) 

• A mono-fluoro derivative of an endogenous compound may 
pass as a steric equivalent in vivo, to the extent that it is 
accepted as a substrate by the first enzyme encountered on 
its metabolic pathway



[18F]2-Fluoro-2-deoxy-D-glucose 
(FDG)

• FDG mimics endogenous glucose in that it is susceptible to 
phosphorylation by hexokinase  

• However, unlike glucose-6-phosphate, the generated 2-
fluoro-glucose-6-phosphate resists further enzymatic 
transformation and so becomes entrapped intracellularly

• FDG is therefore widely used to measure regional glucose 
metabolism with PET
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[18F]L-6-Fluoro-DOPA (FDOPA)

• FDOPA mimics the anti-Parkinsonian drug, L-DOPA 
• FDOPA is taken up into brain dopaminergic neurons, and is 

decarboxylated  
• Placement of the 18F in the remote 6 position has least affect 

on the pKa of the OH groups, and hence the 
radiotracer is handled by the decarboxylase enzyme 
in a very similar manner to the parent drug, L-DOPA

• FDOPA is widely used in PET neurological studies to mark
dopaminergic neurons  



[18F]L-6-Fluoro-DOPA (FDOPA)
- Neuronal uptake
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Data for Some Important 
Reactions Producing 18F

Reaction Target ThresholdMaximal Energy at Calculated
isotope energy cross maximal thick

section cross target yield 
section at saturation

(%) (MeV) (mb) (MeV) (GBq/μA)

16O(3He,p)18F 99.76 0
plus ~ 400 ~ 8 1.35 (E3He = 35 MeV)

16O(3He,n)18Nea 99.76 3.8

16O(α,pn)18F 99.76 23.2 ~ 136 36 1.00 (Eα = 40 MeV)

18O(p,n)18F 0.205 2.5 ~ 700 5 4.07 (Ep = 8 MeV)
8.88 (Ep = 16 MeV)

20Ne(d,α)18F 90.5 0 ~ 230 6 1.89 (Ed = 8 MeV)
2.81 (Ed = 10 MeV)

a  18Ne Decays to 18F with a half-life of 1.67 s



Production of CA [18F]Fluorine (1)
- By deuteron irradiation of neon-0.1% fluorine

• Deuteron irradiation of neon with added fluorine (~ 0.1% 
v/v) at a pressure up to 25 bar in a nickel target gives 
CA [18F]fluorine

• High beam currents (e.g. 50 µA) of 10 MeV deuterons 
or

• low beam currents (e.g. 20 μA) of 17 MeV deuterons 
give useful activities  

20Ne(d,α) 18F*

' hot atom'

Production of CA [18F]Fluorine (1)
- By deuteron irradiation of neon-0.1% fluorine 

(cont’d)

18FNi

18F-F

Ni wall

F2

18F*

• Nucleogenic 18F (18F*) may exchange with added fluorine or 
diffuse to the target wall to be adsorbed as nickel fluoride

• > 0.1% fluorine (60–250 μmol) is needed for efficient 
exchange  

• Monel or nickel targets, passivated with fluorine (1%) during 
irradiation, give good recovery (~ 70%) of radioactivity as 
[18F]fluorine



Production of CA [18F]Fluorine (2)
- Via proton irradiation of 18O-enriched oxygen

• Proton irradiation of [18O]oxygen in a nickel target, followed by 
cryogenic recovery of the precious target material, leaves
18F attached to the target walls

• Re-irradiation of the target filled with a noble gas plus fluorine 
gives CA [18F]fluorine

• This process gives greater activity and specific radioactivity 
than the 20Ne(d,α)18F reaction; ~ 60% of the radioactivity 
is recovered with only 30 μmol of added fluorine. 

[18O]O2
Proton irradiation

18F*
Ni- wall

Ni 18F 18F-F

1. Reclaim [18O]oxygen

2. Add F2/Kr

3. Reirradiate

Production of CA [18F]Fluorine (3)
- Via proton irradiation of 18O-enriched water

H2
18O

Proton
irradiation

18F- (H2
18O)n

18F- (H2
16O)n

18F-

CH3I

CH3
18F

Electrical 
discharge

18F-F

Dehydration

Nucleophilic 
substitution

F2

• [18F]Fluorine can be produced at a high CA specific radioactivity (~ 20 
GBq/μmol; 500 mCi/μmol) from NCA [18F]fluoride  

• The final stage involves an electrical discharge for exchange of fluorine-18 
between [18F]fluoromethane and a trace of added fluorine



Production of CA 
‘[18F]Hydrogen Fluoride’

• 18F can be produced by the 20Ne(d,α)18F reaction on Ne 
containing 15% H2 in Inconel targets  

• To retrieve the radioactivity in anhydrous form the target 
must be heated and flushed with a noble gas  

• However, reproducible and efficient recovery is notoriously 
difficult to achieve unless carrier is generated within 
the target by some means, for example by adding CF4

to the target gas  
• The recovered radioactivity is putatively anhydrous 

[18F]HF, but may, on the basis of its thermal 
properties, be some other chemical form, such as 
[18F]NH4F

Production of NCA 
‘[18F]Hydrogen Fluoride’

[18O]O2
Proton irradiation 18F*

Ni- wall
Ni 18F

1. Reclaim oxygen 
2. Add H2

3. Heat target

• NCA "anhydrous [18F]hydrogen fluoride" may be produced by 
the 18O(p,n)18F reaction on 18O-enriched oxygen, followed 
by cryogenic recovery of the target material and recovery 
of the radioactivity from the target by heating during a 
hydrogen sweep

H18F



NCA [18F]Fluoride (1)
- By proton irradiation of 18O-enriched water

• Targets may use < l mL of 18O-enriched water 
• Target materials containing Cr, Fe or Co are undesirable, as they 

possibly produce unreactive [18F]metal fluorides, but Ni, 
Ti and Ag are acceptable  

• Though 18O-enriched water is expensive, it can be re-used after 
distillation or after recovery of the [18F]fluoride by, for 
example, adsorption on an anion exchange column

• The process is intrinsically high yielding
• Very high specific radioactivities can be achieved from fluoride-

free water

NCA [18F]Fluoride (1)
- By proton irradiation of 18O-enriched water 

(cont’d)

H2
18O

18O(p,n)18F 18F-(H2
18O)n

Anion  
exchange 

resin

2.

3.

4.

5.

K2CO3
soln.

(H2
18O)n 

for reuse 18F-(H2
16O)n

1.

Key:

1. Irradiate 

2. Load product onto resin

3. Recover irradiated water

4. Elute resin 

5. Collect [ 18F]fluoride



NCA [18F]Fluoride (2) 
- By irradiation of natural water

H2
16O 18F-(H2

160)n

α-irradiation

3He2+-irradiation

• NCA [18F]fluoride can be produced by irradiating water with 
high energy (> 24 MeV) α-particles, or, for higher yield, 
lower energy 3He2+ ions. 

• These processes are low yielding relativeto the proton 
irradiation of oxygen-18 and are seldom used.

Some Typical Production 
Parameters for 18F

Production Irradiation Main Typical Typical
reaction conditions product(s) yield specific

radioactivity
(MeV, μA, min) (GBq) (GBq/μmol)

d on 20Ne (0.1% F2) 14,      15, 120 18F-F 13.6 ~ 0.2 (CA)
d on 20Ne (15% H2)

a 11.25, 25,   60 H18F 9.25 (NCA)
d on 20Ne (6.7% H2)

b 11.25, 25,   60 18F-
aq. 9.25 >370 (NCA)

3He on H2
16O 36,      40,   60 18F-

aq. 14.8 138 (NCA)
α on H2

16O 30,      35,   60 18F-
aq. 1.48 (NCA)

p on H2
18O 15,      20,   60 18F-

aq. 44 370 (NCA)
p on 18O-O 19,      20,   20 18F-F 44 (CA)

a Activity recovered by heating target while flushed with helium.
b Activity recovered by washing evacuated target with water.



Classical Methods for 
Radiofluorination

• Balz-Schiemann Reaction

• Modified Balz-Schiemann Reaction

• Wallach-type Reaction

Balz-Schiemann Reaction
X N2

+BF4
-

18F-
X N2

+[18F]BF4
-

Exchange

Pyrolysis

X 18F

+ [18F]BF3 + N2

Δ

• An [18F]aryldiazonium tetrafluoroborate is prepared by exchange 
of tetrafluoroborate with [18F]fluoride

• This salt is then decomposed pyrolytically



Balz-Schiemann Reaction (cont’d)

• The radioactivity is partitioned equally between the F atoms of
the desired [18F]fluoroarene and the byproduct, [18F]boron 
trifluoride  

• The process is therefore CA with a maximal theoretical yield of 
25%  

• Many compounds have been labeled in this manner, particularly 
amino acids such as L-phenylalanine, L-tryptophan, L-
tyrosine and L-DOPA    

• Yields are often much lower than theoretical  
• The method is regiospecific; all isomers of the amino acids can 

be prepared
• The method is quite tolerant of functionality

Modified Balz-Schiemann
Reaction

X N2
+BCl4

-

18F-
X N2

+[18F]BFCl3
-

Exchange

Pyrolysis

X 18F

+ [18F]BFCl2 + BCl3 + N2 +

Δ

X Cl

•An [18F]aryldiazonium fluorotrichloroborate is prepared by 
exchange of tetrachloroborate salt with [18F]fluoride

• This salt is then decomposed pyrolytically
• The process is NCA



Wallach-type Reaction

• The decomposition of an aryltriazene by [18F]hydrogen fluoride 
or anhydrous [18F]caesium fluoride in acidic media, is 
used to prepare [18F]fluoroarenes  

• Piperidinylaryltriazenes are often used
• The method is regiospecific and NCA 
• An intermediate in the reaction scavenges all available anions 

giving various products including hydrogen-substituted 
product, leading to difficult separation 

• Yields tend to be very low except for simple substrates 

N N N
X

18F-

or 
Cs18F acid,

heat

X
18F

'Electrophilic' Radiofluorination
-‘Electrophilic’ – its meaning with respect to fluorine

• On thermodynamic grounds, the free electrophilic species F+ is 
not recognised to exist in solution, even transiently 

• However, F bound to an electron-withdrawing group is often 
regarded as a source of F+, since such compounds often 
lead to the products expected from electrophilic addition 
or substitution in olefins and arenes, respectively  

• These reactions are frequently classed as ‘electrophilic’ even 
though this is not always justified by their possibly 
complex mechanisms 

• For convenience the term 'electrophilic' is used here to denote 
fluorinations giving the products expected from formally 
'electrophilic-type' additions or substitutions 



Some ‘Electrophilic’
Radiofluorination Agents

[18F]Fluorine  (18F-F) CA
[18F]Halogen fluorides (‘18F-I’; ‘18F-Br’) NCA
[18F]Xenon difluoride (18FXeF) CA
[18F]N-F compounds (R2N-18F) CA
[18F]Perchloryl fluoride (ClO3

18F) CA
[18F]Acetyl hypofluorite (MeCOO18F) CA

Fluorine (F2) 
- Properties

• Fluorine participates in 'electrophilic' additions and substitutions 
but is also extremely and violently reactive in oxidations 
and non-selective free radical reactions

• The low solubility of fluorine in many solvents can result in 
reactions at the liquid-gas interface

• This phenomenon and the exothermic nature of these reactions 
can lead to local hot spots and unwanted side reactions  

• Any degree of regioselectivity in the direct fluorination of 
organic compounds is therefore difficult to achieve



[18F]Fluorine (18F-F) 
- Properties

• [18F]Fluorine from the 20Ne(d,α)18F reaction is already diluted 
about 500-fold with neon, which renders it sufficiently 
controllable for some low temperature applications  

• Nonetheless, radiofluorinated mixtures are generally obtained 
and radiochemical yields tend to be low  

• Furthermore, only a limited range of adequately resistant 
solvents, having generally poor capacity for fluorine, may 
be employed. 

• Examples are freon, dichloromethane, anhydrous hydrogen 
fluoride, trifluoroacetic acid, glacial acetic acid and water

‘[18F]Halogen Fluorides’
- Preparation

18F-

N X

O

O
'X-18F' X = Br, I

• '[18F]Halogen fluorides' (Br18F, I18F) have been prepared in 
situ from NCA [18F]fluoride and halogenating agents, 
such as N-bromosuccinimide and N-iodosuccinimide. 



[18F]Xenon Difluoride
- Preparation

18F-F + Xe 18FXeF

18F- + XeF2 F- + 18FXeF

By direct reaction of xenon with fluorine

By ‘exchange’

• Radiochemical yield is 43-70%

• High radiochemical yield (90%) can be obtained
• Specific radioactivity is low

[18F]N-F Compounds
- Preparation

[18F]F2

N-trimethylsilylpyridinium triflate

N-alkylsulphonamides

2-trimethylsiloxypyridine

N+
18F

CF3SO3-

N O
18F

RSO2N(R')18F

• N-fluoro-2-pyridone, N-fluoro-pyridinium triflate and N-fluoro-
trifluoromethane-sulphonamide have been labeled in good 
yield (~50%)

• Little radiochemistry has so far been described with these agents



[18F]Perchloryl Fluoride
- Preparation

ClO3
18F

KClO318F-F

• Radiochemical yield is 23%
• Virtually no usage

[18F]Acetyl Hypofluorite
- Preparation

AcO18F /AcOF +18F-/F-2AcO-
18F-F

F F

C O

O

Me C OF

O

Me F

C OF

O

Me MeCF2OF

H2O or HF

_

MeCOOFF-

-

Mechanism

• Reactions of [18F]F2 with a potassium acetate-acetic acid complex or sodium acetate 
trihydrate give near theoretical radiochemical yields (50%) 

• [18F]Acetyl hypofluorite is soluble in a wide range of inert solvents (e.g. CF3CO2H, 
AcOH, MeOH, MeNO2, DMF, dioxane, CH2Cl2, CHCl3, CFCl3, CCl4, hexane)

• Acetyl hypofluorite may be regarded as a 'taming carrier' for fluorine



'Electrophilic' Addition
- [18F]Fluorine to alkenes

R

R’

H

R”

R

R’

H

R”

F
+
F-

R

R’

H

R”

F

F

R”

F

R’
HR

R

R’

F

R”

F

R”

F

R’
FR

F-

+

F2
-H+

Syn addition

Further reactions

18F-F

Reaction works best if R or R’is electron-donating and can 
stabilise a positive charge

'Electrophilic' Addition
- [18F]Fluorine to alkenes (cont’d)

18F F
18F F

F

F
F18F

.-

.+

+

.

18F-

Proposed electron transfer mechanism

• This mechanism perhaps accounts better for product distribution
in many reactions, without invoking an improbable 
heterolytic scission of the F-F bond

18F.



'Electrophilic' Addition
- Some radiopharmaceuticals prepared by 

addition of  [18F]fluorine to alkenes

N
N

O

Me
18F

Ph

Me

HN

N
H

O

O

18F

HN

N

O

O

18F

O

OH

HOCH2

Antipyrine 5-Fluoro-uracil 5-Fluorothymidine

'Electrophilic' Addition
- Preparation of FDG by [18F]fluorine addition

O

CH2OAc

OAc

AcO

O

CH2OAc

OAc

AcO

F

18F

O

CH2OAc

OAc

AcO
18F

F

O

CH2OH

OH

HO
18F

O

CH2OH

OH

HO

F

H,OH+
H+

H,OH+
18F-F

• Syn addition to the least hindered face of the substrate occurs 
preferentially

• Hence, FDG is produced in ninefold greater yield than its 2-epimer, 
[18F]2-fluoro-2-deoxy-D-mannose

• Radiochemical yield is 10%



'Electrophilic' Addition
- [18F]Acetyl hypofluorite to alkenes

O
18F

18F

18F OAc
.
OAc

-OAc

.

+
._

18FOCR

.+

AcO18F

OAc18F 18F-AcOH

Proposed single electron transfer mechanism

Subsequent elimination

'Electrophilic' Addition
- Preparation of FDG by [18F]acetyl 

hypofluorite addition

O

CH2OAc

OAc

AcO

O

CH2OAc

OAc

AcO

OAc

18F

O

CH2OAc

OAc

AcO
18F

OAc

O

CH2OH

OH

HO
18F

O

CH2OH

OH

HO

F

H,OH+
H+

H,OH+
AcO18F

• The fluorination of 3,4,6-tri-O-acetyl-D-glucal in freon with 
[18F]acetyl hypofluorite, rather than [18F]fluorine, 
followed by hydrolysis, doubles the radiochemical yield 
of FDG to 20% and reduces the yield of the epimer 
byproduct to 1% 



[18F]XF Addition to Alkenes

18F

Br

Br

18F

18F-/NBS

+

(total 30% radiochemical yield; M: AM = 9)

Anti-Markovnikov 
product (AM)

Markovnikov 
product (M)

• The Markovnikov addition product dominates over the anti-
Markovnikov product

• The reaction can be performed CA or NCA

Aromatic Radiofluorination (1)
- By [18F]fluorine - mechanism

• Some arenes can be directly fluorinated in low but useful yields  
• For low temperature (– 78 oC) additions of dilute fluorine (0.76% 

in N2) to a large excess of substituted benzene, the 
substitution pattern is as expected for electrophilic 
substitution and supports the proposal of a polar substitution 
mechanism (above)

18F-F
δ+ 18F Fδ+

+
18F

H

XXX

18F

X



Aromatic Radiofluorination (2) 
- By [18F]fluorine in trifluoroacetic acid

• Direct treatment of the amino acids in trifluoroacetic acid with 
[18F]fluorine at 0oC leads to substitution predominantly
ortho to the strongest electron-donating group  

NH2

CO2H

X

Y

18F-F NH2

CO2H

X

Y
18F

X = Y = H;          L-Phe
X = H, Y = OH;   L-Tyr
X = Y = OH;        L-DOPA

2

6
4

Isomer ratio (%)
  2         3       4      5    6
72.5   13.9   13.6
  7.4   92.6
75.2   24.0                  0.8

Radiofluoridation 
yield (%)
28
31
10

3

Aromatic Radiofluorination (3) 
- By [18F]fluorine in anhydrous hydrogen fluoride

OH

HO

OH

HO

H2N

H

CO2H

18F

H2N

H

CO2H

18F-F, HF
6

• Direct radiofluorination of L-DOPA in anhydrous HF gives ~ 
25% of fluoroarenes with the 2-, 5- and 6-fluoro isomers 
of L-DOPA in the ratio of 7: 1: 12 

• Recycle HPLC gives pure FDOPA in 3% radiochemical yield 
• Radiochemical yield is enhanced 3-fold in the presence of BF3 



Aromatic Radiofluorination (4)
- By [18F]acetyl hypofluorite

R R
OAc

18F

H

R

18F
MeCOO18F +

-AcOH

Addition–elimination mechanism (in freon)

• Acetyl hypofluorite reacts directly with arenes, but only well with 
those that are activated by an electron-donating substituent, 
especially alkoxy, acetylamino and hydroxy  

• Ortho fluorination generally occurs in strong preference to para
fluorination. 

• An addition-elimination mechanism has been proposed to 
account for the dominance of ortho substitution in freon

Aromatic Radiofluorination (4) 
- By [18F]acetyl hypofluorite (cont’d)

R
AcO18F

R

+. + 18F- + AcO.

-H18F

18F

R

+ + AcO-
-AcOH

R

18F

R
. + AcO-

R

Me

R

OAc

H

Single electron transfer mechanism (in acetic acid)



[18F]Fluorodemetallation
- At aryl carbon-metal bonds

• Ipso displacement of a metal (M) from a metalloarene by 
[18F]fluorine or [18F]acetyl hypofluorite is a 
regioselective route to many [18F]fluoroarenes  

• M may be Sn, Si, Ge or Pb from Group IV or Hg  
• Generally, fluorodemetallation is fast, high yielding, 

regioselective and facile, even on rings containing de-
activating substituents  

• The success of this reaction is derived from the weakness and 
greater polarity of the aryl C–M bond relative to the aryl 
C–H bond  

MRn

X

18F-F
18F

X
or

AcO18F

[18F]Fluorodemetallation
- Mechanism proposed for fluorodemercuration

R

M

AcO18F

M = HgOAc
   or HgCl

M

R

+. + 18F- + AcO.

-M18F

M 18F

R

+ + AcO-
-AcOM

R

18F

R
. + AcO-

R

Me

R

OAc



[18F]Fluorodemetallation
- General features

• Reactivity is aryl-Hg ~ aryl-Sn > aryl-Ge ~ aryl-Si 
i.e. in inverse order of aryl C–M bond strength.

• Fluorodemercuration with acetyl hypofluorite is regiospecific
• Aryl-tri-n-butyltins treated with [18F]fluorine or [18F]acetyl 

hypofluorite give ipso-substituted [18F]fluoroarenes in 
similarly high radiochemical yield (measured from  
[18F]fluorine).   

• Electron-withdrawing substituents (e.g. 4-CF3, 4-CN) reduce the 
yield of ring radiofluorination in aryltrimethyl-tin, -
germanium and -silicon compounds 

[18F]Fluorodemetallation
- Synthesis of FDOPA

OMe

MeO

AcHN

H

CO2Me

OMe

MeO

AcHN

H

CO2Me

OH

HO

H2N

H

CO2H

18F18FHgOOCF3

MeCOO18F HI

• FDOPA can be isolated in 12% radiochemical yield (decay 
corrected)

• Similar radiosytheses have been devised with alkyl-tin and 
alkyl-silicon leaving groups



[18F]Fluorodemetallation 
- At alkenyl-metal bonds

• Radiofluorodestannylation, though not possible at an alkyl C-Sn 
bond, because of the high bond strength, is possible at an 
alkenyl C–Sn or alkenyl C–Si bond 

• The radiochemical yield in the above example is 18%

N
N

Me

O
Me

Me3Si

18F-F N
N

Me

O
Me

18F

Conclusions

• The use of CA [18F]fluorine and its electrophilic derivatives, 
particularly [18F]acetyl hypofluorite, are the only well-
established methods for introducing 18F into electron-
rich arenes  

• These labeling agents retain their importance mainly on this 
basis, despite their disadvantages of low specific 
radioactivity, possibility of only moderately high 
production and at least 50% waste of initial 
radioactivity


