
746 VOLUME 114 | NUMBER 5 | May 2006 • Environmental Health Perspectives

Research

Although some organophosphates are under-
going increasing scrutiny and restriction
[U.S. Environmental Protection Agency
(EPA) 2000, 2002] because of their propen-
sity to elicit developmental neurotoxicity
(Barone et al. 2000; Casida and Quistad
2004; Landrigan 2001; Rice and Barone
2000; Slotkin 2004), these compounds never-
theless still comprise 50% of all insecticide
use worldwide, and exposure of the human
population continues to be nearly ubiquitous
(Casida and Quistad 2004). Originally, it was
thought that the adverse effects on brain
development reflected the same basic mecha-
nism that underlies systemic toxicity, namely,
cholinesterase inhibition and consequent
cholinergic hyperstimulation (Mileson et al.
1998; Pope 1999). However, evidence accu-
mulating over the past decade implicates a host
of other mechanisms that depend instead upon
the direct targeting of events specific to the
developing brain (Barone et al. 2000; Pope
1999; Rice and Barone 2000; Slotkin 2004).
Chlorpyrifos, the most-studied organo-
phosphate, has been shown to disrupt the basic
cellular machinery that controls the patterns of
neural cell maturation and the formation and
activity of synapses, exclusive of the effects on
cholinesterase, which are mediated instead by
its metabolite, chlorpyrifos oxon (Barone et al.
2000; Casida and Quistad 2004; Gupta 2004;

Pope 1999; Qiao et al. 2002, 2003; Yanai
et al. 2002). These mechanisms are likely to be
shared by other organophosphates, but these
have not been evaluated in detail (Abu-Qare
and Abou-Donia 2001; Morale et al. 1998;
Pope 1999; Qiao et al. 2001; Slotkin 1999,
2004; Whyatt et al. 2002).

A comparative approach to the differences
between systemic toxicity and developmental
neurotoxicity of organophosphates is critical
to determine the degree to which multiple
mechanisms of toxicity carry across different
members of this class of insecticides.
Although young animals are far more suscep-
tible than adults to organophosphate-induced
growth inhibition and lethality, there is a
wide range over which disparate compounds
elicit such effects. For example, parathion is far
more systemically toxic to newborn rats than is
chlorpyrifos, in part reflecting pharmaco-
kinetic differences centering around the
ontogeny of enzymes activating the parent
compounds to the corresponding oxons,
compared with the enzymes that break down
the oxons to inactive metabolites (Atterberry
et al. 1997; Padilla et al. 2000, 2004). The
maximum tolerated doses of each agent corre-
spond closely to the relative potencies toward
cholinesterase inhibition and to the rate of
recovery of cholinesterase activity, thus drawing
a direct mechanistic connection of cholinergic

hyperstimulation to overall systemic toxicity
(Pope and Chakraborti 1992; Pope et al.
1991; Tang et al. 2003). In contrast, in vitro
evaluations that bypass the pharmacokinetic
differences suggest that chlorpyrifos is more
potent toward inhibition of cell membrane
function (Barber et al. 2001) and for eliciting
cytotoxicity in immature neurons and glia
(Monnet-Tschudi et al. 2000), despite the fact
that parathion elicits greater cholinesterase
inhibition (Zurich et al. 2000); indeed,
physostigmine, a nonorganophosphate
cholinesterase inhibitor, is far less effective in
disrupting neural cell development in vitro,
even at concentrations that completely block
cholinesterase (Qiao et al. 2001; Zurich et al.
2000).

In the present study, we contrasted three
organophosphates, chlorpyrifos, diazinon, and
parathion, for their systemic toxicity com-
pared with developmental neurotoxicity in the
neonatal rat brain. We chose to administer
each agent via subcutaneous injection in
dimethyl sulfoxide (DMSO), a vehicle appro-
priate for water-insoluble agents and already
known not to affect the corresponding meas-
ures of brain development (Qiao et al. 2001;
Song et al. 1998; Whitney et al. 1995). The
injection route also provides distinct advan-
tages over oral gavage because it avoids the
potential confounds of differential rates of
gastrointestinal absorption between com-
pounds or ages and first-pass effects on
bioavailability. Parathion undergoes extremely
high first-pass removal by the liver, reducing
its oral bioavailability by more than 95% in
the adult (Kramer and Ho 2002), effects that
will therefore influence its relative toxicity at
different developmental stages because of the
rapid changes in the enzymes forming and
destroying the oxon (Atterberry et al. 1997;
Padilla et al. 2000, 2004). Furthermore, daily
oral gavage and the associated repetitive stress
are likely to exacerbate developmental toxicity
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and neurotoxicity (Colomina et al. 1995;
Singer et al. 2002), including that associated
with organophosphate administration (Shaikh
et al. 2003); far less handling is required for a
subcutaneous injection. Finally, the rat is an
altricial species, so neurodevelopment in the
immediate postnatal period corresponds to
that in a second-to-early-third-trimester
human fetus (Rodier 1988, 1995), in which
exposure occurs via direct entry of the pesti-
cides into the fetal circulation, rather than
through oral, dermal, or inhalation routes.

For each agent, we evaluated doses span-
ning the threshold for the emergence of sys-
temic toxicity as defined by growth
impairment and decreased viability. These
were then contrasted with four indices of
neuronal development in the brainstem and
forebrain that focus on two major classes of
effects that have been characterized for chlor-
pyrifos: inhibition of neuritic outgrowth (Das
and Barone 1999; Howard et al. 2005; Song
et al. 1998) and the compromising of develop-
ment of acetylcholine projections (Dam et al.
1999; Qiao et al. 2003; Richardson and
Chambers 2005; Slotkin et al. 2001). First, we
evaluated the ratio of membrane protein to
total protein, which rises with the expansion
of the cell membrane surface accompanying
neuritic outgrowth (Qiao et al. 2003, 2004).
Next, we evaluated the two biomarkers obliga-
tory to the development of cholinergic neu-
rons, activity of choline acetyltransferase
(ChAT) and binding of hemicholinium-3
(HC3) to the cell membrane fraction, which
assesses the expression of the high-affinity
presynaptic choline transporter (Dam et al.
1999; Qiao et al. 2003, 2004; Richardson and
Chambers 2005). ChAT, the enzyme that
synthesizes acetylcholine, is a constitutive
component of cholinergic nerve terminals and
thus provides a measure of the development of
cholinergic projections (Dam et al. 1999;
Happe and Murrin 1992; Monnet-Tschudi
et al. 2000; Qiao et al. 2003; Richardson and
Chambers 2005; Slotkin et al. 2001). Unlike
expression of ChAT, expression of the choline
transporter is responsive to neuronal activity
(Klemm and Kuhar 1979; Simon et al. 1976),
so measurement of both parameters enables
the distinction between effects on the develop-
ment of innervation and those on synaptic
activity. These markers have been used previ-
ously to characterize effects of chlorpyrifos on
cholinergic systems in adult rats (Liu and Pope
1996, 1998) and to evaluate the immediate
and delayed effects of postnatal chlorpyrifos
exposure (Dam et al. 1999; Rhodes et al.
2004; Richardson and Chambers 2005;
Slotkin et al. 2001). Finally, we also measured
radioligand binding to the m2-muscarinic
acetylcholine receptor (m2AChR), which is
targeted by organophosphates in two distinct
ways. First, the receptor typically undergoes

down-regulation in the presence of excess
acetylcholine, thus providing a time-integrated
index of the degree of cholinergic hyperstimula-
tion experienced by the developing brain after
organophosphate exposure (Bushnell et al.
1993; Chakraborti et al. 1993; Ward and
Mundy 1996). In addition, the oxons also bind
directly to the m2AChR, affecting both its
expression and its ability to elicit cellular signals
(Howard and Pope 2002; Huff et al. 1994).

Materials and Methods

Animal treatments. All experiments were car-
ried out in accordance with the Guide for the
Care and Use of Laboratory Animals (Institute
of Laboratory Animal Resources 1996) as
adopted and promulgated by the National
Institutes of Health. Timed-pregnant Sprague-
Dawley rats (Charles River, Raleigh, NC) were
housed in breeding cages, with a 12-hr
light/dark cycle and free access to food and
water. On the day of birth, all pups were ran-
domized and redistributed to the dams with a
litter size of 9–10 to maintain a standard nutri-
tional status; for treatment groups with high
pup mortality rates (not used for neuro-
chemical analyses), litter sizes were maintained
in this range by combining groups of survivors.
Chlorpyrifos, diazinon, and parathion (all from
Chem Service, West Chester, PA) were dis-
solved in DMSO to provide consistent absorp-
tion (Whitney et al. 1995) and were injected
subcutaneously in a volume of 1 mL/kg once
daily on postnatal days (PND) 1–4; control
animals received equivalent injections of the
DMSO vehicle. For chlorpyrifos, we used daily
doses of 1 mg/kg and 5 mg/kg, straddling the
threshold for growth retardation and systemic
toxicity (Campbell et al. 1997; Whitney et al.
1995). The lower dose produces neurotoxicity
in developing rat brain with only 20%
cholinesterase inhibition (Slotkin 1999, 2004;
Song et al. 1997; Whitney et al. 1995), well
below the 70% threshold necessary for symp-
toms of cholinergic hyperstimulation (Clegg
and van Gemert 1999). This treatment thus
resembles the nonsymptomatic exposures
reported in pregnant women (De Peyster et al.
1993) and is within the range of expected fetal
and childhood exposures after routine home
application or in agricultural communities
(Gurunathan et al. 1998; Ostrea et al. 2002).
For diazinon and parathion, prior information
on systemic toxicity using this vehicle and
route was not available, so we evaluated a
wider range of doses: 0.05–5 mg/kg for diazi-
non and 0.01–5 mg/kg for parathion. As
shown in “Results,” just as for chlorpyrifos,
the diazinon and parathion doses ranged from
those with no discernible effect on growth or
viability to those lying above the threshold for
overt toxicity.

On PND5, one male and one female pup
were selected from each of six litters in each

treatment group and were used for neuro-
chemical evaluations. Animals were decapi-
tated, the cerebellum was removed, and the
brainstem and forebrain were separated by a
cut made rostral to the thalamus. Tissues were
weighed, flash-frozen in liquid nitrogen, and
maintained at –45°C until analysis.

Assays. Tissues were thawed in 79 vol-
umes of ice-cold 10 mM sodium-potassium
phosphate buffer (pH 7.4) and homogenized
with a Polytron (Brinkmann Instruments,
Westbury, NY). For ChAT activity (Lau et al.
1988), assays contained 60 mM sodium phos-
phate (pH 7.9), 200 mM NaCl, 20 mM
choline chloride, 17 mM MgCl2, 1 mM
EDTA, 0.2% Triton X-100, 0.12 mM
physostigmine, 0.6 mg/mL bovine serum
albumin, and 50 µM [14C]acetyl coenzyme A
(specific activity, 60 mCi/mmol, diluted with
unlabeled compound to 6.7 mCi/mmol;
(PerkinElmer Life Sciences, Boston, MA).
Samples were preincubated for 15 min on ice
and transferred to a 37°C water bath for
30 min, and the reaction was terminated by
placing the samples on ice. Labeled acetyl-
choline was then extracted and counted, and
the activity was determined relative to total
protein (Smith et al. 1985).

For measurements of [3H]HC3 binding
(Vickroy et al. 1984), the cell membrane frac-
tion was prepared by sedimenting an aliquot
of the same tissue homogenate at 40,000 × g
for 15 min. The membrane pellet was resus-
pended (Polytron) in the original volume of
buffer and resedimented, and the resultant
pellet was resuspended using a smooth glass
homogenizer fitted with a Teflon pestle, in
10 mM sodium-potassium phosphate buffer
(pH 7.4) and 150 mM NaCl. Radioligand
binding was evaluated with 2 nM [3H]HC3
(specific activity, 125 Ci/mmol; PerkinElmer),
with incubation for 20 min at room tempera-
ture, followed by rapid vacuum filtration
onto Whatman GF/C filters (presoaked for
30 min with 0.1% polyethyleneimine in
buffer). The nonspecific component was
defined as radioligand binding in the pres-
ence of an excess concentration (10 µM) of
unlabeled HC3 (Sigma Chemical Co., St.
Louis, MO). Binding values were expressed
relative to membrane protein. Similarly, for
m2AChR binding, aliquots of the cell mem-
brane fraction were incubated in 10 mM
sodium-potassium phosphate buffer (pH 7.4)
for 60 min at room temperature, using 1 nM
[3H]AFDX384 (specific activity, 115 Ci/mmol;
PerkinElmer) with or without 1 µM atropine
(Sigma) to displace specific binding (Qiao
et al. 2003).

The membrane protein:total protein ratio
was evaluated from the measures of total tis-
sue protein required for the ChAT assay and
of membrane protein required for the ligand
binding determinations.
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Data analysis. Survival rates were com-
pared with Fisher’s exact test using a one-
tailed criterion because treatment with the
organophosphates was expected to increase
mortality. For parametric values, data were
compiled as means and SEs. Because we evalu-
ated multiple neurochemical variables that
were all related to cholinergic synapses, the
initial comparison was conducted by a global
analysis of variance (ANOVA; two tailed)
incorporating all the variables and measure-
ments: treatment, sex, region (repeated meas-
ure within each animal), and effect (ChAT
activity, HC3 binding, and m2AChR binding;
repeated measure within each region). We
identified significant interactions of treatment
with sex and measure, and therefore data were
subdivided for lower-order ANOVAs, fol-
lowed by Fisher’s protected least significant
difference test to evaluate individual treat-
ments that differed from the corresponding
control. Similarly, the membrane protein:
total protein ratio was compared across treat-
ments, regions, and sexes using multivariate
ANOVA. In addition, dose–effect relation-
ships were verified by multiple regression
using the same three factors (dose, region,
sex). Significance was assumed at p < 0.05 for
all tests. For convenience, some data are pre-
sented as the percent change from control
values, but statistical comparisons were

conducted only on the original data. For
reference, the corresponding control values
are shown in Table 1.

Results

In keeping with previous results (Campbell
et al. 1997; Whitney et al. 1995), treatment
with 1 mg/kg of chlorpyrifos on PND1–4 did
not elicit any mortality, whereas raising the
dose to 5 mg/kg produced a cumulative loss
of more than half the animals by PND5
(Figure 1). For diazinon, doses of 0.5, 1, or
2 mg/kg had no effect on survival; raising the
dose to 5 mg/kg resulted in the loss of < 10%
of the neonates, an effect that did not achieve
statistical significance but was obviously near-
ing the maximum tolerated dose. In contrast
to chlorpyrifos or diazinon, parathion was
much more lethal, causing significant mortal-
ity at doses > 0.1 mg/kg. At 0.2 mg/kg, the
pattern for parathion resembled that of the
highest dose of diazinon, with loss of a few
animals at the initiation of treatment, without
progressive increases in mortality after PND3.
When the dose was raised to 0.5 mg/kg, how-
ever, all the animals given parathion died by
PND5, and the same pattern was seen at 1, 2,
and 5 mg/kg.

For neurochemical evaluations, we
focused on treatments below the threshold for
overt toxicity as defined by the mortality data:

1 mg/kg chlorpyrifos, 0.5–2 mg/kg diazinon,
and 0.02–0.1 mg/kg parathion. At those
doses, none of the treatments had a signifi-
cant effect on body or brain region weights
(data not shown). Nevertheless, there were
significant effects on the ratio of membrane
protein:total protein (p < 0.0001 for the main
effect of treatment) and for the three meas-
ures related to cholinergic synaptic function
(p < 0.05 for treatment × sex; p < 0.03 for
treatment × measure). Because of the signifi-
cant interactions with sex and measure, results
were separated for the different measures, and
treatment and sex effects were evaluated
across the two brain regions. Results for
chlorpyrifos have been published previously
(Dam et al. 1999; Song et al. 1997), so here
we focus on diazinon and parathion.

Diazinon treatment produced a dose-
dependent decrease in the membrane pro-
tein:total protein ratio that was statistically
significant even at 0.5 mg/kg (Figure 2); the
dose–effect relationship was confirmed by
multiple regression incorporating the factors
of dose, region, and sex, demonstrating a sig-
nificant correlation with dose (p < 0.0001).
There were no significant distinctions
between males and females or between the
brainstem and forebrain (no treatment × sex
or treatment × region interaction). In con-
trast, parathion treatment up to the maxi-
mum tolerated dose of 0.1 mg/kg had no
discernible effect on this index.

Among the three cholinergic synaptic
markers, the most consistent effect was on
ChAT activity (Figure 3A). As was seen for
the membrane protein:total protein ratio,
diazinon elicited a dose-dependent deficit in
ChAT (p < 0.003 for the correlation of ChAT
with dose in multiple regression), whereas
parathion was ineffective up to its maximum
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Table 1. Neurochemical parameters in brain regions of controls.

Brainstem Forebrain
Measure Male Female Male Female
Membrane protein:total protein (%) 28.2 ± 0.7 27.1 ± 0.5 25.0 ± 0.8 27.0 ± 0.8
ChAT (pmol/min/mg protein) 188 ± 4 191 ± 2 58 ± 1 61 ± 1
m2AChR binding (fmol/mg protein) 167 ± 4 174 ± 4 263 ± 6 258 ± 7
HC3 binding (fmol/mg protein) 28 ± 1 29 ± 1 15.9 ± 0.9 13.8 ± 0.7
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Figure 1. Effects of different organophosphates on mortality during daily treatment on PND1–4 and for up
to 24 hr after the last dose. Data represent cumulative mortality obtained from a minimum of 60 animals in
each treatment group at each age. Data for 5 mg/kg chlorpyrifos were compiled from previous results
(Campbell et al. 1997; Whitney et al. 1995).
*p < 0.05 compared with control, Fisher’s exact test.

Figure 2. Effects of different doses of diazinon and
parathion on the membrane protein:total protein
ratio in brainstem (bs) and forebrain (fb), assessed
on PND5 and presented as the percent change
from the corresponding control values (Table 1).
ANOVA across all treatments, both regions and
both sexes: main treatment effect, p < 0.0001.
*Significantly different (p < 0.05) from corresponding control
values; statistical significance for individual regions or
sexes was not determined because of the absence of treat-
ment × region and treatment × sex interactions.
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tolerated dose. We did not observe any signifi-
cant down-regulation of m2AChRs with either
diazinon or parathion, and in fact, the inter-
mediate dose of diazinon (1 mg/kg) elicited a
significant increase in males that was no longer
evident when the dose was raised to 2 mg/kg,
still below the threshold for significant mortal-
ity (Figure 3B). There were no discernible
effects on HC3 binding with any of the treat-
ments (Figure 3C). The inherently higher
variability of HC3 binding decreases the likeli-
hood of detecting significant differences of the
magnitude of those found for the other
cholinergic markers; nevertheless, the lack of
significance for the HC3 marker was statisti-
cally distinguishable from the decrement in
ChAT (p < 0.05 for the treatment × measure
interaction).

Discussion

Chlorpyrifos exposure during the perinatal
period is known to evoke deficits in neuritic
outgrowth, specifically including the targeting
of cholinergic projections (Dam et al. 1999;
Das and Barone 1999; Howard et al. 2005;
Qiao et al. 2002, 2003; Slotkin et al. 2001;
Song et al. 1998). Indeed, administration of
1 mg/kg on PND1–4, a regimen below the
threshold for impairment of growth or viabil-
ity, elicits only 20% inhibition of cholines-
terase (Song et al. 1997), well below the 70%
threshold for symptoms of cholinergic hyper-
stimulation (Clegg and van Gemert 1999).
Nevertheless, as shown previously (Dam et al.
1999), as early as 1 day after neonatal chlor-
pyrifos exposure (PND5), there is a shortfall
in ChAT, the constitutive marker of choliner-
gic projections, without affecting HC3 bind-
ing, the index of synaptic activity. At this dose,
down-regulation of m2AChRs does not occur,
and m1AChRs decrease by only 10% (Song
et al. 1997), consistent with only a small
degree of cholinesterase inhibition. The initial
deficits in the development of cholinergic
projections lead to the subsequent emergence
of abnormalities of cholinergic innervation,

substantial deficits in cholinergic synaptic
activity, and related behavioral anomalies in
adolescence and adulthood (Dam et al. 2000;
Levin et al. 2001; Slotkin 1999, 2004; Slotkin
et al. 2001). The effects of chlorpyrifos at its
maximum tolerated dose of 1 mg/kg can thus
serve as a benchmark for parallel comparisons
of the effects of diazinon and parathion as
evaluated in the present study.

With in vitro models or lower organisms,
diazinon, like chlorpyrifos, has been shown to
interfere with neural cell replication and dif-
ferentiation (Axelrad et al. 2003; Morale et al.
1998; Qiao et al. 2001; Shin et al. 2001).
Here, in neonatal rats, diazinon exhibited less
systemic toxicity than chlorpyrifos, with no
growth impairment or significant loss of via-
bility up to a dose of 5 mg/kg. Nevertheless, at
exposures well below the maximum tolerated
dose, diazinon reduced the membrane pro-
tein:total protein ratio, a result in keeping
with restriction of neuritic outgrowth. Also
like chlorpyrifos, diazinon produced a deficit
in ChAT, consistent with targeting of the
development of cholinergic projections, with-
out discernible effect on HC3 binding, the
index of impulse activity. However, it should
be noted that the greater variability of HC3
binding renders it problematic to detect small
changes, so an effect on cholinergic synaptic
activity cannot be ruled out. Nevertheless, it is
notable that the same pattern, decreased
ChAT without a change in HC3 binding, is
seen at the same early stage after neonatal
chlorpyrifos treatment (Dam et al. 1999), and
deficits in HC3 binding do not emerge until
much later in development (Slotkin et al.
2001). Accordingly, it would be valuable to
carry out longitudinal studies of cholinergic
synaptic function and related behavioral
anomalies after neonatal diazinon exposure,
parallel to those already completed for chlor-
pyrifos (Levin et al. 2001; Slotkin 2004;
Slotkin et al. 2001). As was also found with
chlorpyrifos (Song et al. 1997), diazinon treat-
ment affected neuritic outgrowth and ChAT

without down-regulating m2AChR binding,
in keeping with the absence of signs of cholin-
ergic hyperstimulation and consistent with
mechanisms unrelated to cholinesterase inhi-
bition. Indeed, the only change was a signifi-
cant increase at 1 mg/kg that was lost when
the dose was raised to 2 mg/kg. The biphasic
pattern has also been noted previously with
chlorpyrifos (Levin et al. 2002; Qiao et al.
2002), and there are two distinct possibilities
for this hormetic response. First, a small
degree of cholinergic stimulation can be pro-
motional for neural cell differentiation because
of the neurotrophic role of acetylcholine
(Lauder and Schambra 1999), whereas that
effect would likely be offset when the dose is
raised closer to the threshold for systemic toxi-
city (Qiao et al. 2002). Alternatively, the abil-
ity of the organophosphates and their oxons to
bind to the m2AChR and interfere with its
function (Howard and Pope 2002; Huff et al.
1994) would be likely to elicit compensatory
up-regulation of receptor expression, which
would then be offset by down-regulation con-
sequent to cholinesterase inhibition as the
dose is raised.

The effects of parathion stand in stark con-
trast to those of chlorpyrifos and diazinon. As
found in previous work (Atterberry et al. 1997;
Liu et al. 1999; Padilla et al. 2004; Pope and
Chakraborti 1992; Pope et al. 1991; Tang et al.
2003), parathion was far more potent in elicit-
ing systemic toxicity, with a threshold for
lethality at 0.2 mg/kg, fully an order of magni-
tude below those for the other two organo-
phosphates. We administered each agent by
subcutaneous injection, so first-pass differences
in hepatic activation to the corresponding oxon
or catabolism to inactive products clearly can-
not account for these differences. Because the
maximum tolerated dose is directly related to
the degree of cholinesterase inhibition (Pope
and Chakraborti 1992; Pope et al. 1991;
Tang et al. 2003), our results provide a frame-
work for evaluating the relative contributions
of cholinesterase inhibition versus other
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Figure 3. Effects of different doses of diazinon and parathion on markers of cholinergic synaptic development in brainstem (bs) and forebrain (fb), assessed on
PND5. (A) ChAT activity (ANOVA: treatment, p < 0.0001). (B) m2AChR receptor binding (ANOVA: treatment, p < 0.03; treatment × sex, p < 0.0002; male, p < 0.0001.
(C) HC3 binding to the high-affinity presynaptic choline transporter (ANOVA: treatment × sex × region, p < 0.05). Data are presented as the percent change from
the corresponding control values (Table 1).
*Significantly different (p < 0.05) from corresponding control values; statistical significance for individual regions or sexes was determined only where there were corresponding treatment
× region or treatment × sex interactions. 
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mechanisms in the developmental neurotoxic-
ity of organophosphates. If the effects of
parathion at its maximum tolerated dose paral-
lel those of chlorpyrifos and diazinon at their
maximum tolerated doses, which are much
higher, then cholinesterase inhibition is likely
to be the most important factor; on the other
hand, if these effects are unrelated to cholines-
terase inhibition and resultant systemic toxic-
ity, then the lower dose of parathion should be
relatively ineffective in producing develop-
mental neurotoxicity. Our results clearly point
to the latter outcome: Parathion administra-
tion up to the maximum tolerated dose of
0.1 mg/kg had no discernible effect on the
membrane protein:total protein ratio or on
ChAT activity. Our results do not mean that
parathion is incapable of eliciting developmen-
tal neurotoxicity, but rather that the dose
required for effects on brain development
exceeds the threshold for overt systemic toxic-
ity, a situation opposite that for chlorpyrifos or
diazinon. In support of this interpretation,
higher doses of parathion administered to preg-
nant rats throughout gestation do affect ChAT
but only when the dose is sufficiently high to
elicit clear signs of maternal toxicity and down-
regulation of mAChR binding (Gupta et al.
1985); similarly, paraoxon administration over
a prolonged postnatal period, at doses that
decrease weight gain and viability, impairs the
development of neuritic projections (Santos
et al. 2004), precisely the effects seen for chlor-
pyrifos and diazinon at exposures below the
maximum tolerated dose. In vitro test systems
also suggest that chlorpyrifos is inherently
more toxic to the developing brain than is
parathion (Barber et al. 2001; Monnet-
Tschudi et al. 2000), the opposite of their rela-
tionship for cholinesterase inhibition and
systemic toxicity. Obviously, future work
needs to address the specific mechanisms that
determine the separable effects of the different
organophosphates on neurodevelopment. It is
unlikely that these reside in simple physico-
chemical characteristics such as lipid solubility,
neither for systemic toxicity nor for develop-
mental neurotoxicity; the latter is not surpris-
ing, considering that the blood–brain barrier is
incomplete in the neonate and in any case is
not an issue for penetration of highly lipophilic
compounds such as the organophosphates
(Saunders and Møllgard 1984). Chlorpyrifos,
diazinon, and parathion are all highly lipid
soluble (partition coefficients in the thou-
sands), with a rank order of chlorpyrifos
>> parathion ≈ diazinon (Bowman and Sans
1979; Davies et al. 1975; Sartorelli et al. 1998;
Sunshine 1969), yet the developmental effects
of chlorpyrifos and diazinon were similar,
whereas those for parathion were different.

In conclusion, different organophosphates
share the ability to elicit developmental neuro-
toxicity converging on a common set of

events, including impaired neuritic out-
growth and impaired development of charac-
teristics that are critical to the phenotypic
differentiation and function of cholinergic
neurons. However, these effects are entirely
disjunct from systemic toxicity, which
instead largely reflects cholinesterase inhibi-
tion. In fact, the developmental neurotoxicity
of parathion emerges only at doses exceeding
the threshold for overt toxicity, whereas the
corresponding effects of chlorpyrifos and
diazinon are apparent at exposures below the
maximum tolerated dose. Our findings thus
emphasize the need to examine fetal and
neonatal neurotoxicity of multiple organo-
phosphates in a fashion similar to that
already conducted for chlorpyrifos, as well as
reinforcing the need for replacement of the
“gold standard,” cholinesterase inhibition,
with biomarkers of neural development, the
true end points for the developmental neuro-
toxicity of organophosphates.
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