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Data
osion

Bringing Order
to Chaos with
Bioinformatics
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and stored by the millions in vast, expanding databases through-
out the world. Microarrays, which provide snapshots of thou-
sands of expressed genes simultaneously, are also data-intensive.
Years ago, when sequencing was slow and tedious, scientists
could study the output manually—no more. By necessity, they

now need computers and sophisticated algorithms to wade
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through it all.

Environmental Health Perspectives - voLume 111 | NumeEr 6 | May 2003 A 341




Focus | Data Explosion

In recent years, the field of bioinfor-
matics has emerged to meet these chal-
lenges. By definition, bioinformatics is
the process by which informatics—the
science of turning data into informa-
tion—is applied to biology. A combina-
tion of computer science, information
technology, and molecular biology, bioin-
formatics allows researchers to quickly
access and interpret a rising tide of
genomic information. This is critical for
the genomic era: scientists are sequencing
the genomes of many species, but they
know little about how great regions of
these genomes and the proteins they give
rise to actually function.

In a basic application, bioinformatics
allows researchers to search online data-
bases such as GenBank for a given gene’s
composition, proteins, mutations, cover-
age in the scientific literature, and many
other relevant parameters that are collec-
tively termed “annotation.” With more
advanced applications, scientists use
bioinformatics techniques to model chem-
ical networks in living cells, including
those stressed by disease or toxicity.

No researcher can possibly be familiar
with all the known interactions in a cell,
says Trey Ideker, a computational biologist
with the Whitehead Institute for Bio-
medical Research in Cambridge, Massa-
chusetts. Bioinformatics allows scientists to
access, display, and interpret systems-level
information. Fueled by bioinformatics, tox-
icogenomics is becoming an 77 silico science,
with computerized data mining a key source
of new discoveries.

Core Repositories

The rise of modern bioinformatics is root-
ed in the history of protein and nucleotide
sequencing. The timeline arguably dates
back to 1955, the year a Nobel Prize—win-
ning British biochemist named Frederick
Sanger first sequenced the protein bovine
insulin. The first completed genome,
sequenced in 1980, was that of a virus
called phiX174. In subsequent years, sci-
entists have gone on to sequence the
genomes of higher organisms, including
the human genome, which was completed
in April 2003.

At first, sequencing was a slow and
tedious process. The traditional tech-
nique—which involved gel electrophoresis
and autoradiography—allowed scientists
to manually sequence a single DNA frag-
ment of 300-500 base pairs in about a day.
This technique has been replaced almost
entirely by automated high-throughput
technologies to process DNA samples to
determine the arrangement of nucleotides.
The Applied Biosystems sequencers used

in the decoding of the human genome, for
example, are roughly 6,000 times faster
than earlier approaches.

Today, sequencing is an international
phenomenon. Entire consortia are devot-
ed to sequencing the genomes of many
species, including the human, the rat, the
mouse, and many types of fish, birds, and
microbes. Most of these sequences eventu-
ally wind up in a few publicly available
databases. For nucleotides, the chief data-
base in the United States is GenBank,
maintained by the National Center for
Biotechnology Information (NCBI), a
division of the National Library of
Medicine of the NIH. GenBank was actu-
ally started by the late physicist Walter
Goad of the Los Alamos National
Laboratory, who began compiling se-
quences there in 1979 while initiating
efforts to create a national DNA/RNA
database. The NIH created GenBank
from Goad’s original compilation, and the
database was transferred to the NCBI
from Los Alamos in 1992.

Today, all of GenBank’s content is tight-
ly integrated with two other databases, one
(the EMBL Nucleotide Sequence Data-
base) maintained by the European
Molecular ~ Biology = Laboratory in
Heidelberg, Germany, and the other (the
DNA Data Bank of Japan) by the Center
for Information Biology of the Japanese
National Institute of Genetics in Mishima.
GenBank’s place in the U.S. research com-
munity is pivotal; most journals won't pub-
lish new sequences that GenBank has yet to
accept. “GenBank is designed as a reposito-
ry for all publicly available nucleotide
darta,” explains NCBI staff scientist David
Wheeler. “Anyone can come here [via the
Internet] and pick what they need in terms
of primary sequences.”

Another publicly available source of
nucleotide data is at The Institute for
Genomic Research (TIGR), a nongovern-
mental research group based in Rockville,
Maryland. Unlike GenBank, the TIGR
database is populated with data produced
by TIGR researchers in addition to data
collected from bacterial sequencing projects
going on around the world. Inidally a pio-
neer in the field of bacterial genomics (sci-
entists there sequenced the first bacterial
genomes in 1995), TIGR has more recent-
ly broadened its scope to include nonbacte-
rial species, including the parasites that
cause malaria and sleeping sickness. It was
also a major contributor to the sequencing
of the human genome. The TIGR database
is complementary to GenBank, in that it
tracks all ongoing bacterial genome
sequencing projects, in addition to those
that have already been completed.

For protein sequences, the critical
database is Swiss-Prot, which is a collabo-
ration of the Geneva-based Swiss Institute
of Bioinformatics and the European Bio-
informatics Institute of the European
Molecular Biology Laboratory. (Within
the next three years, the United Protein
Database, or UniProt, will combine Swiss-
Prot and two other databases; see “Putting
Proteins in One Place,” p. A336 this
issue.) With respect to microarrays, the
database options are quite diverse. Among
the public databases are the NCBI’s Gene
Expression Omnibus and ArrayExpress,
which is maintained by the European
Bioinformatics Institute. Various research
organizations maintain a host of smaller
“core” databases, including the holdings
of the Microarray Center at the NIEHS
National Center for Toxicogenomics
(NCT) and the Stanford Microarray
Database at Stanford University. And
finally, the key public database for single-
nucleotide polymorphisms, or SNPs,
which are simple gene mutations, is
dbSNP, maintained by the NCBI.

Side-by-Side Sequences

Bioinformatics has traditionally been focused
on “sequence comparisons” performed with
an evolving set of computational algorithms.
With this process, scientists compare
known and unknown sequences in an
attempt to infer the properties of the latter.
The underlying assumption is that similar
sequences are homologous, meaning they
are ancestrally related with similar proper-
ties across a variety of species. Screening a
newly sequenced protein for homologues
in Swiss-Prot, for example, provides pre-
dictive information about the protein’s
function, three-dimensional structure, and
organization.

Because these predictions are based on
sequence homology, they must be con-
firmed experimentally. Ideker says the
ability to find new opportunities for
experimentation is fueling a paradigm
shift in biology. Because of bioinformat-
ics, he says, biology is becoming a predic-
tive rather than merely descriptive science.

Like sequencing itself, sequence com-
parisons have evolved from their tedious
origins. The first algorithms, such as the
Needleman—Wunsch algorithm intro-
duced in 1971, were designed to allow
“global alignment.” These algorithms
align every amino acid or nucleotide in a
sequence of interest to a known counter-
part in a search for homologous regions.

Current sequencing approaches favor
“local alignment” strategies that look for
short regions of nearly perfect matches.
The most widely used of these is the Basic

voLume 111 I NumBer 6 | May 2003 « Environmental Health Perspectives



Digital Vision, PhotoDisc, Matt Ray/EHP

Bioinformatics Resources

=P =

Databases

ArrayExpress
http://www.ebi.ac.uk/arrayexpress/

Biomolecular Interaction Network Database
http://www.bind.ca/

Chemical Effects in Biological Systems
http://www.niehs.nih.gov/nct/cebs.htm

dbSNP
http://www.ncbi.nlm.nih.gov/SNP/

DNA Data Bank of Japan
http://www.ddbj.nig.ac.jp/

EMBL Nucleotide Sequence Database
http://www.ebi.ac.uk/embl/Access/index.html

GenBank
http://www.ncbi.nlm.nih.gov/Genbank/index.html

Gene Expression Omnibus
http://www.ncbi.nlm.nih.gov/geo/

Stanford Microarray Database
http://genome-www?5.stanford.edu/MicroArray/SMD/

Swiss-Prot
http://us.expasy.org/sprot/

Transcription Factor Database
http://transfac.gbf.de/TRANSFAC/

Institutes and Centers

European Bioinformatics Institute
http://www.ebi.ac.uk/embl/index.html

European Molecular Biology Laboratory
http://www.embl-heidelberg.de/

Genome Canada
http://www.genomecanada.ca/

National Center for Biotechnology Information
http://www.ncbi.nlm.nih.gov/
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National Center for Toxicogenomics, Microarray Center
http://dir.niehs.nih.gov/microarray/home.htm

National Institute of Genetics (Japan), Center for
Information Biology
http://www.cib.nig.ac.jp/

North Carolina State University, Bioinformatics Research Center
http://statgen.ncsu.edu/bioinformatics/

Swiss Institute of Bioinformatics
http://www.isb-sib.ch/

The Institute for Genomic Research
http://www.tigr.org/

The Wellcome Trust Sanger Institute
http://www.sanger.ac.uk/

Toxicogenomics Research Consortium
http://www.niehs.nih.gov/nct/trc.htm

Whitehead Institute for Biomedical Research
http://www.wi.mit.edu/

University of California, Santa Cruz, Genome
Bioinformatics Group

http://genome.ucsc.edu/
Software and Other Tools

Basic Local Alignment Search Tool (BLAST)
http://www.ncbi.nlm.nih.gov/BLAST/

Bioinformatics Organization
http://bicinformatics.org/

BLAST-Like Alignment Tool (BLAT)

http://genome.ucsc.edu/cgi-bin/
hgBlat?command=start&org=human

Ensembl
http://www.ensembl.org/

Entrez
http://www.ncbi.nlm.nih.gov/Entrez/
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Local Alignment Search Tool (BLAST®)
software, available from the NCBI. By
running BLAST, researchers quickly scan
novel sequences against up-to-date con-
tent from GenBank and a host of other
relevant databases. “BLAST was just amaz-
ing to us when it was released in the early
nineteen-nineties,” recalls Fran Lewitter,
director of biocomputing at the White-
head Institute. “[Before BLAST,] it could
take hours to compare sequences. But with
BLAST you could enter a sequence into a
computer, hit ‘return,” and youd get your
answer immediately.”

Global and local alignments are often
performed sequentially. Researchers will
run a sequence through BLAST to identi-
fy short regions of high similarity and
then run global alignments to identify a
wider range of sequences around those
alignments. Thus, it is possible to observe
evolutionary changes around the more
highly conserved surrounding regions.

BLAST is typically the first step for
someone consulting GenBank to evaluate
a novel sequence. Upon entry of the
sequence, BLAST returns lists of accession
numbers for other, similar sequences.
Researchers click on these accession num-
bers and through the GenBank interface—
known as Entrez—connect to databases of
annotated information for the sequence
matches. “Entrez is our general search sys-
tem,” Wheeler explains. “It covers data
contained in a variety of databases includ-
ing GenBank, Swiss-Prot, PubMed, and
many others.”

Another useful search tool for obtain-
ing sequence annotation is Ensembl,
offered by the European Bioinformatics
Institute and The Wellcome Trust Sanger
Institute, a biomedical research organiza-
tion near Cambridge, United Kingdom.
Like Entrez, Ensembl allows users to run
BLAST searches and link results to anno-
tated databases by accession number. And
the University of California, Santa Cruz,
offers a genome browser that is particular-
ly well suited for novel RNA sequences.
This particular browser runs sequence
comparisons with a program called
BLAST-Like Alignment Tool (BLAT).
According to Jim Kent, a research scientist
with the university’s Genome Bioinform-
atics Team, BLAT maps RNA sequences
to the genome at a speed roughly 50 times
faster than BLAST.

George Bell, a bioinformatics scientist
at the Whitehead Institute, says users are
best served by employing a variety of search
tools. “Its like searching for movie
reviews,” he explains. “You dont want to
g0 to just one site; you want as much infor-
mation as you can get.” There are several

3

good reasons to consult multiple sources
for sequence matching and information,
Bell says. No one site is definitive—the
number of published sequences changes
every day, as does the amount and quality
of associated annotations. Furthermore,
automated algorithms are all prone to
error. Comparing the output of several sites
provides a maximal amount of informa-
tion. The question of which output to use,
Bell emphasizes, is best answered using the
researcher’s own scientific judgment.

Mining Microarrays

The bioinformatic techniques used to
evaluate microarray data differ entirely
from those used to compare nucleotides
and proteins. In a toxicogenomics experi-
ment with microarrays, fluorescent dyes
are used to differentially label RNA from
unexposed versus exposed animals. Results
are measured in terms of relative fluores-
cence intensity, a continuous variable that
Mike Waters, the NCT’s assistant director
for database development, says is best
compared using classical statistics for
measurable outcomes, such as analysis of
variance. These analyses can be run using
standard desktop software, says Bruce
Weir, director of the Bioinformatics
Research Center at North Carolina State
University in Raleigh. Such programs
allow scientists to approximate which
genes have been activated or inactivated
by chemical exposure.

Multivariate statistics are then applied
to microarray data to identify groups of
genes that respond concurrently to chem-
ical exposures. There are many techniques
for grouping genes in this way, including
gene clustering, a statistical method devel-
oped by Michael B. Eisen, a scientist with
the Life Sciences Division at the Lawrence
Berkeley National Laboratory in Berkeley,
California.

Identifying chemically induced gene
clusters is of high value to toxicoge-
nomics. Modern microarrays show the
expression of hundreds to thousands of
genes simultaneously. Clustering of highly
expressed genes provides structure to these
voluminous data. “It allows you to find
genes that are regulated in the same way,”
Kent explains. “You may find these clus-
ters are tissue-specific. Clustering basically
allows you to create groups of gene fami-
lies as we do with sequence homology.
Therefore, we can infer something about
the gene’s function according to the fami-
ly to which it belongs.”

An effort to apply microarrays to toxi-
cogenomics is currently under way at the
Microarray Center at the NIEHS. Pierre
Bushel, bioinformatics manager at the

center, says data generated there are shared
with public repositories such as Gene
Expression Omnibus and ArrayExpress, in
addition to a new “knowledge base” at the
NCT called Chemical Effects in Biolog-
ical Systems. With this knowledge base,
the NIEHS aims to provide the ultimate
international resource for all toxicoge-
nomics data. Bushel says most of the
microarray chips currently used by the
NCT are prepared in-house.

A key objective, says Waters, is to
ensure that annotation for all of the cen-
ter’s microarrays is current. This is a tall
order, he admits. Annotated information
in the public domain is continually updat-
ed. Uldmately, Waters says, the NCT
wants to automate its annotation, using
distributed annotation servers that track
GenBank, Swiss-Prot, and other major
databases, pulling in new information as it
becomes available.

Presently, the NCT is working with
Agilent Technologies on a mouse microar-
ray for toxicogenomics studies. According
to James Selkirk, deputy director of the
NCT, this “ToxChip” is being designed in
cooperation with the NIEHS-funded
Toxicogenomics Research Consortium, a
group of five academic research centers
plus the Microarray Center. The inten-
tion, he says, is to produce a chip contain-
ing a large number of genes thought to be
relevant to the toxicity of environmental
agents. “This should be something that is
of wide interest to the microarray profil-
ing public,” Selkirk says.

Computing Biology

At a certain point, the knowledge gained
from studying sequences and microarrays
sets the stage for investigations of cellular
networks and pathways. Toxicity is mani-
fested by a stunningly complex array of
cellular events. The nature of these com-
plex systems is studied with an extension
of bioinformatics called computational
biology. Whether the two fields are actu-
ally distinct is a matter of debate. One
view suggests that bioinformatics deals
with the acquisition, storage, and presen-
tation of data, whereas computational
biology applies the data to biological
models. But in general, both fields cover
the spectrum of computer-related activi-
ties in biological research.

In some ways, computational biology
is more applicable to proteomics—the
study of protein function in biological sys-
tems—where experts say the biomedical
benefits of genomic knowledge will ulti-
mately be found. “The actual network of
molecular interactions is elucidated with
proteomics,” says Ideker. “Researchers in

voLume 111 I NumBer 6 | May 2003 « Environmental Health Perspectives



Focus | Data Explosion

this field are asking two key questions:
what are the protein—protein interactions,
and what are the protein~DNA interac-
tions? These are the fundamental iterations
that we're concerned with.”

According to Ideker, a number of exper-
imental methods predominate in this type
of research. These methods are currently
focused mainly on studies in yeast. For pro-
tein—protein interactions, Ideker says, a key
method is the 2-hybrid system (also known
as the yeast 2-hybrid system). This experi-
mental system allows researchers to screen
for interactions in large numbers of yeast
proteins simultaneously.

A high-throughput method for assessing
protein—-DNA interactions has been devel-
oped by Richard Young, a biology professor
at the Massachusetts Institute of Technology
and a member at the Whitehead Institute.
Young’s method is based on a technique
known as immunoprecipitation. In brief,
the technique involves tagging proteins,
cross-linking them with DNA in a cell, and
then purifying the protein—-DNA linkages.

By uncrossing the linkages, scientists are
able to evaluate the nature of the pro-
tein—-DNA interactions.

These interactions can then be made
publicly available via a number of online
repositories. According to Ideker, one of
the best repositories for protein—protein
interactions is the Biomolecular Inter-
action Network Database, coordinated in
part by Genome Canada, a genomics
research organization based in Ottawa.
This database is specifically designed for
studies in computational biology. An
important repository for protein—-DNA
interactions is the Transcription Factor
Database, coordinated by Research Group
Bioinformatics of Germany.

According to Ideker, computational
biologists mine these repositories to model
cell networks. It’s now possible to construct
models of “virtual cells” that are broad
although not detailed, he says. “It’s also
possible to really nail a particular path-
way,” he adds. Ideker is currently collabo-
rating with Leona Samson, a professor of
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toxicology at the Massachusetts Institute of
Technology, on computational studies
investigating pathways of DNA repair fol-
lowing exposure to chemical mutagens.
Eventually, scientists hope to pull all the
available genomic data into complete mod-
els that also address the influence of genet-
ic mutations such as SNPs. These models
will allow researchers to assess how genom-
ic variations contribute to disease or the
response to toxicants. But many difficult
challenges remain. For instance, database
information must be maintained in com-
patible formats for global searches.
Databases must also be updated with
respect to the ever-increasing body of bio-
logical knowledge. And of course, scientists
still need to extrapolate the results of exper-
iments in lower organisms such as yeast to
mammalian systems, humans in particular.
“We're dealing with a level of exceeding
complexity,” Waters says. “These are not
advances that are going to come overnight.”

Charles W. Schmidt



