# Providers' perspective on reimbursement of genetic technologies and services: A laboratorian's perspective

Andrea Ferreira-Gonzalez, Ph.D.

Director Molecular Diagnostics Laboratory

Associate Professor of Pathology

VCU Medical Center

### Coding, billing and reimbursement for laboratory testing and services

- Codes are the language of reimbursement
- Procedure coding
  - Level I: Current Procedural Terminology (CPT) code (AMA)
    - Five digit numbers
    - Identify specific analytes, methodologies, assays, stains, consultations, interpretations, etc.
    - Code modifiers
      - Two digit code added to a five digit procedure code
  - Level II: HCPCS codes (CMS)
    - Begin with a letter (A-V) followed by four numbers
    - For procedures not identify in CPT codes

### Coding, billing and reimbursement for laboratory testing and services

- CPT codes are the means by which payers match up a service on a claim form to the payment rate
- All Medicare, state Medicaid and many private or commercial insurance payers require the use of CPT codes to identify the services
- International classification of disease-9 codes
  - Identify diagnoses

### Molecular Diagnostics CPT codes use for genetic testing

- 83890 molecular isolation or extraction
- 83891 isolation or extraction of highly purified nucleic acid
- 83892 enzymatic digestion
- 83893 dot/slot blot production
- 83894 separation by gel electrophoresis (e.g., agarose, polyacrilamide)
- 83896 nucleic acid probe, each
- 83897 nucleic acid transfer (eg. Southern, Northern)
- 83898 amplification of patient nucleic acid (e.g., PCR, LCR) single primer pair, each primer pair)
- 83901 amplification of patient nucleic acid, multiplex, each reaction
- 83902 reverse transcription
- 83903 mutation scanning, by physical properties (e.g.. Single stranded conformation polymorphisms(SSCP), heteroduplex, denaturing gradient gel electrophoresis (DGGE), RNA'ase A), single segment, each
- 83904 mutation identification by sequencing, single segment, each segment
- 83905 mutation identification by allele specific transcription., single segment, each segment
- 83912 interpretation and report

#### **Medicare Laboratory Fee Schedule for 2004**

|       | Short description         | National | 00511   | 00904   | 00910   | 05535  | 31140   |
|-------|---------------------------|----------|---------|---------|---------|--------|---------|
| HCPC  |                           | Limit    | Loc 00  | Loc 00  | Loc 00  | Loc 00 | Loc 00  |
| 83890 | Nucleic acid isolation    | \$5.60   | \$5.51  | \$5.47  | \$4.45  | \$5.60 | \$5.60  |
| 83891 | Isolation highly purified | \$5.60   | \$5.51  | \$5.47  | \$4.45  | \$5.60 | \$5.60  |
| 83892 | Restriction enzyme each   | \$5.60   | \$5.51  | \$5.47  | \$4.45  | \$5.60 | \$5.60  |
| 83893 | Dot/slot/blot             | \$5.60   | \$5.51  | \$5.47  | \$4.45  | \$5.60 | \$5.60  |
| 83894 | Gel electrophor           | \$5.60   | \$5.51  | \$5.47  | \$4.45  | \$5.60 | \$5.60  |
| 83896 | Nucleic acid probe, each  | \$5.60   | \$5.51  | \$5.47  | \$4.45  | \$5.60 | \$5.60  |
| 83897 | Nucleic transfer          | \$5.60   | \$5.51  | \$5.47  | \$4.45  | \$5.60 | \$5.60  |
| 83898 | Nucleic ampli             | \$23.42  | \$5.37  | \$23.42 | \$20.79 | \$5.75 | \$23.42 |
| 83901 | Nucleic ampli/multiplex   | \$23.42  | \$5.37  | \$23.42 | \$20.79 | \$5.75 | \$23.42 |
| 83902 | Reverse transcription     | \$19.83  | \$17.69 | \$5.47  | \$19.83 | \$5.75 | \$19.83 |
| 83903 | Mutation scan             | \$23.42  | \$5.37  | \$23.42 | \$20.79 | \$5.75 | \$23.42 |
| 83904 | Mut seq                   | \$23.42  | \$5.37  | \$23.42 | \$20.79 | \$5.75 | \$23.42 |
| 83905 | Mut allele transcription  | \$23.42  | \$5.37  | \$23.42 | \$20.79 | \$5.75 | \$23.42 |
| 83906 | Mut allele translation    | \$23.42  | \$5.37  | \$23.42 | \$20.79 | \$5.75 | \$23.42 |
| 83912 | Genetic interpretation    | \$5.60   | \$5.51  | \$5.47  | \$4.45  | \$5.60 | \$5.60  |

### Financial Analysis

#### VCU Medical Center

 Medical College of Virginia Hospitals (MCVH), MCV Associated Physicians and VCU Medical School

#### MCVH

- 650 bed hospital
- Tertiary center
- Inner city

#### Molecular Diagnostics Laboratory

- Infectious Disease
- Oncology
- Hematology
- Inherited Disorders
- CY '03 performed 13,209 tests

### Fragile X Syndrome

- Most common cause of inherited mental retardation (1/1,200 males and 1/2,500 females)
- The fragile X gene (FMR1) contains a tandemly repeated trinucleotide sequence (CGG) near its 5' end.
- The number of CGG repeats
  - normal population varies from 6 to approximately 50.
  - premutations of approximately 50 to 200 repeats (45-55 copies in the "grey zone")
  - full mutations of more than approximately 200 repeats.

#### DNA studies:

- Polymerase chain reaction (PCR) allows sizing of the PCR products.
   PCR permits accurate sizing of alleles in the normal, the premutation, or the "grey zone" size ranges.
- Southern blotting allows both size of the repeat segment and methylation status. Accurately detects alleles in all size ranges, but precise sizing is not possible.
- Many labs have both methods available

#### Fragile X Syndrome

#### **Southern Hybridization Analysis**

| Description                            | <b>CPT code</b> | <b>VCUMC Cost</b> | VA Medicare expect |
|----------------------------------------|-----------------|-------------------|--------------------|
| Nucleic acid isolation highly purified | 83891           | 15.6              | 5.47               |
| Enzyme digestion                       | 83892x2         | 35.7              | 10.94              |
| Gel electrophoresis                    | 83894x2         | 38.5              | 10.94              |
| Southern blot                          | 83897x2         | 59.7              | 10.94              |
| Nucleic acid probe                     | 83896           | 76.84             | 5.47               |
| Interpretation and report              | 83912-26        | 40                | 18.54              |
| Total                                  |                 | 266.34            | 62.30              |

#### **PCR**

| Description               | CPT code | VCUMC Cost | VA Medicare expect |
|---------------------------|----------|------------|--------------------|
| Amplification             | 83898    | 34.0       | 23.42              |
| Nucleic acid isolation    | 83890    | 15.6       | 5.47               |
| Separation                | 83903    | 32.0       | 23.42              |
| Interpretation and report | 83912-26 | 35.0       | 18.54              |
| Total                     |          | 116.6      | 70.85              |

## Immunoglobulin Gene Rearrangement by PCR

- Extremely important in the diagnosis of lymphoma and leukemia
- Structural analysis of the B lymphocyte antigen receptor genes, when properly interpreted, can detect monoclonal proliferation of lymphocytes
- Identification of a clonal proliferation of lymphoid cells is central to the diagnosis of lymphoma and lymphocitic leukemia (differential diagnosis of reactive lymphoadenopathy versus lymphoma or a nonlymphoid malignancy)

## Immunoglobulin Gene Rearrangement by PCR

| Description               | CPT code  | VCU Cost | VA Medicare expect |
|---------------------------|-----------|----------|--------------------|
| Nucleic acid extraction   | 83891     | 24.75    | <b>5.47</b>        |
| Amplification             | 83898 x 3 | 118.62   | 70.24              |
| Separation                | 83903 x 3 | 93       | 70.24              |
| Interpretation and report | 83912-26  | 40       | 18.54              |
| Total                     |           | 276.36   | 164.53             |

### Factor V Leiden

- Factor V Leiden is the most common hereditary blood coagulation disorder in the United States.
  - 5% of the Caucasian
  - 1.2% of the Afro-American population.
- Factor V Leiden increases the risk of venous thrombosis
  - 3-8 fold for heterozygous
  - 30-140 fold, for homozygous individuals
- Venous thrombosis and Pulmonary embolism (PE)
  - Sinus vein thrombosis
  - Mesenteric vein thrombosis
  - Budd-Chiari syndrome, Arterial clots in selected patients (some smokers)
- Possibly with stillbirth or recurrent unexplained miscarriage Preeclampsia and/or eclampsia (toxemia while pregnant)

### Factor V Leiden

| Description               | <b>CPT code</b> | VCUMC<br>Cost | VA Medicare expect |
|---------------------------|-----------------|---------------|--------------------|
| Nucleic acid isolation    | 83890           | 9.69          | 5.47               |
| Nucleic acid probe, each  | 83896 x 4       | 21.8          | 21.88              |
| Enzymatic digestion       | 83893 x 4       | 22.5          | 21.88              |
| Interpretation and report | 83912-26        | 18            | 18.54              |
| Total                     |                 | 71.99         | 67.77              |

### VCUMC Reimbursement for technical CPT Codes

| Payer        | % Claims paid | Reimbursement |
|--------------|---------------|---------------|
| Medicare     | 89            | NLA           |
| Medicaid     | 72            | NLA           |
| BC/BS PPO    | 80            | ~ NLA         |
| BC/BS HMO    | 75            | ~ NLA         |
| Aetna        | 78            | ~ NLA         |
| Cigna PPO    | 61            | ~ NLA         |
| Alliance PPO | 85            | ~ NLA         |

## Reimbursement Interpretation and Report (83912-26)

- Interpretation of genetic tests is
  - extremely complex
  - challenging
  - genotype-phenotype correlations
  - clinico-pathological correlation
  - genetic counseling implications

### VCUMC Reimbursement for CPT Code 83912-26

| Payer        | % Claims paid | Reimbursement |
|--------------|---------------|---------------|
| Medicare     | 93            | \$18.57       |
| Medicaid     | 93            | \$18.57       |
| BC/BS PPO    | 84            | \$5.47        |
| BC/BS HMO    | 81            | \$5.47        |
| Aetna        | 86            | \$5.47        |
| Cigna PPO    | 78            | \$5.47        |
| Alliance PPO | 61            | \$5.47        |

## Factors affecting access to genetic testing

- Genetic testing utilization is increasing
- Laboratory fee schedule was "frozen" for five years from 1998 through 2002 then got a 1.1% increase and it was frozen again from 2004 through 2008.
- Costs still continue to increase significantly for laboratories - e.g. cost of labor, cost of technology, inadequate reimbursement for inpatient testing with prospective payment systems, managed care etc.
- Ability to cost shift is extremely limited

## Utilization of Genetic Testing at VCUMC



### Reimbursement for Molecular CPT Codes

|                | Cost  | Medicare<br>Reimbursement |
|----------------|-------|---------------------------|
| Quant t(9;22)  | 138.5 | 51.65                     |
| HIV viral load | 99.18 | 114.36                    |
| HCV Viral load | 99.18 | 58.65                     |

## Impact of patents on access to genetic testing

- Increase cost of testing
  - Royalty payment for patented procedures
    - 9-15% receipts
  - Royalty payment for patented gene/sequences
    - Up-front + Flat fee/test
      - BioRad Laboratories acquired patents for HFE and developed commercial kits. License to laboratories w/upfront fee plus \$20/test\*
    - One time payment + % of charges

### Effects of patents and licenses on provision of clinical genetic testing services

**Survey of 122 Laboratory directors** 

| Institutional affiliation | n (%)    |
|---------------------------|----------|
| Company                   | 19 (16)  |
| University                | 73 (60)  |
| Federal                   | 16 (13)  |
| Nonprofit                 | 80 (66)  |
| Private hospital          | 64 (52)  |
| Other                     | 10 (8.2) |

Totals do not add up to 100% because response options were not mutually exclusive.

Cho et al JMD 2003 5(1):3-8

### Effects of patents and licenses on provision of clinical genetic testing services

| Genetic test                                    | # Labs stopped performing this test |
|-------------------------------------------------|-------------------------------------|
| Apolipoprotein E (ApoE)                         | 9                                   |
| Hereditary Breast/Ovarian Cancer (BRCA1/BRCA2)  | 9                                   |
| Duchene/Becker muscular dystrophy               | 5                                   |
| Hereditary Hemochromatosis (HFE)                | 5                                   |
| Myotonic dystrophy                              | 4                                   |
| Canavan Disease                                 | 4                                   |
| Spinocerebellar ataxia (SCA1, SCA2, SCA3, SCA6) | 4                                   |
| Adenomatous polyposis of the colon              | 2                                   |
| Fragile X syndrome                              | 1                                   |
| Factor V Leiden                                 | 1                                   |

#### Conclusions

- Genetic tests are being reimbursed by Medicare, Medicaid and Third Party Payers
- Level of reimbursement does not cover test costs
- Impact of patents on genetic test access needs to be further explored