
Recent interest has focused on traffic-related
air pollution and the potential health effects
associated with exposure (Kunzli et al. 2000).
The acute health effects of short-term expo-
sures to traffic-related pollution have been
widely demonstrated, but much less is known
about the chronic effects of exposure. Several
studies have found associations between
chronic morbidity or mortality and traffic-
related pollution (e.g., Brunekreef et al. 1997;
Heinrich and Wichmann 2004; Hoek et al.
2002a; Weiland et al. 1994; Wjst et al. 1993).
On the other hand, a number of studies have
found no detectable effects (Magnus et al.
1998; Wilkinson et al. 1999). Thus, the
extent to which the long-term exposure to air
pollution contributes to chronic health effects
remains unknown. Much of the uncertainty
relates to the problems of potential confound-
ing variables and of reliable estimates of
exposure to traffic-related pollution at the
individual or small-area level, across large pop-
ulations and cities. To date, most assessments
of the health impacts of long-term exposure
have involved between-city comparisons using
a limited number of monitors within each
city. Such between-city comparisons are
subject to exposure misclassification because
they rely on a small number of monitors. A
recently conducted study in four European

countries [SAVIAH (Small-Area Variation in
Air Pollution and Health)] found important
variations in the concentrations of nitrogen
dioxide and sulfur dioxide on a small scale
within cities (Lebret et al. 2000). Several other
studies have documented important within-
city variation of concentration, especially
related to nearness to motorized traffic and
location within the city—for example, center
versus suburb (Bernard et al. 1997; Cyrys
et al. 1998; Raaschou-Nielsen et al. 2000).

To overcome these problems, some stud-
ies used surrogate variables, such as distance
to major road or traffic intensity (objectively
determined or self-reported) (Brunekreef et al.
1997; van Vliet et al. 1997; Weiland et al.
1994; Wjst et al. 1993) to account for within-
city variability in exposure. A disadvantage of
these exposure indicators is that they are fre-
quently not validated, and it may therefore be
unclear what the actual exposure contrast is.

A potential solution to these problems
is the use of geographic information systems
(GIS) in which geographic data can be
either used for the development of dispersion
models (Bellander et al. 2001; Pershagen
et al. 1995) or combined with concentration
measurements to estimate exposures for indi-
vidual members of large study populations by
regression (stochastic) models (Brauer et al.

2003; Briggs et al. 1997; Gehring et al.
2002).

So far, epidemiologic studies used either
stochastic or dispersion modeling, but not
both in parallel. Only in the international
collaborative study on the risks of develop-
ment of childhood asthma and other allergic
diseases [TRAPCA (Traffic-Related Air
Pollution on Childhood Asthma) study
(Brauer et al. 2002; Gehring et al. 2002)] were
both approaches (stochastic and dispersion
modeling) used in parallel to predict the out-
door exposure to NO2 and particulate matter
(PM) for 1,669 study participants. For the
stochastic modeling, NO2 and particles col-
lected with an upper 50% cut point of 2.5 µm
aerodynamic diameter (PM2.5) were measured
at 40 sites spread over the city area to estimate
the annual average concentrations of these pol-
lutants. This data set offers the unique oppor-
tunity to evaluate the result of the dispersion
and stochastic modeling. The aim of the study
is to compare the measured levels of the two
pollutants with the levels predicted by the two
modeling approaches (for the 40 measurement
sites) and to compare the results of the stochas-
tic and dispersion modeling for all 1,669 study
participants.

Materials and Methods

Study area and study cohort. The study was
conducted in the city of Munich, the capital
of Bavaria, situated in the south of Germany.
In 1999 Munich had a population of approxi-
mately 1.32 millions inhabitants in an area
of 310.4 km2, and approximately 700,000
cars were registered (Statistic Agency of the
Provincial Capital Munich 2005).
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Stochastic modeling was used to predict nitrogen dioxide and fine particles [particles collected
with an upper 50% cut point of 2.5 µm aerodynamic diameter (PM2.5)] levels at 1,669 addresses
of the participants of two ongoing birth cohort studies conducted in Munich, Germany.
Alternatively, the Gaussian multisource dispersion model IMMISnet/em was used to estimate the
annual mean values for NO2 and total suspended particles (TSP) for the 40 measurement sites
and for all study subjects. The aim of this study was to compare the measured NO2 and PM2.5
levels with the levels predicted by the two modeling approaches (for the 40 measurement sites)
and to compare the results of the stochastic and dispersion modeling for all study infants (1,669
sites). NO2 and PM2.5 concentrations obtained by the stochastic models were in the same range as
the measured concentrations, whereas the NO2 and TSP levels estimated by dispersion modeling
were higher than the measured values. However, the correlation between stochastic- and disper-
sion-modeled concentrations was strong for both pollutants: At the 40 measurement sites, for
NO2, r = 0.83, and for PM, r = 0.79; at the 1,669 cohort sites, for NO2, r = 0.83 and for PM,
r = 0.79. Both models yield similar results regarding exposure estimate of the study cohort to
traffic-related air pollution, when classified into tertiles; that is, 70% of the study subjects were
classified into the same category. In conclusion, despite different assumptions and procedures used
for the stochastic and dispersion modeling, both models yield similar results regarding exposure
estimation of the study cohort to traffic-related air pollutants. Key words: air pollutants, dispersion
modeling, GIS, stochastic modeling, traffic. Environ Health Perspect 113:987–992 (2005).
doi:10.1289/ehp.7662 available via http://dx.doi.org/ [Online 15 April 2005]
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Exposure to traffic-related air pollutants
(NO2 and PM) was modeled for two ongoing
birth cohort studies [GINI (German Infant
Nutrition Intervention Programme) and
LISA (Influence of Lifestyle Factors on the
Development of the Immune System and
Allergies in East and West Germany)] con-
ducted in Munich. A total of 1,757 infants—
1,084 from the GINI cohort and 673 from
the LISA cohort—were selected for this pur-
pose. These infants were born in Munich
(excluding surrounding communities, postal
codes 80000–81999) and remained in
Munich at least for the first year of life. For
1,756 study subjects, birth addresses could
be converted into geographic coordinates.
However, because some children shared the
same home address, the final data set for the
present analysis consists of 1,669 different
cohort addresses.

Exposure modeling. Because it was not
feasible to measure outdoor exposure for all
1,669 cohort addresses, we used GIS-based
stochastic and dispersion exposure modeling
to predict annual average concentrations for
each cohort address.

Stochastic (regression) modeling. For the
stochastic modeling, we conducted a 1-year
measurement program for NO2 and PM2.5 at
40 measurement sites. To capture all of the
variation in air pollution concentrations that
might be experienced by the study subjects,
we selected 17 street sites that were located
both at main roads and at side roads, and
23 background sites. A detailed description of
the site selection criteria is provided elsewhere
(Cyrys et al. 2003; Hoek et al. 2002b).

The measurement program was performed
from 16 March 1999 to 21 July 2000. At each
site, four 14-day measurements were con-
ducted such that each site was measured in
each season once. PM2.5 samples were collected
with Harvard impactors (Marple et al. 1987),
and NO2 concentrations were measured by
Palmes tubes (Palmes et al. 1976). All measure-
ments were conducted according to a standard
operating procedure (SOP) TRAPCA 2.0
(Hoek et al. 2001). A detailed description of
the measurement program is provided else-
where (Cyrys et al. 2003; Hoek et al. 2002b;
Lewne et al. 2004).

For all pollutants, we calculated annual
averages as described by Hoek et al. (2002b).
In brief, measurements at the 40 sites were

not performed simultaneously. Therefore, dif-
ferences among the sites may have occurred
because of temporal variation; because we
intended these measurements to incorporate
spatial variability only, the annual averages
were adjusted for the impact of temporal vari-
ability using data from one site where contin-
uous measurements were made over the entire
study period.

In addition, we collected traffic-related
variables (e.g., traffic intensity and population
density) for the 40 measurement sites and for
all cohort addresses using GIS. The annual
average concentrations were then related to a
set of predictor variables obtained from a GIS,
using stochastic modeling. The following GIS
variables were collected using GIS ARCVIEW
(version 3.2; ESRI, Redlands, CA, USA): traf-
fic density and heavy vehicles intensity in three
different circular buffers around the measure-
ment sites (50, 250, and 1,000 m radius), and
household density and population density
(300, 1,000, and 5,000 m radius). The relation
between the geographic variables (independent
variables) and the annual average air pollution
concentrations (dependent variables) for the
40 sites was analyzed by multiple linear regres-
sion. The selection of the most relevant spatial
scale for the geographic variables (with the
highest adjusted R2) is described in detail by
Brauer et al. (2003).

The final linear regression models used for
the calculation of cohort exposures are pre-
sented in Table 1. These two models include
only variables that were also available for the
cohort addresses and therefore could be used
for the calculation of cohort exposures. Using
these developed models, we obtained quantita-
tive estimates of exposure to outdoor NO2 and
PM2.5 for all study subjects.

We evaluated the validity of the regression
models by a cross-validation procedure. This
involved fitting the regression model for 39 of
the measurement sites to predict the concentra-
tion at the remaining site. This procedure was
conducted for each of the 40 sites, and these
results were compared with the measured
annual average concentrations determined for
each of the sites. The root mean squared error
(RMSE) was calculated as the square root of
the sum of the squared differences of the
observed concentration at site i and the pre-
dicted concentration at site i from a model
developed without site i (Hoek et al. 2001).

The RMSE was 1.35 µg/m3 for PM2.5 and
6.12 µg/m3 for NO2; that is, it was small com-
pared with the range in concentration across
sites (11.18–19.69 µg/m3 for PM2.5 and
15.86–50.64 µg/m3 for NO2).

Dispersion modeling. We used a Gaussian
multisource dispersion model IMMISnet (IVU
Umwelt GmbH, Sexau, Germany) for the
calculation of annual mean values for NO2
and total suspended particles (TSP; defined as
airborne particles with a diameter < 30 µm)
concentrations. The dispersion models were
developed on the basis of GIS data for the
addresses of the 40 measurement sites and for
the 1,669 cohort addresses.

IMMISnet is a model for calculating the
spatial extent of concentration levels of air pol-
lution. The model describes the dilution and
transport of pollutants from point, line, and
area sources as a stationary process, using a
Gaussian normal distribution. Gaussian disper-
sion models are instruments that have been
tried and tested for many years within the
framework of plans for maintaining air quality,
or planning permit procedures, in line with the
German Technical Directive on Air Pollution
Control TA-Luft 1986 (TA Luft 1986).

Based on the Gaussian smoke plume equa-
tion, the model calculates concentration con-
tributions from the emissions of the area, line,
or point sources considered. Statistical parame-
ters, such as the mean value or percentiles of
the cumulative frequency, are calculated for
each of the defined receptors from the individ-
ual concentrations determined for all the hours
of the year. In addition, IMMISnet can prepare
all the background input data for microscale
street canyon models.

The input values in IMMISnet consist of
the emission data for the sources under con-
sideration, broken down into a number of
polluter groups, and a climatologic frequency
distribution or a time series of meteorologic
parameters. The model operates chronologi-
cally; that is, the concentration contributions
of all the data sources considered are calcu-
lated for every hour of the year. The repre-
sentative meteorologic conditions for any
particular hour are selected randomly from the
climatologic distribution of meteorologic cases
in a meteorologic frequency distribution.
The model determines hourly emissions from
the annual emissions, using polluter-group–
specific monthly, weekly, and daily cycles.
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Table 1. Results of regression models for PM2.5 (µg/m3) and NO2 (µg/m3; intercept = 11.92 for PM2.5, and 18.91 for NO2).
NO2 PM2.5

Variable Slope SE R 2 full modela Slope SE R 2 full modela

0.62 0.56
Traffic intensity (50–250 m)b (per 1,000 vehicles/day) 6.22 × 10–5 4.30 × 10–5 0.36 1.35 × 10–5 3.28 × 10–6 0.29
Traffic intensity (50 m)b (per 1,000 vehicles/day) 1.12 × 10–4 4.30 × 10–5 0.15 3.32 × 10–5 1.02 × 10–5 0.19
Address density (300 m)b (per 1,000 addresses) 1.93 × 10–3 6.16 × 10–4 0.09 3.26 × 10–4 1.27 × 10–4 0.08
Address density (300–5,000 m)b (per 1,000 addresses) 1.24 × 10–5 1.03 × 10–5 0.02 — — —
aIndividual variables added to previously entered variables already in the model. bDistances refer to the radius of the buffer zone (in meters) around the sampling site.



The specific emissions data of the different
categories of sources (traffic, industry, domestic
fuel) were not available for the measurement
period from March 1999 to July 2000. Thus,
the data for the emissions of the traffic were
determined based on the road network of
the city of Munich from 1997 (by the use of
the program IMMISem). Large single emitters
such as industrial plants or power stations
were taken out of the emission inventory for
Munich from 1986. Because the emission
inventory contains only emissions data for TSP
and not for PM2.5, the dispersion model esti-
mated TSP levels. The spatial distribution of
domestic heating emissions was obtained from
the data for energy consumption in Munich in
1997 and the data of the building structure.
Therefore, the estimated NO2 and TSP levels
are more valid for 1997 than for the study
period (March 1999 through July 2000).

The annual concentrations are calculated
for defined coordinates including a 1.5-m
height above ground level. The regional back-
ground level was determined as the difference
between the modeled and the measured NOx
and TSP concentrations (as measured at the
network station in Munich Johanneskirchen).
The background concentration was 21.5 µg/m3

for NOx and 33.2 µg/m3 for TSP. The NO2
values were calculated from the estimated NOx
values using the following formula (Romberg
et al. 1996):

[1]

To validate the IMMISnet/em model, we
compared the annual means of NO2 and TSP
measured in 1997 at the network stations in
Munich (n = 7 for NO2 and n = 6 for TSP)
with the estimated NO2 and TSP values. The
comparison showed that the mean difference
between the measured and modeled NO2 con-
centrations is 3.8 ± 4.8 µg/m3 (7.6 ± 10.2%).
The mean difference between the measured
and modeled TSP levels is –1.6 ± 9.7 µg/m3

(–3.6 ± 18.4%). The coefficient of variation is
8.1% for NO2 and 12.9% for TSP.

Quality assurance. During each of the
approximately 16 measurement periods, a
PM2.5 field blank and field duplicate were col-
lected. The detection limit was 3.4 µg/m3, and
all samples were above the detection limit.

The coefficient of variance was low (3.3%);
that is, the precision of PM2.5 was good.

To answer the question whether the
Palmes tube measurements were not underesti-
mating the true NO2, we compared the Palmes
tube measurements during every 2-week sam-
pling period with a chemiluminescence moni-
tor (Ecophysics CLD 700 AL; Ecophysics
GmbH, Munich, Germany) at three sites. The
Palmes tubes were located in direct vicinity to
the inlet of the chemiluminescence equipment.
There was a high correlation between 2-week
average NO2 concentrations from Palmes
tubes and parallel continuous monitoring
measurements (r = 0.94). The overall ratio of
the Palmes tube reading and the correspond-
ing chemiluminescence value was 1.01. For
more details, see Hoek et al. (2002b) and
Lewne et al. (2004).

Statistical methods. The Pearson correla-
tion coefficients were calculated to describe
the associations between air pollutants con-
centration derived from the two different sets
of models.

To compare the stochastic and dispersion
model, the modeled concentrations were clas-
sified into 3 categories: high, middle, and low
concentrations for the two models separately.
Tertiles were used as cutoff values to ensure
equal distribution of the values between the
three categories. Finally, the concordance of
the cohort address classification by the two
models was considered.

Generalized additive models were used to
investigate the functional relationship between
NO2 and PM concentrations estimated by
stochastic and dispersion modeling, respec-
tively. We computed LOESS smoothers with
pointwise ± 2 SE bands and a span of 0.4 for
the smooth curves with S-Plus (version 6.0;
Insightful Corporation, Seattle, WA, USA).

Results

Comparison of measured air pollution, sto-
chastic-modeled air pollution, and dispersion-
modeled air pollution (for 40 measurements
sites). The annual average air pollution con-
centrations measured and estimated for the
40 measurement sites are shown in Table 2.
There is a substantial range in annual average
concentrations for NO2 and for PM. The
ratio of the measured NO2 concentrations to
the NO2 levels estimated by the dispersion
model is 0.71. The ratio of the measured

PM2.5 concentrations to the TSP values esti-
mated by the dispersion model is 0.31.

Figure 1 shows the correlation between the
measured concentration of NO2 and PM and
the levels modeled by the stochastic or disper-
sion approach. The Pearson correlation coeffi-
cient between the measured and modeled NO2
levels is 0.79 for the stochastic model and 0.68
for the dispersion model. The Pearson correla-
tion coefficient between the measured PM2.5
and modeled PM2.5 is 0.75 (stochastic model-
ing); between the measured PM2.5 and mod-
eled TSP, 0.60 (dispersion modeling).

The relationship between the stochastic and
dispersion NO2 values is shown in Figure 2A.
Figure 2B shows the relationship between the
stochastic PM2.5 and dispersion TSP levels.
The regression equation for NO2 differs sig-
nificantly from the one for PM2.5:TSP. The
intercept of the regression equation for NO2
is clearly higher than the intercept of the
regression equation for PM2.5:TSP (6.8 vs.
–2.0). The slope of the stochastic versus dis-
persion NO2 regression equation is only
slightly > 1, whereas the slope of the PM2.5
versus TSP regression equation is > 3.

Note that, although the correlation
between measured NO2 and PM2.5 concen-
trations was 0.84, the correlation between
modeled NO2 and PM concentrations was
almost 1 for both models (data not shown).

Comparison of stochastic-modeled air pol-
lution and dispersion-modeled air pollution
(for 1,669 cohort addresses). We applied the
regression models described in Table 1 to the
1,669 home addresses of the cohort, and we
applied the dispersion model to the home
addresses of the cohort. A description of the
estimated exposure for the study cohort is pre-
sented in Table 3. The mean values estimated
for the cohort are very similar to those for the
40 measurement sites, whereas the range of
the estimated pollutant levels increased for the
study cohort. Apparently, the selection of 40
sampling sites did not include some of the
more extreme traffic conditions encountered
in the cohort. Exactly 18 cohort addresses
were estimated to have higher NO2 or PM
values than the highest measured values in the
40 measurement sites. All 18 addresses are
located in the vicinity of the Munich city
circular highway (Mittlerer Ring), with an
extremely high traffic density, so the estimate
for these addresses requires extrapolation.

The relationship between the stochastic
and dispersion NO2 values for the whole
study cohort is shown in Figure 3A. The esti-
mated LOESS smooth curve differs substan-
tially from the linear regression curve. The
relation between the NO2 levels estimated
by means of the two models is nonlinear.
However, the correlation between the stochas-
tic and dispersion NO2 levels is strong. The
Spearman rank-order correlation coefficient
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Table 2. Description of the measured and modeled NO2 and PM2.5 (TSP) annual average concentration
across the 40 measurements site.

Variable Type Mean Minimum Maximum SD

NO2 Measured 28.8 15.9 50.6 7.8
NO2 Stochastic 28.8 20.6 42.1 6.1
NO2 Dispersion 40.2 24.3 63.8 8.6
PM2.5 Measured 13.6 11.2 19.7 1.8
PM2.5 Stochastic 13.6 12.2 17.0 1.3
TSP Dispersion 42.8 35.8 64.5 5.5



(instead of Pearson correlation coefficient) is
0.86.

Figure 3B shows the relationship between
the stochastic PM2.5 and dispersion TSP lev-
els for all study subjects. For PM the esti-
mated LOESS smooth curve does not differ
substantially from the linear regression curve.
The linear regression equation for all study
subjects [TSP (dispersion) = 2.78 × PM2.5
(stochastic) + 4.57] is similar to the regression
equation found for the 40 measurement sites.
The Pearson correlation coefficient (r = 0.79)
has the same value as that for the 40 measure-
ment sites.

As previously shown for the 40 measure-
ments, we also found for the study cohort very
strong correlations between the stochastic
estimated levels of NO2 and PM2.5 (r = 0.98)
as well as between NO2 and TSP levels esti-
mated by dispersion modeling (r = 0.99) (data
not shown).

Numerous epidemiologic studies do not
use individual exposure estimates for NO2 for
study subjects; rather, the estimates are cate-
gorized in several groups, with each group
including a comparable number of subjects.
For this reason, we compare the categorization
of the subjects made by means of the results of
both models. Table 4 shows the classification
of the study addresses into three categories
(described in “Materials and Methods”). For
70% of the cohort addresses, the exposure
estimates for NO2 remain in the same cate-
gory; a change between the highest and the
lowest category is very rare (< 1%). The
changes between the highest and the middle
or between the middle and the lowest category
were < 10% for the specific relationship, but
approximately 30% in total. A similar pattern
was observed for PM2.5:TSP (64% agree-
ment). The highest degree of disagreement is
found for the middle–middle category (45%

for NO2 and 53% for PM), whereas the dis-
agreement in the low–low or high–high cate-
gory is substantially lower (between 20 and
30%).

Discussion

Comparison of measured air pollution, stochas-
tic-modeled air pollution, and dispersion-mod-
eled air pollution (for 40 measurements sites).
The NO2 levels estimated by the dispersion
model are clearly higher than the concentra-
tions of NO2 at the 40 measurement sites. For
the comparison of the measured PM2.5 with
the modeled TSP levels, the typical PM2.5:TSP
ratio for Munich should be considered. To
our knowledge, there are no simultaneous
measurements of PM2.5 and TSP in Munich
available at the present. However, one of our
40 measurement sites (background station
where PM2.5 was measured) was located
approximately 2 km from the network back-
ground station in Munich Johanniskirchen
(where TSP was measured). The calculated
average PM2.5:TSP ratio for those two stations
is 0.40. The PM2.5(measured):TSP(modeled) ratio
estimated in our study is lower (0.31), which
suggests an overestimation of the TSP levels by
the dispersion model.

This assumption is supported by the con-
sideration of the PM2.5:TSP ratios observed for
other European cities. Gomiśćek et al. (2004)
estimated the PM2.5:TSP ratios over a 1-year
period for three urban sites in Austria. The
ratios are 0.45 for Linz, 0.52 for Vienna, and
0.54 for Graz, with negligible differences
between the winter and the summer seasons.
Similar PM2.5:TSP ratios (0.46 ± 0.09 for the
summer and 0.59 ± 0.07 for the winter season)
were estimated for Erfurt, Germany, over a
5-year period from 1996 through 2000
(Heinrich J, personal communication). Lall
et al. (2004) estimated the mean PM2.5:TSP
ratios for the United States based on PM data
collected over the last three decades (mean
ratio = 0.30). The PM2.5:TSP ratios show a
strong spatial trend across the United States,
with the northeastern and eastern parts of the
country having among the highest fine mass
fractions (PM2.5:TSP between 0.45 and 0.55).
The higher PM2.5:TSP ratios in the eastern
United States are consistent with the presence
of stronger sources of fine particulate emissions
in the U.S. east coast, with its high degree of
urbanization. In the light of the findings here,
one can assume that the typical PM2.5:TSP
ratios expected for the Central European ambi-
ent air quality situation as well as climatic con-
ditions should be between 0.40 and 0.60.

The overestimation of the NO2 and TSP
levels calculated by the dispersion model could
be caused by the use of older emission data
(emission inventory for industrial plants or
power stations from 1986, traffic and house
fire emissions from 1997). It can be assumed
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Figure 1. (A) Relationship between modeled and measured NO2 concentration (40 measurement sites).
(B) Relationship between modeled and measured PM2.5 concentration (40 measurement sites).
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Figure 2. (A) Relationship between stochastic- and dispersion-modeled NO2 concentration (40 measure-
ment sites). (B) Relationship between stochastic-modeled PM2.5 and dispersion-modeled TSP concentra-
tion (40 measurement sites).
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Table 3. Description of the measured and modeled NO2 and PM2.5 (TSP) annual concentration for the study
cohort (n = 1,669).

Variable Type Mean Minimum Maximum SD

NO2 Stochastic 27.7 19.5 66.9 6.2
NO2 Dispersion (IMMIS) 38.8 20.6 73.8 7.7
PM2.5 Stochastic 13.4 11.9 21.9 1.3
TSP Dispersion (IMMIS) 41.8 34.5 83.9 4.5



that especially the emissions from large single
emitters and domestic heating decreased sig-
nificantly during the nineties. However, even
if the estimated levels of NO2 and TSP could
be overestimated, the within-city variability in
concentrations across the study participants
does not change.

It seems that the difference between the
stochastic- and dispersion-modeled NO2 con-
centrations is rather constant for all measure-
ment sites (slope of the regression equation
~ 1), whereas the difference between the sto-
chastic-modeled PM2.5 levels and dispersion-
modeled TSP values is more site specific and
increases for higher PM concentrations (slope
of the regression equation > 3).

The correlations between the values
obtained by the measurements and the sto-
chastic model were somewhat higher than the
correlations between the measured values and
the dispersion values. This is not unexpected,
because the stochastic modeling includes the
multiple linear regression analysis based on
the 40 measured values. Notable is the very
strong correlation between the exposure esti-
mates for NO2 and PM2.5 within the two
models. This could be explained by the simi-
larity of the predictors used for the two pol-
lutants both in the regression and in the
dispersion modeling.

Comparison of stochastic-modeled air pol-
lution and dispersion-modeled air pollution
(for 1,669 cohort addresses). The regression
equation for PM2.5 (stochastic) versus TSP (dis-
persion) at the 1,669 cohort addresses is very
similar to that observed for the 40 meas-
urement sites. Because the two models contain
different PM characteristics (PM2.5 or TSP),
the direct comparison of the two models is
allowed only if the spatial variation of TSP is to
a large extent driven by the PM2.5 spatial varia-
tion. It means that PM2.5 and TSP should be
strongly correlated over the whole study area.
Unfortunately, we do not have any information
about the correlation between PM2.5 and TSP
in Munich. However, as shown by Cyrys et al.
(2003), the Pearson correlation coefficient esti-
mated on 36 sites across the whole TRAPCA
study area (Munich, Stockholm, and the
Netherlands) between PM2.5 and PM10 is 0.78.
The correlation between PM2.5 and PM10
restricted only to Munich (12 measurement
sites) is stronger (r = 0.95). This strong corre-
lation between annual averages of PM2.5 and
PM10 documents that a large portion of the
spatial variation of PM10 was caused by PM2.5.
Although PM10 is not TSP, we might assume
that TSP is also strongly correlated to PM2.5
in the urban area of Munich and that the
comparison of both variables (PM2.5 and TSP)
as shown in Figures 2A and 3B has some
meaning.

Because of the similar classification of the
study subject generated by the two models,

one would expect that the choice of one
model (regression or dispersion) should not
affect the results of the epidemiologic studies.
In both cases, similar results regarding the
estimated association between health effects
and traffic-related pollutants are expected.
This assumption is valid only if simple cate-
gorization in tertiles is used for epidemiologic
studies. However, epidemiologic studies are
also using more than three exposure cate-
gories or even continuous air pollution data
that need to be considered.

In choosing between the two models,
other aspects should also be considered. The
dispersion models require input data, specifi-
cally for emissions and background pollu-
tion, which may not be readily available. For
this reason, we were able to estimate only the
TSP and not the PM2.5 concentrations by dis-
persion modeling. On the other hand, the
regression modeling requires a monitoring
program, which may be much more expensive
because of the high equipment and personnel
costs.

Conclusions

Despite different assumptions and approaches
made by the two models, the NO2 and PM2.5
values predicted by stochastic model were
strongly correlated with the corresponding
NO2 and TSP concentrations predicted by
the dispersion model. Both models led to
similar classifications of the cohort addresses
regarding the exposure to traffic-related air

pollution. Thus, we assume that similar
results regarding the estimated association
between health effects and traffic-related pol-
lutants are expected by use of the two model-
ing approaches. However, this assumption is
valid only if similar categorization in tertiles is
used for epidemiologic analysis. Further veri-
fication of this conclusion is needed—for
example, an epidemiologic analysis with con-
tinuous exposure data and comparison of the
findings coming from the two different
approaches (stochastic and dispersion).

Other model aspects should be considered
in choosing one specific model. The regres-
sion modeling requires a monitoring pro-
gram, which may be very expensive because of
high equipment and personnel costs. On the
other hand, the dispersion models require
input data, specifically for emissions and
background pollution, which may not be
readily available. For this reason, we were not
able to estimate the PM2.5 concentrations by
dispersion modeling, but only the TSP levels.

Both models have common shortcomings:
Because traffic intensity and household den-
sity were the most important predictors for
both pollutants, the correlations between
modeled NO2 and PM2.5 (stochastic model)
or between modeled NO2 and TSP concen-
trations (dispersion model) were almost 1 for
both modeling methods. This does not allow
a sufficient discrimination of the two pollu-
tants regarding their associations with the
health of the study cohort members.

Stochastic versus dispersion modeling of NO2 and PM
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Figure 3. (A) Relationship between stochastic- and dispersion-modeled NO2 concentration for all study
subjects (n = 1,669); r (Spearman) = 0.86. (B) Relationship between stochastic-modeled PM2.5 and dispersion-
modeled TSP concentration for all study subjects (n = 1,669); r (Spearman) and r (Pearson) = 0.79.
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Table 4. Comparison of the categorization of the study subjects made by means of the stochastic and dis-
persion modeling [n (%)].

Category High(dispersion) Middle(dispersion) Low(dispersion) Total(dispersion)

NO2
High(stochastic) 412 (24.7) 143 (8.6) 1 (0.1) 556
Middle(stochastic) 142 (8.5) 307 (18.4) 108 (6.5) 557
Low(stochastic) 2 (0.1) 107 (6.4) 447 (26.8) 556
Total(stochastic) 556 557 556 1,669

PM
High(stochastic) 400 (24.0) 152 (9.1) 4 (0.2) 556
Middle(stochastic) 142 (8.5) 264 (15.8) 151 (9.1) 557
Low(stochastic) 14 (0.8) 141 (8.5) 401 (24.0) 556
Total(stochastic) 556 557 556 1,669
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