NATIONAL TOXICOLOGY PROGRAM Technical Report Series No. 315

ANH SERVICES

TOXICOLOGY AND CARCINOGENESIS STUDIES OF OXYTETRACYCLINE HYDROCHLORIDE (CAS NO. 2058-46-0) IN F344/N RATS AND B6C3F1 MICE (FEED STUDIES)

> U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES Public Health Service National Institutes of Health

NATIONAL TOXICOLOGY PROGRAM

The National Toxicology Program (NTP), established in 1978, develops and evaluates scientific information about potentially toxic and hazardous chemicals. This knowledge can be used for protecting the health of the American people and for the primary prevention of disease. By bringing together the relevant programs, staff, and resources from the U.S. Public Health Service, DHHS, the National Toxicology Program has centralized and strengthened activities relating to toxicology research, testing and test development/validation efforts, and the dissemination of toxicological information to the public and scientific communities and to the research and regulatory agencies.

The NTP is made up of four charter DHHS agencies: the National Cancer Institute (NCI), National Institutes of Health; the National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health; the National Center for Toxicological Research (NCTR), Food and Drug Administration; and the National Institute for Occupational Safety and Health (NIOSH), Centers for Disease Control. In July 1981, the Carcinogenesis Bioassay Testing Program, NCI, was transferred to the NIEHS.

NTP TECHNICAL REPORT ON THE

TOXICOLOGY AND CARCINOGENESIS

STUDIES OF

OXYTETRACYCLINE HYDROCHLORIDE

(CAS NO. 2058-46-0)

IN F344/N RATS AND B6C3F1 MICE

(FEED STUDIES)

NATIONAL TOXICOLOGY PROGRAM P.O. Box 12233 Research Triangle Park, NC 27709

January 1987

NTP TR 315

NIH Publication No. 87-2571

U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES Public Health Service National Institutes of Health

NOTE TO THE READER

These studies are designed and conducted to characterize and evaluate the toxicologic potential, including carcinogenic activity, of selected chemicals in laboratory animals (usually two species, rats and mice). Chemicals selected for testing in the NTP Carcinogenesis Program are chosen primarily on the bases of human exposure, level of production, and chemical structure. Selection per se is not an indicator of a chemical's carcinogenic potential. Negative results, in which the test animals do not have a greater incidence of cancer than control animals, do not necessarily mean that a test chemical is not a carcinogen, inasmuch as the experiments are conducted under a limited set of conditions. Positive results demonstrate that a test chemical is carcinogenic for animals under the conditions of the test and indicate that exposure to the chemical has the potential for hazard to humans. The determination of the risk to humans from chemicals found to be carcinogenic in animals requires a wider analysis which extends beyond the purview of this study.

Five categories of interpretative conclusions were adopted for use in June 1983 in the Technical Reports series to specifically emphasize consistency and the concept of actual evidence of carcinogenicity. For each definitive study result (male rats, female rats, male mice, female mice), one of the following quintet will be selected to describe the findings. These categories refer to the strength of the experimental evidence and not to either potency or mechanism.

- Clear Evidence of Carcinogenicity is demonstrated by studies that are interpreted as showing a chemically related increased incidence of malignant neoplasms, studies that exhibit a substantially increased incidence of benign neoplasms, or studies that exhibit an increased incidence of a combination of malignant and benign neoplasms where each increases with dose.
- Some Evidence of Carcinogenicity is demonstrated by studies that are interpreted as showing a chemically related increased incidence of benign neoplasms, studies that exhibit marginal increases in neoplasms of several organs/tissues, or studies that exhibit a slight increase in uncommon malignant or benign neoplasms.
- Equivocal Evidence of Carcinogenicity is demonstrated by studies that are interpreted as showing a chemically related marginal increase of neoplasms.
- No Evidence of Carcinogenicity is demonstrated by studies that are interpreted as showing no chemically related increases in malignant or benign neoplasms.
- Inadequate Study of Carcinogenicity demonstrates that because of major qualitative or quantitative limitations, the studies cannot be interpreted as valid for showing either the presence or absence of a carcinogenic effect.

Additionally, the following concepts (as patterned from the International Agency for Research on Cancer Monographs) have been adopted by the NTP to give further clarification of these issues:

The term *chemical carcinogenesis* generally means the induction by chemicals of neoplasms not usually observed, the earlier induction by chemicals of neoplasms that are commonly observed, or the induction by chemicals of more neoplasms than are generally found. Different mechanisms may be involved in these situations. Etymologically, the term *carcinogenesis* means induction of cancer, that is, of malignant neoplasms; however, the commonly accepted meaning is the induction of various types of neoplasms or of a combination of malignant and benign neoplasms. In the Technical Reports, the words *tumor* and *neoplasm* are used interchangeably.

This study was initiated by the National Cancer Institute's Carcinogenesis Bioassay Program, now part of the National Institute of Environmental Health Sciences, National Toxicology Program. The studies described in this Technical Report have been conducted in compliance with NTP chemical health and safety requirements and must meet or exceed all applicable Federal, state, and local health and safety regulations. Animal care and use were in accordance with the U.S. Public Health Service Policy on Humane Care and Use of Animals. All NTP toxicology and carcinogenesis studies are subjected to a data audit before being presented for peer review.

Although every effort is made to prepare the Technical Reports as accurately as possible, mistakes may occur. Readers are requested to identify any mistakes so that corrective action may be taken. Further, anyone who is aware of related ongoing or published studies not mentioned in this report is encouraged to make this information known to the NTP. Comments and questions about the National Toxicology Program Technical Reports on Toxicology and Carcinogenesis Studies should be directed to Dr. J.E. Huff, National Toxicology Program, P.O. Box 12233, Research Triangle Park, NC 27709 (919-541-3780).

These NTP Technical Reports are available for sale from the National Technical Information Service, U.S. Department of Commerce, 5285 Port Royal Road, Springfield, VA 22161 (703-487-4650). Single copies of this Technical Report are available without charge (and while supplies last) from the NTP Public Information Office, National Toxicology Program, P.O. Box 12233, Research Triangle Park, NC 27709.

CONTENTS

PAGE

ABST	'RACT
CONT	TRIBUTORS
PEER	REVIEW PANEL
SUMM	MARY OF PEER REVIEW COMMENTS
I.	INTRODUCTION
п.	MATERIALS AND METHODS
	PROCUREMENT AND CHARACTERIZATION OF OXYTETRACYCLINE
	HYDROCHLORIDE
	PREPARATION AND CHARACTERIZATION OF FORMULATED DIETS
	FOURTEEN-DAY STUDIES23
	THIRTEEN-WEEK STUDIES
	TWO-YEAR STUDIES
	STUDY DESIGN
	SOURCE AND SPECIFICATIONS OF ANIMALS
	ANIMAL MAINTENANCE
	CLINICAL EXAMINATIONS AND PATHOLOGY
	STATISTICAL METHODS
III.	RESULTS
	RATS
	FOURTEEN-DAY STUDIES
	THIRTEEN-WEEK STUDIES
	TWO-YEAR STUDIES
	BODY WEIGHTS AND CLINICAL SIGNS
	SURVIVAL
	PATHOLOGY AND STATISTICAL ANALYSES OF RESULTS
	місе
	FOURTEEN-DAY STUDIES
	THIRTEEN-WEEK STUDIES
	TWO-YEAR STUDIES
	BODY WEIGHTS AND CLINICAL SIGNS
	SURVIVAL
	PATHOLOGY AND STATISTICAL ANALYSES OF RESULTS
IV.	DISCUSSION AND CONCLUSIONS
v.	REFERENCES

TABLES

TABLE	1	IDENTITY AND SOURCE OF LOTS USED IN THE FEED STUDIES OF
		OXYTETRACYCLINE HYDROCHLORIDE
TABLE	2	PREPARATION AND STORAGE OF FORMULATED DIETS IN THE FEED STUDIES
		OF OXYTETRACYCLINE HYDROCHLORIDE23
TABLE	3	SUMMARY OF RESULTS OF ANALYSIS OF FORMULATED DIETS IN THE
		TWO-YEAR FEED STUDIES OF OXYTETRACYCLINE HYDROCHLORIDE
TABLE	4	EXPERIMENTAL DESIGN AND MATERIALS AND METHODS IN THE FEED
		STUDIES OF OXYTETRACYCLINE HYDROCHLORIDE
TABLE	5	SURVIVAL, MEAN BODY WEIGHTS, AND FEED CONSUMPTION OF RATS IN
		THE FOURTEEN-DAY FEED STUDIES OF OXYTETRACYCLINE HYDROCHLORIDE $\dots 30$
TABLE	6	SURVIVAL, MEAN BODY WEIGHTS, AND FEED CONSUMPTION OF RATS IN
		THE THIRTEEN-WEEK FEED STUDIES OF OXYTETRACYCLINE HYDROCHLORIDE . 31
TABLE	7	OXYTETRACYCLINE CONCENTRATION IN BONE OF RATS IN THE
		THIRTEEN-WEEK FEED STUDIES AS DETERMINED BY A FLUORESCENCE ASSAY . 32
TABLE	8	MEAN BODY WEIGHTS AND SURVIVAL OF RATS IN THE TWO-YEAR FEED
		STUDIES OF OXYTETRACYCLINE HYDROCHLORIDE
TABLE	9	SURVIVAL OF RATS IN THE TWO-YEAR FEED STUDIES OF OXYTETRACYCLINE
		HYDROCHLORIDE
TABLE	10	ANALYSIS OF ADRENAL GLAND LESIONS IN MALE RATS IN THE TWO-YEAR
		FEED STUDY OF OXYTETRACYCLINE HYDROCHLORIDE
TABLE	11	ANALYSIS OF PITUITARY GLAND LESIONS IN FEMALE RATS IN THE
		TWO-YEAR FEED STUDY OF OXYTETRACYCLINE HYDROCHLORIDE ,
TABLE	12	SURVIVAL, MEAN BODY WEIGHTS, AND FEED CONSUMPTION OF MICE IN THE
		FOURTEEN-DAY FEED STUDIES OF OXYTETRACYCLINE HYDROCHLORIDE ,
TABLE	13	SURVIVAL, MEAN BODY WEIGHTS, AND FEED CONSUMPTION OF MICE IN THE
		THIRTEEN-WEEK FEED STUDIES OF OXYTETRACYCLINE HYDROCHLORIDE 40
TABLE	14	OXYTETRACYCLINE CONCENTRATION IN BONE OF MICE IN THE
		THIRTEEN-WEEK FEED STUDIES AS DETERMINED BY A FLUORESCENCE ASSAY . 41
TABLE	15	MEAN BODY WEIGHTS AND SURVIVAL OF MICE IN THE TWO-YEAR FEED
		STUDIES OF OXYTETRACYCLINE HYDROCHLORIDE
TABLE	16	SURVIVAL OF MICE IN THE TWO-YEAR FEED STUDIES OF
		OXYTETRACYCLINE HYDROCHLORIDE

PAGE

TABLES (Continued)

PAGE

TABLE	17	ANALYSIS OF HEPATOCELLULAR ADENOMAS OR CARCINOMAS IN FEMALE MICE
		IN THE TWO-YEAR FEED STUDY OF OXYTETRACYCLINE HYDROCHLORIDE46
TABLE	18	ANALYSIS OF MALIGNANT LYMPHOMAS IN MALE MICE IN THE TWO-YEAR
		FEED STUDY OF OXYTETRACYCLINE HYDROCHLORIDE

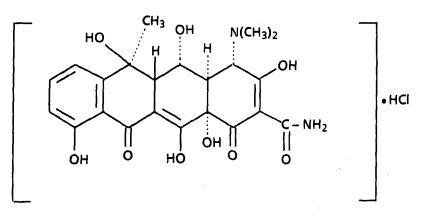
FIGURES

FIGURE	1	GROWTH CURVES FOR RATS FED DIETS CONTAINING OXYTETRACYCLINE
		HYDROCHLORIDE FOR TWO YEARS
FIGURE	2	KAPLAN-MEIER SURVIVAL CURVES FOR RATS FED DIETS CONTAINING
		OXYTETRACYCLINE HYDROCHLORIDE FOR TWO YEARS
FIGURE	3	GROWTH CURVES FOR MICE FED DIETS CONTAINING OXYTETRACYCLINE
		HYDROCHLORIDE FOR TWO YEARS
FIGURE	4	KAPLAN-MEIER SURVIVAL CURVES FOR MICE FED DIETS CONTAINING
		OXYTETRACYCLINE HYDROCHLORIDE FOR TWO YEARS45
FIGURE	5	INFRARED ABSORPTION SPECTRUM OF OXYTETRACYCLINE
		HYDROCHLORIDE (LOT NO. 304-G-004)
FIGURE	6	NUCLEAR MAGNETIC RESONANCE SPECTRUM OF OXYTETRACYCLINE
		HYDROCHLORIDE (LOT NO. 304-G-004) ,
FIGURE	7	INFRARED ABSORPTION SPECTRUM OF OXYTETRACYCLINE
		HYDROCHLORIDE (LOT NO. 69150380)
FIGURE	8	NUCLEAR MAGNETIC RESONANCE SPECTRUM OF OXYTETRACYCLINE
		HYDROCHLORIDE (LÔT NO. 69150380)

5

APPENDIXES

APPENDIX A	SUMMARY OF THE INCIDENCE OF NEOPLASMS IN RATS IN THE TWO-YEAR
	FEED STUDIES OF OXYTETRACYCLINE HYDROCHLORIDE
TABLE A1	SUMMARY OF THE INCIDENCE OF NEOPLASMS IN MALE RATS IN THE
	TWO-YEAR FEED STUDY OF OXYTETRACYCLINE HYDROCHLORIDE
TABLE A2	SUMMARY OF THE INCIDENCE OF NEOPLASMS IN FEMALE RATS IN THE
	TWO-YEAR FEED STUDY OF OXYTETRACYCLINE HYDROCHLORIDE
TABLE A3	INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE RATS IN THE
	TWO-YEAR FEED STUDY OF OXYTETRACYCLINE HYDROCHLORIDE
TABLE A4	INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE RATS IN THE
	TWO-YEAR FEED STUDY OF OXYTETRACYCLINE HYDROCHLORIDE
APPENDIX B	SUMMARY OF THE INCIDENCE OF NEOPLASMS IN MICE IN THE TWO-YEAR
	FEED STUDIES OF OXYTETRACYCLINE HYDROCHLORIDE
TABLE B1	SUMMARY OF THE INCIDENCE OF NEOPLASMS IN MALE MICE IN THE
	TWO-YEAR FEED STUDY OF OXYTETRACYCLINE HYDROCHLORIDE
TABLE B2	SUMMARY OF THE INCIDENCE OF NEOPLASMS IN FEMALE MICE IN THE
	TWO-YEAR FEED STUDY OF OXYTETRACYCLINE HYDROCHLORIDE
TABLE B3	INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE MICE IN THE
	TWO-YEAR FEED STUDY OF OXYTETRACYCLINE HYDROCHLORIDE
TABLE B4	INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE MICE IN THE
	TWO-YEAR FEED STUDY OF OXYTETRACYCLINE HYDROCHLORIDE
APPENDIX C	SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN RATS IN
	THE TWO-YEAR FEED STUDIES OF OXYTETRACYCLINE HYDROCHLORIDE97
TABLE C1	SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE RATS
	IN THE TWO-YEAR FEED STUDY OF OXYTETRACYCLINE HYDROCHLORIDE .98
TABLE C2	SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN FEMALE
	RATS IN THE TWO-YEAR FEED STUDY OF OXYTETRACYCLINE
	HYDROCHLORIDE
APPENDIX D	SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MICE IN
	THE TWO-YEAR FEED STUDIES OF OXYTETRACYCLINE HYDROCHLORIDE 109
TABLE D1	SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE MICE
	IN THE TWO-YEAR FEED STUDY OF OXYTETRACYCLINE HYDROCHLORIDE .110


APPENDIXES (Continued)

PAGE

TABLE D2	SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN FEMALE
	MICE IN THE TWO-YEAR FEED STUDY OF OXYTETRACYCLINE
	HYDROCHLORIDE115
APPENDIX E	ANALYSES OF PRIMARY TUMORS IN RATS AND MICE IN THE TWO-YEAR
	FEED STUDIES OF OXYTETRACYCLINE HYDROCHLORIDE
TABLE E1	ANALYSIS OF PRIMARY TUMORS IN MALE RATS IN THE TWO-YEAR
	FEED STUDY OF OXYTETRACYCLINE HYDROCHLORIDE
TABLE E2	ANALYSIS OF PRIMARY TUMORS IN FEMALE RATS IN THE TWO-YEAR
	FEED STUDY OF OXYTETRACYCLINE HYDROCHLORIDE
TABLE E3	ANALYSIS OF PRIMARY TUMORS IN MALE MICE IN THE TWO-YEAR
	FEED STUDY OF OXYTETRACYCLINE HYDROCHLORIDE
TABLE E4	ANALYSIS OF PRIMARY TUMORS IN FEMALE MICE IN THE TWO-YEAR
	FEED STUDY OF OXYTETRACYCLINE HYDROCHLORIDE
APPENDIX F	HISTORICAL INCIDENCES OF TUMORS IN F344/N RATS RECEIVING
	NO TREATMENT
TABLE F1	HISTORICAL INCIDENCE OF ADRENAL GLAND TUMORS IN MALE
	F344/N RATS RECEIVING NO TREATMENT
TABLE F2	HISTORICAL INCIDENCE OF PITUITARY GLAND TUMORS IN FEMALE
	F344/N RATS RECEIVING NO TREATMENT
APPENDIX G	GENETIC TOXICOLOGY OF OXYTETRACYCLINE HYDROCHLORIDE
TABLE G1	MUTAGENICITY OF OXYTETRACYCLINE HYDROCHLORIDE
	IN SALMONELLA TYPHIMURIUM
TABLE G2	MUTAGENICITY OF OXYTETRACYCLINE HYDROCHLORIDE IN L5178Y/TK+/-
	MOUSE LYMPHOMA CELLS IN THE ABSENCE OF S9
TABLE G3	MUTAGENICITY OF OXYTETRACYCLINE HYDROCHLORIDE IN L5178Y/TK+/~
	MOUSE LYMPHOMA CELLS IN THE PRESENCE OF S9
TABLE G4	INDUCTION OF SISTER-CHROMATID EXCHANGES IN CHINESE HAMSTER
	OVARY CELLS BY OXYTETRACYCLINE HYDROCHLORIDE
TABLE G5	INDUCTION OF CHROMOSOMAL ABERRATIONS IN CHINESE HAMSTER
	OVARY CELLS BY OXYTETRACYCLINE HYDROCHLORIDE
APPENDIX H	CHEMICAL CHARACTERIZATION OF OXYTETRACYCLINE
	HYDROCHLORIDE
	•••••••••••••••••••••••••••••••••••••••

APPENDIXES (Continued)

	PAGE
APPENDIX I	PREPARATION AND CHARACTERIZATION OF FORMULATED DIETS
APPENDIX J	METHODS OF ANALYSIS OF FORMULATED DIETS
APPENDIX K	RESULTS OF ANALYSIS OF FORMULATED DIETS
TABLE K1	RESULTS OF ANALYSIS OF FORMULATED DIETS IN THE TWO-YEAR
	FEED STUDIES OF OXYTETRACYCLINE HYDROCHLORIDE
TABLE K2	RESULTS OF REFEREE ANALYSIS OF FORMULATED DIETS IN THE
	TWO-YEAR FEED STUDIES OF OXYTETRACYCLINE HYDROCHLORIDE174
APPENDIX L	SENTINEL ANIMAL PROGRAM
TABLE LI	MURINE VIRUS ANTIBODY DETERMINATIONS FOR RATS AND MICE IN
	THE TWO-YEAR FEED STUDIES OF OXYTETRACYCLINE HYDROCHLORIDE 177
APPENDIX M	FEED AND COMPOUND CONSUMPTION BY RATS AND MICE IN THE
	TWO-YEAR FEED STUDIES OF OXYTETRACYCLINE HYDROCHLORIDE179
TABLE M1	FEED AND COMPOUND CONSUMPTION BY MALE RATS IN THE
	TWO-YEAR FEED STUDY OF OXYTETRACYCLINE HYDROCHLORIDE180
TABLE M2	FEED AND COMPOUND CONSUMPTION BY FEMALE RATS IN THE
	TWO-YEAR FEED STUDY OF OXYTETRACYCLINE HYDROCHLORIDE181
TABLE M3	FEED AND COMPOUND CONSUMPTION BY MALE MICE IN THE
	TWO-YEAR FEED STUDY OF OXYTETRACYCLINE HYDROCHLORIDE182
TABLE M4	FEED AND COMPOUND CONSUMPTION BY FEMALE MICE IN THE
	TWO-YEAR FEED STUDY OF OXYTETRACYCLINE HYDROCHLORIDE183
APPENDIX N	INGREDIENTS, NUTRIENT COMPOSITION, AND CONTAMINANT LEVELS IN
	NIH 07 RAT AND MOUSE RATION185
TABLE N1	INGREDIENTS OF NIH 07 RAT AND MOUSE RATION
TABLE N2	VITAMINS AND MINERALS IN NIH 07 RAT AND MOUSE RATION
TABLE N3	NUTRIENT COMPOSITION OF NIH 07 RAT AND MOUSE RATION
TABLE N4	CONTAMINANT LEVELS IN NIH 07 RAT AND MOUSE RATION
APPENDIX O	DATA AUDIT SUMMARY

OXYTETRACYCLINE HYDROCHLORIDE

CAS No. 2058-46-0

2-Naphthacenecarboxamide,4(dimethylamino)-1,4,4a,5,5a,6,11,12a-octahydro-3,6,10,12,12apentahydroxy-6-methyl-1,11-dioxo-monohydrochloride

C₂₂H₂₄N₂O₉•HCl Molecular weight 496.9

Synonyms: Biosolvomycin; Hydrocyclin; Liquamycin; Otetryn; Oxlopar; 5-Hydroxytetracycline Hydrochloride; Terramycin Hydrochloride; Tetramine; Tetran Hydrochloride

ABSTRACT

Toxicology and carcinogenesis studies were conducted on oxytetracycline hydrochloride (greater than 98.8% pure), a broad-spectrum antibiotic. Groups of F344/N rats and B6C3F₁ mice were fed diets containing oxytetracycline hydrochloride for a series of 14-day, 13-week, and 2-year studies. In the 14day studies, no compound-related gross pathologic effects were seen in rats or mice (groups of five animals per sex per species) given up to 100,000 ppm in their feed. The final mean body weight of male rats receiving 100,000 ppm in feed was 27% lower than that of the controls. Final mean body weights of mice that received 25,000, 50,000, or 100,000 ppm were lower (male: 11%; 16%; 17%; female: 6%; 5%; 17%) than those of the controls. In the 13-week studies, groups of 10 male and 10 female rats and mice were fed diets containing up to 50,000 ppm in feed, and no chemically related gross or histopathologic effects were observed in mice of either sex or in female rats. In male rats, fatty metamorphosis of minimal severity was diagnosed in the liver of 5/10 animals at 6,300, 12,500, and 50,000 ppm and in 2/10 animals at 3,100 and 25,000 ppm. None was seen in the controls. Oxytetracycline levels in bones of rats and mice (as determined fluorometrically) at the end of the 13-week studies increased with dose, the highest levels (3-10 times background levels) being observed at 50,000 ppm.

The 2-year toxicology and carcinogenesis studies were conducted by administering diets containing 0, 25,000, or 50,000 ppm oxytetracycline hydrochloride to groups of 50 male and 50 female rats and diets containing 0, 6,300, or 12,500 ppm oxytetracycline hydrochloride to groups of 50 male and 50 female mice for 103 weeks. The highest dose selected for rats was considered to be the maximum level that would not affect the nutritional value of dosed feed. The dietary concentrations correspond to the following approximate doses: rats-0, 1,000, or 2,000 mg/kg body weight per day; mice--0, 650, or 1,400 mg/kg per day.

Mean body weights were approximately 5%-8% lower than those of controls in high dose male rats during weeks 4-47, in high dose male mice after week 31, and in high dose female mice after week 26. The mean body weights of dosed female rats and low dose male and female mice were comparable to those of controls. The survival of control male rats was lower than that of the high dose group (22/50 vs 38/50). No significant differences in survival were observed between the remaining groups of rats or between any groups of mice.

Pheochromocytomas of the adrenal gland occurred with positive trends in male rats (control, 10/50; low dose, 18/50; high dose, 24/50), and the incidence in the high dose group was greater than that in the controls. Two additional control males and one additional low dose male had malignant pheochromocytomas. The incidence of adrenal gland medullary hyperplasia was elevated slightly but not significantly in dosed male rats (7/50; 14/50; 9/50).

Adenomas and adenomas or adenocarcinomas (combined) of the pituitary gland in female rats occurred with positive trends, and the incidences in the high dose group were greater than that in the controls (adenomas: 19/50; 17/50; 30/50; adenomas or adenocarcinomas [combined]: 20/50; 24/50; 32/50). The incidence of pituitary gland hyperplasia was slightly decreased in dosed female rats (16/50; 10/50; 11/50).

No compound-related increases in nonneoplastic or neoplastic lesions were observed in male or female mice.

Oxytetracycline hydrochloride was not mutagenic in Salmonella typhimurium strains TA100, TA1535, TA1537, or TA98 in the presence or absence of Aroclor 1254-induced male Sprague-Dawley rat or male Syrian hamster liver S9 when assayed according to the preincubation protocol. Oxytetracycline hydrochloride was mutagenic in L5178Y/TK^{+/-} mouse lymphoma cells in the presence but not in the absence of Aroclor 1254-induced male F344 rat liver S9. In cultured Chinese hamster ovary cells, oxytetracycline hydrochloride was weakly positive in inducing sister-chromatid exchanges both with and without Aroclor 1254-induced male Sprague-Dawley rat liver S9 but did not induce chromosomal aberrations.

An audit of the experimental data was conducted for these 2-year carcinogenesis studies of oxytetracycline hydrochloride. No data discrepancies were found that influenced the final interpretations.

Under the conditions of these 2-year feed studies of oxytetracycline hydrochloride, there was equivocal evidence of carcinogenicity^{*} for male F344/N rats, as indicated by increased incidences of pheochromocytomas of the adrenal gland. There was equivocal evidence of carcinogenicity for female F344/N rats fed diets containing oxytetracycline hydrochloride, as indicated by increased incidences of adenomas of the pituitary gland. There was no evidence of carcinogenicity for male or female B6C3F₁ mice fed diets containing 6,300 or 12,500 ppm oxytetracycline hydrochloride for 2 years.

^{*}Categories of evidence of carcinogenicity are defined in the Note to the Reader on page 2.

A summary of the Peer Review comments and the public discussion on this Technical Report appears on page 13.

CONTRIBUTORS

The NTP Technical Report on the Toxicology and Carcinogenesis Studies of Oxytetracycline Hydrochloride is based on the 13-week studies that began in March 1980 and ended in June 1980 and on the 2-year studies that began in November 1980 and ended in November 1982 at Physiological Research Laboratories.

National Toxicology Program (Evaluated Experiment, Interpreted Results, and Reported Findings)

Kamal M. Abdo, Ph.D., Chemical Manager

Charles J. Alden, Ph.D. Jack Bishop, Ph.D. Gary A. Boorman, D.V.M., Ph.D. Douglas Bristol, Ph.D. Michael Elwell, D.V.M., Ph.D. Scot L. Eustis, D.V.M., Ph.D. Joseph K. Haseman, Ph.D. James Huff, Ph.D. C.W. Jameson, Ph.D. E.E. McConnell, D.V.M. G.N. Rao, D.V.M., Ph.D. B.A. Schwetz, D.V.M., Ph.D. Michael Shelby, Ph.D.

NTP Pathology Working Group (Evaluated Slides and Prepared Pathology Report for Rats on 3/19/85)

Leroy Hall, D.V.M., Ph.D. (Chair) (NTP) Roger Alison, B.V.Sc., M.R.C.V.S. NTP Gary Boorman, D.V.M., Ph.D. (NTP) Roger Brown, D.V.M. Experimental Pathology Laboratories, Inc. Bhola Gupta, B.V.Sc., Ph.D. (NTP) Paul Hildebrandt, D.V.M. (PATHCO) Robert Kovatch, D.V.M. Pathology Associates, Inc. John Sagartz, D.V.M. Consultant, Manhattan, Kansas Katsuhiko Yoshitomi, D.V.M., Ph.D. NTP Observer

NTP Pathology Working Group (Evaluated Slides and Prepared Pathology Report for Mice on 3/21/85)

Robert Sauer, V.M.D. (Chair) (PATHCO) Gary A. Boorman, D.V.M., Ph.D. (NTP) Bhola Gupta, B.V.Sc., Ph.D. (NTP) Joseph Haynes, D.V.M. University of Minnesota Gary Riley, D.V.M., Ph.D. (Experimental Pathology Laboratories, Inc.) John Sagartz, D.V.M. Consultant, Manhattan, Kansas Linda Uraih, D.V.M. (NTP)

Principal Contributors at Physiological Research Laboratories (Conducted Studies and Evaluated Tissues)

M. Cowan, M.S., Principal Investigator A. Hall, D.V.M. Pathologist (moribund kills) R. Pieper, M.S., Chemist John Sagartz, D.V.M. Pathologist (rats and mice)

Experimental Pathology Laboratories, Inc. (Provided Pathology Quality Assurance)

Melvin Hamlin, D.V.M. (for mice) J. Gauchat, Pathology Coordinator Katsuhiko Yoshitomi, D.V.M., Ph.D. (for rats)

Principal Contributors at Carltech Associates, Inc. (Contractor for Technical Report Preparation)

William D. Theriault, Ph.D. Project Manager Abigail C. Jacobs, Ph.D. Senior Scientist John Warner, M.S. Chemist/Statistician

PEER REVIEW PANEL

The members of the Peer Review Panel who evaluated the draft Technical Report on oxytetracycline hydrochloride on December 9, 1985, are listed below. Panel members serve as independent scientists, not as representatives of any institution, company, or governmental agency. In this capacity, Panel members have five major responsibilities: (a) to ascertain that all relevant literature data have been adequately cited and interpreted, (b) to determine if the design and conditions of the NTP studies were appropriate, (c) to ensure that the Technical Report presents the experimental results and conclusions fully and clearly, (d) to judge the significance of the experimental results by scientific criteria, and (e) to assess the evaluation of the evidence of carcinogenicity and other observed toxic responses.

National Toxicology Program Board of Scientific Counselors Technical Reports Review Subcommittee

Jerry B. Hook, Ph.D. (Chair) Vice President, Preclinical Research and Development Smith Kline & French Laboratories, Philadelphia, Pennsylvania

Frederica Perera, Dr. P.H. (Principal Reviewer) Division of Environmental Sciences School of Public Health, Columbia University New York, New York James Swenberg, D.V.M., Ph.D. Head, Department of Biochemical Toxicology and Pathobiology Chemical Industry Institute of Toxicology Research Triangle Park, North Carolina

Ad Hoc Subcommittee Panel of Experts

John J. Crowley, Ph.D. Division of Public Health Services The Fred Hutchinson Cancer Research Center Seattle, Washington

Kim Hooper, Ph.D. Hazard Evaluation System and Information Services, Department of Health Services State of California Berkeley, California

Thomas C. Jones, D.V.M. (Principal Reviewer) Professor, Comparative Pathology New England Regional Primate Research Center Harvard Medical School Southborough, Massachusetts

Richard J. Kociba, D.V.M., Ph.D. (Principal Reviewer) Dow Chemical USA Midland, Michigan

David Kotelchuck, Ph.D.* Environmental Health Science Program Hunter School of Health Sciences New York, New York Franklin E. Mirer, Ph.D. Director, Health and Safety Department International Union, United Auto Workers, Detroit, Michigan

I.F.H. Purchase, B.V.Sc., Ph.D., FRC Path. Central Toxicology Laboratory Imperial Chemical Industries, PLC Alderley Park, England

Robert A. Scala, Ph.D. Senior Scientific Advisor, Medicine and Environmental Health Department Research and Environmental Health Division, Exxon Corporation East Millstone, New Jersey

Steven R. Tannenbaum, Ph.D. Professor, Department of Nutrition and Food Science Massachusetts Institute of Technology Cambridge, Massachusetts

Bruce W. Turnbull, Ph.D. Professor and Associate Director College of Engineering Cornell University Ithaca, New York

^{*}Unable to attend

SUMMARY OF PEER REVIEW COMMENTS ON THE TOXICOLOGY AND CARCINOGENESIS STUDIES OF OXYTETRACYCLINE HYDROCHLORIDE

On December 9, 1985, the draft Technical Report on the toxicology and carcinogenesis studies of oxytetracycline hydrochloride received peer review by the National Toxicology Program Board of Scientific Counselors' Technical Reports Review Subcommittee and associated Panel of Experts. The review meeting was held at the National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina.

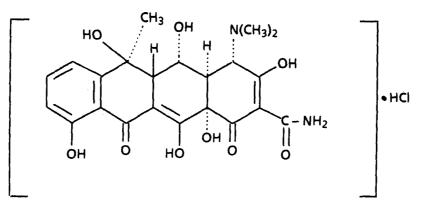
Dr. K. Abdo, NTP, introduced the studies by reviewing the experimental design, results, and proposed conclusions (equivocal evidence of carcinogenicity in rats; no evidence of carcinogenicity in mice).

Dr. Jones, a principal reviewer, agreed with the conclusions as written.

As a second principal reviewer, Dr. Perera did not agree with the conclusions in rats. She stated that in males both a positive trend for pheochromocytomas and significant increases in pheochromocytomas in the high dose group compared with controls provided adequate support for raising the conclusion to some evidence of carcinogenicity. Likewise, in females, a positive trend for pituitary gland neoplasms and a significantly increased incidence of neoplasms in the high dose group compared with controls by the incidental tumor test supported raising the conclusion to some evidence of carcinogenicity. Dr. Abdo explained the rationale for the levels of evidence used. He said that both the adrenal gland and pituitary gland tumors have high and variable spontaneous rates in untreated rats, and, secondly, the increases were considered to be marginal. Also, no increases were observed in the low dose groups. Dr. Turnbull questioned calling the increase in pheochromocytomas in male rats statistically significant as they are common tumors, and the P value was greater than 0.01. Dr. J. Huff, NIEHS, indicated that this marginal increase did not fit the category of no evidence of carcinogenicity.

As a third principal reviewer, Dr. Kociba agreed with the conclusions in mice and with the level of evidence in rats. However, because the conclusions in rats were based on increases in benign tumors, he felt that the conclusions for both sexes should be called equivocal evidence of benign tumor induction. Dr. E. McConnell, NTP, mentioned that pheochromocytomas are benign neoplasms; for the pituitary gland neoplasms, there were 2 adenocarcinomas in the control group versus 10 in the exposed groups. Dr. Huff reminded the Panel that the morphologic type of neoplasms was always given in the conclusion.

In related discussion, Dr. Perera questioned the discounting of statistically significant results (adrenal gland pheochromocytomas in rats) because neither the trend nor the high dose incidence was significant by a newer statistical test, logistic regression analysis. She asked that this decision be better justified here and whenever statistically significant results are downgraded to equivocal evidence of carcinogenicity. Dr. J. Haseman, NIEHS, explained that logistic regression was employed because it does not require the utilization of time intervals and that there was some indication that, for this particular tumor, the survival patterns observed and the specific time intervals used by the incidental tumor test may have unduly influenced the statistical significance. He opined that the increased tumor incidence may have been related to the greater survival in the high dose group (38/50) relative to controls (22/50).


Dr. Jones moved that the Technical Report on oxytetracycline hydrochloride be accepted with the conclusions as written for male and female rats, equivocal evidence of carcinogenicity, and for male and female mice, no evidence of carcinogenicity. Dr. Swenberg seconded the motion, and it was approved by nine affirmative votes to one negative vote (Dr. Turnbull) with one abstention (Dr. Purchase).

Oxytetracycline Hydrochloride, NTP TR 315 14

I. INTRODUCTION

Physical and Chemical Properties Production Use Absorption, Distribution, and Excretion Acute Toxicity Chronic Toxicity and Carcinogenicity Reproductive Effects and Teratogenicity Mutagenicity Study Rationale

I. INTRODUCTION

OXYTETRACYCLINE HYDROCHLORIDE

CAS No. 2058-46-0

2-Naphthacenecarboxamide,4(dimethylamino)-1,4,4a,5,5a,6,11,12a-octahydro-3,6,10,12,12apentahydroxy-6-methyl-1,11-dioxo-monohydrochloride

C₂₂H₂₄N₂O₉•HCl Molecular weight 496.9

Synonyms: Biosolvomycin; Hydrocyclin; Liquamycin; Otetryn; Oxlopar; 5-Hydroxytetracycline Hydrochloride; Terramycin Hydrochloride; Tetramine; Tetran Hydrochloride

Oxytetracycline hydrochloride, a broad-spectrum antibiotic produced by the actinomycete *Streptomyces rimosus*, exerts antibiotic activity by inhibiting protein synthesis. This inhibition apparently takes place when oxytetracycline binds to 30S ribosomes, preventing aminoacyl tRNA from reaching the mRNA-ribosome complex (Sande and Mandell, 1980).

Physical and Chemical Properties

Recrystallized from water as yellow platelets, oxytetracycline hydrochloride has a melting point of 190°-194° C; it is very soluble in water (1 g/ml), soluble in absolute alcohol (12 mg/ml), and insoluble in ether, petroleum ether, and benzene. Aqueous solutions of oxytetracycline hydrochloride with a pH of 1.0-2.5 are stable for 30 days at 25° C, and those with a pH of 3.0-9.0 are stable for approximately the same time when stored at 5° C. When oxytetracycline hydrochloride crystals were stored at 56° C for 4 months, the potency was reduced by less than 5% (Merck, 1983; Spector, 1957).

Production

The 1983 production of tetracycline for all uses was 7.2 million pounds; data on the specific amounts of oxytetracycline hydrochloride produced are not available (USITC, 1984). In 1974, 1.1×10^5 kg of oxytetracycline hydrochloride was produced; the major producers were International Rectifier Corp., Rochelle Laboratories, and Pfizer, Inc. (Directory of Chemical Producers, 1977).

Use

Oxytetracycline hydrochloride is administered orally and intravenously in humans to treat infectious diseases caused by a wide variety of micro-organisms such as rickettsiae, Mycoplasma pneumoniae, spirochetes, gram-negative bacteria (Pasteurella pestis, Bartonella bacilliformis, Brucella sp.), and gram-positive bacteria (Streptococcus sp., Staphlococcus aureus, Neisseria gonorrhoeae) (Modern Drug Encyclopedia and Therapeutic Index, 1977). Topical

application is recommended only for ophthalmic uses because of the high risk of sensitization (Weinstein, 1970). The oral dose for adults ranges from 1 to 2 g per day in four equal doses. When infections are considered severe, oxytetracycline hydrochloride may be administered intravenously in doses of 1-2 g daily in two equal portions at 12-hour intervals. This antibiotic is available as capsules, tablets, injectable solutions, or syrup and is also sold in combination with other drugs (cortisone, nystatin, polymyxin) as an ophthalmic suspension (5%) or ointment (3%) (Modern Drug Encyclopedia and Therapeutic Index, 1977; PDR, 1980). Adverse effects of oxytetracycline hydrochloride observed in humans include local irritation after intramuscular injection; anorexia, nausea, vomiting, glossitis, dysphagia, and enterocolitis after oral or parenteral administration; and permanent discoloration of the teeth in infants and children under 8 years of age after prolonged use (PDR. 1980).

Injectable preparations of oxytetracycline hydrochloride (200 mg/ml) are administered to beef cattle and nonlactating dairy cows to treat the shipping fever complex associated with Pasteurella sp. and Hemophilus sp., foot rot and diphtheria caused by Spherophorus necrophorus, bacterial scours caused by Escherichia coli, "wooden" tongue caused by Actinobacillus lignieresi, leptospirosis caused by Leptospira pomona, and anthrax caused by Bacillus anthracis. These preparations are also used in swine to treat infectious enteritis and in poultry to treat sacculitis and fowl cholera caused by Mycoplasma gallisepticum and infectious synovitis caused by M. synoviae. The recommended dose is 3-5 mg per pound body weight per day. Oxytetracycline hydrochloride boluses fortified with vitamins A and D and niacin are used to treat scours in calves, dysentery in lambs, and necrotic enteritis in swine. This drug is also used for the treatment of acute/chronic mastitis in lactating dairy cows (Aronson, 1983).

Absorption, Distribution, and Excretion

Oxytetracycline hydrochloride is incompletely absorbed from the gastrointestinal tract; the amount of absorption in humans is about 60% when administered orally (Fabre et al., 1971).

The percentage of absorbed oxytetracycline hydrochloride seems to be inversely related to the amount administered (Barza and Scheife, 1977). Absorption is decreased in the presence of calcium, magnesium, and iron due to chelation (Banerjee and Chakrabarti, 1976). The amount of oxytetracycline hydrochloride absorbed varies with the age of the subject. Single oral doses of 5 mg/kg were more completely absorbed in 1-dayold chicks than in chickens that were 1 week old; the highest concentrations of oxytetracycline hydrochloride were found in the kidneys and liver and the lowest in the lungs and serum (Black, 1977). The peak plasma concentration occurs soon after administration. In humans, the peak plasma concentration was reached 2-4 hours after a single oral dose and 2.5 hours after repeated dosing (Sande and Mandell, 1980; Green et al., 1976). In mares given an intravenous injection of 5 mg/kg oxytetracycline hydrochloride, the peak plasma concentration was attained in 30 minutes; the chemical was also detected in the synovial and peritoneal fluids. The concentration of oxytetracycline hydrochloride reached a peak of 1,565 µg/ml in the urine 30 minutes after administration (Brown et al., 1981).

The tetracyclines are stored in the reticuloendothelial cells of the liver, spleen, and bone marrow and in the bone, dentine, and enamel of unerupted teeth. They have been detected in the brain, saliva, pleural fluid, semen, prostatic fluid, placenta, and fetal tissue (Weinstein, 1970; Milch et al., 1957). Tetracyclines also have been observed to concentrate and persist in implanted tumor tissue in rats and mice (Rall et al., 1957). Tetracyclines are excreted primarily via the kidney; up to 55% of an oral dose or up to 60% of an intravenous injection is excreted in the urine, and some is excreted in the feces (Sande and Mandell, 1980). Oxytetracycline is excreted in high concentrations by the liver into the bile. The concentration in bile is 6-10 times greater than that in blood (Fabre et al., 1971). The volume of distribution of oxytetracycline hydrochloride is greater than that of body water because it binds to plasma proteins. The volume of distribution in dogs given a single intravenous injection of 5 mg/kg was 2 liters/kg body weight (Baggot et al., 1977). In humans given seven daily oral doses of 500 mg each, the volume of distribution was 4.07 liters/kg (Green et al., 1976).

Acute Toxicity

The acute LD_{50} values of oxytetracycline hydrochloride were reported to be 7,200 mg/kg (oral) in Swiss mice and less than 4.84 g/kg (intramuscular) in Wistar rats (P'an et al., 1950; Szumigowska et al., 1967).

Male Sprague-Dawley rats (300 g body weight) given 100 mg oxytetracycline hydrochloride by intraperitoneal injection for 14 days showed evidence of renal disease (interstitial infiltration. primarily of lymphocytes) and a loss of body weight (Tarara et al., 1976). A synergistic polyuric effect was seen in female Sprague-Dawley rats administered oxytetracycline hydrochloride (37.5 or 75 mg/kg per day by intraperitoneal injection) and methoxyflurane (1% concentration in air). These rats showed shrinkage of the glomeruli with a widening of the space in Bowman's capsule and deposition of protein in the tubules (Rosenberg and Wahlstrom, 1974). Two dogs (strain not specified) receiving 160 or 240 mg/kg body weight oxytetracycline hydrochloride by intramuscular injection died after 18 or 6 days and exhibited impaired renal functions 1-4 days before death. Histologic examination revealed cloudy swelling of the liver and fatty metamorphosis of the kidney (P'an et al., 1950).

Wistar rats injected intramuscularly with oxytetracycline hydrochloride (300 mg/kg) over an 8-hour period showed severe damage of the epithelium of the small intestine and fatty infiltration of the liver (De Jonge, 1973). Oxytetracycline hydrochloride (0.1 ml of 1% solution) injected intratympanically into albino guinea pigs caused sensory hair cell loss and inflammation of the middle ear mucosa (Parker and James, 1978). An intramuscular injection of 0.6 ml of a 50 mg/ml solution caused necrosis at the site of injection in white Leghorn hens (Blom and Rasmussen, 1976). Reduced bone mineralization occurred in 23-day-old Wistar rats receiving intraperitoneal injections of 2.8 mg in 0.5 ml water every 12 hours for 7 days. Concentrations of calcium and phosphorus in femurs of dosed rats were reduced 22% and 23% when compared with controls; collagen synthesis was not affected (Engesaeter et al., 1980).

Chronic Toxicity and Carcinogenicity

No adverse effects were observed on growth rate, feed consumption, and the formed elements of blood when 20 male and 20 female Sprague-Dawley rats were fed diets containing 100 or 1,000 ppm oxytetracycline hydrochloride for up to 2 years (Deichmann et al., 1964). The mean survival time for dosed rats was 11% greater than that of the controls. Mammary adenofibromas were observed in 12/17 female rats receiving 100 ppm and in 10/17 female rats receiving 1,000 ppm oxytetracycline hydrochloride compared with 1/9 controls. In a second study, groups of 100 male Osborne-Mendel rats fed diets containing 100, 1,000, or 3,000 ppm oxytetracycline hydrochloride gained weight more rapidly, had fewer deaths (control, 43%; 3,000 ppm, 13%), and lived longer than the controls (group of 180). No compound-related histopathologic effects were observed at 12, 15, or 18 months. The increased survival in the two studies cited above was thought to be due to the protective action of this antibiotic.

The incidence of liver tumors increased in Sprague-Dawley rats receiving oxytetracycline hydrochloride (1,000 ppm) and nitrite (1,000 ppm) in drinking water as compared with rats receiving oxytetracycline hydrochloride alone (Taylor and Lijinsky, 1975). The incidences were 1/15 for dosed males and 3/15 for dosed females. No liver tumors were observed in rats receiving oxytetracycline hydrochloride alone. Proliferation of Zajdela ascites hepatoma cells grown in adult male Wistar rats weighing about 200 g was arrested by intravenous infusion of 5 mg/kg per day oxytetracycline hydrochloride (van den Bogert et al., 1981).

Reproductive Effects and Teratogenicity

An increase in conception rate was observed in female rats ingesting 2 g/kg oxytetracycline hydrochloride (Elliot and Whitehall, 1957). Fetal litter weight from the exposed dams was elevated, but not significantly. No effect on reproductive performance (sperm volume and morphology, fertility, or hatchability of fertile eggs) was observed in turkeys given diets supplemented with Neomycin Terramycin (220 mg neomycin plus 220 mg oxytetracycline hydrochloride) 1 day out of every 28 days, or 55 mg neomycin plus 55 mg oxytetracycline hydrochloride given continuously (Touchburn and Nestor, 1971).

Litter size and body weights of pups were reduced in litters obtained from albino rat dams injected with 200 mg/kg oxytetracycline hydrochloride (Takayama, 1965). Malformations in fetuses obtained from dosed dams increased by 11%; no malformations were noted in control fetuses. Administration of oxytetracycline hydrochloride to Wistar rats at doses of up to 0.48 g/kg (route unspecified) from the 1st to the 21st day of pregnancy resulted in reduced ossification in the anterior extremities of fetuses and an increase in fetal resorption (Szumigowska-Szrajber and Jeske, 1970, 1973). Daily intramuscular injections (41.5 mg/kg) to rats on days 7 through 18 of gestation had no effect on the number of implantations, the number of live and normal fetuses, the number or percentage of resorptions, or fetal body weight; no macroscopic malformations were observed (Savini et al., 1968).

In studies conducted for the NTP, oxytetracycline hydrochloride was found to be nonteratogenic when administered in corn oil by gavage during the time of organogenesis (gestational days 6-15) at doses of 1,325, 1,670, or 2,100 mg/kg per day to pregnant CD-1 mice and 1,200, 1,350, or 1,500 mg/kg per day to pregnant CD rats (Wolkoski-Tyl et al., 1983; Morrissey et al., 1986). Maternal toxic effects observed included death, reduced body weight, and reduced liver weights.

Mutagenicity

Oxytetracycline hydrochloride was not mutagenic in Salmonella typhimurium strains TA1535, TA1537, TA1538, TA98, or TA100 with or without metabolic activation (Andrews et al., 1980). However, after nitrosation with nitrous acid, oxytetracycline hydrochloride was mutagenic in all the aforementioned strains except TA1535. Further, in the host-mediated assay with randomly bred male and female Swiss mice, intraperitoneal doses of oxytetracycline

hydrochloride of up to 100 mg/kg or of potassium nitrite at 150 µg/kg were not mutagenic in S. typhimurium strain G46, but a mutagenic response was obtained when the two compounds were tested in combination (Blitek et al., 1983). In the micronucleus test, oxytetracycline hydrochloride administered by gavage to Swiss mice at doses of up to $2 \times 500 \ \mu g/kg$ produced significant increases in the frequency of micronuclei in bone marrow polychromatic erythrocytes both in the presence and absence of potassium nitrite. However, the investigators speculated that they may have failed to observe a dose-response relationship in these micronucleus tests because of changes in the ratio of erythrocytes to nucleated cells which resulted from bone marrow cytotoxicity associated with kinetically undefined nitrosodimethylamine formation.

In studies performed for the NTP, oxytetracycline hydrochloride at doses of up to 1 µg/plate was not mutagenic in S. typhimurium strains TA100, TA1535, TA1537, and TA98 with or without metabolic activation by Aroclor 1254induced male Sprague-Dawley rat or Syrian hamster liver S9 (Appendix G, Table G1). Oxytetracycline hydrochloride at doses of 100 and 200 µg/ml was mutagenic in L5178Y/TK^{+/-} mouse lymphoma cells in the presence, but not in the absence, of Aroclor 1254-induced male F344 rat liver S9 (Tables G2 and G3). In cultured Chinese hamster ovary cells, oxytetracycline hydrochloride was weakly positive in inducing sister-chromatid exchanges both with and without Aroclor 1254-induced male Sprague-Dawley rat liver S9 but did not induce chromosomal aberrations (Tables G4 and G5).

Study Rationale

Oxytetracycline hydrochloride was nominated for toxicity and carcinogenicity testing by the National Cancer Institute because of extensive human exposure through its use as an antibiotic and because it had been inadequately studied (NCI, 1977). Because of the stability of this compound and because human exposure is usually via the oral route, oxytetracycline hydrochloride was given in feed to both rats and mice.

Oxytetracycline Hydrochloride, NTP TR 315 20

II. MATERIALS AND METHODS

PROCUREMENT AND CHARACTERIZATION OF OXYTETRACYCLINE HYDROCHLORIDE PREPARATION AND CHARACTERIZATION OF FORMULATED DIETS FOURTEEN-DAY STUDIES THIRTEEN-WEEK STUDIES TWO-YEAR STUDIES Study Design Source and Specifications of Animals Animal Maintenance Clinical Examinations and Pathology

Statistical Methods

PROCUREMENT AND CHARACTERIZATION OF OXYTETRACYCLINE HYDROCHLORIDE

USP-grade oxytetracycline hydrochloride was obtained in two lots from American Roland Corporation (New York, New York) (Table 1). The supplier provided documentation that both lots conformed to USP specifications (CFR, 1977). Purity and identity analyses were conducted at Midwest Research Institute (Appendix H). The identity of oxytetracycline hydrochloride was confirmed by infrared, ultraviolet/ visible, and nuclear magnetic resonance spectroscopy. All spectroscopic data were consistent with the structure of oxytetracycline hydrochloride. The purity of both lots of oxytetracycline hydrochloride was determined to be greater than 98% by elemental analysis, water analysis, nonaqueous titration of amines and acidic functional groups, thin-layer chromatography, and high-performance liquid chromatography. Water content of both lots ranged from 0.4% to 1%. Each lot contained an impurity of approximately 0.3%-0.4% which was not identified. Both lots of study material were determined to conform to USP specifications and to contain 100% oxytetracycline hydrochloride when compared with a USP standard by high-performance liquid chromatography.

Oxytetracycline hydrochloride was stable in storage for 2 weeks at 25° C (Appendix H). Oxytetracycline hydrochloride was stored at the study laboratory in the dark at 5° C. Periodic characterization of oxytetracycline hydrochloride by infrared spectroscopy, amine titration, and a ferric chloride potency assay detected no deterioration over the course of the studies.

PREPARATION AND CHARACTERIZATION OF FORMULATED DIETS

The homogeneity of a formulated diet mixture was evaluated (Appendix I). Further studies showed that oxytetracycline hydrochloride at 10,000 ppm was stable in feed when stored for 2 weeks at 45° C. The formulated diets were prepared by adding a dry premix of feed and oxytetracycline hydrochloride to the appropriate amount of feed (Table 2). Formulated diets were stored at 25° C for no longer than 14 days. Periodic analysis for oxytetracycline hydrochloride in feed mixtures was performed by the study and analytical chemistry laboratories to determine if the formulated diets contained the correct concentrations of oxytetracycline hydrochloride (Table 3; Appendix J). Because 56/56 mixtures analyzed were within 10% of the target concentration, it is estimated that the feed mixtures were prepared within specifications 100% of the time (Appendix K, Table K1).

HYDROCHLORIDE			
	Fourteen-Day Studies	Thirteen-Week Studies	Two-Year Studies

TABLE 1. IDENTITY AND SOURCE OF LOTS USED IN THE FEED STUDIES OF OXYTETRACYCLINE

	Fourteen-Day Studies	Thirteen-Week Studies	Two-Year Studies
Lot Numbers	304-G-004	304-G-004	304-G-004; 69150380
Date of Initial Use	9/17/79	3/24/80	Lot no. 304-G-004: rats11/17/80; mice11/10/80; lot no. 69150380: NA
Supplier	American Roland Corp. (New York, NY)	Same as 14-d studies	Same as 14-d studies

TABLE 2. PREPARATION AND STORAGE OF FORMULATED DIETS IN THE FEED STUDIES OF OXYTETRACYCLINE HYDROCHLORIDE

	Fourteen-Day Studies	Thirteen-Week Studies	Two-Year Studies
Preparation	The premix was prepared by weighing a quantity of chemical into a beaker and thoroughly mixing by spatula with weighed amount of feed. This process was repeated three times with additional weighed amounts of feed. The bulk mixing was carried out by mixing the premix with the appropriate amount of feed in a Patterson-Kelly® 8-quart twin-shell blender for 5 min with intensifier bar followed by 10 min mixing without the intensifier bar.	Similar to that of the 14-d studies	Similar to that of the 14-d studies
Maximum Storage Time	14 d	14 d	14 d
Storage Conditions	4° C in the dark	4° C in the dark	25° C

TABLE 3. SUMMARY OF RESULTS OF ANALYSIS OF FORMULATED DIETS IN THE TWO-YEAR FEED STUDIES OF OXYTETRACYCLINE HYDROCHLORIDE

	Concentrations of Oxytetracycline Hydrochloride in Feed for Target Concentration (ppm)			
	6,300	12,500	25,000	50,000
Mean (ppm)	6,415	12,586	25,093	50,093
Standard deviation	233	440	783	1,450
Coefficient of variation (percent) Range (ppm)	3.6 6.100-6.800	3.5 11,500-13,200	3.1 23,400-26,800	2.9 48,000-52,300
Number of samples	14	14	14	14

FOURTEEN-DAY STUDIES

Four- to five-week old male and female F344/N rats and $B6C3F_1$ mice were obtained from Charles River Breeding Laboratories and held for 2 weeks before the studies began.

Groups of five rats and mice of each sex were fed diets containing 0, 6,300, 12,500, 25,000, 50,000, or 100,000 ppm oxytetracycline hydrochloride for 14 consecutive days.

Rats and mice were observed twice per day and weighed once per week. Further details on animal maintenance are given in Table 4.

THIRTEEN-WEEK STUDIES

Thirteen-week studies were conducted to evaluate the cumulative toxic effects of repeated exposure to oxytetracycline hydrochloride and to determine the concentrations to be used in the 2-year studies.

Five- to seven-week old male and female F344/N rats and $B6C3F_1$ mice were obtained from Charles River Breeding Laboratories, observed for 18 days, separated according to weight class, and then assigned to cages according to a table of random numbers. Cages were assigned to exposed and control groups according to another table of random numbers.

Fourteen-Day Studies	Thirteen-Week Studies	Two-Year Studies
EXPERIMENTAL DESIGN		······································
Size of Study Groups 5 males and 5 females of each species	10 males and 10 females of each species	50 males and 50 females of each species
Doses 0, 6,300, 12,500, 25,000, 50,000, or 100,000 ppm oxytetracycline hydrochloride in feed	0, 3,100, 6,300, 12,500, 25,000, or 50,000 ppm oxytetracycline hydrochloride in feed	Rats0, 25,000, or 50,000 ppm oxytetra- cycline hydrochloride in feed; mice0, 6,300, or 12,500 ppm oxytetra- cycline hydrochloride in feed
Date of First Dose 9/17/79	3/24/80	Rats11/17/80; mice11/10/80
Date of Last Dose 9/30/79	6/22/80	Rats11/07/82; mice10/31/82
Duration of Dosing 14 consecutive d	13 wk	103 wk
Type and Frequency of Observation Observed $2 \times d$; weighed on d 1 and $1 \times$ wk thereafter; feed consumption determined $1 \times$ wk	n Same as 14-d studies	Observed $2 \times d$; weighed on d 1, 1 \times wk for 14 wk, and monthly thereafter; feed consumption determined monthly. Palpation at weighing beginning on wk 41
Necropsy and Histologic Examinat Necropsy performed on all animals; 10% of the animals examined histologically	ion Necropsy performed on all animals; histologic exam performed on all con- trol animals, all dosed animals dying before the scheduled kill, all animals in the highest dose groups, and all dosed animals in which lesions were found at necropsy. Special studies fluorescence was determined on extracts of the left femur from 5 rats and mice of each sex from the 0-, 3,100-, 12,500-, and 50,000-ppm groups.	Necropsy and histologic examination performed on all animals; the following tissues were examined: gross lesions, skin, mandibular lymph node, mammary gland, salivary gland, thigh muscle, sciatic nerve, sternebrae, vertebrae or femur including marrow, costochondrial junction (rib), oral cavity, thymus, larynx and pharynx, trachea, lungs and bronchi, heart and aorta, thyroid gland, para- thyroids, esophagus, stomach, duodenum, jejunum, tongue, tissue masses and regional lymph nodes, ileum, colon, cecum, rectum, mesenteric lymph nodes, liver, gallbladder (mice), kidneys, adre- nal glands, pancreas, spleen, urinary bladder, seminal vesicles/prostate/testes/ epididymis or ovaries/uterus, nasal cavity and nasal turbinates, brain, pituitary gland, spinal cord, eyes, and preputial or clitoral gland
ANIMALS AND ANIMAL MAINTE	NANCE	
Strain and Species F344/N rats; B6C3F1 mice	F344/N rats; B6C3F1 mice	F344/N rats; B6C3F1 mice
Animal Source Charles River Breeding Laboratories Portage, MI)	Charles River Breeding Laboratories (Kingston, NY)	Same as 14-d studies
Study Laboratory Physiological Research Laboratories	Same as 14-d studies	Same as 14-d studies
Method of Animal Identification Ratstail mark; miceear punch	Toe clip	Toe and ear clip

TABLE 4. EXPERIMENTAL DESIGN AND MATERIALS AND METHODS IN THE FEED STUDIES OF OXYTETRACYCLINE HYDROCHLORIDE

TABLE 4. EXPERIMENTAL DESIGN AND MATERIALS AND METHODS IN THE FEED STUDIES OF OXYTETRACYCLINE HYDROCHLORIDE (Continued)

Fourteen-Day Studies	Thirteen-Week Studies	Two-Year Studies			
ANIMALS AND ANIMAL MAINTE	NANCE (Continued)				
Fime Held Before Study 14 d	18 d	Rats18 d; mice20 d			
Age When Placed on Study 5-7 wk	Rats7-8 wk; mice7-9 wk	Rats7-8 wk; mice8-9 wk			
age When Killed wk	Rats20-21 wk; mice20-23 wk	Rats111-112 wk; mice112-113 wk			
Vecropsy Dates Rats10/2/79; mice10/3/79	Rats6/23/80-6/25/80; mice6/25/80-6/27/80	Rats11/15/82-11/18/82; mice11/8/82-11/11/82			
Method of Animal Distribution Distributed to weight classes and then issigned to cages according to a table f random numbers; cages assigned to groups according to another table of andom numbers	Same as 14-d studies	Same as 14-d studies			
Yeed Rodent Laboratory Chow (Ralston Purina Co., St. Louis, MO)	NIH 07 Rat and Mouse Ration (Zeigler Bros., Gardners, PA); available ad libitum	Same as 13-wk studies			
edding spen wood chips (Minnesota Saw- ust and Shavings Co., Anoka, MN)	Same as 14-d studies	Aspen wood shavings (Minnesota Sawdust and Shavings Co., Anoka, MN)			
Vater Jutomatic watering system (Edstrom Industries, Waterford, WI); softened 0 < 1 grain/gal with sodium zeolite; ltered through spun polyethylene; vailable ad libitum	Same as 14-d studies	Same as 14-d studies			
ages olycarbonate (Hazleton Systems, nc., Aberdeen, MD)	Same as 14-d studies	Same as 14-d studies			
age Filters eemay [®] spun-bonded polyester filters inow Filtration, Cincinnati, OH)	Same as 14-d studies	Same as 14-d studies			
nimals per Cage	5	5			
ther Chemicals on Study in the Sa	n me Room None	None			
nimal Room Environment emp22.2°-24.4° C; hum35%-45%; ght 12 h/d; 120 room air changes/h	Temp17.8°-25.0° C; hum40%-60%; light 12 h/d; 120 room air changes/h	Temp23.3° ± 1.1°C; hum50% ± 10% fluorescent light 12 h/d; 15 room air changes/h			

Groups of 10 rats and 10 mice of each sex were given diets containing 0, 3,100, 6,300, 12,500, 25,000, or 50,000 ppm oxytetracycline hydrochloride for 13 weeks. Control diets consisted of NIH 07 Rat and Mouse Ration (Appendix N). Formulated or control diets and water were available ad libitum. Further experimental details are summarized in Table 4.

Animals were observed two times per day; moribund animals were killed. Feed consumption was measured weekly by cage. Individual animal weights were recorded once per week.

At the end of the 13-week studies, survivors were killed. A necropsy was performed on all animals except those excessively autolyzed or cannibalized. Tissues and groups examined are listed in Table 4. The fluorescence of extracts of the left femur of five rats and mice of each sex was determined for the 0-, 3,100-, 12,500-, and 50,000-ppm groups.

TWO-YEAR STUDIES

Study Design

Diets containing 0, 25,000, or 50,000 ppm oxytetracycline hydrochloride were fed to groups of 50 rats of each sex for 103 weeks. Diets containing 0, 6,300, or 12,500 ppm were fed to groups of 50 mice of each sex for 103 weeks.

Source and Specifications of Animals

The male and female F344/N rats and B6C3F1 (C57BL/6N, female, \times C3H/HeN MTV⁻, male) mice used in these studies were produced under strict barrier conditions at Charles River Breeding Laboratories under a contract to the Carcinogenesis Program. Breeding stock for the foundation colonies at the production facility originated at the National Institutes of Health Repository. Animals shipped for study were progeny of defined microflora-associated parents that were transferred from isolators to barriermaintained rooms. Rats were shipped to the study laboratory at 4-5 weeks of age and mice, at 5-6 weeks of age. The animals were guarantined at the study laboratory for 18 days (rats) or 20 days (mice). Thereafter, a complete necropsy was performed on five animals of each sex and species to assess their health status. The rats were placed on study at 7-8 weeks of age and mice, at 8-9 weeks of age. The health of the animals was monitored during the course of the studies according to the protocols of the NTP Sentinel Animal Program (Appendix L).

A quality control skin grafting program has been in effect since early 1978 to monitor the genetic integrity of the inbred mice used to produce the hybrid $B6C3F_1$ study animal. In mid-1981, data were obtained that showed incompatibility between the NIH C3H reference colony and the C3H colony from a Program supplier. In August 1981, inbred parental lines of mice were further tested for genetic integrity via isozyme and protein electrophoresis profiles that demonstrate phenotype expressions of known genetic loci.

The C57BL/6 mice were homogeneous at all loci tested. Eighty-five percent of the C3H mice monitored were variant at one to three loci, indicating some heterogeneity in the C3H line from this supplier. Nevertheless, the genome of this line is more homogeneous than that of randomly bred stocks.

Male mice from the C3H colony and female mice from the C57BL/6 colony were used as parents for the hybrid $B6C3F_1$ mice used in these studies. The influence of the potential genetic nonuniformity in the hybrid mice on these results is not known, but results of the studies are not affected because concurrent controls were included in each study.

Animal Maintenance

Animals were housed five per cage. Feed and water were available ad libitum. Further details of animal maintence are given in Table 4.

Clinical Examinations and Pathology

All animals were observed two times per day, and clinical signs were recorded once per week. Body weights by cage were recorded once per week for the first 14 weeks of the studies and once per month thereafter. Mean body weights were calculated for each group. Animals found moribund and those surviving to the end of the studies were humanely killed. A necropsy was performed on all animals including those found dead, unless they were excessively autolyzed or cannibalized, missexed, or found missing. Thus, the number of animals from which particular organs or tissues were examined microscopically varies and is not necessarily equal to the number of animals that were placed on study.

During necropsy, all organs and tissues were examined for grossly visible lesions. Tissues were preserved in 10% neutral buffered formalin, embedded in paraffin, sectioned, and stained with hematoxylin and eosin. Tissues examined microscopically are listed in Table 4.

When the pathology evaluation was completed, the slides, paraffin blocks, and residual wet tissues were sent to the NTP Archives for inventory, slide/block match, and wet tissue audit. The slides, individual animal data records, and pathology tables were sent to an independent quality assessment laboratory. The individual animal records and tables were compared for accuracy, slides and tissue counts were verified, and histotechnique was evaluated. All tumor diagnoses, all target tissues, and all tissues from a randomly selected 10% of the animals were evaluated by a quality assessment pathologist. The quality assessment report and slides were submitted to the Pathology Working Group (PWG) Chairperson, who reviewed all target tissues and those about which there was a disagreement between the laboratory and quality assessment pathologists.

Representative slides selected by the Chairperson were reviewed by the PWG, which includes the laboratory pathologist, without knowledge of previously rendered diagnoses. When the consensus diagnosis of the PWG differed from that of the laboratory pathologist, the laboratory pathologist was asked to reconsider the original diagnosis. This procedure has been described, in part, by Maronpot and Boorman (1982) and Boorman et al. (1985). The final diagnoses represent a consensus of contractor pathologists and the NTP Pathology Working Group. For subsequent analysis of pathology data, the diagnosed lesions for each tissue type are combined according to the guidelines of McConnell et al. (1986).

Slides/tissues are generally not evaluated in a blind fashion (i.e., without knowledge of dose group) unless the lesions in question are subtle or unless there is an inconsistent diagnosis of lesions by the laboratory pathologist. Nonneoplastic lesions are not examined routinely by the quality assessment pathologist or PWG unless they are considered part of the toxic effect of the chemical.

Statistical Methods

Data Recording: Data on this experiment were recorded in the Carcinogenesis Bioassay Data System (Linhart et al., 1974). The data elements include descriptive information on the chemicals, animals, experimental design, survival, body weight, and individual pathologic results, as recommended by the International Union Against Cancer (Berenblum, 1969).

Survival Analyses: The probability of survival was estimated by the product-limit procedure of Kaplan and Meier (1958) and is presented in the form of graphs. Animals were censored from the survival analyses at the time they were found dead of other than natural causes or were found to be missing; animals dying from natural causes were not censored. Statistical analyses for a possible dose-related effect on survival used the method of Cox (1972) for testing two groups for equality and Tarone's (1975) life table test for a dose-related trend. When significant survival differences were detected, additional analyses using these procedures were carried out to determine the time point at which significant differences in the survival curves were first detected. All reported P values for the survival analysis are two-sided.

Calculation of Incidence: The incidence of neoplastic or nonneoplastic lesions is given as the ratio of the number of animals bearing such lesions at a specific anatomic site to the number of animals in which that site was examined. In most instances, the denominators include only those animals for which the site was examined histologically. However, when macroscopic examination was required to detect lesions (e.g., skin or mammary tumors) prior to histologic sampling, or when lesions could have appeared at multiple sites (e.g., lymphomas), the denominators consist of the number of animals on which a necropsy was performed.

Analysis of Tumor Incidence: Three statistical methods are used to analyze tumor incidence data. The two that adjust for intercurrent mortality employ the classical method for combining contingency tables developed by Mantel and Haenszel (1959). Tests of significance included pairwise comparisons of high dose and low dose groups with controls and tests for overall doseresponse trends.

For studies in which compound administration has little effect on survival, the results of the three alternative analyses will generally be similar. When differing results are obtained by the three methods, the final interpretation of the data will depend on the extent to which the tumor under consideration is regarded as being the cause of death. Continuity-corrected tests are used in the analysis of tumor incidence, and reported P values for tumor analyses are onesided.

Life Table Analyses--The first method of analysis assumed that all tumors of a given type observed in animals dying before the end of the study were "fatal"; i.e., they either directly or indirectly caused the death of the animal. According to this approach, the proportions of tumorbearing animals in the dosed and control groups were compared at each point in time at which an animal died with a tumor of interest. The denominators of these proportions were the total number of animals at risk in each group. These results, including the data from animals killed at the end of the study, were then combined by the Mantel-Haenszel method to obtain an overall P value. This method of adjusting for intercurrent mortality is the life table method of Cox (1972) and of Tarone (1975). The underlying variable considered by this analysis is time to death due to tumor. If the tumor is rapidly lethal, then time to death due to tumor closely approximates time to tumor onset. In this case,

the life table test also provides a comparison of the time-specific tumor incidences.

Incidental Tumor Analyses--The second method of analysis assumed that all tumors of a given type observed in animals that died before the end of the study were "incidental"; i.e., they were merely observed at necropsy in animals dying of an unrelated cause. According to this approach, the proportions of tumor-bearing animals in dosed and control groups were compared in each of five time intervals: weeks 0-52, weeks 53-78, weeks 79-92, week 93 to the week before the terminal-kill period, and the terminal-kill period. The denominators of these proportions were the number of animals actually examined for tumors during the time interval. The individual time interval comparisons were then combined by the previously described method to obtain a single overall result. (See Haseman, 1984, for the computational details of both methods.) A method for the analysis of incidental tumors based on logistic regression (Dinse and Lagakos, 1983) was also employed as a supplemental test in some instances. This method has the advantage of not requiring time intervals in the statistical evaluation.

Unadjusted Analyses--Primarily, survivaladjusted methods are used to evaluate tumor incidence. In addition, the results of the Fisher exact test for pairwise comparisons and the Cochran-Armitage linear trend test (Armitage, 1971; Gart et al., 1979) are given in the appendix containing the analyses of primary tumor incidence. These two tests are based on the overall proportion of tumor-bearing animals and do not adjust for survival differences.

Historical Control Data: Although the concurrent control group is always the first and most appropriate control group used for evaluation, there are certain instances in which historical control data can be helpful in the overall assessment of tumor incidence. Consequently, control tumor incidences from the NTP historical control data base (Haseman et al., 1984, 1985) are included for those tumors appearing to show compound-related effects.

III. RESULTS

RATS

FOURTEEN-DAY STUDIES

THIRTEEN-WEEK STUDIES

TWO-YEAR STUDIES

Body Weights and Clinical Signs Survival Pathology and Statistical Analyses of Results

MICE

FOURTEEN-DAY STUDIES

THIRTEEN-WEEK STUDIES

TWO-YEAR STUDIES

Body Weights and Clinical Signs Survival Pathology and Statistical Analyses of Results

FOURTEEN-DAY STUDIES

None of the rats died before the end of the studies (Table 5). Feed consumption by male rats that received 100,000 ppm in the diet was 35%lower than that of the controls. The final mean body weight of male rats that received 50,000 ppm or 100,000 ppm was 5% or 27% lower than that of the controls. The final mean body weight of female rats that received 100,000 ppm was 6% lower than that of the controls. No compound-related effects were observed at necropsy.

Based on the mean body weight depression observed at the 100,000-ppm concentration in both males and females, concentrations of 0, 3,100, 6,300, 12,500, 25,000, and 50,000 ppm oxytetracycline hydrochloride were selected for the 13week studies in rats.

TABLE 5. SURVIVAL, MEAN BODY WEIGHTS, AND FEED CONSUMPTION OF RATS IN THE FOURTEEN-DAY FEED STUDIES OF OXYTETRACYCLINE HYDROCHLORIDE

		Mean Body Weights (grams)			Final Weight	Feed	
Concentration (ppm)	Survival (a)	Initial (b)	Final	Change (c)	Relative to Controls (percent)	Consumption (d) (e)	
(ppm)					(percent)	(u)	(8)
MALE							
0	5/5	103 ± 4	178 ± 5	$+75 \pm 3$		13.6	
6,300	5/5	107 ± 3	188 ± 3	$+81 \pm 3$	106	14.2	104
12,500	5/5	97 ± 2	172 ± 4	+75±3	97	12.3	90
25,000	5/5	104 ± 5	172 ± 6	$+68 \pm 3$	97	12.8	94
50,000	5/5	103 ± 2	169 ± 3	$+66 \pm 3$	95	12.8	94
100,000	5/5	98 ± 3	130 ± 3	$+32 \pm 2$	73	8.8	65
FEMALE							
0	5/5	89 ± 2	125 ± 3	$+36 \pm 1$		9.5	
6,300	5/5	90 ± 2	129 ± 2	$+39 \pm 1$	103	9.5	100
12,500	5/5	87 ± 5	130 ± 5	$+43 \pm 1$	104	11.2	118
25,000	5/5	91 ± 2	133 ± 5	$+42 \pm 3$	106	9.5	100
50,000	5/5	90 ± 1	127 ± 3	$+37 \pm 2$	102	8.8	93
100,000	5/5	88 ± 2	118 ± 3	$+30 \pm 2$	94	8.2	86

(a) Number surviving/number initially in group

(b) Initial group mean body weight \pm standard error of the mean

(c) Mean body weight change \pm standard error of the mean

(d) Grams of feed consumed per animal per day averaged over the 2-week period; not corrected for scatter. The estimated doses of oxytetracycline hydrochloride consumed per day, based on the average feed consumption and the mean of the initial and final body weights, are 604, 1,138, 2,319, 4,706, and 7,719 mg/kg for males and 544, 1,290, 2,109, 4,055, and 7,961 mg/kg for females.

(e) Percent feed consumption relative to controls

THIRTEEN-WEEK STUDIES

None of the rats died before the end of the studies (Table 6). Final mean body weights and feed consumption of dosed and control groups were comparable.

Degenerative vacuolization (diagnosed as periacinar fatty metamorphosis) of minimal severity was diagnosed in the liver of 5/10 males at 50,000 ppm, 2/10 males at 25,000 ppm, 5/10 males at 12,500 ppm, 5/10 males at 6,300 ppm, and 2/10 males at 3,100 ppm. Except for those males in the 3,100-ppm group, levels of oxytetracycline hydrochloride in bone as measured by fluorometric analysis generally increased with increase in dose (Table 7).

Dose Selection Rationale: Because oxytetracycline hydrochloride at the concentrations studied did not result in life-threatening toxic effects and because 5% chemical (except for dietary constituents) is considered to be the highest dietary dose that rats and mice can receive without reducing the nutritional value of the diet, concentrations of 0, 25,000, and 50,000 ppm oxytetracycline hydrochloride in feed were selected for the 2-year rat studies.

TABLE 6. SURVIVAL, MEAN BODY WEIGHTS, AND FEED CONSUMPTION OF RATS IN THE THIRTEEN-WEEK FEED STUDIES OF OXYTETRACYCLINE HYDROCHLORIDE

	Mean Body Weights (grams)			Final Weight Relative	Feed	
Survival (a)	Initial (b)	Final	Change (c)	to Controls (percent)	-	imption (e)
	· · · · · · · · · · · · · · · · · · ·					
10/10	128 ± 1	322 ± 6	$+194 \pm 6$		15.7	
10/10	131 ± 1	325 ± 8	$+194 \pm 8$	101	14.6	93
10/10	129 ± 1	323 ± 4	$+194 \pm 4$	100	14.2	90
10/10	152 ± 1	338 ± 6	$+186 \pm 7$	105	15.3	97
10/10	141 ± 2	327 ± 8	$+186 \pm 9$	102	14.8	94
10/10	132 ± 1	317 ± 3	$+185 \pm 3$	98	15.1	96
10/10	104 ± 1	186 ± 1	$+82 \pm 1$		10.2	
10/10	112 ± 1	191 ± 3	$+79 \pm 3$	103	10.3	101
10/10	106 ± 1	191 ± 2	$+85 \pm 2$	103		100
10/10	117 ± 1	202 ± 3	$+85 \pm 2$	109	10.9	107
10/10	111 ± 1	191 ± 2	$+80 \pm 2$	103		106
10/10	115 ± 1	197 ± 3	$+82 \pm 2$	106	10.9	107
	10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10	Survival (a) Initial (b) $10/10$ 128 ± 1 $10/10$ 131 ± 1 $10/10$ 129 ± 1 $10/10$ 152 ± 1 $10/10$ 141 ± 2 $10/10$ 132 ± 1 $10/10$ 112 ± 1 $10/10$ 104 ± 1 $10/10$ 112 ± 1 $10/10$ 110 ± 1 $10/10$ 117 ± 1 $10/10$ 111 ± 1	Survival (a) Initial (b) Final $10/10$ 128 ± 1 322 ± 6 $10/10$ 131 ± 1 325 ± 8 $10/10$ 129 ± 1 323 ± 4 $10/10$ 152 ± 1 338 ± 6 $10/10$ 141 ± 2 327 ± 8 $10/10$ 132 ± 1 317 ± 3 $10/10$ 104 ± 1 186 ± 1 $10/10$ 104 ± 1 191 ± 3 $10/10$ 112 ± 1 191 ± 2 $10/10$ 117 ± 1 202 ± 3 $10/10$ 111 ± 1 191 ± 2	Survival (a)Initial (b)FinalChange (c) $10/10$ 128 ± 1 322 ± 6 $+194 \pm 6$ $10/10$ 131 ± 1 325 ± 8 $+194 \pm 8$ $10/10$ 129 ± 1 323 ± 4 $+194 \pm 4$ $10/10$ 152 ± 1 338 ± 6 $+186 \pm 7$ $10/10$ 141 ± 2 327 ± 8 $+186 \pm 9$ $10/10$ 132 ± 1 317 ± 3 $+185 \pm 3$ $10/10$ 104 ± 1 186 ± 1 $+82 \pm 1$ $10/10$ 112 ± 1 191 ± 3 $+79 \pm 3$ $10/10$ 116 ± 1 191 ± 2 $+85 \pm 2$ $10/10$ 117 ± 1 202 ± 3 $+85 \pm 2$ $10/10$ 111 ± 1 191 ± 2 $+80 \pm 2$	Survival (a) Initial (b) Final Change (c) to Controls (percent) $10/10$ 128 ± 1 322 ± 6 $\pm 194 \pm 6$ $10/10$ 131 ± 1 325 ± 8 $\pm 194 \pm 6$ $10/10$ 131 ± 1 325 ± 8 $\pm 194 \pm 8$ 101 $10/10$ 129 ± 1 323 ± 4 $\pm 194 \pm 4$ 100 $10/10$ 129 ± 1 323 ± 4 $\pm 194 \pm 4$ 100 $10/10$ 152 ± 1 338 ± 6 $\pm 186 \pm 7$ 105 $10/10$ 141 ± 2 327 ± 8 $\pm 186 \pm 9$ 102 $10/10$ 132 ± 1 317 ± 3 $\pm 185 \pm 3$ 98 $10/10$ 104 ± 1 186 ± 1 $\pm 82 \pm 1$ $10/10$ 104 ± 1 186 ± 1 $\pm 82 \pm 1$ $10/10$ 104 ± 1 186 ± 1 $\pm 82 \pm 1$ $10/10$ 112 ± 1 191 ± 2 $\pm 85 \pm 2$ 103 $10/10$ 117 ± 1 202 ± 3	Survival (a)Initial (b)FinalChange (c)to Controls (percent)Consu (d) $10/10$ 128 ± 1 322 ± 6 $\pm 194 \pm 6$ $$ 15.7 $10/10$ 131 ± 1 325 ± 8 $\pm 194 \pm 8$ 101 14.6 $10/10$ 129 ± 1 323 ± 4 $\pm 194 \pm 4$ 100 14.2 $10/10$ 152 ± 1 338 ± 6 $\pm 186 \pm 7$ 105 15.3 $10/10$ 141 ± 2 327 ± 8 $\pm 186 \pm 9$ 102 14.8 $10/10$ 132 ± 1 317 ± 3 $\pm 185 \pm 3$ 98 15.1 $10/10$ 104 ± 1 186 ± 1 $\pm 82 \pm 1$ $$ 10.2 $10/10$ 112 ± 1 191 ± 2 $\pm 85 \pm 2$ 103 10.3 $10/10$ 117 ± 1 202 ± 3 $\pm 85 \pm 2$ 103 10.2 $10/10$ 117 ± 1 202 ± 3 $\pm 85 \pm 2$ 103 10.9 $10/10$ 111 ± 1 191 ± 2 $\pm 80 \pm 2$ 103 10.8

(a) Number surviving/number initially in group

(b) Initial group mean body weight \pm standard error of the mean

(c) Mean body weight change \pm standard error of the mean

(d) Grams of feed consumed per animal per day not corrected for scatter; average of weeks 4 and 12. The estimated doses of oxytetracycline hydrochloride consumed per day, based on the average feed consumption and the mean of the initial and final body weights, are 198, 394, 778, 1,576, and 3,352 mg/kg for males and 210, 431, 854, 1,780, and 3,494 mg/kg for females. (e) Percent feed consumption relative to controls

TABLE 7.	OXYTETRACYCLINE CONCENTRATION IN BONE OF RATS IN THE THIRTEEN-WEEK	
	FEED STUDIES AS DETERMINED BY A FLUORESCENCE ASSAY (a)	

Concentration (ppm)	Male (µg/g)	Female (µg/g)	
0	142 ± 73.5	44.7 ± 33.0	
3,100	135 ± 42.1	154.0 ± 70.0	
12,500	217 ± 56.5	(b) 248.0 ± 47.0	
50,000	(b) 434 ± 107.0	(b) 452.0 ± 116.0	

(a) Micrograms oxytetracycline per gram of bone (left femur) (b) P < 0.01 vs controls

TWO-YEAR STUDIES

Body Weights and Clinical Signs

Mean body weights of high dose male rats were 5%-8% lower than those of the controls from week 4 to week 47 (Table 8 and Figure 1). Mean body weights of low dose and high dose female rats were comparable to those of the controls throughout most of the study. The average daily feed consumption by low dose and high dose rats was 102% and 103% that of the controls for males and 106% and 104% for females (Appendix M, Tables M1 and M2). The average amount of oxytetracycline hydrochloride consumed per day was approximately 1,000 or 2,000 mg/kg.

		Control		25,000 ppm			50,000 ppm			
Week	Av. Wt.	No. of	Av. Wt.	Wt. (percent	No. of	Av. Wt.	Wt. (percent	No. of		
on Study	(grams)	Survivors	(grams)	of controls)	Survivors	(grams)	of controls)	Survivors		
IALE										
1	135	50	140	104	50	138	102	50		
2	186	50	184	99 102	50 50	177 202	95 96	50 50		
3 4	210 240	50 50	215 241	102	50	202	95	50		
5	264	50	262	99	50	249	94	50		
6	282	50	278	99	50	264	94	50		
7 8	296 311	50 50	292 304	99 98	50 50	278 291	94 94	50 50		
9	325	50	317	98	50	302	98	50		
10	335	50	326	97	50	311	93	50		
11	345	50	334	97	50	319	92	50		
12 13	356 364	50 50	344 352	97 97	50 50	328 338	92 93	50 50		
13	372	50	358	96	50	343	92	50		
17	400	50	387	97	50	369	92	50		
21	411	50	394	96	50	379	92	50		
26	429	50	417	97	50	401	93	50		
31	425	50	415	98	50	399	94	50		
35 39	430 443	50 50	421 429	98 97	50 50	404 418	94 94	50 50		
43	450	50	440	98	50	428	95	50		
47	453	50	449	99	49	432	95	50		
51	460	50	451	98	49	441	96	50		
55	461	50	452	98	48	444	96 95	50		
60 64	472 464	49 47	454 457	96 98	48 47	448 447	96	50 50		
68	461	44	455	99	46	447	97	50		
73	454	44	451	99	46	444	98	50		
77	453	39	454	100	46	450	99	49		
81	448	37	446	100	46	441	98	48		
85 89	449 451	35 34	444 443	99 98	44 41	439 439	98 97	48 46		
95	436	31	438	100	36	434	100	44		
98	430	27	430	100	34	420	98	43		
102	423	24	426	101	30	421	100	38		
EMALE										
1	114	50	113	99	50	115	101	50		
2	136	50	132	97 99	50 50	132	97 99	50 50		
3 4	146 158	50 50	145 156	99	50	145 154	97	50		
5	168	50	166	99	50	165	98	50		
6	177	50	172	97	50	171	97	50		
7	183	50	178	97	50	175	96	50		
8 9	188 194	50 50	184 189	98 97	50 50	178 184	95 95	50 50		
10	199	50	193	97	50	188	94	50		
11	202	50	194	96	50	193	96	50		
12	205	50	195	95	50	195	95	50		
13	209	50	203	97	50	201	96	50		
14	213	50	203	95	50	202 216	95	50		
17 21	224 224	50 50	216 220	96 98	50 50	215	96	50 50		
26	224 233	50	220 231	98 99	50 50	215 225	96 96 97	50 50		
31	236	50	236	100	50	233	99	50		
35 39	239	50 50	238	100	50	234 240	98	50 50		
39	243 247	50 50	245 251	101 102	50 50	240	99 100	50 50		
43 47	257	50	258	102	50	247 252	100 98	50		
51 55	268 275	50	269 275	100	50 49	262 268	98 97	50 50		
55	275	50	275	100	49	268	97	50		
60 64 68	289 299	50 50	285 295	99 99	49 49	277 284	96 95	49 49 49 48 47		
68	304	50	295 302	99 99	49 49	284 291	95 96	48 49		
73	311	50	313	101	49	- 300	96	48		
73 77	315	50	318	101	49 49	- 300 306	96 97 96	47		
81	319	50	318	100	48	307	96	47		
85	321	50	318	99 99	46	306	95	44		
89 95	323 328	47 41	319 321	99 98	43 39	308 315	95 96	42 39		
98 98	328	38	318	97	39	315 311	95	39 37		
30										

TABLE 8. MEAN BODY WEIGHTS AND SURVIVAL OF RATS IN THE TWO-YEAR FEED STUDIES OF OXYTETRACYCLINE HYDROCHLORIDE

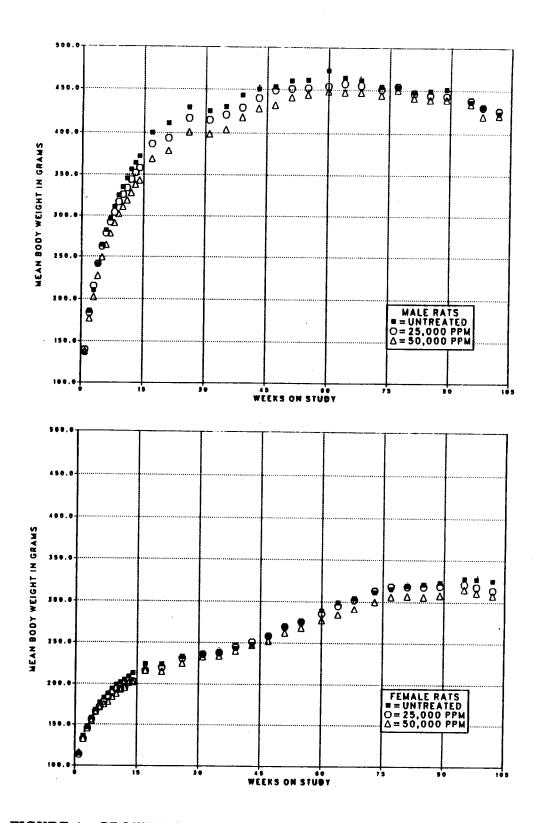


FIGURE 1. GROWTH CURVES FOR RATS FED DIETS CONTAINING OXYTETRACYCLINE HYDROCHLORIDE FOR TWO YEARS

Survival

Estimates of the probabilities of survival for male and female rats fed diets containing oxytetracycline hydrochloride at the concentrations used in these studies and for controls are shown in the Kaplan and Meier curves in Figure 2. The survival of the control group of male rats was significantly lower than that of the high dose group after week 74 (Table 9). No significant differences were observed between any other groups of either sex.

Pathology and Statistical Analyses of Results

This section describes the significant or note-

worthy changes in the incidences of rats with neoplastic or nonneoplastic lesions of the adrenal gland, pituitary gland, and liver. Histopathologic findings on neoplasms in rats are summarized in Appendix A (Tables A1 and A2); Appendix A (Tables A3 and A4) also gives the survival and tumor status for individual male and female rats. Findings on nonneoplastic lesions are summarized in Appendix C (Tables C1 and C2). Appendix E (Tables E1 and E2) contains the statistical analyses of those primary tumors that occurred with an incidence of at least 5% in one of the three groups. The statistical analyses used are discussed in Chapter II (Statistical Methods) and Appendix E (footnotes). Historical incidences of tumors in control animals are listed in Appendix F.

TABLE 9. SURVIVAL OF RATS IN THE TWO-YEAR FEED STUDIES OF OXYTETRACYCLINE HYDROCHLORIDE

	Control	25,000 ppm	50,000 ppm
MALE (a)			
Animals initially in study	50	50	50
Nonaccidental deaths before termination (b)	28	21	12
Killed at termination	22	28	38
Died during termination period	0	1	0
Survival P values (c)	0.001	0.173	0.001
FEMALE (a)			
Animals initially in study	50	50	50
Nonaccidental deaths before termination (b)	19	22	16
Killed at termination	30	28	34
Died during termination period	1	0	0
Survival P values (c)	0.783	0.612	0.836

(a) Terminal-kill period: week 104

(b) Includes animals killed in a moribund condition

(c) The result of the life table trend test is in the control column, and the results of the life table pairwise comparisons with the controls are in the dosed columns.

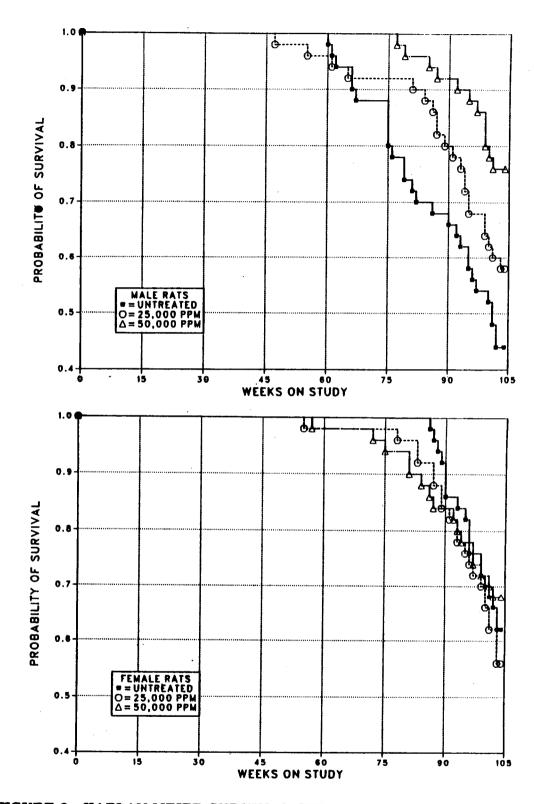


FIGURE 2. KAPLAN-MEIER SURVIVAL CURVES FOR RATS FED DIETS CONTAINING OXYTETRACYCLINE HYDROCHLORIDE FOR TWO YEARS

Adrenal Gland: The incidence of adrenal gland medullary hyperplasia in low dose male rats was greater than that in the controls (Table 10). Pheochromocytomas and pheochromocytomas or malignant pheochromocytomas (combined) in male rats occurred with significant positive trends (P < 0.05) by the incidental tumor test, and the incidences in the high dose group were significantly greater (P < 0.05) than those in the controls by the incidental tumor test. The incidences of pheochromocytomas were lower in dosed female rats than in the controls (control, 6/50; low dose, 4/50; high dose, 3/50). Further examination of the male rat data revealed a pattern of survival suggesting that the incidental tumor test may have been unduly affected by the incidence of pheochromocytomas in the 53- to 78-week time interval (control, 1/11; high dose, 1/1). Thus, a method for the analysis of incidental tumors based on logistic regression (Dinse and Lagakos, 1983) was used as a supplemental test. This method of analysis does not require time intervals and indicated no significant (P<0.05) effects for the combined incidence of pheochromocytomas or malignant pheochromocytomas (Table 10).

TABLE 10. ANALYSIS OF ADRENAL GLAND LESIONS IN MALE RATS IN THE TWO-YEAR FEED STUDY OF OXYTETRACYCLINE HYDROCHLORIDE (a)

	Control	25,000 ppm (b)	50,000 ppm (b)
Adrenal Medullary Hyperplasia		<u></u>	
Overall Rates	7/50 (14%)	14/50 (28%)	9/50 (18%)
Pheochromocytoma			
Overall Rates	10/50 (20%)	18/50 (36%)	24/50 (48%)
Adjusted Rates	37.2%	51.2%	52.9%
Terminal Rates	6/22 (27%)	12/29 (41%)	17/38 (45%)
Week of First Observation	95	94	77
Life Table Tests	P = 0.161	P = 0.221	P = 0.166
Incidental Tumor Tests	P = 0.014	P = 0.135	P = 0.015
Logistic Regression Analysis	P=0.027	P = 0.149	P = 0.024
Malignant Pheochromocytoma			
Overall Rates	2/50 (4%)	1/50 (2%)	0/50 (0%)
Pheochromocytoma or Malignant P	heochromocytoma(c)		
Overall Rates	12/50 (24%)	19/50 (38%)	24/50 (48%)
Adjusted Rates	41.0%	52.6%	52.9%
Terminal Rates	6/22 (27%)	12/29 (41%)	17/38 (45%)
Week of First Observation	75	94	77
Life Table Tests	P = 0.305	P = 0.314	P = 0.312
Incidental Tumor Tests	P = 0.026	P = 0.163	P = 0.026
Logistic Regression Analysis	P = 0.061	P = 0.211	P = 0.053

(a) The statistical analyses used are discussed in Chapter II (Statistical Methods) and Appendix E (footnotes).

(b) The estimated dose in milligrams per kilogram per day is given in Chapter III (Body Weights and Clinical Signs) and in Appendix M.

(c) Historical incidence in NTP studies (mean \pm SD): 358/1,702 (21% \pm 10%)

Pituitary Gland: Adenomas and adenomas or adenocarcinomas (combined) in female rats occurred with significant positive trends, and the incidences in the high dose group were significantly greater (by the incidental tumor test) than those in the controls (Table 11). The incidence of hyperplasia was slightly decreased in dosed female rats relative to controls.

Liver: The incidence of fatty metamorphosis was increased in low dose male rats (control, 8/50; low dose, 16/50; high dose, 7/50). Accessory structures were observed at increased incidences in dosed female rats (control, 2/50; low dose, 7/50; high dose, 9/50).

TABLE 11.	ANALYSIS OF PITUITARY GLAND LESIONS IN FEMALE RATS IN THE TWO-YEAR FEED
	STUDY OF OXYTETRACYCLINE HYDROCHLORIDE

	Control	25,000 ppm	50,000 ppm
Hyperplasia			
Overall Rates	16/50 (32%)	10/50 (20%)	11/50 (22%)
Adenoma			
Overall Rates	19/50 (38%)	17/50 (34%)	30/50 (60%)
Adjusted Rates	44.9%	52.9%	69.5%
Terminal Rates	9/31 (29%)	13/28 (46%)	21/34 (62%)
Week of First Observation	86	101	57
Life Table Tests	P = 0.050	P = 0.544N	P==0.066
Incidental Tumor Tests	P = 0.012	P = 0.477N	P=0.013
Adenocarcinoma			
Overall Rates	2/50 (4%)	7/50 (14%)	3/50 (6%)
Adjusted Rates	5.8%	17.5%	8.4%
Terminal Rates	1/31 (3%)	1/28 (4%)	2/34 (6%)
Week of First Observation	99	83	99
Life Table Tests	P = 0.431	P = 0.075	P = 0.520
Incidental Tumor Tests	P = 0.294	P = 0.083	P = 0.429
Adenoma or Adenocarcinoma (a)			
Overall Rates	20/50 (40%)	24/50 (48%)	32/50 (64%)
Adjusted Rates	47.4%	62.5%	72.6%
Terminal Rates	10/31 (32%)	14/28 (50%)	22/34 (65%)
Week of First Observation	86	83	57
Life Table Tests	P = 0.044	P = 0.202	P = 0.051
Incidental Tumor Tests	P = 0.004	P = 0.230	P = 0.007

(a) Historical incidence in NTP studies (mean \pm SD): 805/1,704 (47% \pm 11%)

FOURTEEN-DAY STUDIES

None of the mice died before the end of the studies (Table 12). The final mean body weights of male mice that received 25,000, 50,000, or 100,000 ppm in the diet were 11%-26% lower than that of the controls. The final mean body weight of female mice that received 100,000 ppm was 17% lower than that of the controls. Mice receiving 25,000 ppm or higher lost weight during the studies. During week 1, feed consumption at 50,000 and 100,000 ppm for males and

females and at 25,000 ppm for males was 13%-37% lower than those of the corresponding controls. Rough hair coats were observed for males that received 100,000 ppm. No compoundrelated effects were observed at necropsy.

Based on the reduction in mean body weights of both males and females at 100,000 ppm, concentrations of 0, 3,100, 6,300, 12,500, and 50,000 ppm oxytetracycline hydrochloride were selected for the 13-week studies in mice.

TABLE 12.SURVIVAL, MEAN BODY WEIGHTS, AND FEED CONSUMPTION OF MICE IN THE
FOURTEEN-DAY FEED STUDIES OF OXYTETRACYCLINE HYDROCHLORIDE

_			Body Weights		Final Weight Relativ		eed
Concentration (ppm)	Survival (a)	Initial (b)	Final	Change (c)	to Controls (percent)	Consu (d)	<u>umption</u> (e)
MALE		<u> </u>					
0	5/5	26.2 ± 0.8	28.3 ± 0.9	$+2.1 \pm 0.2$		3.2	
6,300	5/5	24.8 ± 0.7	26.3 ± 0.7	$+1.5 \pm 0.5$	92.9	2.7	84
12,500	5/5	25.9 ± 0.9	25.9 ± 0.8	0.0 ± 0.5	91.5	2.7	84
25,000	5/5	25.3 ± 0.7	25.2 ± 0.9	-0.1 ± 0.5	89.0	2.7	84
50,000	5/5	26.1 ± 0.8	23.7 ± 0.5	-2.4 ± 0.4	83.7	2.6	81
100,000	5/5	25.7 ± 0.6	20.8 ± 0.5	-4.9 ± 0.4	73.5	2.2	69
FEMALE							
0	5/5	20.4 ± 1.0	22.1 ± 0.9	$+1.7 \pm 0.4$		3.1	
6,300	5/5	21.5 ± 1.0	23.5 ± 0.7	$+2.0 \pm 0.5$	106.3	3.2	103
12,500	5/5	20.4 ± 0.4	21.5 ± 0.4	$+1.1 \pm 0.2$	97.3	2.8	90
25,000	5/5	21.0 ± 0.5	20.8 ± 0.5	-0.2 ± 0.2	94.1	2.8	90
50,000	5/5	21.5 ± 0.2	20.9 ± 0.4	-0.6 ± 0.2	94.6	3.0	97
100,000	5/5	22.3 ± 1.0	18.4 ± 0.5	-3.9 ± 0.9	83.3	2.5	81

(a) Number surviving/number initially in group

(b) Initial group mean body weight \pm standard error of the mean

(c) Mean body weight change \pm standard error of the mean

(d) Grams of feed consumed per animal per day averaged over the 2-week period; not corrected for scatter. The estimated doses of oxytetracycline hydrochloride consumed per day, based on the average feed consumption and the mean of the initial and final body weights, are 653, 1,279, 2,624, 5,120, and 9,247 mg/kg for males and 896, 1,641, 3,349, 6,958, and 12,039 mg/kg for females.

(e) Percent feed consumption relative to controls

THIRTEEN-WEEK STUDIES

None of the mice died before the end of the studies (Table 13). The final mean body weights of mice that received 25,000 or 50,000 ppm were 3% or 15% lower than that of the controls for males and 8% or 12% for females. Estimated feed consumption by dosed groups was comparable to that of the controls.

Measurable amounts of oxytetracycline hydrochloride as determined by fluorometric analysis were found in the 3,100-, 12,500-, and 50,000-ppm groups of males and the 50,000-ppm group of females (Table 14); only trace amounts were detected at lower doses in females.

No compound-related clinical signs or gross or microscopic pathologic effects were observed.

Dose Selection Rationale: Because mean body weight gains of mice receiving 25,000 ppm or more oxytetracycline hydrochloride in feed were lower than those of the controls, concentrations of 0, 6,300, and 12,500 ppm oxytetracycline hydrochloride were selected for the 2-year studies.

TABLE 13. SURVIVAL, MEAN BODY WEIGHTS, AND FEED CONSUMPTION OF MICE IN THE THIRTEEN-WEEK FEED STUDIES OF OXYTETRACYCLINE HYDROCHLORIDE

			Body Weights		Final Weight Relative	Fe	
Concentration (ppm)	Survival (a)	Initial (b)	Final	Change (c)	to Controls (percent)	Consur (d)	n <u>ption</u> (e)
MALE							
0	10/10	22.7 ± 0.4	30.5 ± 0.4	$+7.8 \pm 0.5$		4.2	
3,100	10/10	24.1 ± 0.4	32.8 ± 0.6	$+8.7 \pm 0.4$	107.5	3.6	86
6,300	10/10	25.5 ± 0.4	34.0 ± 0.5	$+8.5 \pm 0.9$	111.5	3.5	83
12,500	10/10	20.5 ± 0.6	30.3 ± 0.7	$+9.8 \pm 1.0$	99.3	3.8	90
25,000	10/10	24.7 ± 0.2	29.6 ± 0.4	$+4.9 \pm 0.3$	97.0	4.1	98
50,000	10/10	23.6 ± 0.3	25.8 ± 0.3	$+2.2 \pm 0.3$	84.6	4.1	98
FEMALE							
0	10/10	19.7 ± 0.2	25.6 ± 0.3	$+5.9 \pm 0.4$		3.0	
3,100	10/10	17.0 ± 0.3	23.5 ± 0.4	$+6.5 \pm 0.3$	91.8	3.0	100
6,300	10/10	18.1 ± 0.3	24.4 ± 0.4	$+6.3 \pm 0.4$	95.3	2.9	97
12,500	10/10	19.6 ± 0.2	25.0 ± 0.2	$+5.4 \pm 0.3$	97.7	3.3	110
25,000	10/10	18.6 ± 0.2	23.5 ± 0.3	$+4.9 \pm 0.3$	91.8	3.3	110
50,000	10/10	18.9 ± 0.3	22.4 ± 0.3	$+3.5 \pm 0.3$	87.5	3.3	110

(a) Number surviving/number initially in group

(b) Initial group mean body weight ± standard error of the mean

(c) Mean body weight change \pm standard error of the mean

(d) Grams of feed consumed per animal per day not corrected for scatter; average of weeks 4 and 12. The estimated doses of oxytetracycline hydrochloride consumed per day, based on the average feed consumption and the mean of the initial and final body weights, are 392, 741, 1,845, 3,821, and 8,300 mg/kg for males and 459, 845, 1,850, 3,860, and 7,990 mg/kg for females.

(e) Percent feed consumption relative to controls

Concentration (ppm)	Male (µg/g)	Female (µg/g)	
3,100	44.2	Trace	
12,500	32.9	Trace	
50,000	134.0	38.9	

TABLE 14.	OXYTETRACYCLINE CONCENTRATION IN BONE OF MICE IN THE THIRTEEN	I-WEEK
	FEED STUDIES AS DETERMINED BY A FLUORESCENCE ASSAY (a)	

(a) Micrograms oxytetracycline per gram of bone (left femur)

TWO-YEAR STUDIES

Body Weights and Clinical Signs

The mean body weights of high dose male mice were 5%-8% lower than those of the controls after week 31 (Table 15 and Figure 3). Mean body weights of low dose and control male mice were comparable throughout the studies. The mean body weights of high dose female mice were 5%-9% lower than those of the controls after week 26. The average daily feed consumption per mouse by low dose and high dose mice was 100% that of the controls for males and 100% and 103% for females (Appendix M, Tables M3 and M4). The average amount of oxytetracycline hydrochloride consumed per day was approximately 650 or 1,400 mg/kg.

	Control			6,300 ppm			12,500 ppm	
Week on Study	Av. Wt. (grams)	No. of Survivors	Av. Wt. (grams)	Wt. (percent of controls)	No. of Survivors	Av. Wt. (grams)	Wt. (percent of controls)	No. of Survivors
MALE					······································			
1	25.1	50	25.2	100	50	25.0	100	50
2	26.9	50	27.1	101 99	50	26.3 26.4	98 96	50 50
3 4	27.6 28.4	50 50	27.2 28.0	99	50 50	20.4	97	50
5	29.6	50	28.5	96	50	27.8	94	50
6	30.4	50	30.0	99	50	28.8	95	50
7	31.0	50	30.7	99	50	29.9	96	50
8	31.7	49	31.1	98	50	30.3	96	50
9	31.6	49	31.3	99	50	30.5	97	50
10	32.4	49	32.5	100	50	31.3	97	50
11	31.5	49	31.5	100 99	50	30.2 31.7	96 96	50 50
12 13	32.9 33.0	49 49	32.7 33.7	102	50 50	31.7	99	50
14	33.6	49	33.9	101	50	33.3	99	50
17	35.4	48	37.2	105	49	34.8	98	49
21	36.9	48	38.0	103	48	36.6	99	48
26	37.7	48	38.6	102	47	36.4	97	48
31	39.2	48	38.6	98	46	37.0	94	47 47
35	38.5	48	38.9	101	45	36.9 37.7	96 95	47
39 44	39.6 39.5	48 48	39.8 39.8	101 101	45 45	37.8	96	47
48	40.8	40	41.3	101	45	39.0	96	47
52	40.8	47	41.8	101	45	39.3	95	47
56	42.5	46	42.8	101	45	40.1	94	47
61	42.0	46	42.1	100	45	40.3	96	47
65	41.8	46	41.4	99	44	39.5	94	47
69	42.3	45	41.4	98	44	39.4	98	46
74	41.4	45	40.4	98	44	39.0	94	44
78	41.8	45	41.4	99	42	39.4	94	44
82	41.0	45	40.3	98 97	42 42	39.0 38.2	95 95	44 43
86 90	40.4 40.3	45 44	39.0 38.4	95	41	37.8	94	43
96	40.3 38.9	38	37.9	97	36	87.3	96	39
99	39.5	35	38.2	97	34	37.2	94	37
103	40.8	31	38.2	95	33	37.2	92	34
FEMALE								
1	19.7	50	19.5	99	50	19.7	100	50
2	20.6	50	20.6	100	50	20.1 20.0	98 98	50 50
3	20.5	50	20.2 20.8	99 99	50 50	20.0	98	50
4 5	21.0 21.8	50 50	20.8	99	50	21.3	98	50
6	22.0	50	22.2	101	50	21.9	100	50
ž	22.4	50	22.5	100	50	22.2	99	50
8	22.8	50	22.7	100	50	22.6	99	50
9	23.2	50	23.2	100	50	22.7	98	50
10	23.2	50	29.7	102	50	23.3	100	50
11	23.5	50	23.6	100	50	23.4 24.2	100 100	50 50
12 13	24.3 25.4	50 50	24.8 25.6	102 101	50 50	24.2	98	50
13	25.4 25.7	50	25.6	100	50	25.3	98	50
17	28.0	50	28.2	101	50	26.7	95	50 50
21	29.0	50	29.4	101	50	28.2	97	50
26	31.4	50	30.4	97	50	28.8	92	50 50 50
31	31.8	50	31.2	98	50	29.1	92	50
35	32.3	50	31.1	96 99	50	29.5	91 94	50
39	34.2	50	33.8	99	50 50	32.1 32.5	94 94 93	50 50
44 48	34.7 36.3	49 49	33.5 34.7	97 96	50 50	32.5 \$3.9	99	50
40 52	30.3	49 49	36.5	90 97	50	35.8	95	50
52 56	37.8 39.4	49	38.4	97	50	37.1	95 94 95	50
61	39.3	48	38.7	98	50	37.1 37.2	95	50
65	39.3 39.2	48	38.7 37.8	96	50	36.9	94	50
69	40.5	48	39.1	97	49	38.0	94	50
74	40.3	48	39.0	97	49	38.0	94	50
78	39.8	48	39.0	98 98	49	38.0 97 4	80	50 40
82	39.4 39.5	45	38.7 38.4	98 97	49 49	37.6 37.3	94 94 95 95 95 94 94 95	50 50 50 50 50 50 50 49 49 49
86 90	39.5 39.6	43 43	38.4 38.3	97	46	37.4	94	48
96	40.2	39	38.5	96	43	38.0	95	48 43
99	40.2	36	38.4	96	38	37.2	93	41
103 .	41,3	31	38.8	94	35	38.1	92	36

TABLE 15. MEAN BODY WEIGHTS AND SURVIVAL OF MICE IN THE TWO-YEAR FEED STUDIESOF OXYTETRACYCLINE HYDROCHLORIDE

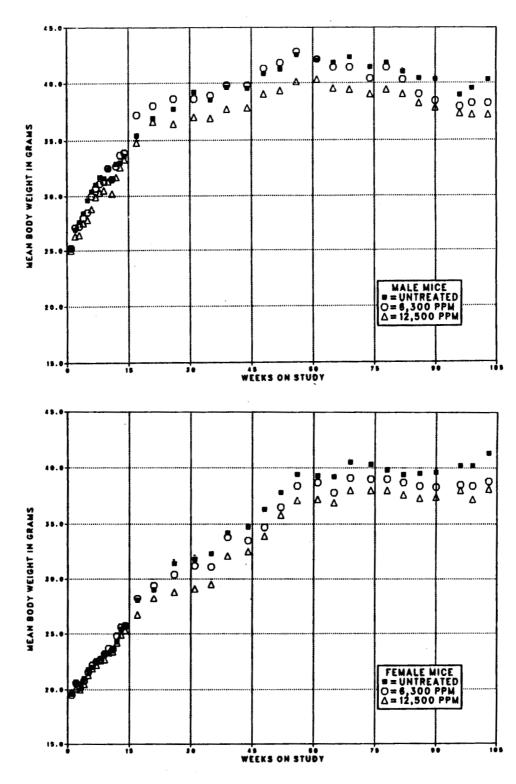


FIGURE 3. GROWTH CURVES FOR MICE FED DIETS CONTAINING OXYTETRACYCLINE HYDROCHLORIDE FOR TWO YEARS

Survival

Estimates of the probabilities of survival for male and female mice fed diets containing oxytetracycline hydrochloride at the concentrations used in these studies and for controls are shown in the Kaplan and Meier curves in Figure 4. No significant differences in survival were observed between any groups of either sex (Table 16).

Pathology and Statistical Analyses of Results

This section describes the significant or noteworthy changes in the incidences of mice with

neoplastic or nonneoplastic lesions of the liver and hematopoietic system. Histopathologic findings on neoplasms in mice are summarized in Appendix B (Tables B1 and B2); Appendix B (Tables B3 and B4) also gives the survival and tumor status for individual male and female mice. Findings on nonneoplastic lesions are summarized in Appendix D (Tables D1 and D2). Appendix E (Tables E3 and E4) contains the statistical analyses of those primary tumors that occurred with an incidence of at least 5% in one of the three groups. The statistical analyses used are discussed in Chapter II (Statistical Methods) and Appendix E (footnotes). Historical incidences of tumors in control animals are listed in Appendix F.

 TABLE 16. SURVIVAL OF MICE IN THE TWO-YEAR FEED STUDIES OF OXYTETRACYCLINE

 HYDROCHLORIDE

	Control	6,300 ppm	12,500 ppm
MALE (a)			
Animals initially in study	50	50	50
Nonaccidental deaths before termination (b)	19	17	16
Killed at termination	29	33	33
Died during termination period	2	0	1
Survival P values (c)	0.658	0.957	0.711
FEMALE (a)			
Animals initially in study	50	50	50
Nonaccidental deaths before termination (b)	19	15	14
Killed at termination	31	34	36
Died during termination period	0	1	0
Survival P values (c)	0.268	0.438	0.315

(a) Terminal-kill period: week 104

(b) Includes animals killed in a moribund condition

(c) The result of the life table trend test is in the control column, and the results of the life table pairwise comparisons with the controls are in the dosed columns.

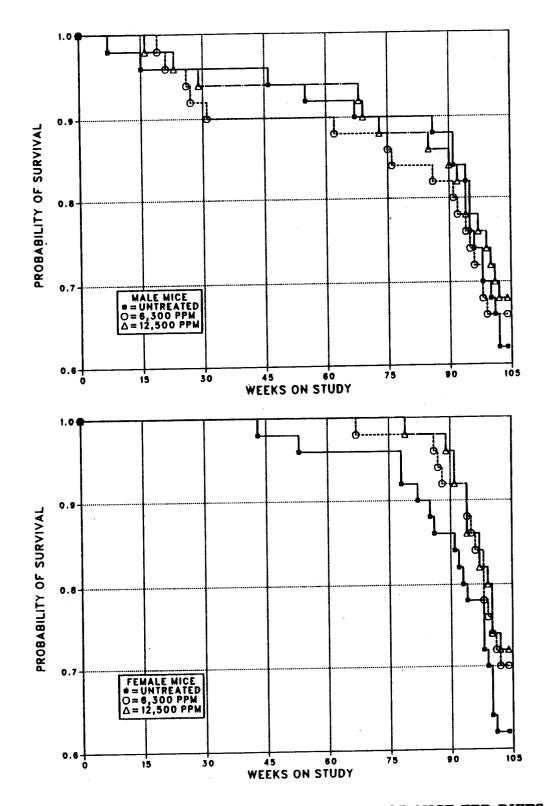


FIGURE 4. KAPLAN-MEIER SURVIVAL CURVES FOR MICE FED DIETS CONTAINING OXYTETRACYCLINE HYDROCHLORIDE FOR TWO YEARS

III. RESULTS: MICE

Liver: The incidence of hepatocellular adenomas or carcinomas (combined) in low dose female mice was significantly lower than that in the controls (Table 17).

Hematopoietic System: The incidence of lymphomas in low dose male mice was significantly lower than that in the controls (Table 18).

TABLE 17. ANALYSIS OF HEPATOCELLULAR ADENOMAS OR CARCINOMAS IN FEMALE MICE IN
THE TWO-YEAR FEED STUDY OF OXYTETRACYCLINE HYDROCHLORIDE (a)

	Control	6,300 ppm (b)	12,500 ppm (b)
Overall Rates	6/50 (12%)	0/50 (0%)	2/50 (4%)
Adjusted Rates	17.6%	0.0%	5.1%
Terminal Rates	4/31 (13%)	0/35 (0%)	1/36 (3%)
Week of First Observation	91		99
Life Table Tests	P = 0.043N	P = 0.013N	P = 0.099N
Incidental Tumor Tests	P = 0.052N	P = 0.018N	P = 0.118N

(a) The statistical analyses used are discussed in Chapter II (Statistical Methods) and Appendix E (footnotes).
(b) The estimated dose in milligrams per kilogram per day is given in Chapter III (Body Weights and Clinical Signs) and in Appendix M.

TABLE 18. ANALYSIS OF MALIGNANT LYMPHOMAS IN MALE MICE IN THE TWO-YEAR FEED STUDY OF OXYTETRACYCLINE HYDROCHLORIDE

	Control	6,300 ppm	12,500 ppm
Overall Rates	8/50 (16%)	1/50 (2%)	8/50 (16%)
Adjusted Rates	22.1%	2.4%	19.1%
Terminal Rates	5/31 (16%)	0/33 (0%)	3/34 (9%)
Week of First Observation	55	91	29
Life Table Tests	P = 0.527 N	P = 0.020N	P = 0.562N
Incidental Tumor Test	P = 0.552	P = 0.017N	P = 0.597

IV. DISCUSSION AND CONCLUSIONS

47 Oxytetracycline Hydrochloride, NTP TR 315

•

The main effects of oxytetracycline hydrochloride in the 14-day feed studies were reductions in mean body weights and feed consumption of rats and mice at 100,000 ppm; males were more sensitive than females. At this concentration, mean body weights relative to controls were reduced by 27% and 6% for male and female rats and by 26% and 17% for male and female mice; the reduction in average daily feed consumption was 35% and 14% for male and female rats and 31% and 19% for male and female mice. No compound-related deaths or gross pathologic changes were observed in any of the dose groups.

In the 13-week studies, mean body weight reductions (greater than 10%) were noted only in mice at 50,000 ppm (male, 15%; female, 12%). Average daily feed consumption of rats and mice receiving oxytetracycline hydrochloride was comparable to that of the controls. No deaths occurred during the studies. The only compoundrelated change observed was fatty metamorphosis in the liver of male rats (Appendix C); the incidences were 5/10 at 50,000 ppm, 2/10 at 25,000 ppm, 5/10 at 12,500 ppm, 5/10 at 6,300 ppm, and 2/10 at 3,100 ppm; the severity was judged to be minimal. In other studies, fatty infiltration was noted in Wistar rats injected intramuscularly with oxytetracycline hydrochloride (300 mg/kg) over an 8-hour period (De Jonge, 1973). Humans receiving large doses of aureomycin (chlorotetracycline) orally or intravenously developed hepatic dysfunction and fatty accumulation in the liver (Lepper, 1951).

The administration of oxytetracycline hydrochloride at concentrations of 6,300 or 12,500 ppm in the diet of mice for 2 years did not result in any significant toxic effect. Mean body weights and survival of dosed mice were similar to those of controls.

The administration of oxytetracycline hydrochloride at concentrations of 25,000 or 50,000 ppm in the diet of rats for 2 years did not adversely affect survival. These doses were considered to be the highest that could be given without affecting the nutritional value of the formulated diet. Survival of high dose male rats (38/50) was greater (P=0.001) than that of the controls (22/50); there was no clear reason for this difference. Thus, this increased survival may have been due to the administration of the antibiotic. In other studies, increased survival was noted in male and female Sprague-Dawley rats fed diets containing 1,000 ppm and in male Osborne-Mendel rats fed diets containing 3,000 ppm oxytetracycline hydrochloride for 2 years and was thought to be due to the "protective" effect of this antibiotic (Deichmann et al., 1964).

Mean body weights were approximately 5%-8% lower than those of controls in high dose male rats during weeks 4-47, in high dose male mice after week 31, and in high dose female mice after week 26. The mean body weights of dosed female rats and low dose male and female mice were comparable to those of controls.

Low dose male rats had an increased incidence of fatty metmorphosis in the liver (control, 8/50; low dose, 16/50; high dose, 7/50). Although doserelated increases were not seen in this 2-year study, the increase seen in the low dose group could be considered related to the exposure to oxytetracycline hydrochloride, since fatty metamorphosis was observed in male rats receiving this compound in the diet in the 13-week study and in Wistar rats injected intramuscularly with 300 mg/kg (De Jonge, 1973). This effect appears to be species specific, since only rats were affected.

Pheochromocytomas of the adrenal gland occurred with a positive trend in male rats (control, 10/50; low dose, 18/50; high dose, 24/50), and the incidence in the high dose group was greater than that in the controls (see Table 10). The incidence of malignant pheochromocytomas decreased slightly (2/50; 1/50; 0/50). Pheochromocytomas or malignant pheochromocytomas (combined) were observed in male rats with a positive trend by the incidental tumor test, and the incidence in the high dose group was greater than that in the controls. However, neither the trend nor the high dose incidence was statistically significant by logistic regression analysis (P=0.061 and 0.053, respectively), a procedure for incidental tumor analysis that does not require time intervals (Dinse and Lagakos, 1983). The increased incidence of pheochromocytomas in high dose male rats appears to be due in part to the improved survival in this group relative to controls. Since the incidence in the high dose

group was also greater than the control rate in NTP studies (358/1,702, 21%; range, 3/50-21/49, 6%-44%; Appendix F, Table F1), this increase may have been associated with exposure to oxytetracycline hydrochloride. Adrenal gland medullary hyperplasia was elevated slightly but not significantly in dosed male rats (7/50; 14/50; 9/50).

Adenomas or adenocarcinomas (combined) in the pituitary gland of female rats were observed with a positive trend (P<0.05), and the incidence was greater (P<0.05) in the high dose group than in the control group. The incidences were as follows: control, 20/50; low dose, 24/50; high dose, 32/50. Since the incidence in the high dose group was also greater than the control rate in NTP studies (805/1,704, 47%; range, 9/39-33/47, 23%-70%; Table F2), these tumors may have been related to exposure to this antibiotic. The incidence of hyperplasia of the pituitary gland was lower in dosed female rats than in controls (16/50; 10/50; 11/50).

Oxytetracycline hydrochloride (1,000 ppm) and nitrite (1,000 ppm) given in drinking water increased the incidence of liver tumors in Sprague-Dawley rats (Taylor and Lijinsky, 1975). The incidence of liver tumors was not increased in rats receiving oxytetracycline hydrochloride in the present studies, suggesting that nitrosation is essential for induction of liver tumors by this compound.

In male and female mice, no nonneoplastic or neoplastic lesions were considered related to the administration of oxytetracycline hydrochloride.

Oxytetracycline hydrochloride was not mutagenic in Salmonella strains TA98, TA100, TA1535, or TA1537 with or without metabolic activation (Appendix G, Table G1) and did not induce chromosomal aberrations in Chinese hamster ovary cells either with or without metabolic activation (Table G5). The two highest doses of oxytetracycline hydrochloride tested in L5178Y/TK^{+/-} mouse lymphoma cells induced forward mutations only in the presence of Aroclor 1254-induced male F344 rat liver S9, but the highest dose (200 µg/ml) was highly toxic and the second highest (100 µg/ml) was slightly toxic (Table G3). An increase in the frequency of sister-chromatid exchanges in Chinese hamster ovary cells was observed for all doses of oxytetracycline hydrochloride tested in the presence of S9, and the response increased with increasing dose (Table G4). However, the positive response in the absence of S9 was marginal, and control values, both in the presence and absence of S9, were high. Although studies by Blitek et al. (1983) and Andrews et al. (1980) indicate that oxytetracycline hydrochloride may be nitrosated to a genetically active agent, the mutagenicity of oxytetracycline hydrochloride is considered limited because the relative increase in SCEs was minimal and positive response in the mouse lymphoma assay was observed only at nearly toxic dose levels.

Conclusions: Under the conditions of these 2year feed studies of oxytetracycline hydrochloride, there was equivocal evidence of carcinogenicity* for male F344/N rats, as indicated by increased incidences of pheochromocytomas of the adrenal gland. There was equivocal evidence of carcinogenicity for female F344/N rats fed diets containing oxytetracycline hydrochloride, as indicated by increased incidences of adenomas of the pituitary gland. There was no evidence of carcinogenicity for male or female B6C3F₁ mice fed diets containing 6,300 or 12,500 ppm oxytetracycline hydrochloride for 2 years.

^{*}Categories of evidence of carcinogenicity are defined in the Note to the Reader on page 2.

A summary of the Peer Review comments and the public discussion on this Technical Report appears on page 13.

Oxytetracycline Hydrochloride, NTP TR 315 50

V. REFERENCES

V. REFERENCES

1. Andrews, A.; Fornwald, J.; Lijinsky, W. (1980) Nitrosation and mutagenicity of some amine drugs. Toxicol. Appl. Pharmacol. 52:237-244.

2. Armitage, P. (1971) Statistical Methods in Medical Research. New York: John Wiley & Sons, Inc., pp. 362-365.

3. Aronson, C., Ed. (1983) Veterinary Pharmaceuticals and Biologicals. Edwardsville, KS: Veterinary Medicine Publishing Co.

4. Asleson, G.; Stoel, L.; Newman, E.; Frank, C. (1974) NMR spectra of oxytetracycline: Assignment of additional protons. J. Pharm. Sci. 63:1144.

5. Baggot, J.; Powers, T.; Powers, J.; Kowalski, J.; Kerr, K. (1977) Pharmacokinetics and dosage of oxytetracycline in dogs. Res. Vet. Sci. 24:77-81.

6. Banerjee, S.; Chakrabarti, K. (1976) The transport of tetracyclines across the mouse ileum *in vitro*: the effect of cations and other agents. J. Pharm. Pharmacol. 28:133-138.

7. Barza, M.; Scheife, R. (1977) Antimicrobial spectrum, pharmacology, and therapeutic use of antibiotics. IV. Aminoglycosides. J. Maine Med. Assoc. 68:194-210.

8. Berenblum, I., Ed. (1969) Carcinogenicity Testing: A Report of the Panel on Carcinogenicity of the Cancer Research Commission of UICC, Vol. 2. Geneva: International Union Against Cancer.

9. Black, W. (1977) A study of pharmacodynamics of oxytetracycline in the chicken. Poult. Sci. 56:1430-1434.

10. Blitek, D.; Pienkowska, K.; Gajcy, H.; Koziorowska, J. (1983) Mutagenicity of oxytetracycline. Mutat. Res. 117:193-199.

11. Blom, L.; Rasmussen, F. (1976) Tissue damage at the injection site after intramuscular injection of drugs in hens. Br. Poult. Sci. 17:1-4.

12. Boorman, G.; Montgomery, C., Jr.; Eustis, S.; Wolfe, M.; McConnell, E.; Hardisty, J. (1985) Quality assurance in pathology for rodent carcinogenicity studies. Milman, H.; Weisburger, E., Eds.: Handbook of Carcinogen Testing. Park Ridge, NJ: Noyes Publications, pp. 345-357.

13. Brown, M.; Stover, S.; Kelly, R.; Farver, T.; Knight, H. (1981) Oxytetracycline hydrochloride in the horse: serum, synovial, peritoneal and urine concentrations after single dose intravenous administration. J. Vet. Pharmacol. Therap. 4:7-10.

14. Clarke, E., Ed. (1969) Isolation and Identification of Drugs. London: The Pharmaceutical Press, p. 463.

15. Clive, D.; Johnson, K.; Spector, J.; Batson, A.; Brown, M. (1979) Validation and characterization of the L5178Y/TK^{+/-} mouse lymphoma mutagen assay system. Mutat. Res. 59:61-108.

16. Code of Federal Regulations (CFR) (1977) Title 21, Food and Drugs, Parts 300-499, 446.65a, April 1. Washington, DC: Government Printing Office.

17. Cox, D. (1972) Regression models and life tables. J. R. Stat. Soc. B34:187-220.

18. De Jonge, H. (1973) Toxicity of tetracyclines in rat-small-intestinal epithelium and liver. Biochem. Pharmacol. 22:2659-2677.

19. Deichmann, W.; Bernal, E.; Anderson, W.; Keplinger, M.; Landeen, K.; MacDonald, W. (1964) The chronic oral toxicity of oxytetracycline HCl and tetracycline HCl in the rat, dog and pig. Ind. Med. Surg. 33:787-806.

20. Dinse, G.; Lagakos, S. (1983) Regression analysis of tumor prevalence data. J. R. Stat. Soc. Ser. C32:236-248.

21. Directory of Chemical Producers--U.S.A. (1977) Menlo Park, CA: Chemical Information Services, SRI International, pp. 1254-1255. 22. Elliott, R.; Whitehall, A. (1957) Placental and mammary transfer of prematures receiving tetracycline. Am. J. Dis. Child. 105:453-461.

23. Engesaeter, L.; Underal, T.; Langeland, N. (1980) Effects of oxytetracycline on mineralization of bone in young rats. Acta Orthop. Scand. 51:459-465.

24. Fabre, J.; Milek, E.; Kalfopoulos, P.; Merier, G. (1971) Kinetics of tetracycline in man. Schweiz. Med. Wschr. 101:593-598.

25. Galloway, S.; Bloom, A.; Resnick, M.; Margolin, B.; Nakamura, F.; Archer, P.; Zeiger, E. (1985) Development of a standard protocol for in vitro cytogenetic testing with Chinese hamster ovary cells: Comparison of results for 22 compounds in two laboratories. Environ. Mutagen. 7:1-51.

26. Gart, J.; Chu, K.; Tarone, R. (1979) Statistical issues in interpretation of chronic bioassay tests for carcinogenicity. J. Natl. Cancer Inst. 62:957-974.

27. Green, R.; Brown, J.; Calvert, R. (1976) The disposition of four tetracyclines in normal subjects. Eur. J. Clin. Pharmacol. 10:245-250.

28. Gyanchandi, N.; et al. (1970) Improved thinlayer chromatographic identification of tetracyclines and their degradation products: Application in an epimerization study. J. Pharm. Sci. 59:224-228.

29. Hansen, S. (1973) Titration of tetracyclines in nonaqueous medium with perchloric acid. Arch. Pharm. Chem., Scientific Edition (Copenhagen) 1:89-92.

30. Haseman, J. (1984) Statistical issues in the design, analysis and interpretation of animal carcinogenicity studies. Environ. Health Perspect. 58:385-392.

31. Haseman, J.; Huff, J.; Boorman, G. (1984) Use of historical control data in carcinogenicity studies in rodents. Toxicol. Pathol. 12:126-135. 32. Haseman, J.K.; Huff, J.; Rao, G.N.; Arnold, J.; Boorman, G.A.; McConnell, E.E. (1985) Neoplasms observed in untreated and corn oil gavage control groups of F344/N rats and (C57BL/6N \times C3H/HeN)F₁ (B6C3F₁) mice. J. Natl. Cancer Inst. 75:975-984.

33. Haworth, S.; Lawlor, T.; Mortelmans, K.; Speck, W.; Zeiger, E. (1983) Salmonella mutagenicity test results for 250 chemicals. Environ. Mutagen. (Suppl. 1) 5:3-142.

34. Kaplan, E.; Meier, P. (1958) Nonparametric estimation of incomplete observations. J. Am. Stat. Assoc. 53:457-481.

35. Lepper, M. (1951) Effect of large doses of aureomycin on human liver. Arch. Intern. Med. 88:271-283.

36. Linhart, M.; Cooper, J.; Martin, R.; Page, N.; Peters, J. (1974) Carcinogenesis bioassay data system. Comput. Biomed. Res. 7:230-248.

37. Mantel, N.; Haenszel, W. (1959) Statistical aspects of the analysis of data from retrospective studies of disease. J. Natl. Cancer Inst. 22:719-748.

38. Maronpot, R.; Boorman, G. (1982) Interpretation of rodent hepatocellular proliferative alterations and hepatocellular tumors in chemical safety assessment. Toxicol. Pathol. 10:71-80.

39. McConnell, E.; Solleveld, H.; Swenberg, J.; Boorman, G. (1986) Guidelines for combining neoplasms for evaluation of rodent carcinogenesis studies. J. Natl. Cancer Inst. 76:283-289.

40. Merck Index (1976) 9th ed., Windholz, M., Ed. Rahway, NJ: Merck and Company, p. 904.

41. Merck Index (1983) 10th ed., Windholz, M., Ed. Rahway, NJ: Merck and Co., pp. 1001, 6846.

42. Milch, R.; Rall, D.; Tobie, J. (1957) Bone localization of the tetracyclines. J. Natl. Cancer Inst. 19(1):87-93.

V. REFERENCES

43. Modern Drug Encyclopedia and Therapeutic Index--A Compendium (1977) New York: Yorke Medical Books, Donnelly Publishing Co.

44. Morrissey, R.; Tyl, R.; Price, C.; Ledoux, T.; Reel, J.; Paschke, L.; Marr, M.; Kimmel, C. (1986) The developmental toxicity of orally administered oxytetracycline in rats and mice. Fundam. Appl. Toxicol. 7:434-443.

45. NCI Summary of Data for Chemical Selection (Doxycycline, Oxytetracycline, Tetracycline) (NCI) (1977) Prepared for the National Cancer Institute by SRI International.

46. National Cancer Institute (NCI) (1976) Guidelines for Carcinogen Bioassay in Small Rodents. NCI Carcinogenesis Technical Report Series No. 1. U.S. Department of Health, Education, and Welfare, Public Health Service, National Institutes of Health.

47. National Institutes of Health (NIH) (1978) NIH Specification, NIH-11-133f, November 1.

48. P'an, S.; Reilly, J.; Halley, T.; Richard, G.; Pekich, A.; Pollets, H. (1950) Pharmacology of terramycin. J. Pharmacol. Exp. Ther. 99:234-244.

49. Parker, F.; James, G. (1978) The effect of various topical antibiotics and antibacterial agents on the middle and inner ear of the guinea-pig. J. Pharm. Pharmacol. 30:236-239.

50. Physicians' Desk Reference (PDR) (1980) Oradell, NJ: Medical Economics Co., pp. 1372-1373.

51. Rall, D.; Loo, T.-L.; Lane, M.; Kelly, M. (1957) Appearance and persistence of fluorescent material in tumor tissue after tetracycline administration. J. Natl. Cancer Inst. 19(1):79-85.

52. Regosz, A. (1975) Determination of tetracyclines and some of their semisynthetic derivatives as acids in nonaqueous media. Chem. Abs. 83:152411m. 53. Rosenberg, P.; Wahlstrom, T. (1974) Renal and hepatic toxicity of methoxyflurane in combination with tetracycline or oxytetracycline treatment in rats. Acta Pharmacol. Toxicol. 34:46-57.

54. Sadtler Standard Spectra. Sadtler Research Institute, Philadelphia, PA, IR No. R-471.

55. Sande, M.; Mandell, G. (1980) Antimicrobial agents. Goodman, A.G.; Goodman, L.; Gilman, A., Eds.: Goodman and Gilman's The Pharmacological Basis of Therapeutics, 6th ed. New York: Macmillan Publishing Co., pp. 1181-1199.

56. Savini, E.; Moulin, M.; Herrou, M. (1968) Effects teratogenes de l'oxytetracycline. Therapie 23:1247-1260.

57. Spector, W., Ed. (1957) Oxytetracycline. Handbook of Toxicology, Vol. 2. Philadelphia: W.B. Saunders Co., pp. 133-139.

58. Stahl, E., Ed. (1969) Thin-Layer Chromatography, 2nd ed. Spray Reagent No. 100. New York: Springer-Verlag, p. 874.

59. Szumigowska-Szrajber, G.; Jeske, J. (1970) Influence of tetracycline base, tetracycline hydrochloride, and oxytetracycline base on development of metatarsal bones in the rat fetus. Acta Pol. Pharm. 27:78-83.

60. Szumigowska-Szrajber, G.; Jeske, J. (1973) Effects of certain tetracyclines on rat productivity. Acta Pol. Pharm. 30:95-101.

61. Szumigowska, G.; Jeske, J.; Kobuszewska-Faryna, M.; Bogumil-Oczkowska, M.; Lincel-Szajdujkis, H.; Lucer, C.; Zaremba, J.; Zielinska, K. (1967) A comparative study on acute and subacute toxicity in rats of oxytetracycline, tetracycline and tetracycline hydrochloride. Acta Pol. Pharm. 24:451-458.

62. Takayama, M. (1965) Teratogenic effects of antibiotics. J. Osaka City Medical Center 14:107-115.

63. Tarara, R.; Hansen, L.; Simon, J. (1976) Effects of repeated administration of oxytetracycline on kidney, liver, and liver mixed-function oxidases in the rat. Toxicol. Appl. Pharmacol. 35:321-331.

64. Tarone, R. (1975) Tests for trend in life table analysis. Biometrika 62:679-682.

65. Taylor, H; Lijinsky, W. (1975) Tumor induction in rats by feeding aminopyrine or oxytetracycline with nitrite. Int. J. Cancer 16:211-215.

66. Touchburn, S.; Nestor, K. (1971) Effect of dietary neomycin-terramycin on reproductive performance in turkeys. Poult. Sci. 50:151-155.

67. U.S. International Trade Commission (USITC) (1984) Synthetic Organic Chemicals, U.S. Production and Sales. Washington, DC: Government Printing Office. 68. van den Bogert, C.; Dontje, B.; Wybenga, J.; Kroon, A. (1981) Arrest of *in vivo* proliferation of Zajdela tumor cells by inhibition of mitochondrial protein synthesis. Cancer Res. 41:1943-1947.

69. von Wittenau, M.; Blackwood, R. (1966) Proton magnetic spectra of tetracycline. J. Org. Chem. 31:613.

70. Weinstein, L. (1970) The tetracyclines. Goodman, L.; Gilman, A., Eds.: The Pharmacological Basis of Therapeutics, 4th ed. New York: Macmillan Publishing Co., pp. 1240-1244.

71. Wolkoski-Tyl, R.; Jones-Price, C.; Ledoux, T.; Reel, J.; Langhoff-Paschke, L.; Marr, M. (1983) Teratologic Evaluation of Oxytetracycline Hydrochloride in CD Rats. NTIS PB.83182469. Springfield, Virginia: U.S. Department of Commerce, National Technical Information Service.

APPENDIX A

SUMMARY OF THE INCIDENCE OF NEOPLASMS IN RATS IN THE TWO-YEAR FEED STUDIES OF OXYTETRACYCLINE HYDROCHLORIDE

TABLE A1.	SUMMARY OF THE INCIDENCE OF NEOPLASMS IN MALE RATS IN THE TWO-YEAR
	FEED STUDY OF OXYTETRACYCLINE HYDROCHLORIDE

	CONTR	ROL (UNTR)	LOW	DOSE	HIG	GH DOSE		
ANIMALS INITIALLY IN STUDY					50			
ANIMALS NECROPSIED	50		50		50			
ANIMALS EXAMINED HISTOPATHOLOGICALL			50		50			
INTEGUMENTARY SYSTEM				<u> </u>				
*Skin	(50)		(50)		(50)			
Squamous cell papilloma		(2%)	3	(6%)	1	(2%)		
Squamous cell carcinoma	1	(2%)						
Trichoepithelioma			2	(4%)		(0~)		
Keratoacanthoma			(20)			(2%)		
*Subcutaneous tissue Fibroma	(50)		(50)	(90)	(50)	(40)		
r loroma Neurofibroma	4	(8%)	T	(2%)		(4%) (2%)		
Neurofibrosarcoma			1	(2%)		(2%)		
		<u> </u>		(270)	• 	(2,10)		
RESPIRATORY SYSTEM								
#Lung	(50)		(50)		(50)			
Carcinoma, NOS, metastatic		(2%)						
Alveolar/bronchiolar adenoma		(2%)			•	(40)		
Alveolar/bronchiolar carcinoma		(2%)			2	(4%)		
Pheochromocytoma, metastatic	1	(2%)						
HEMATOPOIETIC SYSTEM								
*Multiple organs	(50)		(50)		(50)			
Malignant lymphoma, lymphocytic type				(4%)				
Leukemia, mononuclear cell		(44%)		(44%)		(32%)		
#Thymus	(48)		(47)	(0)	(50)			
Thymoma, benign			1	(2%)				
CIRCULATORY SYSTEM								
#Heart	(50)		(50)		(50)			
Neurofibrosarcoma					1	(2%)		
DIGESTIVE SYSTEM	- <u>-</u> .		- <u>-</u>					
#Salivary gland	(50)		(50)		(50)			
Neurofibrosarcoma, invasive	-					(2%)		
#Liver	(50)	(10~)	(50)	(100)	(50)	(1.400)		
Neoplastic nodule Hepatocellular carcinoma	6	(12%)	5	(10%)		(14%) (4%)		
URINARY SYSTEM None		. y , ,						
ENDOCRINE SYSTEM					······			
#Anterior pituitary	(50)		(50)		(48)			
Adenoma, NOS		(40%)		(54%)		(31%)		
Adenocarcinoma, NOS		(2%)			20	(0 = /0)		
#Adrenal	(50)	<u>,</u> ,	(50)		(50)			
Cortical adenoma		(4%)		(4%)		(6%)		
#Adrenal cortex	(50)		(50)		(50)			
Adenocarcinoma, NOS		(2%)						
#Adrenal medulla	(50)		(50)		(50)			
Pheochromocytoma Pheochromocytoma, malignant		(20%)		(36%) (2%)	24	(48%)		
	a .	(4%)						

	CONTR	OL (UNTR)	LOW	DOSE	HIGI	H DOSE
ENDOCRINE SYSTEM (Continued)				<u> </u>	<u></u>	
#Thyroid	(50)		(50)		(50)	
C-cell adenoma		(4%)		(4%)		(8%)
C-cell carcinoma		(2%)		(6%)		(6%)
#Pancreatic islets	(50)	((50)	(0.0)	(50)	(1.4.00)
Islet cell adenoma Islet cell carcinoma		(4%)	4	(8%)	7	(14%)
	4	(8%)				
REPRODUCTIVE SYSTEM						
*Mammary gland	(50)		(50)		(50)	
Adenoma, NOS				(2%)		
*Preputial gland	(50)		(50)		(50)	
Adenoma, NOS				(4%)	-	
Adenocarcinoma, NOS		(2%)		(2%)		(2%)
#Testis	(50)	(00%)	(50)	(7.4.0)	(50)	(000)
Interstitial cell tumor	41	(82%)	37	(74%)	40	(80%)
NERVOUS SYSTEM						
#Brain	(50)		(50)		(50)	
Astrocytoma	1	(2%)				
SPECIAL SENSE ORGANS						
*Harderian gland	(50)		(50)		(50)	
Adenoma, NOS	(((2%)
*Ear canal	(50)		(50)		(50)	
Squamous cell papilloma	1	(2%)				
*Zymbal gland	(50)		(50)		(50)	
Carcinoma, NOS			2	(4%)		
MUSCULOSKELETAL SYSTEM None						
BODY CAVITIES		·····	<u>-</u>		······································	
*Pelvis	(50)		(50)		(50)	
Sarcoma, NOS			1	(2%)		
*Mesentery	(50)		(50)		(50)	
Teratoma, benign			•			(2%)
*Tunica vaginalis	(50)		(50)	((50)	
Mesothelioma, NOS			2	(4%)		
ALL OTHER SYSTEMS						
*Multiple organs	(50)		(50)		(50)	
Mesothelioma, malignant			1	(2%)		
Foot						
Sarcoma, NOS	1					
NIMAL DISPOSITION SUMMARY						
Animals initially in study	50		50		50	
Natural death	5		1		1	
Moribund sacrifice	23		21		11	
Terminal sacrifice	22		28		38	

TABLE A1. SUMMARY OF THE INCIDENCE OF NEOPLASMS IN MALE RATS IN THE TWO-YEAR FEED STUDY OF OXYTETRACYCLINE HYDROCHLORIDE (Continued)

TABLE A1.	SUMMARY OF THE INCIDENCE OF NEOPLASMS IN MALE RATS IN THE TWO-YEAR
	FEED STUDY OF OXYTETRACYCLINE HYDROCHLORIDE (Continued)

	CONTROL (UNTR)	LOW DOSE	HIGH DOSE
TUMOR SUMMARY			
Total animals with primary tumors**	50	50	49
Total primary tumors	126	141	133
Total animals with benign tumors	48	48	48
Total benign tumors	84	100	100
Total animals with malignant tumors	33	29	25
Total malignant tumors	36	34	26
Total animals with secondary tumors##	2		1
Total secondary tumors	2		1
Total animals with tumors uncertain			
benign or malignant	6	7	7
Total uncertain tumors	6	7	7

* Number of animals receiving complete necropsy examination; all gross lesions including masses examined microscopically.
** Primary tumors: all tumors except secondary tumors
Number of animals examined microscopically at this site
Secondary tumors: metastatic tumors or tumors invasive into an adjacent organ

	CONTR	OL (UNTR)	LOW	DOSE	HIGH DOS					
ANIMALS INITIALLY IN STUDY	50		50		50					
ANIMALS NECROPSIED	50		50		50					
ANIMALS EXAMINED HISTOPATHOLOGICALI	LY 50		50		50					
INTEGUMENTARY SYSTEM				<u> </u>						
*Skin	(50)		(50)		(50)					
Keratoacanthoma		(2%)								
*Subcutaneous tissue	(50)		(50)		(50)					
Sarcoma, NOS Teratoma, benign	1	(2%)			1	(2%)				
RESPIRATORY SYSTEM										
#Lung	(50)		(50)		(50)					
Alveolar/bronchiolar adenoma	,	(2%)		(2%)	(00)					
HEMATOPOIETIC SYSTEM		····								
*Multiple organs	(50)		(50)		(50)					
Leukemia, mononuclear cell	13	(26%)		(18%)	9	(18%)				
#Iliac lymph node	(49)		(50)		(50)					
Endometrial stromal sarcoma, metastatic						(2%)				
#Thymus	(49)		(50)		(50)					
Nonchromaffin paraganglioma			-		1	(2%)				
CIRCULATORY SYSTEM										
#Heart	(50)	(00)	(50)		(50)					
Neurofibrosarcoma	1	(2%)								
DIGESTIVE SYSTEM			(7.6.)		(50)					
#Liver	(50)	(10%)	(50)	(90)	(50)	(1901)				
Neoplastic nodule		(10%)		(8%)	(50)	(12%)				
#Pancreas Endometrial stromal sarcoma, metastatic	(50)		(50)			(2%)				
#Forestomach	(50)		(50)		(50)	(210)				
Sarcoma, NOS	(00)			(2%)	(00)					
#Duodenum	(50)		(50)	(2,0)	(50)					
Adenoma, NOS	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			(2%)						
URINARY SYSTEM										
#Kidney	(50)		(50)		(50)					
Adenocarcinoma, NOS		(2%)	/FA		-					
#Kidney/pelvis Transitional cell carcinoma	(50)		(50)		(50) 1	(2%)				
ENDOCRINE SYSTEM		<u> </u>		<u>(</u>						
#Anterior pituitary	(50)		(50)		(50)					
Adenoma, NOS		(38%)		(34%)		(60%)				
Adenocarcinoma, NOS		(4%)		(14%)		(6%)				
#Adrenal	(50)		(50)		(50)					
Cortical adenoma		(12%)		(10%)		(2%)				
#Adrenal cortex	(50)		(50)	(901)	(50)					
Adenocarcinoma, NOS #Adrenal medulla	(50)			(2%)	(50)					
	(00)		(50)							
Pheochromocytoma		(12%)	A	(8%)	3	(6%)				

TABLE A2. SUMMARY OF THE INCIDENCE OF NEOPLASMS IN FEMALE RATS IN THE TWO-YEAR FEED STUDY OF OXYTETRACYCLINE HYDROCHLORIDE

	CONTR	OL (UNTR)	LOW	DOSE	HIG	H DOSE
ENDOCRINE SYSTEM (Continued)	<u> </u>					<u> </u>
#Thyroid	(50)		(50)		(50)	
Follicular cell adenoma	1	(2%)		(2%)	1	(2%)
Follicular cell carcinoma			1	(2%)		
C-cell adenoma	6	(12%)		(12%)		(10%)
C-cell carcinoma		(4%)		(6%)		(4%)
#Parathyroid	(41)		(39)		(34)	
Adenoma, NOS						(3%)
#Pancreatic islets	(50)		(50)		(50)	
Islet cell adenoma	2	(4%)	1	(2%)		
REPRODUCTIVE SYSTEM						
*Mammary gland	(50)		(50)		(50)	
Adenoma, NOS	1	(2%)			1	(2%)
Adenocarcinoma, NOS	1	(2%)	1	(2%)		(4%)
Fibroadenoma		(42%)	15	(30%)	15	(30%)
*Clitoral gland	(50)		(50)		(50)	
Carcinoma, NOS	3	(6%)	2	(4%)	2	(4%)
Adenoma, NOS	2	(4%)	5	(10%)	2	(4%)
#Uterus	(50)		(50)		(50)	
Endometrial stromal polyp	15	(30%)	10	(20%)		(42%)
Endometrial stromal sarcoma			1	(2%)	3	(6%)
#Ovary	(50)		(50)		(50)	
Luteoma	1	(2%)				
NERVOUS SYSTEM						
#Brain	(50)		(50)		(50)	
Adenocarcinoma, NOS, invasive	1	(2%)	3	(6%)		
Astrocytoma					1	(2%)
SPECIAL SENSE ORGANS		······				
*Zymbal gland	(50)		(50)		(50)	
Carcinoma, NOS	((/			(2%)
Squamous cell carcinoma						(2%)
MUSCULOSKELETAL SYSTEM						
*Skeletal muscle	(50)		(50)		(50)	
Sarcoma, NOS, invasive					1	(2%)
BODY CAVITIES None	·				1997 - F. di ^{la} di ¹	
ALL OTHER SYSTEMS None			<u></u>			
ANIMAL DISPOSITION SUMMARY						
Animals initially in study	50		50		50	
	2		3		3	
Natural death						
Natural death Moribund sacrifice	18		19		13	

TABLE A2. SUMMARY OF THE INCIDENCE OF NEOPLASMS IN FEMALE RATS IN THE TWO-YEAR FEED STUDY OF OXYTETRACYCLINE HYDROCHLORIDE (Continued)

	CONTROL (UNTR)	LOW DOSE	HIGH DOSE
TUMOR SUMMARY	······································		·
Total animals with primary tumors**	49	44	49
Total primary tumors	111	96	114
Total animals with benign tumors	43	37	45
Total benign tumors	83	66	82
Total animals with malignant tumors	20	22	22
Total malignant tumors	23	26	26
Total animals with secondary tumors##	1	3	2
Total secondary tumors	1	3	3
Total animals with tumors uncertain			
benign or malignant	5	4	6
Total uncertain tumors	5	4	6

TABLE A2. SUMMARY OF THE INCIDENCE OF NEOPLASMS IN FEMALE RATS IN THE TWO-YEAR FEED STUDY OF OXYTETRACYCLINE HYDROCHLORIDE (Continued)

* Number of animals receiving complete necropsy examination; all gross lesions including masses examined microscopically. ** Primary tumors: all tumors except secondary tumors # Number of animals examined microscopically at this site

Secondary tumors: metastatic tumors or tumors invasive into an adjacent organ

-		062 + + + + + + + ++++ + +	0668 + + X + + + + + + + + + + + + + + + +	0 8 6 + + + + + + + + + + + + + + + + + +	087 + + + + + + + + + + + + + + + + + + +	0 7 5 + + + + + + + + + +	075 + + + + + + + + + + + + + + + + + + +	075 + + + + + + + + + + + + + + + + + + +	075 + X+ + + ++	0 7 6 + + + + +	0 7 9 + + + +	0 7 9 + + +	0 8 1 + + + +	0 8 2 + + + +	0 8 6 + + + +	+ + +	0 9 2 + + X +	0 9 3 + + +	0 9 5 + + X +	9 9 5 + + +	0 9 6 + + +	0 9 7 + + +	+++++	1 0 1 + +
	+++ + + ++ +z+	+ + + + +	+ + + + + + + + + + + + + + + + + + + +	+ + + + + + + + +	+ + + + + + + + +	+		÷	+ x + + + +	+ + + +	++++++	+ + + + +	+++++	++++++	++++++	+++++	+ * * +	+++++	+ + + + +	+ + + +	+ + +	+ + +	+++++++	+ + +
	+++ + + ++ +z+	+ + + + +	+ + + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + +	+ + + + + +	+		÷	+ x + + + + + + + + + + + + + + + + + +	+ + + +	+ + + +	+ + + + +	++++++	+ + + +	++++++	+ + + +	+ * + +	+ + + +	+ * +	+ + +	+	+	+ + + +	+ + +
	+++ + + ++ +z+	+ + + + +		+ + + + + + + +	+ + ++ +	+		÷	+ + +	+	+	++	++	+++	+	+	+++	++	+	+	+	+	+	+
	+++ + + ++ +z+	+ + + + +		+ ++++ +	+ ++ +	+		÷	+	+	+	+	+	+	+	+	+	+	+				+	
	+++ + + ++ +z+	+ + + + +		+++++++++++++++++++++++++++++++++++++++	+++	+		÷	+											+	+	+	-	+
•	+		+	+	+			+	++++	++++	++++	+++++	+++++	++++	+++++	+ + + + + +	+++++	++++	++++	+++++	+++++	+++++	+++++	++++
•	+		++			+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
•	+			+++	+ +	++++	+ +	+ +	+ +	+ +	++++	++++	+ +	÷	+ +	+ +	+++++	+++++	+++++	+ + x	+ +	+ +	+ + X	+ + X
	+	N + + +	+ 1 + +	+ N + +	+ N + +	+ N + + +	+ N + +	+ z + +	+ N + + +	+ n + + +	+ N + +	+ z + +	+ N + +	+ N + +	+ N + +	+ z + +	+ N + +	+ N + +	+ N + +	+ N + +	+ N + + +	+ N + +	+ N + +	+ N + +
-	+ + +	+++	+++	++++	+ + +	+ + +	+ + +	+ + +	+++	+ + +	+ + +	+++	+ + +	+ + +	+ + +	+ + +	+ + +	+ + +	+ + +	+ + +	+ + +	+ + +	+ + +	+ + +
	+ +	+++	++++	++++	+++	++++	+++	+ +	+++	+	++++	++	+++	+ +	+++	+ +	+ +	+	+ +	+	+++	+ +	++++	+++
	+	+	+	+	* *	* x	+	*	+	+	*	+	+	*	+	+	*	+	+	+	+	*	*	*
	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
	+	+	+	+	+	X +	+	÷	+	+	+	+	+	+	+	+	+	+	+	х +	+	х +	х +	х +
	+ +	+ +	- +	- +	- +	- +	- +	+ +	- +	+ +	- +	+ +	÷	+ +	+ +	+ +	+ +	+ +	+ + X	- +	+ +	+ +	- +	+ +
	+ +	+++	+++	++	++*	+++	+++	‡ +	+++	+++	+++	+ + *	++	+++	+ + x	+++	+++	+++	+ + +	+++	+++	++++	+ + *	+++
1	+ N	+ N	* N	+ N	* N X	* N	+ N	* N	ň N	Ň	N N	N	n N	+ N	n N	A + N	+ N	î+ N	4 N	+ N	+ N	n N	+	,+ N
	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
1	N	N	N	+	N	*	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
		N X	N	N X	N	N	N	N	N	N X	N X	N	N X	N	N X	N X	N	N X	N X	N X	N X	N		
			x + + N N + + + N N N N X	+ + + + + + + N N N N N X	+ + + + + + + + + + N N N + N N N + N N N X	X + + + + + + N N N + N N N N N N N X X	+ + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + +	$\begin{array}{c} + & + & + & + & + & + & + & + & + & + $	+ + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +

TABLE A3. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE RATS IN THE TWO-YEAR FEED STUDY OF OXYTETRACYCLINE HYDROCHLORIDE: UNTREATED CONTROL

Tissue examined microscopically
 Required tissue not examined microscopically
 Tumor incidence
 Necropsy, no autolysis, no microscopic examination
 S Animal missexed

. No tissue information submitted C. Necropsy, no histology due to protocol A: Autolysis M: Animal missing B: No necropsy performed

TABLE A3. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE RATS:	UNTREATED CONTROL
(Continued)	

										F111		~														
ANIMAL NUMBER	1 2 3	1 0 6	1 4 7	1 0 2	1 0 7	1 1 1	1 1 2	1 1 8	1 2 0	1 2 1	1 2 2	1 2 4	1 2 5	1 2 6	1 2 8	1 2 9	1 3 0	1 3 1	1 3 7	1 3 8	1 4 0	1 4 2	1 4 4	1 4 8	1 4 9	TOTAL
WEEKS ON STUDY	-1 0 1	1 0 2	1 0 2	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	TOTAL TISSUES TUMORS
INTEGUMENTARY SYSTEM									-																	
Skin Squamous cell papilloma Squamous cell carcinoma Subcutaneous tissue Fibroma	+	+	+	+	+ +	+ +	+ +	+	+	+	+ x +	+	+	+	+	+	+ + X	+	+	+	+	+	+	+	+	*50 1 1 *50 4
RESPIRATORY SYSTEM Lungs and bronch Caronome, NOS, metastatic Alveolar/bronchiolar adenoma Alveolar/bronchiolar caronoma Pheochromocytoma, metastatic	+ X	+	+	Ť	+	+	+ X	+	+	+	+	+	+	+	+	+	+	+	+	+	+ X	+	+	+	+	50 1 1 1 1
Trachea	+	+	+	+	+	+	+	+	+	+	+	+	+	÷	+	+	+	÷	+	+	+	+	ł	+	+	50
HEMATOPOIETIC SYSTEM Bone marrow Spleen Lymph nodes Thymus	++++	+ + + + +	++++	+++++	+ + + + + +	++++	+++++	++++	++++	++++	+++++	++++	++++	+++++	++++++	++++	++++	++++	+++++	++++++	+++++	+ + + +	+ + + +	+ + + +	+++++	50 50 49 48
CIRCULATORY SYSTEM Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
DIGESTIVE SYSTEM Salvary gland Liver Neoplastic nodule Bile duct Gallbladder & common bile duct Pancreas Esophagus Stomach	++ +2+++	++ +x+++	++ +2+++	++ +2+++	++ +2+++	++ +2+++	++ +2+++	++ +2+++	++×+×++++	++ +12+++	++ +2+++	++ +2+++	++ +2+++	++ +z+++	++ +2+++	++ +X+++	++ +2+++	++ +2+++	++x+z+++	++ +N+++	++ + + + + + + + + + + + + + + + + + + +	++ +2+++	+++X+++	++X+N+++	++ +z+++	50 50 \$50 \$50 \$50 50 50 50
Small intestine Large intestine	++	+ +	++	++	++	++	++	+ +	+ +	++	+ +	+ +	++	++	+ +	+ +	+ +	+ +	++	+ +	+ +	++	+ +	++	++	50 50
URINARY SYSTEM Kidney Urinary bladder	++++++	+ +	++++	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+++	++	+ +	+ +	+ +	+++	+ +	+ +	50 50
ENDOCRINE SYSTEM Pituitary Adenoma, NOS Adenocarcinoma, NOS	+	+	+	*	*	+	*	+	+	+	+	*	*	*	*	+ X	+	*	+	*	+	*	*	+	+	50 20 1
Adrenal Adenocarcinoma, NOS Cortical adenoma	+	+	+ X	+	+	+	+	+	+	+	*	+	+	+	+	+	+	+ X X	+	+	+	+	+	+	+	50 1 2
Pheochromocytoma Pheochromocytoma, malignant Thyroid C-cell adenoma C cell carcinoma	X +	+	+ X	*	+	X +	+	+ X	+	+	+	+	+	X +	+	+	+	х +	+	Х +	X +	+	x +	+	+	10 2 50 2 1
Parathyroid Pancreatic islets Islet cell adenoma Islet cell carcinoma	++	+ +	+ +	+ + X	+ +	+ + X	+ +	+ +	+ +	+ + X	- +	+ + * X	+ +	+ +	+ +	+ +	+ +	+ + X	++	+ +	+ +	+	+ +	+ +	+ +	38 50 2 4
REPRODUCTIVE SYSTEM Mammary gland Testia Interstitiai cell tumor Prostate	++ + ×+	+ + X +	+ + X +	+ + X +	+ + X +	+ + X +	+ + X +	+ + X +	+ + x +	+ + X +	+ + X +	+ + + X +	+ + X +	+ + X +	+ + X +	N + X +	+ + X +	+ + X +	+ + X +	+ + X +	+ + X +	+ + X +	+ + X +	+ + X +	+ + X +	*50 50 41 48
Preputial/clitoral gland Adenocarcinoma, NOS	Ň	Ň	Ň	Ň	Ň	Ň	Ň	Ň	Ň	Ň	Ň	Ň	Ň	Ň	Ň	Ň	Ň	Ň	Ň	Ň	Ň	Ň	Ň	Ň	Ň	*50 1
NERVOUS SYSTEM Brain Astrocytoma	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50 1
SPECIAL SENSE ORGANS Ear Squamous cell papilloma	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	*50 1
ALL OTHER SYSTEMS Multiple organs, NOS Leukemia, mononuclear cell Foot, NOS Sarcoma, NOS	N	N X	N X	N	N	N	N	N	N X	N	N	N X	N	N X	N	N	N	N X	N X	N	N X	N	N	N	N X	*50 22 1

* Animals necropsied

ANIMAL NUMBER	0 3 6	0 2 8	0 4 3	0 0 8	0 4 5	0 3 8	0 3 1	0 0 7	0 3 3	0 1 0	0 2 2	0 5 0	0 2 1	0 4 8	0 1 6	0 3 2	0 2 7	0 2 9	0 3 9	0 0 1	0 0 9	0 0 2	0 0 3	0 0 4	0 0 5
WEEKS ON STUDY	0 4 7	0 5 5	0 6 1	0 6 5	0 8 1	0 8 4	0 8 6	0 8 7	0 8 7	0 8 9	0 9 1	0 9 3	0 9 4	0 9 4	0 9 5	0 9 5	0 9 9	0 9 9	1 0 0	1 0 1	1 0 3	1 0 4	1 0 4	1 0 4	1 0 4
INTEGUMENTARY SYSTEM Skin Squamous cell papilloma Trichoepithelioma Subcutaneous tissue Fibroma Neurofibrosarcoma	+++	+	+	+	+	+	+	+	+	+	+	+	+ *	+	+	++	+	+	+	+	+	+	+	+	++
RESPIRATORY SYSTEM Lungs and bronch: Trachea	++++	++++	++++	+++	++	+ +	++++	+++	+++	++++	+ +	++++	++++	++++	++++	++++	++++	++	++++	+++	+ +	+++++	++++	++++	+++
HEMATOPOIETIC SYSTEM Bone marrow Spleen Lymph nodes Thymus Thymoma, benign	+++++	+ + + +	+ + + +	++++	+++	+++++	++++	+++-	- + + + +	+++-	++++	++-+	++++	+ + + +	+ + + +	++++	++++	++++++	+ + + +	++++	++++	+ + + + + X	+ + + +	+ + + +	+ + + +
CIRCULATORY SYSTEM Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
DIGESTIVE SY STEM Salivary gland Liver Neoplastic nodule Bile duct Galibladder & common bile duct Pancreas Esophagus Stomach Stomach Small intestine Large intestine	++ +2+++++	++ +Z+++++	++ +X+++++	++ +2+++++	++ +2+++++	++ +z+++++	++ +2+++++	++×+2+++++	++ +z++++	++ +Z+ +++	++ +Z+++++	++ +2+++++	++ +z++++	++ +X+++++	++ +2+++++	++ +2+++++	++ +Z+++++	++ +2+++++	++ + + 2 + + + + +	++ +2+++++	++ + X +++++	++ +2+++++	++ + X +++++	++ +N+++++	++ + X +++++
URINARY SYSTEM Kidney Urinary bladder	+++++	+++	++++	+++	+ +	++++	+++	++++	++++	++++	++++	+++	++++	+++	+++	++++	++	+++	+ +	++++	++	+++	+++	++++	++++
ENDOCRINE SYSTEM Pituitary Adenoma, NOS Adrenal Cortical adenoma Pheochromocytoma Pheochromocytoma, malignant Thyroid C-cell adenoma C-cell adenoma C-cell carcinoma Parcreatic islets	++++++	+ + + + + +	+x+ + ++	+ + + -+	+x+ + -+	+ + + -+	+ X + + -+	+x+ + ++	+ + +	+x+ + -+	+ + + + +	+++++	+ + + + + + +	+ X + + -+	+ + + + + + +	+ x + x + - +	+x+ x + x++	+x+x + + ++	+X+ X + X++	+ + X + +	+ + X + +	+ + + ++	+ + x + x +	+ * + + +	+x+x + + ++
Islet cell adenoma REPRODUCTIVE SYSTEM																									×
Mammary gland Adenoma, NOS Testis Interstitual cell tumor Prostate Preputial/clitoral gland Adenoma, NOS Adenocarcinoma, NOS	+ + + N	+ + + +N	+ + * N	+ + X + N	+ + + N	+ +X+ N	+ + + N X	+ +x+ x+ N	+ +x+ N	+ +x+n	+ + X + N N	+ +x+ N	+ +x+ N	+ + * N	+ +x+N	+ + * N	+ +x+ N	+ + X + N	+ +x+ N	+ +x+ N	+ +x+ N	+ +x+N	+ +x+n	+ +X+N	+ +x+nx
NERVOUS SYSTEM Brain	+	÷	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
SPECIAL SENSE ORGANS Zymbal gland Carcinoma, NOS	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
BODY CAVITIES Peritoneum Sarcoma, NOS Tunica vaginalis Mesothelioma, NOS	N X +	N +	и +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +
ALL OTHER SYSTEMS Multiple organs, NOS Mesothehoma, malignant Malignant lymphoma, lymphocytic type Leukamia, mononuclear cell	N	N X	N X	N		N X	N		N X			N	N			N X			N X		N X X	N	N	N	N

TABLE A3. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE RATS IN THE TWO-YEAR FEEDSTUDY OF OXYTETRACYCLINE HYDROCHLORIDE: LOW DOSE

								(C	011	6111	ued	.,														
ANIMAL NUMBER	0 0 6	0 1 1	0 1 2	0 1 3	0 1 4	0 1 5	0 1 7	0 1 8	0 1 9	0 2 0	0 2 3	0 2 4	0 2 5	0 2 6	0 3 0	0 3 4	0 3 5	0 3 7	0 4 0	0 4 1	0 4 2	0 4 4	0 4 6	0 4 7	0 4 9	TOTAL
WEEKS ON STUDY	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	104	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	TOTAL: TISSUES TUMORS
INTEGUMENTARY SYSTEM Skin Squamous cell papilloma Trichoepithelioma Subcutaneous tissue Fibroma Neurofibrosarcoma	+	+	+	+ +	+	+	+	+	+ +	+	* +	+	+ +	* +	+	+ +	+	+	+	* +	+ X +	+ + X	+ X +	+ +	+	*50 3 2 *50 1 1
RESPIRATORY SYSTEM Lungs and bronchi Trachea	+++++	++	+ +	+ +	+++	+ +	++	++++	+++	+++	++	+++	++++	++	+++	+++	+ +	+++	+++	++++	+ +	+ +	+ +	+ +	+ +	50 50
HEMATOPOIETIC SYSTEM Bone marrow Spleen Lymph nodes Thymus Thymoma, benign	++++	++++	+++++	++++++	+++++	++++	+ + + +	++++	++++	++++	++++	+++++	++++	+++++	++++	++++	+++++	++++	++++	++++	++++	+++++	+++++	+++++	++++++	49 50 49 47 1
CIRCULATORY SYSTEM Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
DIGESTIVE SYSTEM Salvary gland Liver Neoplastic nodule Bile duct Gallbladder & common bile duct Pancreas Esophagus Stomach Stomach Small intestine Large intestine	++ +N+++++	++ +Z+++++	++ +2+++++	++ +X+++++	++ +Z+++++	++x+x+x+++++	++ +Z+++++	++ + X +++++	++ +Z+++++	++ +2+++++	++ +Z+++++	++ +Z+++++	++ + Z +++++	++ +z+++++	++ +z+++++	++x+x++++++	++ +Z+++++	++ +Z+++++	++x+x++++++	++ +Z+++++	++ + z ++++	++ +2+++++	++ +Z+++++	++ + Z +++++	++ +N+++++	50 50 *50 *50 49 50 50 50 50
URINARY SYSTEM Kidney Urinary bladder	++++	+++	+++	+++	+++	+++	++	+++	+++	+++	+++	+++	++++	+++	+++	+++	+++	+++	+++	+ +	+++	++++	++++	++++	++++	50 50
ENDOCRINE SYSTEM Pituitary Adenoma, NOS Adrenal Cortical adenoma Pheochromocytoma, malignant Thyroid C-cell adenoma C-cell adenoma C-cell acrinoma Parathyroid Pancreatic islets Islet cell adenoma	+ + X + +	+x+ + x + ++x	+ x +	+ + X + +	+ + + + + +	+ + + X + + + +	+ x + + + + + + +	+ + X + +	+x+ + +	+ + + X + +	+ + + +	+x+ + -+x	+ + X + -	+x+ + x + + -+	+x+ + x + ++x	+ x + + + + + + + + + + + + + + + + + +	+X + + + + + + + + + + + + + + + + + + +	+x + x + + + + + + + + + + + + + + + +	+ + + +	+x+ + + + +	+ X + + + +	+ + + + + + + + + + + + + + + + + + + +	+ X + - +	+x+ + + +	+X++X-+	50 27 50 2 18 1 50 2 3 36 50 4
REPRODUCTIVE SYSTEM Mammary giand Adenoma, NOS Testis Interstitial cell tumor Prostate Preputial/citoral gland Adenoma, NOS Adenoma, NOS	+ + X+ N	+ +X+N	+ + Z	+ +X+ N	+ + X+ N	+ + X + N N	+ + X + N	+ +x+n	+ + + N	+ +x+ x+ N	+ +X+NX	+ + * N	+ +x+N	+ + + + N	+ + X +N	+ + X + X	+ +x+n	+ + X +N	+ + X + N	+ + X +N	+ + +z	+ + X + N N	+ X + X + N	+ + * N	+ + X + N	*50 1 50 37 50 *50 2 1
NERVOUS SYSTEM Brain	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
SPECIAL SENSE ORGANS Zymbal gland Carcinoma, NOS	+ X	N	N	N	N	N	N	N	N	N	N	N	N	N	N	*	N	N	N	N	N	N	N	N	N	*50 2
BODY CAVITIES Pertoneum Sarcoma, NOS Tunca vaginalis Mesothehoma, NOS	N +	N +	N + X	N +	N +	N +	N +	N +	N +	N +	N +	N +	N + X	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	*50 1 *50 2
ALL OTHER SYSTEMS Multiple organs, NOS Mesothelioma, malignant Malignant lymphoma, lymphocytic type Leukemia, mononuclear cell	N	N	N	N X	N X	N	N	N	N	N		N X	N	N	N	N	N	N		N X	N	N	N		N X	*50 1 2 22

TABLE A3. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE RATS: LOW DOSE (Continued)

* Animals necropsied

ANIMAL NUMBER	0 6 5	0 5 1	0 9 0	0 5 2	0 6 9	0 5 9	0 7 0	0 6 1	0 7 5	0 8 9	0 9 5	0 9 9	0 5 3	0 5 4	0 5 5	0 5 6	0 5 7	0 5 8	0 6 0	0 6 2	0 6 3	0 6 4	0 6 6	0 6 7	0 6 8
WEEKS ON STUDY	0 7 7	0 7 9	0 8 5	0 8 7	0 9 2	0 9 5	0 9 7	0 9 9	0 9 9	0 9 9	1 0 0	1 0 1	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4
INTEGUMENTARY SYSTEM Skin Squamous cell papilloma Keratoacanthoma Subcutaneous tissue Fibroma Neurofibroma	+++	+	++	+	++	+	++	+	+	+ *	+	+	++	+	+	+	+	++	++	+	+ + x x	+	++	+	++
Neurofibrosarcoma RESPIRATORY SYSTEM Lungs and bronchı Alveolar/bronchıolar carcınoma Trachea	+++++	++	+++	+++	x + +	++	+++	++	+++	+++	+++	+++	+ X +	+ +	+++	+++	+++	+++	+ +	++	++	+++	+++	++	+++
HEMATOPOIETIC SYSTEM Bone marrow Spleen Lymph nodes Thymus	+++++++++++++++++++++++++++++++++++++++	- + + + + + +	+++++	++++	+ + + +	+++++	++++++	+++++	++++++	+++++	++++++	++++	++++++	+++++	++++++	+++++	+++++	+++++	+ + + +	+++++	+ + + +	++++	++++++	++++++	+ + + +
CIRCULATORY SYSTEM Heart Neurofibrosarcoma	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
DIGESTIVE SYSTEM Salivary gland Neurofibrosarcoma, invasive Liver Neoplastic nodule Hepatocellular carcinoma	+++	+ +	+ +	+ +	+ X +	++	++	++	+ +	+ + X	+ +	+ +	++	+ +	+ +	+ +	+ + X	+ *	++	+ +	++	+ +	++	++	+ +
Bile duct Galibladder & common bile duct Pancreas Esophagus Stomach Small intestine	+N + + + + + + + + + + + + + + + + + +	+ X + + + + + + + + + + + + + + + + + +	+ Z + + + + -	+N++++	+ 2 + + + + + + + + + + + + + + + + + +	+ N + + + + + + + + + + + + + + + + + +	+ N + + + + + +	+ Z + + + + -	+ X + + + + + + + + + + + + + + + + + +	+ 2 + + + + + + + + + + + + + + + + + +	+N++++	+z++++	+ X + + + + + + + + + + + + + + + + + +	+ X + + + + + + + + + + + + + + + + + +	+ Z + + + + •	+ Z + + + + + •	+ Z + + + + -	+ Z + + + + + +	+ N + + + + + + + + + + + + + + + + + +	+ 2 + + + + + + + + + + + + + + + + + +	+ N + + + + + + + + + + + + + + + + + +	+ 2 + + + + + + + + + + + + + + + + + +	+ N + + + + + +	+ Z + + + + + + + + + + + + + + + + + +	+ Z + + + + + + + + + + + + + + + + + +
Large intestine URINARY SYSTEM Kidney Urinary bladder	++++	+ +	++++	+++	+++	+++	+ + +	+++	+++	+++	++++	+ + +	+++	+++	++++	++++	++++	++++	++++	+ + +	+++	+++	+ + +	++++	+ + +
ENDOCRINE SYSTEM Pituitary Adenoma, NOS Adrenal Cortical adenoma Pheochromocytoma Thyroid C-cell adenoma	+ + + + +	+++++	- + X +	+ + X +	+ x + +	+ + +	+ + X +	+ + + X + X	+ X + X +	+ + +	+ + +	+ + X +	+ + +	+ + X X X	+ X + X +	+ + +	+ X + +	+ X + X + X +	+ + +	+ + X +	+ + +	+ x + x + x +	+ + X +	+ + X +	+++++
C-cell carcinoma Parathyroid Fancreat: cslats Islet cell adenoma	+	+	+ +	- +	+ +	- +	- +	+ +	+ +	+ +	- + X	+ +	+ + X	+ +	- +	- +	+ +	+ +	+ +	+ +	+ +	- +	+ +	x - +	+ +
REPRODUCTIVE SYSTEM Mammary gland Testis Interstitial cell tumor Prostate Preputial/clitoral gland Adenocarcinoma, NOS	+ + + N	+ + X + N	++ ++ N	N + X + N	+ + X + N	++ + N	+ + + X	++x+ x+N	++x+n	++x+z	++x+x	++×+N	+ + x + x	N + + N	N+X+N	+ + X + N	Z+X++	+ + X + N	+ + X + N	+ + X + N	+ + X + X	++ ++ X	N + X + N	++X+N	++ +XX
NERVOUS SYSTEM Brain	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
SPECIAL SENSE ORGANS Harderian gland Adenoma, NOS	N	N	N	N	N,	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
BODY CAVITIES Mesentery Teratoma, benign	N	N	N	N	N	N	N	N	N X	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
ALL OTHER SYSTEMS Multiple organs, NOS Leukemia, mononuclear cell	N X	N X	N X	N X	N	N	N X	N	N X	N X	N X	N	N	N	N	N	N	N X	N	N	N	N X	N	N	N

TABLE A3. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE RATS IN THE TWO-YEAR FEED STUDY OF OXYTETRACYCLINE HYDROCHLORIDE: HIGH DOSE

TABLE A3.	INDIVIDUAL	ANIMAL TUMOR	PATHOLOGY	OF MALE RATS:	HIGH DOSE

(Continued)

ANIMAL NUMBER	0 7 1	072	0 7 3	0 7 4	0 7 6	0 7 7	0 7 8	0 7 9	0 8 0	0 8 1	0 8 2	0 8 3	0 8 4	0 8 5	0 8 6	0 8 7	0 8 8	0 9 1	0 9 2	0 9 3	0 9 4	0 9 6	0 9 7	0 9 8	1 0 0	
WEEKS ON STUDY	104	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	TOTAL TISSUES TUMORS
INTEGUMENTARY SYSTEM	·										<u> </u>															
Skin Squamous cell papilloma Keratoacanthoma Subcutaneous tissue Fibroma Neurofibroma Neurofibroma Neurofibrosarcoma	++	* +	+	+	+	+	+	+	+	+	+	+ X +	+	+	+	+	+	+	+	+	+	+	+	+	+	*50 1 *50 2 1 1
RESPIRATORY SYSTEM Lungs and bronchi Alveolar/bronchiolar carcinoma Trachea	* *	+ +	++	++	++	++	+	++	++	++	++	++	+	+	++	++	+ +	++	++	++	+ +	++	++	++	+++	50 2 50
HEMATOPOIETIC SYSTEM Bone marrow Spleen Lymph nodes Thymus	++++++	+++++	++++	++++	++++	++++	+++++	++++	+++++	++++	++++	+++++	++++	++++	+++++	++++	+++++++++++++++++++++++++++++++++++++++	++++	++++	+++++	+++++	++++	+++++	++++	++++	50 50 49 50
CIRCULATORY SYSTEM Heart Neurofibrosarcoma	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	*	+	+	+	+	+	+	+	50 1
DIGESTIVE SYSTEM Salivary gland Neurofibrosarcoma, invasive	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50 1
Liver Neoplastic nodule Hepatocellular carcinoma Bile duct	+++	+	+ X +	+	+	+	+	+ X +	+	* *	* *	+	* *	+	+	+	+	+	* *	+	+	+	+	+	+	50 7 2 50
Gallbladder & common bile duct Pancreas Esophagus	N + +	Ň + +	N + + +	Ň + +	Ň + +	Ň + +	Ň + +	N + +	N + +	Ň + +	N + +	Ň + +	N + +	N + + -	N + + -	N+++	Ň + +	N + +	N + + -	N + + +	N + +	N + + -	N + +	N + +	N + +	*50 50 50
Stomach Small intestine Large intestine	++++++	+ + +	+++++++++++++++++++++++++++++++++++++++	+ + +	+ + +	+ + +	+ + +	++++	+++++	+ + +	++++	+ + +	+ + +	+ + +	++++	+ + +	+ + +	+ + +	50 50 50							
URINARY SYSTEM Kidney Urinary bladder	++++	++++	+ +	+++	+++	+++	+++	+++	++	+++	+++	++	+++	++	++	++	+++	++	++	+ +	+ +	+ +	++	+++	+ +	50 50
ENDOCRINE SYSTEM Pituitary Adenoma, NOS Adrenal	+	* *	+ X +	+	+	* *	+	+	+	+	* *	+	+	* *	+	* *	+	+	+	+	-	+	+	* *	* *	48 15 50
Cortical adenoma Pheochromocytoma Thyroid C cell adenoma	+	X +	+	X +	х +	+	+	X +	+	X +	X +	+	+	+	+	+ x	x +	х́ +	+	+	+	+	X +	x + x	X +	3 24 50 4
C cell carcinoma Parathyroid Pancreatic islets Islet cell adenoma	+ + X	+ +	+ +	X + +	+ + X	+ +	+ +	- +	+ +	+ +	+ +	+ + X	х +	+	 +	+ +	+ +	 +	+ +	- +	+ +	- +	+ +	+ + X	+ + X	3 33 50 7
REPRODUCTIVE SYSTEM Mammary gland Testis Interstitial cell tumor	+ + X	+ + X	+ + X	+ + X	++++	+ + X	+ + X	+ + X	+ + X	+ + X	++	+ + X	+ + X	+++	+ + X	+ + X	+ + X	+ + X	+ + X	+ + X	+ + X	+ + X	+ + X	+ + X	+ + X	*50 50 40
Prostate Preputial/clitoral gland Adenocarcinoma, NOS	n N	+ N	+ N	+ N	+ N	+ N	+ N	+ N	+ N	n N	+ N	+ N	+ N	+ N	+ N	n+	+ N	n N	+ N	+ N	+ N	n+	+ N	+ N	+ N	50 *50 1
NERVOUS SYSTEM Brain	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
SPECIAL SENSE ORGANS Harderian gland Adenoma, NOS	N	N X	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	*50 1
BODY CAVITIES Mesentery Teratoma, benign	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	*50 1
ALL OTHER SYSTEMS Multiple organs, NOS Leukemia, mononuclear cell	N	N X	N X	N	N X	N	N	N	N	N	N	N	N	N	N X	N X	N X	N	N	N	N	N	N	N	N	*50 16

* Animals necropsied

ANIMAL NUMBER	141	1 4 0	1 1 5	1 1 7	1 0 5	1 4 9	1 5 0	1 1 2	1 9 5	1 0 8	1 1 4	1 2 6	1 2 1	1 3 0	1 1 1	1 0 2	1 4 7	1 1 3	1 4 8	1 0 1	1 0 3	1 0 4	1 0 6	1 0 7	1 0 9
WEEKS ON STUDY	0 8 6	0 8 7	0 8 8	0 8 9	0 9 0	9	0 9 0	0 9 3	0 9 5	0 9 6	0 9 6	0 9 6	0 9 9	0 9 9	1 0 0	1 0 1	1 0 2	1 0 3	1 0 3	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4
INTEGUMENTARY SYSTEM Skin Keratoacanthoma Subcutaneous tissue Teratoma, benign	++++	+ +	+ +	++	+ +	++	+ +	+ +	+ +	+ +	+ +	++	+ +	+ +	+ +	++	* * *	+ +	++	++	++	+ +	++	+ + X	+ +
RESPIRATORY SYSTEM Lungs and bronchi Alveolar/bronchiolar adenoma Trachea	++++	++	+	+	+++	++	+++	++	++	+++	+++	+++	++	+	++	++	+	++	++	+++	+++	+ +	+++	++	+
HEMATOPOIETIC SYSTEM Bone marrow Spiesa Lymph nodes Thymus	+++++++++++++++++++++++++++++++++++++++	+++++	++++	+++++	+ + + +	+ + + +	+++++	+ + + +	+ + + + +	+++++	+ + + + +	+ + + + +	+++++	+++++	++++++	+++++++	++++	+++	+++++++	+++++	+ + + +	+ + + + +	+++++	++++++	+ + + +
CIRCULATORY SYSTEM Heart Neurofibrosarcoma	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
DIGESTIVE SYSTEM Salivary gland Liver Neoplastic nodule Bile duct Gallbladder & common bile duct Pancreas Esophagus Stomach Small intestine Large intestine Large intestine	++ + X +++++	++ +X+++++	++ +X+++++	++ +x+++++	++ +2+++++	++X+X+++++	++ +2+++++	++ +N+++++	++X+N+++++	++ +2+++++	++ +2+++++	++ +2+++++	++X+N+++++	++ +x+++++	++X+N+++++	++ +2+++++	++ +Z++++	++ +2+++++	++ +2+++++	++X+N+++++	++ +2+++++	++ +N+++++	++ +N+++++	++ +x+++++	++ +2++++
URINARY SYSTEM Kidney Adenocarcinoma, NOS Urinary biadder	++++	+++	+++	+++	++++	+++	+++	++	+++	+++	+++	+	+++	* *	+++	+++	++	++++	+++	+++	++	+++	+++	+++	+++
ENDOCRINE SYSTEM Pituitary Adenoma, NOS Adenocarcinoma, NOS Adrenal Cortical adenoma	+ x +	++	++	* *	* *	* *	+	* *	+	+	* *	+	++	+ x x +	+	+ * +	+	* *	* * +	+	* *	* * *	+	+	* * *
Pheochromocytoma Thyroid Folicular cell adenoma C-cell carcinoma Parathyroid	+ X +	+	+	+	+	+	+	X + +	+	+ +	+	+	X + +	+	X + +	+	+	+	+	+ X +	+	+	+	+	+
Pancreatic islets Islet cell adenoma REPRODUCTIVE SYSTEM	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Mammary gland Adenoma, NOS Adenocarcinoma, NOS Fibroadenoma	+	+	+	+	+	+	+	+	+	+	+	N	+	+ X	+	+	+	÷.	+	+	+	+	+	+	+
Proputational Preputation Caronoma, NOS Adenoma, NOS Uterus Endometrial stromal polyp Ovary Luteoma	AN + . +	N + +	N + +	XN X+ +	N + +	X N + +	XN + X +	N + +	NX + X +	N + +	XN + +	N + +	X N + +	XN +X+	N + X +	X N + +	N + +	N + +	N + +	N + X +	N + X +	X N + +	N + X +	4N +X +	X N + +
NERVOUS SYSTEM Brain Adenocarcinoma, NOS, invasive	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
ALL OTHER SYSTEMS Multiple organs, NOS Leukemia, mononuclear cell	N	N X	N X	N	N	N	N	N X	N	N X	N	N X	N X	N	N X	N	N X	N	N X	N	N	N	N X	N	N

TABLE A4. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE RATS IN THE TWO-YEAR FEED STUDY OF OXYTETRACYCLINE HYDROCHLORIDE: UNTREATED CONTROL

+: Tissue examined microscopically
 Required tissue not examined microscopically
 X: Tumor incidence
 Necropy, no autolysis, no microscopic examination
 S. Animal missexed

: No tissue information submitted C: Necropsy, no histology due to protocol A: Autolysis M: Animal missing B: No necropsy performed

								(,ou			*/														
ANIMAL NUMBER	1 1 0	1 1 6	1 1 8	1 1 9	1 2 0	1 2 2	1 2 3	1 2 4	1 2 5	1 2 7	1 2 8	1 2 9	1 3 1	1 3 2	1 3 3	1 3 4	1 3 6	1 3 7	1 3 8	1 3 9	1 4 2	1 4 4	1 4 5	1 4 6	1 4 9	TOTAL:
WEEKS ON STUDY	104	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	TISSUES
INTEGUMENTARY SYSTEM Skin Keratoacanthoma Subcutaneous tissue Teratoma, benign	+++++	+ +	+ +	+ +	+ +	+ +	++	++	+ +	+ +	++	++	+ +	+ +	+ +	++	+ +	++	+	+	+ +	+ +	++	+ +	+ +	*50 1 *50 1
RESPIRATORY SYSTEM Lungs and bronchi Alveolar/bronchiolar adenoma Trachea	- + +	+++	+++	++	+++	++	+++	+ +	+ +	++	* *	++	++	+ +	++	+ +	++	+ +	++	+	+ +	+++	++	+ +	+ +	50 1 49
HEMATOPOIETIC SYSTEM Bone marrow Spleen Lymph nodes Thymus	- + + + + +	++++	++++	+ + + +	+++++	++++	+++++	+++++	++++	++++	+++++	+ + + +	+++++	++++++	+++++	+++++	+ + - +	++++	+++++	+++++	++++	+++++	+++++	+++++	++++	50 50 49 49
CIRCULATORY SYSTEM Heart Neurofibrosarcoma	- +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	*	+	+	+	+	+	+	50 1
DIGESTIVE SYSTEM Salivary gland Liver Neoplastic nodule Bile duct Galibladder & common bile duct Pancreas Esophagus Stomach Small intestine Large intestine	- ++ +X+++++	++ +2+++++	++ +2+++++	++ +2+++++	++ +2+++++	++ +2+++++	++ +2+++++	++ +2+++++	++ +2+++++	++ +2+++++	++ +2+++++	++ +2+++++	++ +2+++++	++ +Z+++++	++ +z+++++	++ +z+++++	++ +2+++++	++ +2+++++	++ +Z+++++	++ +2+++++	++ +Z+++++	50 50 50 50 50 50 50 50 50 50 50				
URINARY SYSTEM Kidney Adenocarcinoma, NOS Urinary bladder	- + +	+++	+++	+++	+++	+++	++	++	++	++	++	+++	+++	+++	+++	+++	++	++	++	+++	++	++	+++	++	+++	50 1 50
ENDOCRINE SYSTEM Pituitary Adenoma, NOS Adenocarcinoma, NOS Adrenal Cortical adenoma	+	+	+	+	+ + *	++	* * *	++	++	* * +	++	++	* *	++	+ *	* *	++	++	++	* * +	++	+ X +	* *	+	+ + x	50 19 2 50 6
Pheochromocytoma Thyroid Follicular cell adenoma C-cell adenoma	+ X	+	X + X	+	+	+	+ X	X +	+ X	+	*	+	+	+	+	+	+	+ X	+	+	+	+	+	+	X +	6 50 1 6
C-cell carcinoma Parathyroid Pancreatic islets Islat cell adenoma	++	- +	++	+ +	+ +	+ +	+ +	+ +	+ +	 +	- +	- +	+ + X	+ +	+ +	+ + X	~ +	+ +	X + +	- +	- +	+ +	+ +	+ +	+. +	2 41 50 2
REPRODUCTIVE SYSTEM Mammary gland Adenoma, NOS	- +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	*50 1 1
Adenocarcinoma, NOS Fibroadenoma Preputial/citoral gland Carcinoma, NOS	X N	N	X N X	N	X N	X N	X N	N	N	X N	N X	X N	N	N	N	Ń	N	X N	N	N	X N	N	X N	N	N	21 *50 3 2
Adenoma, NOS Uterus Endometrial stromal polyp Ovary Luteoma	* *	+ +	+ +	+ +	* *	+ +	л + +	+ X +	+ +	+ +	+ +	+ +	+ +	* *	+ +	+ + X	* *	+ +	* *	+ +	+ +	+ +	+ +	+ x +	+ +	50 15 50 1
NERVOUS SYSTEM Brain Adenocarcinoma, NOS, invasive	-	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	*	+	+	+	50 1
ALL OTHER SYSTEMS Multiple organs, NOS Leukemia, mononuclear cell	N	N	N	N X	N	N	N	N	N	N X	N	N	N	N	N	N X	N	N	N	N	N	N	N	N	N	*50 13

TABLE A4. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE RATS: UNTREATED CONTROL (Continued)

ANIMAL NUMBER	022	0 4 1	0 3 4	0 3 9	0 1 0	0 2 4	0 2 8	0 4 4	0 1 1	0 0 8	0 2 7	0 2 0	0 0 2	0 9	0 3 6	0 3 5	0 4 9	0 4	0 4 7	0 1 2	0 1 9	0 2 3	0 0 1	0 0 3	0 0 5
WEEKS ON STUDY	0 5 5	0 7 8	0 8 3	0 8 3	0 8 7	0 8 7	0 8 9	0 8 9	0 9 1	0 9 3	0 9 3	0 9 5	0 9 6	0 9 7	0 9 9	1 0 0	1 0 0	1 0 1	1 0 1	1 0 3	1 0 3	1 0 3	1 0 4	1 0 4	1 0 4
RESPIRATORY SYSTEM Lungs and bronchi Alveolar/bronchiolar adenoma Trachea	+++	++	++	+ +	++	++	+ +	++	+ +	+ +	+ +	+++	+ +	+ +	+ +	+	+	++	+ +	++	+ +	++	* *	++	++
HEMATOPOIETIC SYSTEM Bone marrow Spieen Lymph nodes Thymus	 + + + +	+++++	++++	++++	+++++	+++++	++++	++++ +++	++++	+++++	++++	++++	++++	++++	++++	++++	+++++	+++++	+ +++++	++++	+++++	++++	+++++	+++++	+++++
CIRCULATORY SYSTEM Heart	-	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
DIGESTIVE SYSTEM Salivary gland Liver Neoplastic nodule Bile duct Galibiadder & common bile duct Pancreas Esophagus Stomach Sarcoma, NOS Small intestine Adenoma, NOS	++ +N+++ +	++ +X+++ +	++ +Z+++ +X	++ +X+++ +	++ +Z+++ +	++ +Z+++ +	++ +2+++ +	++ +X+++ +	++X+X+++ +	++ +2+++ +	++ +X+++ +	++ +X+++ +	++ +2+++ +	++ +X+++ +	++ +2+++ +	++ +X+++ +	++x+z+++ +	++ +X+++ +	++ +Z+++ +	++ +2+++ +	++ +Z+++ +	++ +2+++ +	++ +2+++ +	++ +Z+++ +	++ +2+++ +
Large intestine URINARY SYSTEM Kidney Urinary bladder	- +	+ + +	+	+	+ + + +	++++	+	+++	+	++++	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
ENDOCRINE SYSTEM Pituitary Adeaoma, NOS Adeaocarcinoma, NOS Adrenal Adeaocarcinoma, NOS Cortical adeaoma Pheochromocytoma Thyroid Follicular cell adenoma	+++++++	+ + +	+ X + +	++++	+ + +	+++++	+++	+ X + +	+ + X +	++++	+ X + +	+ + X +	+ X + +	+ + +	+ X + +	+ + +	++++	+ + +	+ + +	* * * * *	+ + +	+ X + +	+ + + +	+++++	+ + X +
Follicular cell carcinoma C-cell adenoma C-cell carcinoma Parathyroid	+	_	_	+	+	-	+	_	-	+	+	+	x +	_	x +	+	+	+	+	+	+	_	+	x +	+
Pancreatic islets Islet cell adenoma	+	+	+	÷	÷	+	÷	+	+	÷	÷	÷	+ +	+	+	+ + X	÷	÷	÷	÷	÷	+	÷	÷	÷
REPRODUCTIVE SYSTEM Mammary gland Adencarcinoma, NOS Fibroadenoma Preputial/clitoral gland Carcinoma, NOS	+ N	+ N	+ N	+ N	+ N	+ N	+ N	+ N	+ N	+ X N	* x N	+ N	+ N	+ X N X	+ N	+ X N	+ X N	N N	+ N	+ N	+ N	+ X N	+ X N	+ X N	+ X N
Adenoma, NOS Uterus Endometrial stromal polyp Endometrial stromal sarcoma Ovary	+	+	+	+ X +	+	+	X + +	+ x +	+	+	+	X + +	+ x +	+	+	+	* *	* *	+ x +	+	+	* *	+	+	+
NERVOUS SYSTEM Brain Adenocarcinoma, NOS, invasive	+	+	+	+	+	+	+	+	+	+	+	+	*	+	* *	+	+	+	+	+	+	+	+	+	+
ALL OTHER SYSTEMS Multiple organs, NOS Leukamia, mononuclear cell	NX	N X	N	'n	N	N X	N	N	N X	N	N	N	N	N	N X	N X	N	N	N	N	N X	N	N	N	N

TABLE A4. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE RATS IN THE TWO-YEAR FEED STUDY OF OXYTETRACYCLINE HYDROCHLORIDE: LOW DOSE

												-/														
ANIMAL NUMBER	0 0 6	0 0 7	0 1 3	0 1 4	0 1 5	0 1 6	0 1 7	0 1 8	0 2 1	0 2 5	0 2 6	0 2 9	0 3 0	0 3 1	0 3 2	0 3 3	0 3 7	0 3 8	0 4 0	0 4 2	0 4 3	0 4 5	0 4 6	0 4 8	0 5 0	TOTAL:
WEEKS ON STUDY	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	04	104	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	TUMORS
RESPIRATORY SYSTEM Lungs and bronchi Alveolar/bronchiolar adenoma Trachea	+++	+++	+	+ +	+ +	++	++	+ +	+++	++	+++++	++	++	++	++	+	++	+ +	+	+ +	++	+ +	+ +	++	++	50 1 50
HEMATOPOIETIC SYSTEM Bone marrow Spisen Lymph nodes Thymus	- + + + +	++++	++++	++++	++++	++++	++++	++++	+++++	++++	++++	+++++	++++	++++	++++	+++++	+++++	++++	++++	++++	+++++	+++++	++++	+++++	++++	50 50 50 50
CIRCULATORY SYSTEM Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
DIGESTIVE SYSTEM Salivary gland Liver Neoplastic nodule Bile duct Galibladder & common bile duct Pancreas Esophague Stomach Sarcoma, NOS Small intestine Adenoma, NOS Large intestine	++ +X+++ +	++ +Z+++ + +	++ +Z+++ + +	++×+×+×++++++++++++++	++ +2+++ + +	++ +2+++ ++	++ ++++ + +	++ +2+++ + +	++ +++2+++ ++	++ ++++ + +	++ ++++ + +	++ +2+++ + +	++ +2+++ + +	++ +z+++ + +	++ +2+++ + +	++ +2+++ + +	++++2+++ ++	++ +X+++ + +	++ +Z+++K+ +	++ +Z+++ + +	+++++++++++++++++++++++++++++++++++	++ +2+++ + +	++ +z+++ + +	+++X+X+++ + +	++ +2+++ + +	50 50 4 50 *50 50 49 50 1 50 1 50
URINARY SYSTEM Kidney Urinary bladder	- + +	+++	+++	+++	++	++++	+++	++	+++	++++	+++	+++	+++	++++	+	++	+++	+++	+++	+	+++	+++	++	+++	+++	50 50
ENDOCRINE SYSTEM Pituitary Adenocarcinoma, NOS Adrenai Adrenai Adrenacarcinoma, NOS Cortical adreaoma Pheochromocytoma Thyroid	- * +	++++	+ + +	++++	+ + + × +	+ + +	++++	* * * * *	++++	++++	+ + + +	++++	+ x+ + +	++++	* * +	+ + + x x +	++++	++++	+x + +	+ + +	++++	+ + +	* + +	+x + x +	+ + + + +	- 50 17 7 50 1 5 4 50
Follicular cell adenoma Follicular cell carcinoma C-ceil adenoma C-cell carcinoma Parathyroid Pancreatic islets Islet cell adenoma	x + +	- +	+ +	+ +	X + +	+++	X ++ +	X X + +	+ +	++	++	+ +	- +	+ +	+ +	+ +	+ +	- +	X + +	+ +	++++	+ +	++++	X + +	+ +	1 6 3 39 50 1
REPRODUCTIVE SYSTEM Mammary gland Adenocarcinoma, NOS Fibroadenoma	-	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	*50 1 15
Proputational gland Carcinoma, NOS Adenoma, NOS Uterus Endometrial stromal polyp Endometrial stromal sarcoma	N +	N +	N X + X	N X +	^ 1 +	N +	XN X+	N +	N +	N X +	XN +	X N +	XN +X	N + X	N +	N +	N +	ñ +	N +	N +	N +	N +	и *	N +	ñ +	*50 2 5 50 10
NERVOUS SYSTEM Brain	- +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Adenocarcinoma, NOS, invasive ALL OTHER SYSTEMS	-		, 								, 		X													-
Multiple organs, NOS Leukemia, mononuclear cell	N	N	N	N	N	N	N	N X	N	N 	N X	N	N	N	N	N	N	N	N	N 	N	N 	N 	N 	N	*50 9

TABLE A4. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE RATS: LOW DOSE (Continued)

ANIMAL NUMBER	0 9 8	0 6 1	075	0 5 2	0 8 5	0 5 4	0 6 7	0 7 4	0 7 7	1 0 0	0 8 6	0 6 8	0 9 9	0 9 3	0 6 5	0 6 2	0 5 1	0 5 3	0 5 5	0 5 6	0 5 7	0 5 8	0 5 9	0 6 0	0 6 3
WEEKS ON STUDY	0 5 7	0 7 2	0 7 5	0 8 1	0 8 1	0 8 4	0 8 6	0 8 7	0 9 2	0 9 3	0 9 4	0 9 7	0 9 7	0 9 9	1 0 1	1 0 2	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4
INTEGUMENTARY SYSTEM Subcutaneous tissue Sarcoma, NOS	-	+	+	+	+	+	*	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
RESPIRATORY SYSTEM Lungs and bronchi Trachea	-	+	++	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	++++	+++	+++	+++	+++	++++	++++	+++
HEMATOPOIETIC SYSTEM Bone marrow Spleen Lymph nodes Endometrial stromal sarcoma, metastatic Thymus Nonchromaffin paraganglioma	- + + +	+ + X +	+ + + + +	+ + + +	++++++++	+ + +	 + + +	+++++++	+ + + +	+ + + +	+ + + +	+ + + +	+ + + +	+ + + +	* + + + +	++ ++ +	++++++++	+ + + +	+ + + +	+ + + +	+++++++	+ + + +	++++++	+ + + + +	+++++++++++++++++++++++++++++++++++++++
CIRCULATORY SYSTEM Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
DIGESTIVE SYSTEM Salivary gland Liver Neoplastic nodule Bile duct Gallbladder & common bile duct Pancreas Endometrial stromal sarcoma, metastatic Esophagus Stomach Small intestine Large intestine	++ +N+ ++++	++ +N+X++++	++ +Z+ ++++	++ +2+ ++++	++ +Z+ ++++	++ +Z+ ++++	++ +Z+ ++++	++ +Z+ ++++	++ +Z+ ++++	++ +Z+ ++++	++ +Z+ ++++	++ +Z+ ++++	++ +Z+ ++++	++ +Z+ ++++	++ +Z+ ++++	++x+z+ ++++	++ +Z+ ++++	++ +2+ ++++	++x+z+ ++++	++ +Z+ ++++	++ +Z+ ++++	++ +z+ ++++	++ +Z+ ++++	++ +2+ ++++	++ +Z+ ++++
URINARY SYSTEM Kidney Kidney/pelvis Transitional cell carcinoma Urinary bladder	+++++	+ + +	+ + + +	+ + +	+ + +	+ + +	++++++	 + + +	+++++	+ + +	+++++	++×+	+++++	+ + +	+++++	+++++++++++++++++++++++++++++++++++++++	+ + +	+ + +	++++++	+ + +	+++++	+ + +	+++++	++++++	 + + +
ENDOCRINE SYSTEM Pituitary Adenocarcinoma, NOS Adenocarcinoma, NOS Adrenal Cortical adenoma Pheochromocytoma Ganglioneuroma Thyroid Follicular cell adenoma C-cell adenoma C-cell carcinoma	+ x + +	+ + +	++++	+ + +	++++	+++	+ + X +	* * +	+ + +	+ + *	+ + +	+ + + +	+ + +	+ x + x	+ + x +	+ + + x	+ + +	+ + X +	+++	* * +	+ x + +	+ x x + + +	+ + +	* * +	* + +
Parathyroid Adenoma, NOS	-		+	-	+	+	-	+	+	+	+	-	+	+	+	+	+	+	-	+	+	+	+	+	-
REPRODUCTIVE SYSTEM Mammary gland Adenoma, NOS Adenocarcinoma, NOS	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Fibroadenoma Preputal/clitoral gland Carcinoma, NOS Adenoma, NOS	N	N	N	N	X N	X N X	X N	N	N	N	N	X N	N	N	Ň	N	N	N	X N	N	N	X N X	N	N	X N
Uterus Endometrial stromal polyp Endometrial stromal sarcoma Ovary	x +	+ X +	+	+	* *	+	* *	+	+	+	* *	* *	* *	+	* *	+	+	+	+	+	* *	+ X X +	+	* *	+
NERVOUS SYSTEM Brain Astrocytoma	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
SPECIAL SENSE ORGANS Zymbal gland Carcinoma, NOS Squamous cell carcinoma	N	N	N	+ X	N	N	N	N	*	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
MUSCULOSKELETAL SYSTEM Muscle Sarcoma, NOS, invasive	N	N	N	N	N	N	*	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
ALL OTHER SYSTEMS Multiple organs, NOS Leukemia, mononuclear cell	N	N	N X	N	N	N	N	N	N	N X	N	N	N X	N	N	N X	N	N	N	N	N X	N	N	N	N

TABLE A4. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE RATS IN THE TWO-YEAR FEED STUDY OF OXYTETRACYCLINE HYDROCHLORIDE: HIGH DOSE

								(0	on	£331	uet	.,														
ANIMAL NUMBER	0 6 4	0 6 6	0 6 9	0 7 0	0 7 1	0 7 2	0 7 3	0 7 6	0 7 8	0 7 9	0 8 0	0 8 1	0 8 2	0 8 3	0 8 4	0 8 7	0 8 8	0 8 9	0 9 0	0 9 1	0 9 2	0 9 4	0 9 5	0 9 8	0 9 7	TOTAL:
WEEKS ON STUDY		1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	TISSUES
INTEGUMENTARY SYSTEM Subcutaneous tissue Sarcoma, NOS	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	*50
RESPIRATORY SYSTEM Lungs and bronchi Trachea	++	+++	++++	+ +	++++	+ +	++++	++	+++++	+++++	+ +	+ +	+ +	+ +	++++	+ +	+++	+++	++++	++++	+++	++	+++	++	+++	50 50
HEMATOPOIETIC SYSTEM Bone marrow Spleen Lymph nodes Endometrial stromal sarcoma, metasta	++++ +	++++	+++++++++++++++++++++++++++++++++++++++	+++	++++	++++	+++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+ + +	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+ + + +	++++++	++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	49 50 50 1 50
Thymus Nonchromaffin paraganglioma CIRCULATORY SYSTEM		+	+	+	+	+	x		+	+	+		.										т 			1
Heart DIGESTIVE SYSTEM	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Salivary gland Liver Neoplastic nodule Bile duct Galibladder & common bile duct Pancreas	++++N+	++++2+	++ +×+	++ +x+	++ +z+	++ +z+	++ +z+	++ +z+	++ +z+	++ +z+	++ +z+	++ +z+	+ + × + × +	++×+×+	++ +z+	++ +z+	++ +z+	+ + x + x +	++×+N+	++ +z+	++ +Z+	++ +z+	++ +z+	++ +z+	++++2+	50 50 6 50 *50 50
Endometrial stromal sarcoma, metasta Esophagus Stomach Small intestine Large intestine	++++	++++++	+++++	++++	++++	++++	+ ++ +	++++	++++	++++++	++++	+++++	++++	++++	++++	++++	++++	++++	++++	++++	++++	++++	++++	+ ++ +	+++++	1 50 50 50 50
URINARY SYSTEM Kidney Kidney/pelvis Transitional cell carcinoma Urinary bladder	+++++	+ + +	+ + +	+++++	+ + +	+ + +	+ + +	+++++	+ + +	+ + +	+++++	+++++	++++++	++, +	+++++	+++++	+ + +	+++++	+ + +	++++	+++++	+ + +	+ + +	+ + +	+ + +	50 50 1 50
ENDOCRINE SYSTEM Pituitary Adenoma, NOS Adenocarcinoma, NOS Adrenal	+ x	* *	+	+	*	*	* *	+	* *	* *	*	+	* *	* *	* *	+	* *	+	+	* *	+	* *	* *	* *	+	50 30 3 50
Cortical adenoma Pheochromocytoma Ganglioneuroma Thyroid	+	+	+	+	+	+	+	+	* *	+	+	+	+	+	+	+	+	+	+	+	X +	+	+	+	+	1 3 1 50 1
Follicular cell adenoma C-cell adenoma C-cell carcinoma Parathyroid Adenoma, NOS	X X +	+	+	+	+	+	+	X +	-	-	-	÷	х -	-	+	X +	+		+	-	*	-		+	+	5 2 34 1
REPRODUCTIVE SYSTEM Mammary gland Adenoma, NOS	+	+	*	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+ X	+	+	+	+	+	+	+	*50 1 2
Adenocarcinoma, NOS Fibroadenoma Preputial/clitoral gland Carcinoma, NOS	N	N	N	X N	N	X N	XXN	N	N	N	N	N X	N	X N	N	N	N	N	N	X N	N	N	N	X N	X N	15 *50 2 2
Adenoma, NOS Uterus Endometrial stromal polyp Endometrial stromal sarcoma Ovary	+	+	+	+	* *	*	+	+	+	+	x + x +	* *	+	+	* *	* *	× +	* *	+	+	* *	+	* *	+	* * *	50 21 3 50
NERVOUS SYSTEM Brain Astrocytoma		+	+	+	+	+	+	+	+	+	+	* *	+	+	+	+	+	+	+	+	+	+	+	+	+	50 1
SPECIAL SENSE ORGANS Zymbal gland Carcinoma, NOS Squamous cell carcínoma	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	*50 1 1
MUSCULOSKELETAL SYSTEM Muscle Sarcoma, NOS, invasive	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	*50 1
ALL OTHER SYSTEMS Multiple organs, NOS Leukemia, mononuclear cell	N	N	N	N	N	N	N	N	N	N	N	N	N	N X	N	N	N	N	N	N X	N X	N X	N	N	N	*50 9

TABLE A4. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE RATS: HIGH DOSE (Continued)

Oxytetracycline Hydrochloride, NTP TR 315 76

APPENDIX B

SUMMARY OF THE INCIDENCE OF NEOPLASMS IN MICE IN THE TWO-YEAR FEED STUDIES OF OXYTETRACYCLINE HYDROCHLORIDE

Oxytetracyline Hydrochloride, NTP TR 315 78

C	ONTR	OL (UNTR)	LOW	DOSE	HIGI	H DOSE
ANIMALS INITIALLY IN STUDY	50	<u>-</u>	50	· · · · · · · · · · · · · · · · · · ·	50	
ANIMALS NECROPSIED	50		50		50	
ANIMALS EXAMINED HISTOPATHOLOGICALLY	50		50		50	
NTEGUMENTARY SYSTEM		<u></u>				
*Skin	(50)		(50)	(0.21)	(50)	
Squamous cell papilloma		(2%)		(2%)	(50)	
*Subcutaneous tissue	(50)	(6%)	(50)	(2%)	(50)	(2%)
Sarcoma, NOS Fibroma	-	(4%)		(8%)		(4%)
Fibrosarcoma		(16%)		(10%)		(6%)
Osteosarcoma		(2%)		(
RESPIRATORY SYSTEM	<u></u>	<u> </u>				
#Lung	(50)		(50)		(50)	
Hepatocellular carcinoma, metastatic						(2%)
Alveolar/bronchiolar adenoma		(16%)		(8%)		(8%)
Alveolar/bronchiolar carcinoma		(4%)	6	(12%)	3	(6%)
Pheochromocytoma, metastatic	1	(2%)				
HEMATOPOIETIC SYSTEM	(50)		/FA\		(EA)	
*Multiple organs	(50)	(2%)	(50)		(50)	
Malignant lymphoma, NOS Malignant lymphoma, lymphocytic type		(2%)			1	(2%)
Malignant lymphoma, histiocytic type		(4%)				(4%)
Malignant lymphoma, mixed type		(6%)	1	(2%)		(8%)
#Spleen	(50)	(0,0)	(50)	(=)	(50)	(2)
Sarcoma, NOS	(00)			(2%)		
#Small intestine	(48)		(47)	• • • •	(49)	
Malignant lymphoma, mixed type		(2%)	• •			
#Kidney	(50)	• •	(50)		(50)	
Malignant lymphoma, lymphocytic type					1	(2%)
CIRCULATORY SYSTEM	(20)	<u> </u>	(50)		(50)	
*Abdominal cavity	(50)	(07)	(50)		(50)	
Hemangiosarcoma, metastatic	(50)	(2%)	(50)		(50)	
#Spleen Hemangiosarcoma		(4%)	(00)			
#Heart/atrium	(50)	(200)	(50)		(50)	
Hemangioma	/		/		• • • •	(2%)
#Liver	(50)		(50)		(50)	
Hemangioma		(2%)				
Hemangiosarcoma				(2%)		
#Testis	(50)		(50)		(50)	
Hemangioma					1	(2%)
DIGESTIVE SYSTEM					(20)	
#Liver	(50)	(4.4~~)	(50)	(100)	(50)	(1901)
Hepatocellular adenoma		(14%)		(16%) (18%)		(12%) (22%)
Hepatocellular carcinoma #Duodenum	(48)	(22%)	9 (47)	(1070)	(49)	(2270)
	(40)			(2%)	(43)	
Adenocarcinoma, NOS						

TABLE B1. SUMMARY OF THE INCIDENCE OF NEOPLASMS IN MALE MICE IN THE TWO-YEARFEED STUDY OF OXYTETRACYCLINE HYDROCHLORIDE

	CONTROL (UNTR)	LOW DOSE	HIGH DOSE
ENDOCRINE SYSTEM			
#Adrenal	(50)	(49)	(50)
Cortical adenoma #Adrenal medulla	(50)	2 (4%)	
Pheochromocytoma	(50) 2 (4%)	(49) 5 (10%)	(50) 2 (4%)
Pheochromocytoma, malignant	1 (2%)	5 (10%)	2 (470)
#Thyroid	(50)	(50)	(50)
Follicular cell adenoma			2 (4%)
REPRODUCTIVE SYSTEM None			
NERVOUS SYSTEM None			
SPECIAL SENSE ORGANS *Harderian gland	(50)	(50)	(50)
Adenoma, NOS	1 (2%)	(50)	(50)
MUSCULOSKELETAL SYSTEM None			
BODY CAVITIES None			
ALL OTHER SYSTEMS			<u></u>
*Multiple organs	(50)	(50)	(50)
Sarcoma, NOS		1 (2%)	
ANIMAL DISPOSITION SUMMARY		<u>1999 - 1999 - 1999 - 1999</u>	
Animals initially in study	50	50	50
Natural death	6	4	5
Moribund sacrifice Terminal sacrifice	15 29	13 33	12 33
TUMOR SUMMARY Total animals with primary tumors**	36	32	33
Total primary tumors	58	50	33 44
Total animals with benign tumors	17	20	15
Total benign tumors	22	24	18
Total animals with malignant tumors	29	21	23
Total malignant tumors	36	26	26
Total animals with secondary tumors##	2		1

TABLE B1. SUMMARY OF THE INCIDENCE OF NEOPLASMS IN MALE MICE IN THE TWO-YEAR FEED STUDY OF OXYTETRACYCLINE HYDROCHLORIDE (Continued)

* Number of animals receiving complete necropsy examination; all gross lesions including masses examined microscopically.
 ** Primary tumors: all tumors except secondary tumors
 # Number of animals examined microscopically at this site
 ## Secondary tumors: metastatic tumors or tumors invasive into an adjacent organ

TABLE B2. SUMMARY OF THE INCIDENCE OF NEOPLASMS IN FEMALE MICE IN THE TWO-YEAR FEED STUDY OF OXYTETRACYCLINE HYDROCHLORIDE

(CONTR	OL (UNTR)	LOW	DOSE	HIG	H DOSE
ANIMALS INITIALLY IN STUDY		<u> </u>			50	
ANIMALS NECROPSIED	50		50		50	
ANIMALS EXAMINED HISTOPATHOLOGICALLY			50		50	
INTEGUMENTARY SYSTEM		<u>. </u>				
*Subcutaneous tissue Sarcoma, NOS	(50)		(50) 1	(2%)	(50)	
Fibrosarcoma	1	(2%)				
RESPIRATORY SYSTEM						
#Lung	(50)		(50)		(50)	
Adenocarcinoma, NOS, metastatic			1	(2%)		
Hepatocellular carcinoma, metastatic		(2%)				
Alveolar/bronchiolar adenoma	3	(6%)		(2%)	3	(6%)
Alveolar/bronchiolar carcinoma				(4%)		
Adenosquamous carcinoma, metastatic				(2%)		
Granulosa cell carcinoma, metastatic		(90)	1	(2%)		
Fibrosarcoma, metastatic Osteosarcoma, unclear primary or metastatic	1	(2%)			1	(2%)
HEMATOPOIETIC SYSTEM				<u></u>		
*Multiple organs	(50)		(50)		(50)	
Malignant lymphoma, undiffer type	1	(2%)				
Malignant lymphoma, lymphocytic type		(6%)	1	(2%)		(4%)
Malignant lymphoma, histiocytic type		(2%)				(4%)
Malignant lymphoma, mixed type		(14%)	8	(16%)	8	(16%)
Lymphocytic leukemia		(2%)				
#Spleen	(50)		(50)		(50)	
Malignant lymphoma, histiocytic type		(2%)				
Malignant lymphoma, mixed type		(4%)		(2%)		(2%)
#Mandibular lymph node	(48)		(46)	(00)	(49)	
Malignant lymphoma, mixed type	(40)			(2%)	(10)	
#Mesenteric lymph node	(48)		(46)		(49)	(00)
Malignant lymphoma, histiocytic type	(40)		(10)			(2%)
#Axillary lymph node	(48)	(00)	(46)		(49)	
Squamous cell carcinoma, metastatic #Duodenum		(2%)	(50)		(50)	
#Duodenum Malignant lymphoma, mixed type	(50)		(50)		x = - ,	(4%)
#Thymus	(49)		(50)		(50)	(1270)
Thymoma, benign	• - /	(2%)	(00)		(00)	
Malignant lymphoma, lymphocytic type		(2%)	1	(2%)		
Malignant lymphoma, mixed type		(2%)	·	(2,0)		
CIRCULATORY SYSTEM	<u>.</u>					
*Subcutaneous tissue	(50)		(50)		(50)	
Hemangioma				(2%)		
Hemangiosarcoma	-	(00)	1	(2%)		
Hemangiosarcoma, metastatic		(2%)				
#Spleen	(50)	(00)	(50)		(50)	(00)
Hemangiosarcoma #Liver		(2%)	(EA)			(2%)
#Liver	(50)	$(9\mathbf{\alpha})$	(50)		(50)	(90)
Hemangiosarcoma #Uterus	(50)	(2%)	(50)			(2%)
Hemangiosarcoma	(00)		(50)	(2%)	(50)	(2%)
	(44)		(48)	(270)	(49)	(470)
#Ovary						

	CONTROL (UNTR)	LOW	DOSE	HIG	H DOSE
DIGESTIVE SYSTEM						
#Liver	(50)		(50)		(50)	
Hepatocellular adenoma	5 (10%	,)	(00)			(2%)
Hepatocellular carcinoma	2 (4%)					(2%)
#Duodenum	(50)		(50)		(50)	(_ ///
Adenomatous polyp, NOS				(2%)	(/	
#Colon	(50)		(50)	()	(50)	
Leiomyosarcoma	1 (2%)					
#Colonic serosa	(50)		(50)		(50)	
Sarcoma, NOS, invasive					1	(2%)
URINARY SYSTEM						
#Kidney	(50)		(50)		(50)	
Tubular cell adenoma	1 (2%)		(00)			(2%)
Tubular cell adenocarcinoma	1 (2%)					(2%)
	. (2%)					
ENDOCRINE SYSTEM						
#Anterior pituitary	(50)		(49)	((50)	
Adenoma, NOS	13 (26%)	16	(33%)		(20%)
Adenocarcinoma, NOS	3 (6%)					(4%)
#Adrenal	(49)		(50)		(50)	(07)
Cortical adenoma	(18)					(2%)
#Adrenal/capsule	(49)		(50)		(50)	
Adenoma, NOS	1 (2%)		-		(40)	
#Thyroid	(50)		(50)	(40)	(49)	(90)
Follicular cell adenoma	2 (4%)			(4%)	1	(2%)
Follicular cell carcinoma	(EA)			(2%)	(20)	
#Pancreatic islets Islet cell adenoma	(50)		(49)		(50)	(2%)
						(470)
REPRODUCTIVE SYSTEM						
*Mammary gland	(50)		(50)		(50)	
Adenocarcinoma, NOS	1 (2%)			(4%)	1	(2%)
Adenosquamous carcinoma	1 (2%)			(2%)		
Fibroadenoma	1 (2%)			(2%)		
#Uterus	(50)		(50)		(50)	(0.21)
Adenocarcinoma, NOS			-		1	(2%)
Endometrial stromal polyp	1 (2%)			(4%)	110	
#Ovary	(44)		(48)		(49)	(00)
Cystadenoma, NOS	2 (5%)					(2%)
Thecoma Crampiana collegatinema				(90)	1	(2%)
Granulosa cell carcinoma Sarcoma, NOS			1	(2%)		(90)
Sarcoma, NOS Teratoma, benign						(2%) (2%)
rerawina, benign	· · · ·				1	(470)
NERVOUS SYSTEM						
#Brain/meninges	(50)		(50)		(50)	
Sarcoma, NOS						(2%)
SPECIAL SENSE ORGANS						
*Harderian gland	(50)		(50)		(50)	
Adenoma, NOS	4 (8%)			(6%)	(00)	

TABLE B2. SUMMARY OF THE INCIDENCE OF NEOPLASMS IN FEMALE MICE IN THE TWO-YEAR FEED STUDY OF OXYTETRACYCLINE HYDROCHLORIDE (Continued)

02

	CONTROL (UNTR)	LOW DOSE	HIGH DOSE
MUSCULOSKELETAL SYSTEM *Vertebra Osteosarcoma	(50)	(50)	(50) 1 (2%)
BODY CAVITIES None			
ALL OTHER SYSTEMS None			
ANIMAL DISPOSITION SUMMARY			
Animals initially in study	50	50	50
Natural death	5	5	2
Moribund sacrifice	14	11	12
Terminal sacrifice	31	34	36
TUMOR SUMMARY			
Total animals with primary tumors**	43	34	36
Total primary tumors	64	50	50
Total animals with benign tumors	28	24	17
Total benign tumors	34	28	21
Total animals with malignant tumors	27	21	25
Total malignant tumors	30	22	28
Total animals with secondary tumors##	4	3	1
Total secondary tumors	4	3	1
Total animals with tumors uncertain			
primary or metastatic			1
Total uncertain tumors			1

TABLE B2. SUMMARY OF THE INCIDENCE OF NEOPLASMS IN FEMALE MICE IN THE TWO-YEAR FEED STUDY OF OXYTETRACYCLINE HYDROCHLORIDE (Continued)

* Number of animals receiving complete necropsy examination; all gross lesions including masses examined microscopically.
 ** Primary tumors: all tumors except secondary tumors
 # Number of animals examined microscopically at this site

Secondary tumors: metastatic tumors or tumors invasive into an adjacent organ

			<u> </u>				,	501		010	10.		014	1 10	20			00	NI	111					
ANIMAL NUMBER	1 3 4	1 1 7	1 3 1	1 1 9	1 1 8	1 3 0	1 2 0	1 4 8	1 3 9	1 0 4	1 2 3	1 3 5	1 2 7	1 3 3	1 4 3	1 1 0	1 0 7	1 0 9	1 2 8	1 0 1	1 0 2	1 0 3	1 0 5	1 0 6	1 0 8
WEEKS ON STUDY	0 0 7	0 1 5	0 4 6	0 5 5	0 6 7	0 8 6	0 9 1	0 9 1	0 9 4	0 9 5	0 9 5	0 9 5	0 9 6	0 9 8	0 9 8	1 0 0	1 0 1	1 0 2	1 0 2	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4
INTEGUMENTARY SYSTEM Skin Squamous cell papilloma Subcutaneous tissue Sarcoma, NOS Fibroma Fibrosarcoma	+	+	+	+ +	+ +	++	+ + X	+ +	+ + X	+ +	N N	+ + X x	++	+ + X	++	++	+ + x	++	++	+ +	+ +	++	+ +	+ + X	+ +
Osteosarcoma						Λ	~		л		л	Λ				л	л							л	x
RESPIRATORY SYSTEM Lungs and bronchi Alveolar/bronchiolar adenoma Alveolar/bronchiolar carcinoma Pheochromocytoma, metastatic Trachea	+	+	+	+ . +	+	* *	+	+	+	+	+	+	+ X	+	+	 + +	* *	+	+	+ X +	+	* *	+	+	+
HEMATOPOIETIC SYSTEM Bone marrow	+	+	+	+	+	+	+	 +	+			 +	 +	 +			 +				 +				+
Spleen Hemangiosarcoma Lymph nodes	+++++++++++++++++++++++++++++++++++++++	++	+ +	÷ +	+ +	+ +	÷ +	÷ +	÷ +	+ x +	+ +	+ +	÷ +	÷ +	+ +	÷ +	÷ +	+ _	+ +	÷ +	÷ +	÷ +	+++++++++++++++++++++++++++++++++++++++	++	+ +
Thymus	+	-	+	-	+		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
CIRCULATORY SYSTEM Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
DIGESTIVE SYSTEM Selivary gland Liver Hepatocellular adenoma Hepatocellular carcinoma Hemangioma	+++	+ +	+ +	++++	+++	+ + X	+ + X	+ + X	+ +	+++	++++	+ + X	+ +	+ +	+ + X	+ + x	++	+ + X	+ + x	+ +	+++	+ +	++++	+ +	+++
Bile duct Gallbladder & common bile duct Fancreas Esophagus Stomach Small intestine Malignant lymphoma, mixed type Large intestine	+ 2 + + + + +	+++++++++++++++++++++++++++++++++++++++	+++++ + + +	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	++++++ +	++++++ +	+++++++++++++++++++++++++++++++++++++++	++++++ +	++++++ +	++++++ +	++++++ +	+++++ +	+++++++++++++++++++++++++++++++++++++++	+++++ +	++++++ +	+++++++++++++++++++++++++++++++++++++++	+++++ +	++++++ +	+++++++++++++++++++++++++++++++++++++++	++++++ +	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++ +
URINARY SYSTEM Kidney Urinary bladder	++++	++++	++++	++++	++++	++++	+++	+++	++++	++++	+++	++++	+++	++++	+++	++++	+	++++	+++	+++	+++	+++	+++	+++	++++
ENDOCRINE SYSTEM Pibuitary Adrenal Pheochromocytoma Pheochromocytoma, malignant Thyroid Parathyroid	++++	+++++	+++++++++++++++++++++++++++++++++++++++	+ + +	+++++	+++++	++++	+++++	+++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++	+ + X +	+++++++++++++++++++++++++++++++++++++++	+++++	++++	+++++	+++	+ + X +	+ + +	++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++
REPRODUCTIVE SYSTEM Mammary gland Testis Prostate	N + + +	N + +	N + +	×++	N + +	м + н	N + +	N + +	N + +	ч н + +	, N + +	N + +	+ N + +	N + +	N + +	N + +	N + +	+++	N + +	N + +	+++++	* N ++	N + +	+ N + +	N + +
NERVOUS SYSTEM Brain	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
SPECIAL SENSE ORGANS Harderian gland Adenoma, NOS	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
BODY CAVITIES Peritoneum Hemangiosarcoma, metastatic	N	N	N	N	N	N	N	N	N	N X	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
ALL OTHER SYSTEMS Multiple organs, NOS Malignant lymphoma, NOS Malignant lymphoma, lymphocytic type Malignant lymphoma, histiocytic type Malignant lymphoma, mixed type	N	N	N	N X	N	N	N	N X	N	N	N	N	N	N	-	N X	N	N	N	N	N	N	N	N	N

TABLE B3. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE MICE IN THE TWO-YEAR FEEDSTUDY OF OXYTETRACYCLINE HYDROCHLORIDE: UNTREATED CONTROL

+: Tissue examined microscopically
 -: Required tissue not examined microscopically
 X: Tumor incidence
 Necropsy, no autolysis, no microscopic examination
 S: Animal missexed

No tissue information submitted
 C: Necropsy, no histology due to protocol
 Autolysis
 M: Animal missing
 B: No necropsy performed

											ue	~,														
ANIMAL NUMBER	1 1 1	1 1 2	1 1 3	1 1 4	1 1 5	1 1 6	1 2 1	1 2 2	1 2 4	1 2 5	1 2 6	1 2 9	1 3 2	1 3 6	1 3 7	1 3 8	1 4 0	1 4 1	1 4 2	1 4 4	1 4 5	1 4 6	1 4 7	1 4 9	1 5 0	TOTAL
WEEKS ON STUDY	104	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	TISSUES
INTEGUMENTARY SYSTEM Skin Squamous cell papilloma Subcutaneous tissue Sarcoma, NOS Fubroma Fibrosarcoma Osteosarcoma	++	++	++	+ +	+ +	+ +	++	+ +	+ + X	+ +	+ + X	+ +	+ +	+ + X	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+++	* * +	++	*50 1 *50 3 2 8 1
RESPIRATORY SYSTEM Lungs and bronch: Alveolar/bronchiolar adenoma Alveolar/bronchiolar carcinoma Pheochromocytoma, metastatic Trachea	+	+	+ X +	+	* *	+	+	+	+	+	+	+	+	* *	+	* *	++	+	+	+	+	+	+	* * +	* *	50 8 2 1 50
HEMATOPOIETIC SYSTEM Bone marrow Spieen Hemangnosarcoma Lymph nodes Thymus	 + + +	++-+	+ + + +	+++++	+ + + +	+ + + +	+ + + +	+ + + +	+ + + +	+ + + +	+ + X + + +	+ + + +	++ + + + +	++ ++ ++	+ + + +	+++++	+ + + +	++++++	+ + + +	+ + + +	+++++	++ ++ ++	+++++	+ + + +	+ + + +	50 50 2 48 47
CIRCULATORY SYSTEM Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
DIGESTIVE SYSTEM Salvary gland Liver Hepatocellular adenoma Hepatocellular carcinoma Hemangioma	+ + X	+ +	+++++	++++	+ + X	++++	+ + X	+ +	+ +	++++	+ +	+ +	+ +	+ + X	+++	+ + X	+ + X	+++	+ + X	+ + X	+ + X	+ + X	+ +	+ + X	+ +	50 50 7 11 1
Bile duct Gallbladder & common bile duct Pancreas Esophagus Stomach Small intestine Malignant lymphoma, mixed type Large intestine	+++++++++++++++++++++++++++++++++++++++	+N++++ +	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	++++++ +	+ + + + + + +	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+N++++ +	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+ X ++++ +	++++++ +	+++++++++++++++++++++++++++++++++++++++	+++++- +	+++++++++++++++++++++++++++++++++++++++	+ + + + + X +	50 *50 50 49 50 48 1 50
URINARY SYSTEM Kidney Urinary bladder	 + +	+ +	++	+++	+++	+++	+ +	+ +	+ +	++	+ +	+ +	++++	++	++++	+++	+ +	++++	+++	+++	+++	+ + +	+++	++	++++	50 50
ENDOCRINE SYSTEM Pituitary Adrenai Pheochromocytoma Pheochromocytoma, malignant Thyroid Parathyroid	++++	++++-	+++	+ + + +	+ + + +	+ + + +	+ + + +	+ + + +	+ + +	++++-	+++++	++++++	++++	+++++++	+++-	+ + + +	+ + + -	+ + +	+ + + +	++++-	++X ++	++++-	+ + + + + +	++++++	++++-	50 50 2 1 50 29
REPRODUCTIVE SYSTEM Mammary gland Testis Prostate	N + +	N + +	N + +	N + +	N + +	N + +	+ + +	N + +	N + +	N + +	N + +	N + +	N + +	N + +	N + +	N + +	N + +	N + +	N + +	N + +	N + +	N + +	N + +	N + +	N + +	*50 50 50
NERVOUS SYSTEM Brain	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
SPECIAL SENSE ORGANS Harderian gland Adenoma, NOS	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N X	N	N	N	N	N	N	N	N	N	N	*50 1
BODY CAVITIES Peritoneum Hemangiosarcoma, metastatic	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	*50 1
ALL OTHER SYSTEMS Multiple organs, NOS Malignant lymphoma, NOS Malignant lymphoma, lymphocytic type Malignant lymphoma, histiocytic type Malignant lymphoma, mixed type	N	N	N	N	N	N X	N X	N	N	N	N	N	N	N	N X	N	N	N	N	N	N	N X	N	N	N	*50 1 1 2 3

TABLE B3. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE MICE: UNTREATED CONTROL (Continued)

ANIMAL NUMBER	0 4 0	0 4 1	0 3 6	0 4 2	0 4 3	0 0 4	0 1 5	0 0 2	0 3 0	0 3 5	0 5 0	0 4 9	0 1 7	0 0 8	0 3 1	0 3 8	0 2 0	0 0 1	0 0 3	0 0 5	0 0 6	0 0 7	0 0 9	0 1 0	0 1 1
WEEKS ON STUDY	0 1 9	0 2 1	0 2 6	0 2 7	0 3 1	0 6 2	0 7 5	0 7 6	0 8 6	0 9 1	0 9 2	0 9 4	0 9 5	0 9 6	0 9 8	0 9 8	0 9 9	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4
INTEGUMENTARY SYSTEM Skin Squamous cell papillome	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Subcutaneous tissue Sarcoma, NOS Fibroma Fibrosarcoma	+	+	+	+	+	+ x	+	+	+	+	+	+ x	+	+ x	+	*	+	+	+	+	+	+	+	+ x	+
RESPIRATORY SYSTEM																									
Lungs and bronchi Alveolar/bronchiolar adenoma Alveolar/bronchiolar carcinoma Trachea	+	+	+	+	+	++	+	+	+	+	+ X +	+	+	* *	+	++	++	++	+ X +	+	+	+ X +	+ X X +	+	+ X +
HEMATOPOIETIC SYSTEM																				· · · · ·					<u> </u>
Bone marrow Spleen Sarcoma, NOS	‡	+ +	+ + X	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +						
Lymph nodes Thymus	+	+ +	+++	+ +	+ +	+++	+ +	+ +	+ +	+ +	+ +	+ +	+++	+ +	+ +	+++	+ +	++	+++	+ +	+ +	+ +	+++	+ +	+ +
CIRCULATORY SYSTEM Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
DIGESTIVE SYSTEM Salıvary gland Lıver Hepatocellular adenoma Hepatocellular carcınoma Hemangıosarooma	+ +	+ +	+++	+ +	+ +	+ +	+ + X	+ + X	+ + X	+ + X X	+ +	+ +	+++	+ +	+ + x	+ + x	+ + X	+ +	+ + X	+++	+++	+ +	+ +	+ + X	+++++
Bile duct Gallbladder & common bile duct Pancraes	+ N +	++	+++++	+ + +	+ + +	+ + +	+ N +	+ N +	+++++	+ + +	+ + +	+ + +	++++	++++	++++	++++	+++++	++++	+++++	+ + +	+ + +	+ + +	+ + +	+ + +	+ + +
Esophagus Stomach Small intestine Adenocarcinoma, NOS	+++	- + +	+ + -	+ + +	+ + +	+ + +	+ + +	++-	+ + +	+ + +	.+ + +	.+ ++ +	·+++	+ + +	+ + +	.++++	+ + +	·+++	+ + +	+ + +	+ + +	+ + +	+ + +	+ + +	+ + +
Large intestine	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
URINARY SYSTEM Kidney Urinary bladder	++++	+ +	+ +	+++	+ +	++++	+ +	+	+ +	++	+ +	++++	++++	+ +	+ +	+++	++++	+ +	+ +	+++	++++	+ +	+++	++++	+ +
ENDOCRINE SYSTEM Pituitary Adrenal	++++	+	++++	+++	++++	++++	-+	++++	++++	++++	++++	+++	+++	++++	++++	+ + X	+ + +	++++	+++	+++	++++	+++	++++	+++	+++
Cortical adenoma Pheochromocytoma Thyroid Parathyroid	+	+	<u>+</u>	+	+	+ +	+	+	+	+	<u>+</u>	++++	+ +	+	+++	x +	+	++	+	<u>+</u>	X + -	+	+	+	+++
REPRODUCTIVE SYSTEM Mammary gland Testis	 N +	N +	N +	N +	N +	м +	N +	N +	N +																
Prostate	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
NERVOUS SYSTEM Brain	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
ALL OTHER SYSTEMS Multiple organs, NOS Sarcome, NOS Malignant lymphoma, mixed type	N	N	N	N	N	N	N	N X	N	N X	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N

TABLE B3. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE MICE IN THE TWO-YEAR FEEDSTUDY OF OXYTETRACYCLINE HYDROCHLORIDE: LOW DOSE

									on	C111	uet	.,														
ÂNIMĂL NUMBER	0 1 2	0 1 3	0 1 4	0 1 6	0 1 8	0 1 9	0 2 1	0 2 2	0 2 3	0 2 4	0 2 5	0 2 6	0 2 7	0 2 8	0 2 9	0 9 2	0 3 3	0 3 4	0 3 7	0 3 9	0 4 4	0 4 5	0 4 6	0 4 7	0 4 8	TOTAL
WEEKS ON STUDY	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	TOTAL TISSUES TUMORS
INTEGUMENTARY SYSTEM Skin Squamous cell papilloma Subcutaneous tissue Sarroma, NOS Fibroma Fibroma Fibrosarcoma	+ +	+	++	++	+ + X	++	++	++	++	+ +	+ + X	++	++	+	++	++	+ X +	+ + X	+ +	++	+ + X	+ +	+ + X	++	+ +	*50 1 *50 1 4 5
RESPIRATORY SYSTEM Lungs and bronch Alveolar/bronchiolar adenoma Alveolar/bronchiolar carcinoma Trachea	+	+	++	+	+ X +	++	* *	+	++	++	++	+	++	++	* *	+	++	+	++	++	+	+	+	++	+	50 4 6 50
HEMATOPOIETIC SYSTEM Bone marrow Spleen Sarcoma, NOS Lymph nodes Thymus	+++++++++++++++++++++++++++++++++++++++	++++	++++++	++++	+ + +	+ + +	++++++	+ + +	+++++	+++++	+ + +	+ + +	+++++	+ + +	+++++	+++++	+++++	++++++	++++++	+ + +	+ + + +	+++++	+ + + + + + + + + + + + + + + + + + + +	+ + +	++ ++ ++	50 50 1 49 47
CIRCULATORY SYSTEM Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
DIGESTIVE SYSTEM Salvary gland Liver Hepatocellular adenoma Hepatocellular carcinoma Hemangosarcoma	++++	+++	+ +	+ +	+ +	++	+ +	+ + X	+++	+ * X	+ +	+ + X	+ + X	+ +	+ + X X	+ + X	+++	+++	+ + X	+ +	+ +	+++	+ +	+++	+++	50 50 8 9 1
All duct Gallbladder & common bile duct Pancreas Esophagus Stomach Small intestine Adenocarcinoma, NOS Large intestine	+++++++++++++++++++++++++++++++++++++++	++++++ +	++++++ +	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++*	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	++++++ +	+++++++++++++++++++++++++++++++++++++++	+ + + + + +	++++++ +	+++++++++++++++++++++++++++++++++++++++	50 *50 49 49 50 47 1 50
URINARY SYSTEM Kidney Urnary bledder	+	+	++++	+++	+++	++++	+++	+++	++++	++++	 + +	++++	+++	++++	+++	+++	++++	++++	++++	+++	++++	 + +	++++	++++	+++	50 49
ENDOCRINE SYSTEM Priuitary Adrenal Cortical adenoma Pheochromocytoma Thyroid Parathyroid	+++++++++++++++++++++++++++++++++++++++	++++-	++++-	++ + -	+ + +	+ + +	+ + + -	++++-	+++ ++ ×+-	+ + +	++ + X++	+ + +	++ + x+-	+ + +	+ + + X + + +	++ + x+-	++++-	+ + + + -	+ + +	+ + +	++ + ++	+ + + +	+ + + -	++++	+++++	49 49 2 5 50 25
REPRODUCTIVE SYSTEM Mammary gland Testas Prostate	N ++	N + +	N + +	N + +	N + +	N + +	N + +	N + +	N + +	+ + +	N + +	N + +	N + +	N + +	N + +	N + +	N + +	N + +	N + +	++++	N + +	N + +	N + +	N + +	N + +	*50 50 50
NERVOUS SYSTEM Brain	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
ALL OTHER SYSTEMS Multiple organs, NOS Sarcoma, NOS Malignant lymphoma, mixed type	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	*50 1 1

TABLE B3. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE MICE: LOW DOSE (Continued)

ANIMAL NUMBER	0 6 0	0 5 7	0 7 1	0 6 8	0 7 6	0 7 3	0 7 7	0 5 5	0 5 2	0 6 9	0 8 8	0 7 5	0 6 6	0 9 9	0 8 9	0 8 3	0 5 1	0 5 3	0 5 4	0 5 6	0 5 8	0 5 9	0 6 1	0 6 2	0 6 3
WEEKS ON STUDY	0 1 6	0 2 3	0 2 9	0 6 8	0 6 9	0 7 3	0 8 5	0 9 0	0 9 2	0 9 4	0 9 4	0 9 7	0 9 9	1 0 0	1 0 1	1 0 2	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4
INTEGUMENTARY SYSTEM Subcutaneous tissue Sarcoma, NOS Fibroma Fibroma Fibrosarcoma	- +	+	+	+ X	+	+ x	* X	+	+	+	+	+ x	+	+	+	+	+	+	+	+ X	+	+	+	+	+
RESPIRATORY SYSTEM Lungs and bronch Hepatocellular carcinoma, metastatic Alveolar/bronchiolar adenoma Alveolar/bronchiolar carcinoma Trachea	+	+	+	+	+	+	+	+	+	* *	+	+	+	+	+	+	+	+	+	+	+ X +	+ X X +	+	+	+
HEMATOPOIETIC SYSTEM Bone marrow Spleen Lymph nodes Thymus	- + + + + + + + + + + + + + + + + + + +	, ++ ++ +	+ + + +	, +++++	+++++	, + + + + +	, ++++++	, + + + +	, +++++	, +++++	, ++ ++++	, + +++++	, + + + + +	, +++++	, ++ ++ ++	+ + + + +	++++++	++++++	+++++	+ + + +	+ + + +	+++++	+ + + +	+++-	++++++
CIRCULATORY SYSTEM Heart Hemangnoma	- +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
DIGESTIVE SYSTEM Salvary gland Liver Hepatocellular adenoma Hepatocellular carcinoma Bile duct Gallbladder & common bile duct Pancreas Esophagus Stomach Stomach Small intestine Large intestine	- ++ ++++++++++++++++++++++++++++++++++	++ +++++++	++ +++++++	++ +++++++	++ +++++++	++X +++++++	++ +++++++	++ ++++++	++ ++++	++ X+++++++	++ X++++++++	++ +++++++	++ +++++++	++ ++++++++++++++++++++++++++++++++++++	++ +++++++	++ +++++++	++ +++++++	++ +++++++	++ x+++++++	++X +++++++	++ +++++++	++ X+++++++	++ X++++++++	++ ++++++	++x ++++++++
URINARY SYSTEM Kidney Malignant lymphoma, lymphocytic type Urinary bladder	- + +	+ +	+ -	++	++	++	++	+ +	++	* *	+	+++	++	++	++	++	+ +	+	++	+ +	+ +	++	++	++	+ +
ENDOCRINE SYSTEM Pituitary Adrenal Pheochromocytoma Thyroid Folhcular cell adenoma Parathyroid	- + + + +	+ + + +	+ + + -	++ ++ +	++++-	+ + + +	+ + + +	+ + + +	+++++++	++ + + +	++ + +	+ + + +	+ + + -	+ + +	+ + + -	+ + + +	++++++	+ + + +	+ + + +	+ + + -	+ + + +	++++-	++++-	+ + + +	+ + + +
REPRODUCTIVE SYSTEM Mammary gland Teatis Hemangtoma Prostate	- N + +	N + +	N + +	พ + +	N + +	N + +	N + +	N + +	N + +	N + +	N + +	N + +	N + +	N + + +	N + +	N + +	N + +	N + +	N + +	N + +	N + +	N + +	N + +	N + +	N + +
NERVOUS SYSTEM Brain	-	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
ALL OTHER SYSTEMS Multiple organs, NOS Malignant lymphoma, lymphocytic type Malignant lymphoma, histlocytic type Malignant lymphoma, mixed type	N	N	N X	N	N	N	N	N X	N X	N	N	N	N X	N	N	N	N X	N	N	N	N	N	N	N	N

TABLE B3. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE MICE IN THE TWO-YEAR FEED STUDY OF OXYTETRACYCLINE HYDROCHLORIDE: HIGH DOSE

TABLE B3. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE MICE: HIGH DOSE (Continued)

ANIMAL NUMBER	0 6 4	0 6 5	0 6 7	0 7 0	0 7 2	0 7 4	0 7 8	0 7 9	0 8 0	0 8 1	0 8 2	0 8 4	0 8 5	0 8 6	0 8 7	0 9 0	0 9 1	0 9 2	0 9 3	0 9 4	0 9 5	0 9 6	0 9 7	0 9 8	1 0 0	TOTAL
WEEKS ON STUDY	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	TISSUES
INTEGUMENTARY SYSTEM Subcutaneous insue Sarcoma, NOS Pibroma Fibrosarcoma	+	+	+	+ x	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	4	+	+	+	*50 1 2 3
RESPIRATORY SYSTEM Lungs and bronch: Hepatocellular carcinoma, metastatic Alveolar/bronchiolar adenoma Alveolar/bronchiolar carcinoma Trachea	+	+	+ X +	+	+ X +	+	+	+	+	+	+ X +	+	+	++	+	+	+	+	+	+ X +	+	+	+	+	+	50 1 4 3 50
HEMATOPOIETIC SYSTEM Bons marrow Spisen Lymph nodes Thymus	++++	++++++	+++++	+++++	+++++	+++++	+++++++	+++++	+++++	+ + + + +	+ + + +	++++++	+ + + +	++++	+ + + +	+++++	++++++	+ + + + + +	+ + + +	+++++	+ + + +	+++++++++++++++++++++++++++++++++++++++	+++++	+++++	+ + + +	50 50 50 49
CIRCULATORY SYSTEM Heart Hemangtoma	+	+	+	+	+	*	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+-	+	+	+	50 1
DIGESTIVE SYSTEM Salvary gland Liver Hepatocellular adenoma Hepatocellular carcinoma Bile duct Gallbladder & common bile duct Pancreas Esophagus Stomach Stomach Small intestine Large intestine	++ X + N +++++	++ ++++++++++++++++++++++++++++++++++++	++ +++++++	++ +++++++	++ +++++++	++ ++++++++++++++++++++++++++++++++++++	++ X+++++++	++ ++++++++++++++++++++++++++++++++++++	++ ++++++++++++++++++++++++++++++++++++	++ +++++++	++X +++++++	++ X++++++++++++++++++++++++++++++++++	++X +++++++	++ ++++++++++++++++++++++++++++++++++++	++ +++++++	++ +++++++	++ ++++++	++ +++++++	++ X+++++++	++ +++++++	++X +++++++	++ X+++++++	++ +++++++	++ +++++++	++ X+++++++	50 50 6 11 50 *50 50 50 50 49 49
URINARY SYSTEM Kidney Malignant lymphoma, lymphocytic type Urinary bladder	+	+ +	++	+ +	+ +	+	+ +	++	+++	+ +	+	++	+ +	++	++	++	+ +	+ +	++	++	++	+	++	+ +	++	50 1 48
ENDOCRINE SYSTEM Pituitary Adrenal Pheochromocytoma Thyroid Follicular cell adenoma Parathyroid	+++++++++++++++++++++++++++++++++++++++	+ + + +	+ + + -	+ + + -	+ + +	+ + + +	+ + + +	+ + + +	+ + + -	+ + + +	+ + +	+ + + +	+ + X + +	+ + +	+ + + +	+ + + X +	+ + + +	+ + +	+ + + +	+ + * * +	+ + + +	+ + + +	+ + + +	+ + + +	+ + + +	50 50 2 50 2 35
REPRODUCTIVE SYSTEM Mammary gland Testis Hemangioma Prostate	N + +	N + +	N + X +	N + +	N + +	N + +	N + +	N + +	N + +	N + +	N + +	N + +	N + +	N + +	N + +	N + +	N + +	+ + +	N + +	N + +	N + +	N + +	N + +	N + +	N + +	*50 50 1 50
NERVOUS SYSTEM Brain	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	F	+	+	+	 50
ALL OTHER SYSTEMS Multiple organs, NOS Malignant lymphoma, lymphocytic type Malignant lymphoma, histocytic type Malignant lymphoma, mixed type	N	N X	N	N	N	N	N	N	N	N	N	N X	N	N	N	N	N	N	N	N	N	N	N	N	N	*50 1 2 4

ANIMAL NUMBER	1 2 4	1 3 6	1 4 2	1 4 3	126	1 2 7	1 1 4	1 3 8	1 3 9	1 2 2	1 2 5	1 0 6	1 3 4	1 4 9	1 2 1	1 0 5	1 1 8	1 2 3	1 0 8	1 0 1	1 0 2	1 0 3	1 0 4	1 0 7	1 0 9
WEEKS ON STUDY	0 4 3	0 5 3	0 7 8	0 7 8	0 8 2	0 8 5	0 8 6	0 9 1	0 9 2	0 9 3	0 9 4	0 9 8	0 9 8	0 9 8	0 9 9	1 0 0	1 0 0	1 0 0	1 0 1	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4
INTEGUMENTARY SYSTEM Subcutaneous tissue Fibrosarcoma Hemangiosarcoma, metastatic	+	+	+	+	+ x	+	+	+	+	+	*	+	+	+	+	+	+	+	+	+	+	+	+	+	+
RESPIRATORY SYSTEM Lungs and bronchn Hepatocellular carcinoma, metastatic Alveolar/bronchiolar adenoma Fibrosarcoma, metastatic Trachea	+	+	+	+	+	+	+	+	+	+	+ X	+	+	+	+	+	+	+	+	+	+	+	+	+	+
HEMATOPOIETIC SYSTEM Bone marrow Solean		++++	++++	+ +	+	+ +	++++	+ +	++++	+++	 + +	+	++++		+++	++++	++++	 + +	+ +	++++	+	+ +	+++	++++	+
Hemangnosarcoma Malignant lymphoma, histiocytic type Malignant lymphoma, mixed type Lymph nodes			·		×					_	•							x				_	·	·	
Squamous cell carcinoma, metastatic Thymus Thymoma, benign Malignant lymphoma, lymphocytic type Malignant lymphoma, mixed type	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	х +	+	+	-	+	+	+
CIRCULATORY SYSTEM Heart		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
DIGESTIVE SYSTEM Salivary gland Jver Hepatocellular adenoma Hepatocellular carcinoma	+	++++	+ +	+++	+++	+ +	+ +	+ + X	+ +	+ +	++++	+ +	+ +	+++	++++	+ +	++++	+ +	+ * X	+ +	+ +	+ +	+ +	+ +	+++
Hemangiosarcoma Bile duct Ballbladder & common bile duct 'ancreas	+++++++++++++++++++++++++++++++++++++++	+ + +	+ + +	+ + +	++++	X + + + +	+ + +	+ N +	+ + +	+ + +	+ + +	+ + +	++++	+ + +	+ + +	+ + +	++++	++++	++++	+ + +	+ + +	+ + +	+ + +	+ + +	++++
Stophagus Stomach Small intestine Leiomyosarcoma	+++++++++++++++++++++++++++++++++++++++	+ + + + +	+ + + +	++++	++++	+ + + +	+ + + +	+ - + +	+ + + +	+ + + +	++++	+ + + + +	+ + +	+ + + + + X	+ + + +	+ + + +	++++	++++	++++	+ + +	+ + + +	++++	+ + + +	+ + + +	++++
JRINARY SYSTEM Gdney Tubular cell adenoma Tubular cell adenocarcinoma Jinnary bladder	++	+ x x +	++	+	+	++	++	+	+	+	+	+	+	+	+	+	+	+	+	++	+	+	+	++	++
ENDOCRINE SYSTEM Atuitary Adenoma, NOS		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	*	+	*	* x	* *	+
Adenocarcinoma, NOS Adrenal Adenoma, NOS	+	+	+	+	+	+	+	+	*	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Thyroid Follicular cell adenoma Parathyroid	-	+	+	+	+	+	+	+	+ -	+	+	+	+ +	-	+	+	-	+	+	- -	+	+	т -	+ -	+
EPRODUCTIVE SYSTEM fammary gland Adenosquamous carcinoma Adenosquamous carcinoma	+	+	N	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+ X	+	+	+	+	+	+
Fibroadenoma Iterus Endometrial stromal polyp Ivary	+	+	+	+ +	+	+ -	+	+	+ +	+	+	+ +	X + +	+ +	+ _	+ +	+ +	+	+ +	+ +	+ +	+ +	+	+ +	+
Cystadenoma, NOS ERVOUS SYSTEM				·																				х	
rain PECIAL SENSE ORGANS ardernan gland Adaptore NOS	+ N	+ N	+ N	+ N	+ N	+ N	+ N	+ N	+ N	+ N	+ N	+ N	+ N	+ N	+ N	+ N X	+ N	+ N	+ N	+ N	+ N	+ N	+ N	+ N	+ N
Adenoma, NOS LL OTHER SYSTEMS Jultiple organs, NOS Malignant lymphoma, undiffer type Malignant lymphoma lymphositys type	N	N	N	N	N	N	N X	N	N	N	N	N	N	N	N X		N X	-	N	N	N	N	N	N	N
Malıgnant lymphoma, lymphocytic type Malıgnant lymphoma, histiocytic type Malıgnant lymphoma, mixed type Lymphocytic leukemia			x				•					x		X	~										X

TABLE B4. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE MICE IN THE TWO-YEAR FEEDSTUDY OF OXYTETRACYCLINE HYDROCHLORIDE: UNTREATED CONTROL

+: Tissue examined microscopically -: Required tissue not examined microscopically X: Tumor incidence N: Necropsy, no autolysis, no microscopic examination S: Animal missexed

: No tissue information submitted C: Necropsy, no histology due to protocol A: Autolysis M: Animal missing B: No necropsy performed

1 1 0	1	1	1	1	1	1	11	11	11	1	- 11	- 11	- 11	- 11		- TT		- 1 T	11	Ľ	1	1	1	1	1	T
	1	2	3	1 5	1 6	1 7	1 9	20	28	29	3	3	32	3	35	37	4	4	4		4	4 6	4	4	5 0	TOTAT
1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	104	1 0 4	1 0 4	1 0 4	1 0 4		1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	TOTAL TISSUES TUMORS							
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	*50 1 1
+	+	+	+	*	+	+	+	+	+ x	+	+	+	+ X	+	+	+	+	+ X	+	+	+	+	+	+	+	50 1 3 1 50
	+	+ + +	+	+	+	++++	+	+	+	+ + +	+	+	+++	+ + +	+	+ ±	+ + +	++++	+	- -	+ 	++++	+	++++	+ + +	50 50 50
	т х +	-	+	+	x +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	-	+	+	+	+	+	1 1 2 48
+	+	+	+	+ x	+	+	+	+	+	+	+	+	+	+	+	+	+	+	* x		+	+	+	+	+	1 49 1 1 1
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		+	+	+	+	+	50
++++	+ +	+ +	+++	+ + X X	+ +	+++	+ +	+ +	+ + X	+ +	++++	+ +	++++	+ + X	+ + X	+ +	+ +	+ +	+ +	-	+ +	++++	+ +	+ +	+ +	50 50 5 2 1
+++++++++++++++++++++++++++++++++++++++	+++++	+++++	+++++	+++++	+++++	+++++	+++++	+++++	+++++	+ 2 + + + +	+++++	+++++	+++++	+++++	+++++	+++++	+++++	+++++	+++++			++++++	+++++	+ + + + + +	+++++	50 *50 50 49 50
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		+	+	+	+	+	50 1
+	+	+	+	+ +	+	+ +	+	+	+	+	+	+	+	+	+ +	+	+	+	+		+	+	+	+	+	50 1 1 48
+ x	+	* X	*	*	+	+	*	+ X	+	+	* *	+ X	+ X	+	+	+	*	+	+		+ X	+	+	* *	+	50 13 3
++	+ + +	+ + +	+ + +	+ + +	+ + +	- + +	+ + +	+ + x -	+ + +	+ + +	+	+ + x +	+ + 	+ + +	+ + +	+ + +	+ + +	+ + +	+ + +		+ + +	+ + +	+ + +	+ + +	+ + +	49 1 50 2 35
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		+	+	+	+	*	*50 1 1
+ + X	+ +	+ -	+ +	+ +	* * +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +		+ +	+ +	+ -	+ +	+ +	1 50 1 44 2
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		+	 +	+	+	+	50
N X	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N X	N	1	N 1	N	N	N	N	*50 4
N	N		N	N			N	N		N	N		N	N	N	N	N	N	N		3		N	N	N	*50 1 3 1 7
	+ + + + + + + + + + + + + + + + + + +	$\begin{array}{c} + & + \\$	$\begin{array}{c} + & + & + \\ + & + & + \\ + & + & + \\ + & + &$	$\begin{array}{c} + + + + + + + + + + + + + + + + + + +$	$\begin{array}{c} + + + + + + + + + + + + + + + + + + +$	$\begin{array}{c} + + + + + + + + + + + + + + + + + + +$	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	$\begin{array}{c} + + + + + + + + + + + + + + + + + + +$	$\begin{array}{c} + + + + + + + + + + + + + + + + + + +$	+ +	+ +	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array}} \\ \end{array}} \\ \begin{array}{c} \end{array} \\ \end{array}} \\ \\ \end{array}} \\ \begin{array}{c} \end{array} \\ \end{array}} \\ \end{array}} \\ \end{array}} \\ \end{array}} \\ \begin{array}{c} \end{array} \\ \end{array}} \\ \end{array}} \\ \end{array}} \\ \end{array}} \\ \end{array}} \\ \end{array}} \\ \begin{array}{c} \end{array} \\ \end{array}} $	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array}} \\ \begin{array}{c} \end{array}} \\ \begin{array}{c} \end{array} \\ \end{array}} \\ \end{array}} \\ \begin{array}{c} \end{array} \\ \end{array}} \\ \end{array}} \\ \begin{array}{c} \end{array} \\ \end{array}} \\ \begin{array}{c} \end{array} \\ \end{array}} \\ \end{array}} \\ \begin{array}{c} \end{array} \\ \end{array}} \\ \end{array}} \\ \begin{array}{c} \end{array} \\ \end{array}} \\ \end{array}} \\ \end{array}} \\ \begin{array}{c} \end{array} \\ \end{array}} \\ \end{array}} \\ \end{array}} \\ \end{array}} \\ \begin{array}{c} \end{array} \\ \end{array}} \\ \end{array}} \\ \end{array}} \\ \end{array}} \\ \begin{array}{c} \end{array} \\ \end{array}} $	1 1	Image: Second	Image: Second	Image: Sector of the sector

TABLE B4. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE MICE: UNTREATED CONTROL (Continued)

TABLE B4. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE MICE IN THE TWO-YEAR FEEDSTUDY OF OXYTETRACYCLINE HYDROCHLORIDE: LOW DOSE

ANIMAL NUMBER	0 1 4	0 2 6	0 3 2	0 4 4	0 1 3	0 2 5	0 2 0	0 1 5	0 0 5	0 3 1	0 4 2	0 4 1	0 3 3	0 4 7	0 0 1	0 0 2	0 0 3	0 0 4	0 0 6	0 0 7	0 0 8	0 0 9	0 1 0	0 1 1	0 1 2
WEEKS ON STUDY	0 6 7	0 8 6	0 8 7	0 8 8	0 9 4	0 9 4	0 9 5	0 9 6	0 9 8	0 9 8	0 9 8	0 9 9	1 0 0	1 0 1	1 0 2	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4
INTEGUMENTARY SYSTEM Subcutaneous tissue Sarcoma, NOS Hemangioma Hemangiosarcoma	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+ X	+	+	+
RESPIRATORY SYSTEM Lungs and bronch Adenocarcinoma, NOS, metastatic Alveolar/bronchiolar adenoma Alveolar/bronchiolar carcinoma Adenosquamous carcinoma, metastatic	+	+	+	+	+	+	+	*	+	+	+	+	+	+	+ x	+	+	+	+	+	+	+	+	+	+
Granulosa cell carcinoma, metastatic Trachea	+	+	+	+	+	+	+	+	+	+	+	+	+	X +	+	+	+	+	+	+	+	+	+	+	+
HEMATOPOIETIC SYSTEM Bone marrow Spieen	+++	++	+++	+++	+	++	+++	+++	++	++	+++	+++	++	+++	++	++	++	++	++	+++	+++	++	++	+++	+++
Malignant lymphoma, mixed type Lymph nodes Malignant lymphoma, mixed type	+	+	+	+	+	+	+	+	+	+	+	+	X +	+	+	+	+	+	+	+	+	-	+	+	+
Thymus Malignant lymphoma, lymphocytic type	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
CIRCULATORY SYSTEM Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
DIGESTIVE SY STEM Salvary gland Liver Bile duct Gallbladder & common bile duct Pancreas Esophagus	+++++++++++++++++++++++++++++++++++++++	++++++	++++++	-+++++	++++++	++++++	++++++	++++++	++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++2+++	++++++	++++++	++++++	+++++++	++++++	+++Z+++	+++++++++++++++++++++++++++++++++++++++	++++++	++++++	++++-+	++++++	++++++
Stomach Small intestine Adenomatous polyp, NOS Large intestine	++	+ +	+ +	++	++	+ +	+ +	++	+ +	+ + +	+ + +	+++	+ +	+ +	+ +	÷ +	+ +	++	+ + +	+ + +	++	++	+ +	+++	+ + +
URINARY SYSTEM Kidney Urinary bladder	-	 + +	+++	++++	+ +	+++	+++	+++	+++	+	+ +	+++	++++	+ +	+ +	+++	+ +	+ + +	+ +	+ +	++++	++++	+ +	++++	+ +
ENDOCRINE SYSTEM Pituitary Adenoma, NOS Adrenal Thyroid	++++	++	+	+	+	+	++	+ X +	+ +	++	++	+	++	* *	* *	* *	++	+	+	++	+ x +	*	++	++	**
Folicular cell adenoma Folicular cell carcinoma Parathyroid	-	+	+	-	+	+	+	+	- -	+	_	+	+	+	- -	+	+	+	- -	+	+	+	+	+	+
REPRODUCTIVE SYSTEM Mammary gland Adenocarcinoma, NOS Adenosquamous carcinoma	+	+	+	+	+	+	+	*	+	+	+	+	+	+	+ X	+	+	+	+	+	+	+	+	+	+
Fibroadenoma Uterus Endometrial stromal polyp Hemangiosarcoma	+	+	+	+	+	+	*	+	+	+	+	÷	+	+	+	+	+	+	+	+	+	+	*	+	+
Ovary Granulosa cell carcinoma Hemangioma	+	+	+	+	+	+	+	+	+	-	+	+	+	*	+	+ X	+	+	+	+	+	+	+	+	+
NERVOUS SYSTEM Brain	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
SPECIAL SENSE ORGANS Hardeman gland Adenoma, NOS	N	N	N	N	N X	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
ALL OTHER SYSTEMS Multiple organs, NOS Malignant lymphoma, lymphocytic type Malignant lymphoma, mixed type	N	N	N	N X	N X	N	N X	N	N X	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N X	N

									on			.,														
ANIMAL NUMBER	0 1 6	0 1 7	0 1 8	0 1 9	0 2 1	0 2 2	0 2 3	0 2 4	0 2 7	0 2 8	0 2 9	0 3 0	0 3 4	0 3 5	0 3 6	0 3 7	0 3 8	0 3 9	0 4 0	0 4 3	0 4 5	0 4 6	0 4 8	0 4 9	0 5 0	TOTAL
WEEKS ON STUDY	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	TISSUES
INTEGUMENTARY SYSTEM Subcutaneous tissue Sarcoma, NOS Hemangiona Hemangiosarcoma	+	+	+	+	+	+	+	+	+	+	+	+ X	+	+	+	*	+	+	+	+	+	+	+	+	+	*50 1 1 1
RESPIRATORY SYSTEM Lungs and bronchi Adsnocarcinoma, NOS, metastatic Alveolar/bronchiolar adenoma Alveolar/bronchiolar carcinoma Adenosquamous carcinoma, metastatic Granulosa cell carcinoma, metastatic Trachea	+	+	+	+	+	++	+	+ X +	+	+ X +	++	+	+	+	+	+	+	+	+	+	+	+	+ X +	+	++	50 1 1 2 1 1 50
HEMATOPOIETIC SYSTEM Bone marrow Spieen Malignant lymphoma, mixed type Lymph nodes Malignant lymphoma, mixed type Thymus Malignant lymphoma, lymphocytic type	++++++++	+ + + +	+ + + +	+ + + +	+ + - +	+ + + +	+ + + +	++ ++ +	+ + + +	+ + + +	+ + + +	+ + + X +	+++-++	+ + + +	+ + + + X	+ + + +	+ + - +	+ + + +	50 50 1 46 1 50 1							
CIRCULATORY SYSTEM Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
DIGESTIVE SYSTEM Salivary gland Liver Bile duct Galibladder & common bile duct Pancreas Esophagus Stomach Small intestine Adenomatous polyp, NOS Large intestine	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++ +	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++ +	++++++X+	+++++++++++++++++++++++++++++++++++++++	+ + + + + + + + +	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	-++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	48 50 50 *50 49 48 50 50 50 1 50
URINARY SYSTEM Kidney Urinary bladder	+++	++++	+++	+++	+++	++++	++++	+++	++++	++++	+++	+++	++++	++++	++++	++++	+++++	++++	++++	++++	++++	++++	++++	+++++	++++	50 49
ENDOCRINE SYSTEM Pituitary Adenoma, NOS Adrenal Thyroid Follicular cell adenoma Follicular cell carcinoma Parathyroid	+++++++	+ + + +	+ X + +	+ ++ +	++++	+ + X -	+ + + +	+++++++	+ X + + +	+ + X -	+ + +	+ + + +	+ X + + +	+ X + + -	+ + + +	++++	+ X + + +	+ +++	 + +	+++++++	+ X + +	+ X + + + X +	+ + + +	***+ +	+ + +	49 16 50 50 2 1 36
REPRODUCTIVE SYSTEM Mammary gland Adenocarcinoma, NOS Adenosquamous carcinoma Fibroadenoma	+	+	+	+	+	+	+	+	+	+	+	+	+	* *	+	+	+	+	+	+	+	+	+	N	+	*50 2 1 1 50
Uterus Endometrial stromal polyp Hemangiosarcoma Ovary Granulosa cell carcinoma Hemangioma	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	т Х +	т +	+	+	+	7 +	+	-	+	50 2 1 48 1 1
NERVOUS SYSTEM Brain	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+-	+	+	+	50
SPECIAL SENSE ORGANS Harderian gland Adenoma, NOS	N	N	N	N	N	N	N	N	N	N	N	N X	N	N	N	N	N	N	N X	N	N	N	N	N	N	*50
ALL OTHER SYSTEMS Multiple organs, NOS Malignant lymphoma, lymphocytic type Malignant lymphoma, mixed type	N X	N	N	N X	N	N	N	N	N X	N	N	N	N	N	N	N X	N	N	N	N	N	N	N	N	N	*50 1 8

TABLE B4. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE MICE: LOW DOSE (Continued)

TABLE B4.	INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE MICE IN THE TWO-YEAR FEED
	STUDY OF OXYTETRACYCLINE HYDROCHLORIDE: HIGH DOSE

ANIMAL NUMBER	0 6 0	0 7 4	0 8 1	1 0 0	0 5 1	0 5 3	0 8 0	0 6 1	0 8 7	0 8 5	0 5 5	0 7 5	0 9 5	0 6 8	0 5 2	0 5 4	0 5 6	0 5 7	0 5 8	0 5 9	0 6 2	0 6 3	0 6 4	0 6 5	0 6 6
WEEKS ON STUDY	0 7 9	0 8 9	0 9 1	0 9 1	0 9 4	0 9 4	0 9 4	0 9 7	0 9 7	0 9 9	1 0 0	1 0 0	1 0 0	1 0 2	1 0 4										
RESPIRATORY SYSTEM Lungs and bronchi Alveolar/bronchiolar adenoma Osteosarcoma, unclear primary or metastatic	* X	+	+	+	+	+	+	, x	+	+	+	+ X	+	+	+	+	+	+	+	+	+	+	+	+	+
Trachea	+	+	+	+	+	+	+	-	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
HEMATOPOIETIC SYSTEM Bone marrow Spleen Hemangiosarcoma	+++	+++	+++	+ +	++	+++	++	+ +	++	+++	+ +	+++	++	++	+ +	++	+++	+ +	+ +	+ +	+++	+ +	+ +	+ +	+ + X
Malignant lymphoma, mixed type Lymph nodes		+	+	+	Ŧ	+	+	+	+	+	Ŧ	+	+	+	+	+	Ŧ		+	+	+	Ŧ	Ŧ	+	- -
Malignant lymphoma, histiocytic type Thymus	+	, +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
CIRCULATORY SYSTEM Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
DIGESTIVE SYSTEM Salivary gland Liver Hepatocellular adenoma	++++	+ +	++++	+ +	+++++	++++	+ +	-	++++	+++	+ +	++	+ +	+ +	+ +	+ +	++	++++	++++	+ +	+ +	+ +	+ +	+ + x	+ +
Hepatocellular carcinoma Hemangiosarcoma Bile duct	+	+	+	+	+	+	+	+	+	X +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Gallbladder & common bile duct Pancreas	++++	+++++++++++++++++++++++++++++++++++++++	++++	+++++++++++++++++++++++++++++++++++++++	+++	++++	+++	+++	++++	+++	+++++	+++++++++++++++++++++++++++++++++++++++	+++	+++	+++	++	++++	++	+++	+++	+++	+++	+++	++	++
Esophagus Stomach	++	++	+++++	+++	+ +	+ +	+ +	÷	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	++	+ +	+++	+ +	+ +	+ +	+ +
Small intestine Malignant lymphoma, mixed type	+	+	+	+	+	+	+	+	+	+,	+	+	+	+	+	*	+	+	+	+	+	+	+	+	+
Large intestine Sarcoma, NOS, invasive	+	+	+	+	+	+	+	*	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
URINARY SYSTEM Kidney Tubular cell adenoma	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	*	+
Tubular cell adenocarcinoma Urinary bladder	+	+	+	+	+	+	+	-	+	+	+	+	+	х +	+	+	+	+	+	+	+	+	+	+	+
ENDOCRINE SYSTEM Pituitary Adenoma, NOS	+	+	+	+	+	+	+	+	*	+	+	+ x	+	+	*	+	+	+	+	*	+	+	+	+ x	+
Adenocarcinoma, NOS Adrenal	+	+	+	+	+	+	X +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Cortical adenoma Thyroid	+	+	+	+	+	+	+	-	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Follicular cell adenoma Parathyroid	+	+	+	-	-	+	+	_	+	-	+	_	+	+	+	+	+	+	+	+	+	+	+	+	+
Pancreatic islets Islet cell adenoma	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
REPRODUCTIVE SYSTEM Mammary gland	+	+	N	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Adenocarcinoma, NOS Uterus Adenocarcinoma, NOS	+	+	+ x	+	+	+	+	+	+	+	+	+	· +	+	+	+	+	+	+	+	+	+	+	+	+
Hemangiosarcoma Ovary	+	+	+	+	+	+	+	+	+	+	+	+	X +	+	+	+	+	+	+	+	+	+	+	+	+
Cystadenoma, NOS Thecoma Sarcoma, NOS Teratoma, benign								x	x																
NERVOUS SYSTEM			 2		+	+	 	 	+			*	4		 #	 +					 +				 *
Brain Sarcoma, NOS	+	+	+	+	*	+	т	Ŧ	Ŧ	+	Ŧ	+	+	٣	Ŧ	Ŧ	Ŧ	+	Ť	Ŧ	Ŧ	Ŧ	7	Ŧ	Ŧ
MUSCULOSKELETAL SYSTEM Bone Osteosarcoma	N	N	N	N	N	N	N	N X	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
ALL OTHER SYSTEMS Multiple organs, NOS	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	Ņ	N	N	N	N	N	N	N	N
Malignant lymphoma, lymphocytic type Malignant lymphoma, histiocytic type Malignant lymphoma, mixed type	x			x							л						л				x				

											uec	-/														
ANIMAL NUMBER	0 6 7	0 6 9	0 7 0	0 7 1	0 7 2	0 7 3	0 7 6	0 7 7	0 7 8	0 7 9	0 8 2	0 8 3	0 8 4	0 8 6	0 8 8	0 8 9	0 9 0	0 9 1	0 9 2	0 9 3	0 9 4	0 9 8	0 9 7	0 9 8	0 9 9	TOTAL:
WEEKS ON STUDY	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	TISSUES
RESPIRATORY SYSTEM Lungs and bronchi Alveolar/bronchiolar adenoma	+	+	+	+	+	*	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50 3
Alveolar/bronchiolar adenoma Osteosarcoma, unclear prim or metásta Trachea	+	+	+	+	+	+	+	÷	+	+	+	+	+	+	+	+	+	+	` +	+	+	+	+	+	+	1 49
HEMATOPOIETIC SYSTEM Bone marrow Spleen	++	++++	+++	+++	+++	+++	+++	+++	+++	++++	+++	+++	++++	+++	+++	+ +	++++	+++	+++	+++	+++	+++	++++	++++	++++	50 50
Hemangiosarcoma Malignant lymphoma, mixed type Lymph nodes	+	+	+	+	X +	+	+	+	+	+	<u>+</u>	+	+	+	+	+	+	+	+	+	+	+	+	+	+	1 1 49
Malignant lymphoma, histiocytic type Thymus	+	+	+	+	+	+	+	+	+	+	× +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	1 50
CIRCULATORY SYSTEM Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
DIGESTIVE SYSTEM Salivary gland Liver Hepatocellular adenoma Hepatocellular carcinoma	+++++	++	+ +	++	+ +	+	++	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	49 50 1									
Heinangiosarcoma Bile duct Gallbladder & common bile duct Pancreas	+++++	X + + + +	+ + +	+ + +	+ + +	+ + +	+ + +	+++	+++	++++	+++++	++++	++++	++++	+++	++++	++++	++++	+++	++++	+ + +	++++	++++	++++	++++	1 50 *50 50
Esophagus Stomach Small intestine Malignant lymphoma, mixed type	+++++	+++++	++++	++ ++ X	+++++	+++++	+++++	++++	+++	++++	+++++	++++	+++++	+++++	+++	++++	++++	+++++++++++++++++++++++++++++++++++++++	++++	+++++++++++++++++++++++++++++++++++++++	+++++	++++	+++++	+++++	++++	49 50 50 2
Large intestine Sarcoma, NOS, invasive	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50 1
URINARY SYSTEM Kidney Tubular cell adenoma Tubular cell adenocarcinoma Urinary bladder	+	+	+	+ +	+ +	+ +	+ +	+	+	+	+ +	+ +	+	+	+	+	+	++	+	+	+	+	+ +	+	+ +	50 1 1 49
ENDOCRINE SYSTEM Pituitary Adenoma, NOS	+	+ x	+	+	+ x	+	+	+	+	+	+	+	+	* *	* x	+	*	+	+	+	+	+	+	+	+	50 10
Adenocarcinoma, NOS Adrenal Cortical adenoma	+	+	+	+	+	+	х +	+	+	+	+	+	+	+	+	+	+	* x	+	+	+	+	+	+	+	2 50 1
Thyroid Follicular cell adenoma Parathyroid	++	+	++	++	++	++	++	+	+	+	+	++	+	+	++	++	++	+	+	++	++	+	+	***	+	49 1 42
Pancreatic islets Islet cell adenoma	+	+	+	+	+	+	+	+	+	+	+	+	*	+	+	+	+	+	+	+	+	+	+	+	+	50 1
REPRODUCTIVE SYSTEM Mammary gland Adenocarcinoma, NOS Uterus	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	`+ +	+	+	+	+	+	+	*50 1 50
Adenocarcinoma, NOS Hemangiosarcoma Ovary	+	+	+	+	、 +	+	+	, +	+	, +	• +	, +	+	+	+	-	+	+	+	+	, +	+	+	+	+	1 1 49
Cystadeaoma, NOS Thecoma Sarcoma, NOS Teratoma, benign	X	x																								
NERVOUS SYSTEM Brain Sarcoma, NOS	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50 1
MUSCULOSKELETAL SYSTEM Bone Osteosarcoma	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	*50
ALL OTHER SYSTEMS Multiple organs, NOS Malignant lymphoma, lymphocytic type Malignant lymphoma, histiocytic type Malignant lymphoma, mixed type	N	N	N	N	N	N	N	N X	N X	N	N	N X	N	N	N	N	N X	N	N	N X	N	N	N	N	N	*50 2 2 8

TABLE B4. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE MICE: HIGH DOSE (Continued)

Oxytetracycline Hydrochloride, NTP TR 315 96

,

APPENDIX C

SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN RATS IN THE TWO-YEAR FEED STUDIES OF OXYTETRACYCLINE HYDROCHLORIDE

	CONTR	OL (UNTR)	LOW	DOSE	HIG	H DOSE
ANIMALS INITIALLY IN STUDY	50		50		50	
ANIMALS INTIALL'I IN STOLL	50		50		50 50	
ANIMALS EXAMINED HISTOPATHOLOGICALL			50		50	
NTEGUMENTARY SYSTEM		·····		<u> </u>		
*Skin	(50)		(50)		(50)	
Epidermal inclusion cyst	1	(2%)		(0~)	1	(2%)
Inflammation, active chronic Calcinosis circumscripta				(2%)		
Hyperkeratosis	. 1	(2%)	1	(2%) (2%)		
*Subcutaneous tissue	(50)		(50)	(270)	(50)	
Abscess, NOS	(00)			(2%)	(00)	
RESPIRATORY SYSTEM				<u></u>		
#Lung	(50)		(50)		(50)	
Mineralization		(2%)		(2%)		
Congestion, NOS		(14%)		(2%)		(4%)
Hemorrhage		(6%)	5	(10%)	2	(4%)
Bronchopneumonia, acute		(2%)				
Inflammation, chronic		(2%)	-	(0~)	-	(
Pneumonia, interstitial chronic		(14%)		(8%)	3	(6%)
Bronchopneumonia, chronic	1	(2%)		(2%) (2%)		
Cholesterol deposit				(2%)		
Hyperplasia, alveolar epithelium Metaplasia, osseous	1	(2%)		(2%) (8%)		
Histiocytosis		(10%)		(10%)	4	(8%)
HEMATOPOIETIC SYSTEM				<u> </u>		
#Bone marrow	(50)		(49)		(50)	
Necrosis, NOS				(2%)		
Myelofibrosis	- 1	(2%)	2	(4%)	1	(2%)
Mastocytosis			1	(2%)	1	(2%)
#Spleen	(50)		(50)		(50)	
Hematoma, NOS				(2%)		
Fibrosis		(12%)		(4%)		(4%)
Pigmentation, NOS	36	(72%)	33	(66%)		(68%)
Hyperplasia, lymphoid Hematopoiesis	ŶF	(70%)	077	(540)		(2%)
Hematopoiesis #Splenic capsule	(50)	(70%)	(50)	(54%)	33 (50)	(66%)
Fibrosis	(00)			(2%)	(00)	
#Lymph node	(49)		(49)	(,	(49)	
Hemosiderosis	()			(2%)	(
#Mandibular lymph node	(49)		(49)	· ·	(49)	
Congestion, NOS	1	(2%)				
Hemosiderosis	3	(6%)		(4%)		
Plasmacytosis		(6%)		(6%)		
Hyperplasia, lymphoid		(4%)		(2%)		
#Thoracic lymph node	(49)	(00)	. (49)	(0~)	(49)	
Congestion, NOS		(2%)	1	(2%)		
Hemosiderosis #Mesenteric lymph node		(4%)	(40)		(40)	
# Mesenteric lymph node Cyst, NOS	(49)		(49) 1	(2%)	(49)	
Congestion, NOS	1	(2%)	1	(270)		
Edema, NOS	1		1	(2%)		
Pigmentation, NOS				(2%)		
Hemosiderosis	3	(6%)		(2%)		
Mastocytosis		(2%)	-	<u></u>		
			(50)		(50)	
#Salivary gland	(50)		(00)		ເຜຍ	

TABLE C1. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE RATS IN THE TWO-YEAR FEED STUDY OF OXYTETRACYCLINE HYDROCHLORIDE

	CONTR	OL (UNTR)	LOW DOSE		HIGH DOSE		
IEMATOPOIETIC SYSTEM (Continued)		<u></u>					
#Liver	(50)		(50)		(50)		
Hematopoiesis		(2%)					
#Thymus	(48)		(47)		(50)		
Embryonal duct cyst		(40%)	13	(28%)	19	(38%)	
Congestion, NOS	1	(2%)	2	(4%)			
Hemosiderosis	1	(2%)	1	(2%)			
CIRCULATORY SYSTEM							
#Heart	(50)		(50)		(50)		
Hemorrhage			1	(2%)			
Inflammation, chronic	41	(82%)		(84%)	48	(96%)	
Necrosis, coagulative			1	(2%)			
#Heart/atrium	(50)		(50)		(50)		
Mineralization	(- · ·)	(2%)		(2%)	1	(2%)	
Thrombus, organized		(2%)	-		1	(2%)	
#Endocardium/left atrium	(50)		(50)		(50)	-	
Mineralization	(00)			(2%)			
*Aorta	(50)		(50)		(50)		
Mineralization	(00)		()			(2%)	
*Pulmonary artery	(50)		(50)		(50)	-	
Mineralization		(4%)	()				
	(50)		(50)		(50)		
*Testicular artery Mineralization		(2%)	(00)		(
	1		1	(2%)			
Thrombus, organized	(50)		(50)		(50)		
*Pulmonary vein Mineralization		(2%)		(6%)	(00)		
DIGESTIVE SYSTEM #Salivary gland	(50)		(50)	(07)	(50)	(1977)	
Cystic ducts	2	(4%)		(6%)	6	(12%)	
Inflammation, active chronic	-			(2%)	~	(1.40%)	
Inflammation, chronic	9	(18%)		(14%)		(14%)	
Atrophy, NOS		(8%)	=	(6%)		(14%)	
#Liver	(50)		(50)		(50)		
Congenital malformation, NOS		(2%)	1	(2%)		(4%)	
Congestion, NOS	1	(2%)			1	(2%)	
Inflammation, acute	2	(4%)					
Granuloma, NOS	2	(4%)		(4%)			
Necrosis, NOS	11	(22%)		(4%)		(10%)	
Metamorphosis, fatty	8	(16%)		(32%)	7	(14%)	
Lipoidosis				(2%)			
Cytoplasmic vacuolization	. 1	(2%)	1	(2%)			
Basophilic cyto change		(2%)				(6%)	
Focal cellular change	31	(62%)	33	(66%)	46	(92%)	
Hepatocytomegaly		(2%)					
Hypertrophy, focal	1	(2%)					
Angiectasis	1	(2%)					
#Hepatic capsule	(50)		(50)		(50)		
			1	(2%)			
Inflammation, chronic			1	(2%)			
Inflammation, chronic Granuloma, NOS			(50)		(50)		
Granuloma, NOS	(50)			(54%)		(76%)	
Granuloma, NOS #Liver/periportal	(50) 38		21	(04/0)			
Granuloma, NOS #Liver/periportal Inflammation, chronic	38	(76%)		(04/0)	(50)		
Granuloma, NOS #Liver/periportal Inflammation, chronic #Bile duct	38 (50)	(76%)	(50)			(96%)	
Granuloma, NOS #Liver/periportal Inflammation, chronic #Bile duct Hyperplasia, NOS	38 (50) 49	(76%) (98%)	(50) 44	(88%)	48	(96%)	
Granuloma, NOS #Liver/periportal Inflammation, chronic #Bile duct	38 (50)	(76%) (98%)	(50)		48 (50)	(96%) (2%)	

TABLE C1. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE RATS IN THE
TWO-YEAR FEED STUDY OF OXYTETRACYCLINE HYDROCHLORIDE (Continued)

	CONTR	IOL (UNTR)	LOW	DOSE	HIGH DOSI		
DIGESTIVE SYSTEM (Continued)		<u></u>					
#Pancreatic acinus	(50)		(50)		(50)		
Focal cellular change						(2%)	
Atrophy, NOS	27	(54%)		(58%)		(66%)	
Hyperplasia, NOS			-	(10%)		(6%)	
#Glandular stomach	(50)		(50)		(50)		
Mineralization		(2%)					
Degeneration, cystic		(64%)		(78%)		(80%)	
#Forestomach	(50)		(50)	((50)		
Ulcer, acute				(2%)		(4%)	
Inflammation, active chronic		(00)	2	(4%)		(2%)	
Hyperkeratosis		(2%)				(2%)	
#Colon	(50)		(50)	(0~~)	(50)		
Hematoma, NOS				(2%)			
Necrosis, ischemic			1	(2%)			
JRINARY SYSTEM							
#Kidney	(50)		(50)		(50)		
Hydronephrosis			1	(2%)			
Congestion, NOS		(2%)			1	(2%)	
Hemorrhage		(4%)					
Nephropathy	49	(98%)	49	(98%)	49	(98%)	
#Kidney/cortex	(50)		(50)		(50)		
Cyst, NOS	4	(8%)					
Infarct, healed					1	(2%)	
#Kidney/medulla	(50)		(50)		(50)		
Inflammation, acute						(2%)	
#Renal papilla	(50)		(50)		(50)		
Necrosis, coagulative				(2%)			
#Kidney/tubule	(50)		(50)		(50)		
Mineralization	28	(56%)		(36%)	30	(60%)	
Necrosis, NOS		(0.4.20)		(4%)			
Pigmentation, NOS		(84%)		(88%)		(78%)	
#Kidney/pelvis	(50)	(04)	(50)		(50)		
Hemorrhage		(6%)		(6%)		(6%)	
#Urinary bladder	(50)		(50)		(50)		
Calculus, gross observation only		(8.4)		(2%)			
Calculus, microscopic examination	1	(2%)		(2%)		(2%)	
Hemorrhage			1	(2%)		(2%)	
Inflammation, acute		(0~)			1	(2%)	
Inflammation, active chronic	1	(2%)					
NDOCRINE SYSTEM							
#Pituitary intermedia	(50)		(50)		(48)		
Cyst, NOS	2	(4%)		(4%)	6	(13%)	
Angiectasis				(2%)			
#Anterior pituitary	(50)		(50)		(48)		
Cyst, NOS	5	(10%)	4	(8%)		(10%)	
Multiple cysts					1	(2%)	
Hemorrhage				(2%)			
Hyperplasia, NOS	18	(36%)		(28%)	29	(60%)	
Angiectasis				(2%)			
#Adrenal/capsule	(50)		(50)		(50)		
Hyperplasia, NOS					1	(2%)	

TABLE C1. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE RATS IN THE
TWO-YEAR FEED STUDY OF OXYTETRACYCLINE HYDROCHLORIDE (Continued)

	CONTR	OL (UNTR)	LOW DOSE		HIGH DOSI		
ENDOCRINE SYSTEM (Continued)					.,a		
#Adrenal cortex	(50)		(50)		(50)		
Necrosis, NOS			1	(2%)			
Metamorphosis, fatty	28	(56%)	22	(44%)	26	(52%)	
Pigmentation, NOS	42	(84%)	36	(72%)	41	(82%)	
Cytoplasmic vacuolization					1	(2%)	
Hyperplasia, NOS	8	(16%)	8	(16%)	11	(22%)	
#Adrenal medulla	(50)		(50)		(50)		
Inflammation, chronic	1	(2%)					
Cytoplasmic vacuolization	,		1	(2%)			
Cytomegaly						(2%)	
Hyperplasia, NOS		(14%)	. –	(28%)		(18%)	
#Thyroid	(50)		(50)		(50)		
Embryonal duct cyst	1	(2%)		(2%)		(
Mineralization		(0.21)		(2%)		(4%)	
Cystic follicles	4	(8%)		(10%)		(14%)	
Inflammation, chronic	-	(0~)		(2%)		(4%)	
Pigmentation, NOS		(2%)	-	(2%)		(12%)	
Hyperplasia, C-cell		(72%)		(62%)		(78%)	
Hyperplasia, follicular cell		(10%)	-	(6%)		(14%)	
#Pancreatic islets	(50)	(07)	(50)	(00)	(50)		
Hyperplasia, NOS	4	(8%)	1	(2%)			
REPRODUCTIVE SYSTEM							
*Mammary gland	(50)		(50)		(50)		
Galactocele				(2%)		(2%)	
Hyperplasia, cystic	20	(40%)	14	(28%)		(38%)	
*Prepuce	(50)		(50)		(50)		
Calculus, microscopic examination				(2%)			
*Preputial gland	(50)		(50)		(50)		
Cyst, NOS					1	(2%)	
Hemorrhage	1	(2%)					
Inflammation, suppurative				(2%)			
Inflammation, active chronic	3	(6%)		(20%)		(8%)	
Inflammation, chronic			3	(6%)		(2%)	
Hyperplasia, NOS						(2%)	
#Prostate	(48)		(50)		(50)	<i></i>	
Inflammation, suppurative		(10%)		(12%)		(4%)	
Inflammation, active chronic		(38%)		(42%)		(52%)	
*Seminal vesicle	(50)	(00)	(50)	(40)	(50)		
Inflammation, suppurative		(2%) (6%)		(4%)	4	(896)	
Inflammation, active chronic	3	(6%)		(6%) (2%)		(8%) (2%)	
Inflammation, chronic	(20)			(2%)	(50)	(270)	
#Testis	(50)		(50)			(994)	
Necrosis, NOS	40	(9.4.0%)	96	(72%)		(2%) (90%)	
Hyperplasia, interstitial cell		(84%)		((470)	40 (50)	(3070)	
#Testis/tubule	(50)	(64%)	(50)	(44%)		(46%)	
Mineralization				(44%)		(40%) (78%)	
Degeneration, NOS Oligospermia		(78%) (12%)		(4%)		(8%)	
*Epididymis	(50)	(12/0)	(50)	(3/0)	(50)	(0,0)	
Inflammation, acute		(2%)	(00)		(00)		
Inflammation, active chronic	1		•		1	(2%)	
*Scrotum	(50)		(50)		(50)		
Steatitis		(4%)	()		(
	4					(2%)	

TABLE C1. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE RATS IN THE TWO-YEAR FEED STUDY OF OXYTETRACYCLINE HYDROCHLORIDE (Continued)

	CONTR	CONTROL (UNTR)		DOSE	HIGH DOSE		
NERVOUS SYSTEM							
#Brain/meninges	(50)		(50)		(50)		
Hemorrhage				(2%)			
#Brain	(50)		(50)		(50)		
Hydrocephalus, internal	1	(2%)					
Hemorrhage		(10%)	1	(2%)	1	(2%)	
Inflammation, chronic	1	(2%)					
Malacia				(2%)	1	(2%)	
Infarct, NOS				(2%)			
Corpora amylacea	_		1	(2%)			
Atrophy, pressure	2	(4%)					
SPECIAL SENSE ORGANS							
*Eye	(50)		(50)		(50)		
Hemorrhage	()		/			(2%)	
Retinopathy	2	(4%)	3	(6%)		(2%)	
Cataract	2	(4%)	1	(2%)	1	(2%)	
Phthisis bulbi						(2%)	
*Eye/sclera	(50)		(50)		(50)		
Mineralization			2	(4%)			
*Eye/cornea	(50)		(50)		(50)		
Inflammation, chronic	1	(2%)					
*Eye/crystalline lens	(50)		(50)		(50)		
Cataract				(4%)			
*Ear canal	(50)		(50)		(50)		
Inflammation, acute/chronic	1	(2%)					
MUSCULOSKELETAL SYSTEM							
*Skull	(50)		(50)		(50)		
Hyperplasia, NOS	1	(2%)	- /				
*Joint of lower extremity	(50)		(50)		(50)		
Osteoarthritis			1	(2%)			
BODY CAVITIES			·····				
*Mesentery	(50)		(50)		(50)		
Steatitis	1	(2%)					
ALL OTHER SYSTEMS						·	
*Multiple organs	(50)		(50)		(50)		
Inflammation, chronic	•	(12%)		(12%)	·/	(4%)	
111121111112CIOIL CHI UHIC	v	(14%)		(10%)		(16%)	

TABLE C1. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE RATS IN THE TWO-YEAR FEED STUDY OF OXYTETRACYCLINE HYDROCHLORIDE (Continued)

* Number of animals receiving complete necropsy examination; all gross lesions including masses examined microscopically. # Number of animals examined microscopically at this site

TABLE C2.	SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN FEMALE RATS IN
	THE TWO-YEAR FEED STUDY OF OXYTETRACYCLINE HYDROCHLORIDE

		CONTROL (UNTR)		LOW DOSE		HIGH DOSE		
ANIMALS INITIALLY IN STUDY	50		50		50			
ANIMALS NECROPSIED	50		50		50			
ANIMALS EXAMINED HISTOPATHOLOGICALLY	50		50		50			
NTEGUMENTARY SYSTEM								
*Skin	(50)	(00)	(50)		(50)			
Inflammation, active chronic Inflammation, chronic	I	(2%)	1	(2%)				
Hyperkeratosis	1	(2%)		(2%)	1	(2%)		
Acanthosis		(2%)	-	(2,0)	-	(
*Subcutaneous tissue	(50)	(,	(50)		(50)			
Inflammation, active chronic					1	(2%)		
RESPIRATORY SYSTEM						•		
#Lung	(50)		(50)		(50)			
Mineralization		(2%)				(2%)		
Congestion, NOS		(4%)	-	(100)		(2%)		
Hemorrhage Bronchopneumonia, acute	2	(4%)		(10%) (2%)	3	(6%)		
Pneumonia, interstitial chronic	9	(18%)		(18%)	4	(8%)		
Bronchopneumonia, chronic	5	(-0,0)				(2%)		
Cholesterol deposit			1	(2%)	-			
Hyperplasia, alveolar epithelium		(6%)				(4%)		
Histiocytosis	12	(24%)	9	(18%)	6	(12%)		
HEMATOPOIETIC SYSTEM								
#Bone marrow	(50)		(50)		(49)			
Inflammation, active chronic			1	(2%)	1	(2%)		
Hyperplasia, granulocytic Hyperplasia, reticulum cell	1	(2%)	1	(2%)	1	(270)		
Hyperplasia, megakaryocytic		(2%)	-	(2 %)				
#Spleen	(50)		(50)		(50)			
Hematoma, NOS			2	(4%)				
Fibrosis						(2%)		
Infarct, NOS	40	(0.00)	45	(000)		(2%)		
Pigmentation, NOS	-	(86%) (2%)	45	(90%)	36	(72%)		
Hyperplasia, reticulum cell Hematopoiesis		(84%)	40	(80%)	43	(86%)		
#Splenic capsule	(50)	(4110)	(50)	(00 /0)	(50)			
Fibrosis		(2%)	()		(23)			
#Splenic follicles	(50)		(50)		(50)			
Atrophy, NOS		(2%)		(4%)		(6%)		
#Lymph node Congestion, NOS	(49)	(2%)	(50)		(50)			
Hemosiderosis		(2%)						
#Mandibular lymph node	(49)	\ / * /	(50)		(50)			
Cyst, NOS			1	(2%)				
Hemosiderosis		(12%)	6	(12%)	2	(4%)		
Hyperplasia, lymphoid		(2%)						
#Thoracic lymph node	(49)	(90)	(50)	(0α)	(50)			
Hemosiderosis #Mesenteric lymph node	(49)	(2%)	(50)	(2%)	(50)			
# Mesenteric lymph hode Edema, NOS		(2%)	(00)		(50)			
Hemosiderosis		(2%)	1	(2%)				
Hyperplasia, lymphoid	-			(2%)	1	(2%)		
#Liver	(50)		(50)		(50)			
Hematopoiesis	3	(6%)		(4%)	3	(6%)		

	CONTE	IOL (UNTR)	LOW DOSE		HIGH DOSE		
HEMATOPOIETIC SYSTEM (Continued)				<u>,</u> *			
#Thymus	(49)		(50)		(50)		
Embryonal duct cyst		(47%)		(28%)		(44%)	
Congestion, NOS	1	(2%)					
CIRCULATORY SYSTEM	<u> </u>	÷ <u> </u>					
#Heart	(50)		(50)		(50)		
Inflammation, chronic		(86%)		(94%)		(82%)	
#Heart/atrium	(50)		(50)		(50)		
Thrombosis, NOS	(50)		(50)			(2%)	
*Pulmonary artery Mineralization	(50)	(2%)	(50)		(50)		
*Pulmonary vein	(50)		(50)		(50)		
Mineralization	(50)		• •	(2%)	(50)		
DIGESTIVE SYSTEM							
#Salivary gland	(50)		(50)		(50)		
Cystic ducts		(14%)		(6%)		(2%)	
Inflammation, acute			2	(4%)			
Inflammation, active chronic				(4%)			
Inflammation, chronic		(14%)		(12%)		(16%)	
Atrophy, NOS	11	(22%)		(18%)	4	(8%)	
Hyperplasia, NOS	(20)			(2%)		(4%)	
#Liver	(50)	(40)	(50)	(1.40)	(50)	(107)	
Accessory structure Bile stasis	Z	(4%)		(14%) (2%)	Э	(18%)	
Cyst, NOS				(2%)			
Congestion, NOS				(270)	1	(2%)	
Granuloma, NOS	21	(42%)	16	(32%)		(20%)	
Necrosis, NOS		(12%)		(2%)		(10%)	
Metamorphosis, fatty	10	(20%)	8	(16%)		(14%)	
Nuclear alteration	1	(2%)					
Cytoplasmic vacuolization	1	(2%)					
Focal cellular change	42	(84%)	46	(92%)	48	(96%)	
Eosinophilic cyto change					1	(2%)	
Hepatocytomegaly		(4%)		(2%)			
Regeneration, NOS		(2%)		(2%)			
#Liver/centrilobular	(50)		(50)		(50)	(00)	
Inflammation, acute	(50)		(50)		1 (50)	(2%)	
#Liver/periportal Inflammation, chronic		(74%)		(80%)		(74%)	
#Bile duct	(50)		(50)		(50)		
Hyperplasia, NOS		(86%)		(72%)		(76%)	
#Pancreas	(50)		(50)		(50)		
Cyst, NOS	1	(2%)					
#Pancreatic acinus	(50)		(50)		(50)		
Focal cellular change				(2%)			
Atrophy, NOS		(66%)		(48%)		(54%)	
Hyperplasia, NOS		(10%)		(4%)		(6%)	
#Glandular stomach Mineralization	(50)	(70)	(50)		(50)	(90)	
Mineralization Degeneration, cystic		(2%) (78%)	40	(80%)		(2%) (80%)	
Hyperplasia, epithelial	29			(2%)	-20	(0070)	
#Forestomach	(50)		(50)	<u> </u>	(50)		
Ulcer, chronic		(2%)	()		(22)		
Hyperkeratosis					1	(2%)	
#Gastric fundus	(50)		(50)		(50)		
Hyperkeratosis		(2%)					
#Colon	(50)	(07)	(50)		(50)		
Abscess, chronic	1	(2%)					

TABLE C2. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN FEMALE RATS IN THE TWO-YEAR FEED STUDY OF OXYTETRACYCLINE HYDROCHLORIDE (Continued)

	CONTR	IOL (UNTR)	LOW	DOSE	HIG	H DOSE
URINARY SYSTEM					··	
#Kidney	(50)		(50)		(50)	
Congestion, NOS	(,		()			(2%)
Hemorrhage			1	(2%)	_	, ,
Abscess, NOS			-	(=,	1	(2%)
Nephropathy	49	(98%)	49	(98%)		(98%)
Infarct, healed	-•	(00.0)		(00,00)		(10%)
#Kidney/tubule	(50)		(50)		(50)	(== 0.0)
Mineralization		(68%)		(70%)		(82%)
Necrosis, NOS		(2%)				(0
Pigmentation, NOS		(86%)	48	(96%)	42	(84%)
#Kidney/pelvis	(50)		(50)	(00,0)	(50)	(0.1.0)
Calculus, microscopic examination		(2%)	(00)		(00)	
Hemorrhage		(2%)	1	(2%)	1	(2%)
Inflammation, acute				(2%)	-	
#Urinary bladder	(50)		(50)	(= ///	(50)	
Calculus, microscopic examination	(00)			(2%)	(00)	
				(470)		
ENDOCRINE SYSTEM					_	
#Pituitary intermedia	(50)		(50)		(50)	
Cyst, NOS		(2%)				
#Anterior pituitary	(50)		(50)		(50)	
Cyst, NOS		(64%)		(32%)		(40%)
Multiple cysts		(6%)	6	(12%)	2	(4%)
Hemorrhagic cyst		(2%)				
Granuloma, NOS		(2%)				
Hyperplasia, NOS		(32%)		(20%)	11	(22%)
Angiectasis	1	(2%)	1	(2%)	8	(16%)
#Adrenal	(50)		(50)		(50)	
Mineralization					1	(2%)
#Adrenal/capsule	(50)		(50)		(50)	
Hyperplasia, NOS	(,			(2%)		
#Adrenal cortex	(50)		(50)	()	(50)	
Cyst, NOS		(4%)	(00)		(00)	
Hemorrhage		(2%)				
		(48%)	16	(32%)	20	(40%)
Metamorphosis, fatty Bigmontation NOS				(32%)		• •
Pigmentation, NOS	43	(86%)			40	(80%)
Hypertrophy, NOS				(2%) (2%)		(90)
Hypertrophy, focal	*0	(200)		(2%)		(2%)
Hyperplasia, NOS	18	(36%)	Z1	(42%)		(44%)
Angiectasis	(50)		(EA)			(2%)
#Adrenal medulla		(160)	(50)	(940)	(50)	(190)
Hyperplasia, NOS		(16%)		(24%)		(12%)
#Thyroid	(50)		(50)		(50)	(10)
Embryonal duct cyst	-	(00)		(0.7)		(4%)
Mineralization		(2%)		(2%)		(2%)
Cystic follicles		(12%)		(12%)		(8%)
Hyperplasia, C-cell	42	(84%)		(74%)		(74%)
Hyperplasia, follicular cell			2	(4%)	1	(2%)
REPRODUCTIVE SYSTEM	······································					
*Mammary gland	(50)		(50)		(50)	
Mineralization	(20)			(2%)	(00)	
Galactocele				(2%)		
Inflammation, acute				(2%)	1	(2%)

TABLE C2. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN FEMALE RATS IN
THE TWO-YEAR FEED STUDY OF OXYTETRACYCLINE HYDROCHLORIDE (Continued)

	CONTROL (UNTR)		LOW DOSE		HIG	h dose
REPRODUCTIVE SYSTEM (Continued)						
*Clitoral gland	(50)		(50)		(50)	
Inflammation, suppurative	(30)		(50)			(2%)
Inflammation, active chronic	2	(4%)	10	(20%)		(8%)
Inflammation, chronic	2	(410)		(20%)	4	(070)
Hyperplasia, NOS				(2%)		
#Uterus	(50)		(50)	(270)	(50)	
Dilatation, NOS	• •	(6%)		(2%)		(8%)
Hydrometra		(2%)		(2%)	4	(8%)
Cyst, NOS	*	(270)		(2%)		
Hemorrhage	1	(2%)		(2%)		
Inflammation, acute	1	(2%)		(2%)		(07)
					1	(2%)
Inflammation, chronic			1	(2%)		(0~)
Decidual alteration, NOS	(50)		(20)			(2%)
#Uterus/endometrium	(50)		(50)	(100)	(50)	
Hyperplasia, cystic		(20%)		(10%)		(14%)
#Ovary	(50)		(50)		(50)	
Follicular cyst, NOS			1	(2%)		
Parovarian cyst	4	(8%)				(2%)
Angiectasis					1	(2%)
NERVOUS SYSTEM						
#Brain	(50)		(50)		(50)	
Hydrocephalus, internal	(00)			(2%)		(2%)
Inflammation, chronic	1	(2%)	-	(,	-	(= /•/
Malacia		(6%)			1	(2%)
Atrophy, pressure		(10%)	2	(4%)		(2%)
SPECIAL SENSE ORGANS		<u> </u>	·			
	(50)		(20)		(50)	
*Eye	(50)	(00)	(50)		(50)	
Hemorrhage		(2%)		(0~)		(0.01)
Retinopathy		(8%)		(2%)		(8%)
Cataract		(8%)		(2%)		(8%)
*Eye/sclera	(50)	(0.0)	(50)		(50)	
Mineralization		(2%)	(= ->		(= -	
*Eye/cornea	(50)		(50)		(50)	
Inflammation, active chronic						(2%)
Inflammation, chronic						(2%)
*Harderian gland	(50)		(50)		(50)	
Inflammation, chronic	2	(4%)	4			
USCULOSKELETAL SYSTEM						
*Femur	(50)		(50)		(50)	
Fibrous osteodystrophy	(00)		(00)		1	(2%)
		·····				
SODY CAVITIES	(50)		(50)		(60)	
*Mediastinum	(50)		(50)	(00)	(50)	
Steatitis	(20)			(2%)	(
*Mesentery	(50)	(00)	(50)		(50)	
Hemorrhage		(2%)	-		-	(0~)
Steatitis	5	(10%)		(6%)	3	(6%)
Necrosis, fat			1	(2%)		

TABLE C2. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN FEMALE RATS IN
THE TWO-YEAR FEED STUDY OF OXYTETRACYCLINE HYDROCHLORIDE (Continued)

TABLE C2. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN FEMALE RATS IN
THE TWO-YEAR FEED STUDY OF OXYTETRACYCLINE HYDROCHLORIDE (Continued)

	CONTROL (UNTR)		HIGH DOSE
ALL OTHER SYSTEMS			
*Multiple organs	(50)	(50)	(50)
Inflammation, acute		1 (2%)	
Inflammation, chronic	6 (12%)	1 (2%)	5 (10%)
Pigmentation, NOS	6 (12%)	2 (4%)	7 (14%)
Hyperplasia, NOS	2 (4%)	1 (2%)	2 (4%)

SPECIAL MORPHOLOGY SUMMARY

None

* Number of animals receiving complete necropsy examination; all gross lesions including masses examined microscopically. # Number of animals examined microscopically at this site

Oxytetracycline Hydrochloride, NTP TR 315 108

APPENDIX D

SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MICE IN THE TWO-YEAR FEED STUDIES OF OXYTETRACYCLINE HYDROCHLORIDE

5 X 10 100

C	ONTI	ROL (UNTR)	LOW	DOSE	HIG	H DOSE
ANIMALS INITIALLY IN STUDY				· · · · · · · · · · · · · · · · · · ·	50	
ANIMALS NECROPSIED	50		50		50	
ANIMALS EXAMINED HISTOPATHOLOGICALLY			50		50	
INTEGUMENTARY SYSTEM	· · ·				<u> </u>	
*Skin	(50)		(50)		(50)	1
Mineralization				(2%)		
Epidermal inclusion cyst		_	1	(2%)		
Inflammation, acute		(2%)				
Ulcer, acute		(2%)				(0.41)
Abscess, NOS		(6%)		(02)		(2%)
Inflammation, chronic		(2%)		(6%)	1	(2%)
Ulcer, chronic Granulation tissue		(4%) (2%)	1	(2%)	•	(90)
Hyperkeratosis		(4%)	1	(2%)	1	(2%)
Metaplasia, osseous		(= //)	1	(2.10)	1	(2%)
*Subcutaneous tissue	(50)		(50)		(50)	
Cyst, NOS		(4%)	(00)		(00)	
Steatitis		(10%)	4	(8%)	2	(4%)
Inflammation, chronic			1	(2%)	3	(6%)
Metaplasia, osseous			1	(2%)		
RESPIRATORY SYSTEM						
#Lung	(50)		(50)		(50)	
Mineralization	_		1	(2%)		
Atelectasis		(2%)	-	(10~)		
Congestion, NOS Hemorrhage	-	(6%)		(10%)		(16%)
Bronchopneumonia, NOS		(14%)		(12%) (4%)	ð	(16%)
Inflammation, acute focal	1	(2%)	4	(4,10)		
Inflammation, chronic		(2%)				
Pneumonia, interstitial chronic		(6%)	7	(14%)	2	(4%)
Bronchopneumonia, chronic		(18%)		(6%)		(10%)
Cholesterol deposit	3	(6%)		(4%)		(4%)
Hyperplasia, alveolar epithelium	13	(26%)		(8%)		(16%)
Histiocytosis	6	(12%)	8	(16%)	10	(20%)
IEMATOPOIETIC SYSTEM						
#Brain/meninges	(50)	(24)	(50)	(22)	(50)	
Lymphocytosis #Barray and an and an		(2%)		(2%)		
#Bone marrow Congestion, NOS	(50)		(50)		(50)	(90)
Congestion, NOS Hyperplasia, granulocytic	97	(74%)	20	(60%)		(2%) (72%)
#Spleen	(50)	(12/0)	(50)		(50)	(1470)
Hematoma, NOS	(00)			(2%)	(00)	
Inflammation, acute	1	(2%)	•		1	(2%)
Pigmentation, NOS		(78%)	39	(78%)		(56%)
Hyperplasia, reticulum cell						(2%)
Hyperplasia, lymphoid	3	(6%)	6	(12%)		(8%)
Hematopoiesis		(92%)		(94%)		(94%)
#Splenic capsule	(50)		(50)		(50)	•
Fibrosis, focal		(2%)				
#Lymph node	(48)	(8.4)	(49)		(50)	
Inflammation, acute	1	(2%)			-	
					1	(2%)
Inflammation, active chronic Hemosiderosis	1	(2%)	1	(2%)		(4%)

TABLE D1. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE MICE IN THE TWO-YEAR FEED STUDY OF OXYTETRACYCLINE HYDROCHLORIDE

	CONTR	OL (UNTR)	LOW	DOSE	HIG	H DOSE
HEMATOPOIETIC SYSTEM (Continued)						
#Mandibular lymph node	(48)		(49)		(50)	
Inflammation, chronic	((,		1	(2%)
Hemosiderosis	13	(27%)	12	(24%)	16	(32%)
Hyperplasia, lymphoid		(2%)				
#Mesenteric lymph node	(48)		(49)		(50)	
Inflammation, acute	2	(4%)				
Hemosiderosis			1	(2%)		
Angiectasis			1	(2%)		
Hyperplasia, reticulum cell	1	(2%)				
Hyperplasia, lymphoid				(2%)		
#Inguinal lymph node	(48)		(49)		(50)	
Mineralization						(2%)
Hyperplasia, lymphoid						(2%)
#Liver	(50)		(50)		(50)	(000)
Hematopoiesis		(14%)		(6%)		(20%)
#Thyroid	(50)		(50)		(50)	
Lymphocytosis				(2%)	(40)	
#Thymus	(47)	(1.0.0)	(47)	((49)	(100)
Cyst, NOS	9	(19%)	5	(11%)		(12%)
Hemorrhage				(00)		(2%)
Necrosis, NOS				(2%)	1	(2%)
Hyperplasia, lymphoid			1	(2%)		
CIRCULATORY SYSTEM						
#Brain/meninges	(50)		(50)		(50)	
Periarteritis	1	(2%)				
*Vertebra	(50)		(50)		(50)	
Periarteritis	1	(2%)				
#Heart	(50)		(50)		(50)	
Mineralization						(2%)
Inflammation, chronic		(6%)		(8%)		(6%)
*Mesenteric artery	(50)		(50)		(50)	
Thrombosis, NOS		(2%)				
Thrombus, canalized		(2%)			(24)	
*Mesentery	(50)		(50)		(50)	
Periarteritis	1	(2%)				
DIGESTIVE SYSTEM						
#Salivary gland	(50)		(50)		(50)	
Lymphocytic inflammatory infiltrate		(2%)			_	
Inflammation, chronic		(48%)		(50%)	26	(52%)
Atrophy, NOS		(4%)		(4%)		
#Liver	(50)		(50)		(50)	
Congestion, NOS			1	(2%)	-	(a .m.)
Inflammation, acute		(4%)		(0.41)		(6%)
Inflammation, chronic		(10%)	4	(8%)		(10%)
Necrosis, coagulative		(8%)			5	(10%)
Infarct, focal	1	(2%)		(07)	~	(40)
Metamorphosis, fatty	-	(00)		(2%)		(4%)
Cytoplasmic vacuolization	1	(2%)		(4%)	5	(10%)
Focal cellular change			2	(4%)	9	(19)
Regeneration, NOS	(EA)		/EA			(4%)
*Gallbladder	(50)	(10)	(50)		(50)	
Cyst, NOS		(4%)	(40)		(EA)	
#Pancreas	(50)		(49)	(2%)	(50)	
Cystic ducts	•	(40)			0	(19)
Inflammation, chronic	2	(4%)		(8%)	Z	(4%)
Focal cellular change				(2%)		

TABLE D1. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE MICE IN THE
TWO-YEAR FEED STUDY OF OXYTETRACYCLINE HYDROCHLORIDE (Continued)

	CONTROL (UNTR)		LOW	DOSE	HIG	H DOSE
DIGESTIVE SYSTEM (Continued)					. <u></u> .	
#Pancreatic acinus	(50))	(49)		(50)	
Cytoplasmic vacuolization		, 1 (68%)		(71%)	• •	(68%)
Atrophy, NOS		(4%)		(6%)	04	(00 k)
Hyperplasia, NOS		(4%) (4%)	0		4	(8%)
#Glandular stomach	(50)		(50)		(50)	
Mineralization		(2%)		(2%)	(00)	
Cyst, NOS		(6%)		(2%)	9	(4%)
Inflammation, acute		(6%)		(2%)		(4%)
Inflammation, active chronic		(2%)	•	(170)	-	(4,0)
Degeneration, cystic		(8%)	4	(8%)	4	(8%)
Hyperplasia, epithelial	3			(2%)	2	
Metaplasia, squamous	-	(4%)	1	(270)		(2%)
#Forestomach	(50)		(50)			(270)
Inflammation, acute			(50)		(50)	(90)
Ulcer, chronic	1	(2%)		(99)	1	(2%)
			1	(2%)		(97)
Erosion Hunomlacia anitholial		(90)			1	(2%)
Hyperplasia, epithelial		(2%)				
Hyperkeratosis		(2%)				
Acanthosis		(2%)	(40)		(10)	
#Duodenum	(48)		(47)	(00)	(49)	
Necrosis, coagulative	(50)			(2%)	(40)	
#Colon	(50)		(50)		(49)	(0.0)
Inflammation, chronic					1	(2%)
RINARY SYSTEM						
#Kidney	(50)		(50)		(50)	
Hydronephrosis	(,			(2%)	(00)	
Congestion, NOS			-	(= /0/	1	(2%)
Hemorrhage	1	(2%)			-	
Pyelonephritis, acute/chronic		(2%)			1	(2%)
Inflammation, chronic		(54%)	30	(60%)		(58%)
Pyelonephritis, chronic	21		00	$(\mathbf{U}\mathbf{U}\mathbf{k})$		(2%)
Nephropathy	1	(2%)	1	(2%)		(2%)
Necrosis, NOS		(2%)	1	(2π)	1	(470)
Infarct, focal	1	(2%)	1	(2%)		
Metaplasia, osseous				(270) (4%)	9	(40)
#Kidney/cortex	(50)			(4170)		(4%)
	(50)		(50)		(50)	(07)
Cyst, NOS		(4%)	(20)			(2%)
#Kidney/tubule	(50)	(10~)	(50)	(000)	(50)	(00-
Mineralization	21	(42%)	19	(38%)		(32%)
Dilatation, NOS	-	(* 1	•	(0.0)	1	(2%)
Necrosis, NOS		(14%)	3	(6%)	4	(8%)
Pigmentation, NOS		(2%)		(200)		(F0 *)
Regeneration, NOS		(68%)		(56%)		(58%)
#Kidney/pelvis	(50)		(50)		(50)	
Inflammation, acute		(2%)			/=	
*Ureter	(50)		(50)		(50)	(00)
Inflammation, acute						(2%)
#Urinary bladder	(50)	(00)	(49)		(48)	(0~)
Calculus, gross observation only		(2%)	-	(0~)		(2%)
Calculus, microscopic examination		(4%)	1	(2%)	2	(4%)
Hemorrhage		(2%)	-		_	
Inflammation, active chronic	1	(2%)	1	(2%)		(4%)
Inflammation, chronic						(4%)
Metaplasia, squamous					1	(2%)
*Urethra	(50)		(50)		(50)	
Calculus, microscopic examination	9	(18%)		(30%)		(12%)
Congestion, NOS				(2%)	-	

TABLE D1. SUMMARY OF THE INCIDE. OF NONNEOPLASTIC LESIONS IN MALE MICE IN THE TWO-YEAR FEED STUDY OF OXYTETRACYCLINE HYDROCHLORIDE (Continued)

	CONTI	ROL (UNTR)	LOW	DOSE	HIG	H DOSE
NDOCRINE SYSTEM	·					
#Anterior pituitary	(50)		(49)		(50)	
Cyst. NOS		(8%)		(4%)		(4%)
Hyperplasia, NOS		(6%)		(4%)		(10%)
#Pituitary posterior	(50)		49)	(470)	o (50)	
Embryonal duct cyst		(2%)	(43)		(50)	
#Adrenal/capsule	(50)		(49)		(50)	
Hyperplasia, NOS		(86%)		(099)	• •	
#Adrenal cortex				(92%)		(90%)
	(50)		(49)	(00)	(50)	
Accessory structure			1	(2%)		(0~)
Pigmentation, NOS		(0.0)	_			(2%)
Hyperplasia, NOS		(8%)	5	(10%)		(12%)
Angiectasis		(4%)				(2%)
#Adrenal medulla	(50)		(49)		(50)	
Cytoplasmic vacuolization	1	(2%)				
Hyperplasia, NOS	3	(6%)	9	(18%)	5	(10%)
Angiectasis	2	(4%)				
#Thyroid	(50)		(50)		(50)	
Embryonal duct cyst				(2%)		(2%)
Cystic follicles	14	(28%)		(40%)		(32%)
Inflammation, acute		(2%)	-•	(,		(0-/0)
Hyperplasia, C-cell		(2%)	6	(12%)	5	(10%)
Hyperplasia, follicular cell		(10%)		(2%)		(2%)
#Parathyroid	(29)	(10%)	(25)	(270)	(35)	(270)
		(90)		(00)	(30)	
Cyst, NOS		(3%)		(8%)	(20)	
#Pancreatic islets	(50)		(49)		(50)	
Cytoplasmic vacuolization Hyperplasia, NOS		(2%)		(2%) (2%)		
PRODUCTIVE SYSTEM						
*Penis	(50)		(50)		(50)	
Calculus, microscopic examination		(2%)		(2%)		(901)
*Prepuce		(470)		(270)		(2%)
Cyst, NOS	(50)		(50)	(90)	(50)	
		(00)	1	(2%)	•	(1~)
Inflammation, active chronic		(2%)			2	(4%)
Ulcer, chronic		(2%)				(4%)
*Preputial gland	(50)		(50)		(50)	
Mineralization			1	(2%)		
Dilatation/ducts		(2%)				
	1	(2%)		(6%)		
Inflammation, suppurative				(22%)	10	(20%)
Inflammation, active chronic		(16%)	11			1.00.04.5
Inflammation, active chronic Inflammation, chronic	8	(16%) (18%)		(18%)		(6%)
Inflammation, active chronic	8			(18%)		(6%)
Inflammation, active chronic Inflammation, chronic #Prostate Hemorrhage	8 9		9 (50)	(18%) (2%)	3	(6%)
Inflammation, active chronic Inflammation, chronic #Prostate Hemorrhage	8 9 (50)	(18%)	9 (50) 1	(2%)	3	(6%)
Inflammation, active chronic Inflammation, chronic #Prostate Hemorrhage Inflammation, suppurative	8 9 (50) 1	(18%)	9 (50) 1		3 (50)	
Inflammation, active chronic Inflammation, chronic #Prostate Hemorrhage Inflammation, suppurative Inflammation, active chronic	8 9 (50) 1	(18%)	9 (50) 1 1	(2%) (2%)	3 (50) 3	(6%)
Inflammation, active chronic Inflammation, chronic #Prostate Hemorrhage Inflammation, suppurative Inflammation, active chronic Inflammation, chronic	8 9 (50) 1 1	(18%)	9 (50) 1 1	(2%)	3 (50) 3 2	
Inflammation, active chronic Inflammation, chronic #Prostate Hemorrhage Inflammation, suppurative Inflammation, active chronic Inflammation, chronic *Seminal vesicle	8 9 (50) 1 1 (50)	(18%) (2%) (2%)	9 (50) 1 1	(2%) (2%)	3 (50) 3	(6%)
Inflammation, active chronic Inflammation, chronic #Prostate Hemorrhage Inflammation, suppurative Inflammation, active chronic Inflammation, chronic *Seminal vesicle Calculus, microscopic examination	8 9 (50) 1 1 (50)	(18%)	9 (50) 1 1 (50)	(2%) (2%) (2%)	3 (50) 3 2	(6%)
Inflammation, active chronic Inflammation, chronic #Prostate Hemorrhage Inflammation, suppurative Inflammation, active chronic Inflammation, chronic *Seminal vesicle Calculus, microscopic examination Inflammation, suppurative	8 9 (50) 1 1 (50) 1	(18%) (2%) (2%)	9 (50) 1 1 (50)	(2%) (2%)	3 (50) 3 2 (50)	(6%) (4%)
Inflammation, active chronic Inflammation, chronic #Prostate Hemorrhage Inflammation, suppurative Inflammation, active chronic Inflammation, chronic *Seminal vesicle Calculus, microscopic examination Inflammation, suppurative Inflammation, active chronic	8 9 (50) 1 1 (50) 1	(18%) (2%) (2%)	9 (50) 1 1 (50) 1	(2%) (2%) (2%)	3 (50) 3 2 (50)	(6%)
Inflammation, active chronic Inflammation, chronic #Prostate Hemorrhage Inflammation, suppurative Inflammation, active chronic Inflammation, chronic *Seminal vesicle Calculus, microscopic examination Inflammation, suppurative Inflammation, active chronic Inflammation, chronic	8 9 (50) 1 1 (50) 1 2	(18%) (2%) (2%) (2%)	9 (50) 1 1 (50) 1	(2%) (2%) (2%)	3 (50) 3 2 (50)	(6%) (4%)
Inflammation, active chronic Inflammation, chronic #Prostate Hemorrhage Inflammation, suppurative Inflammation, active chronic Inflammation, chronic *Seminal vesicle Calculus, microscopic examination Inflammation, suppurative Inflammation, active chronic Inflammation, chronic Atrophy, diffuse	8 9 (50) 1 1 (50) 1 2 1	(18%) (2%) (2%)	9 (50) 1 1 (50) 1 . 1	(2%) (2%) (2%)	3 (50) 3 2 (50) 3	(6%) (4%)
Inflammation, active chronic Inflammation, chronic #Prostate Hemorrhage Inflammation, suppurative Inflammation, active chronic Inflammation, chronic *Seminal vesicle Calculus, microscopic examination Inflammation, suppurative Inflammation, active chronic Inflammation, chronic Atrophy, diffuse #Testis	8 9 (50) 1 1 (50) 1 2 (50)	 (18%) (2%) (2%) (4%) (2%) 	9 (50) 1 1 (50) 1 . 1 (50)	(2%) (2%) (2%) (2%) (2%)	3 (50) 3 2 (50)	(6%) (4%)
Inflammation, active chronic Inflammation, chronic #Prostate Hemorrhage Inflammation, suppurative Inflammation, active chronic Inflammation, chronic *Seminal vesicle Calculus, microscopic examination Inflammation, suppurative Inflammation, suppurative Inflammation, chronic Inflammation, chronic Atrophy, diffuse #Testis Hyperplasia, interstitial cell	8 9 (50) 1 1 (50) 1 2 (50)	(18%) (2%) (2%) (2%)	9 (50) 1 1 (50) 1 (50) 3	(2%) (2%) (2%)	3 (50) 3 2 (50) 3 (50)	(6%) (4%)
Inflammation, active chronic Inflammation, chronic #Prostate Hemorrhage Inflammation, suppurative Inflammation, active chronic Inflammation, chronic *Seminal vesicle Calculus, microscopic examination Inflammation, suppurative Inflammation, suppurative Inflammation, chronic Atrophy, diffuse #Testis Hyperplasia, interstitial cell #Testis/tubule	8 9 (50) 1 1 (50) 1 2 (50)	 (18%) (2%) (2%) (4%) (2%) 	9 (50) 1 1 (50) 1 . 1 (50)	(2%) (2%) (2%) (2%) (2%)	3 (50) 3 2 (50) 3 (50)	(6%) (4%) (6%)
Inflammation, active chronic Inflammation, chronic #Prostate Hemorrhage Inflammation, suppurative Inflammation, active chronic Inflammation, chronic *Seminal vesicle Calculus, microscopic examination Inflammation, suppurative Inflammation, suppurative Inflammation, chronic Inflammation, chronic Atrophy, diffuse #Testis Hyperplasia, interstitial cell	8 9 (50) 1 1 (50) 1 2 (50) 3 (50) 3	 (18%) (2%) (2%) (4%) (2%) 	9 (50) 1 1 (50) 1 (50) 3 (50)	(2%) (2%) (2%) (2%) (2%)	3 (50) 3 2 (50) 3 (50) 2 (50)	(6%) (4%) (6%)
Inflammation, active chronic Inflammation, chronic #Prostate Hemorrhage Inflammation, suppurative Inflammation, active chronic Inflammation, chronic *Seminal vesicle Calculus, microscopic examination Inflammation, suppurative Inflammation, suppurative Inflammation, chronic Atrophy, diffuse #Testis Hyperplasia, interstitial cell #Testis/tubule	8 9 (50) 1 1 (50) 1 2 (50) 3 (50) 3	 (18%) (2%) (2%) (4%) (2%) (6%) 	9 (50) 1 1 (50) 1 (50) 3 (50)	(2%) (2%) (2%) (2%) (2%) (6%)	3 (50) 3 2 (50) 3 (50) 2 (50) 3	(6%) (4%) (6%)

TABLE D1. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE MICE IN THE TWO-YEAR FEED STUDY OF OXYTETRACYCLINE HYDROCHLORIDE (Continued)

	CONTROL (UNTR)	LOW DOSE	HIGH DOSE
REPRODUCTIVE SYSTEM (Continued)			
*Epididymis	(50)	(50)	(50)
Granuloma, spermatic			1 (2%)
*Scrotum	(50)	(50)	(50)
Necrosis, fat		1 (2%)	
NERVOUS SYSTEM			
#Brain/meninges	(50)	(50)	(50)
Inflammation, chronic			1 (2%)
#Brain	(50)	(50)	(50)
Mineralization	31 (62%)	32 (64%)	23 (46%)
Hemorrhage	1 (2%)		2 (4%)
SPECIAL SENSE ORGANS None			
MUSCULOSKELETAL SYSTEM			
*Femur	(50)	(50)	(50)
Necrosis, NOS		1 (2%)	
*Tarsa ljoint	(50)	(50)	(50)
Osteoarthritis	2 (4%)		
*Skeletal muscle	(50)	(50)	(50)
Inflammation, chronic		1 (2%)	
BODY CAVITIES			
*Mesentery	(50)	(50)	(50)
Steatitis	2 (4%)		2 (4%)
Necrosis, fat			1 (2%)
ALL OTHER SYSTEMS			
*Multiple organs	(50)	(50)	(50)
Mineralization		1 (2%)	
Inflammation, chronic	13 (26%)	12 (24%)	11 (22%)
Amyloidosis	1 (2%)		
Hyperplasia, NOS		•	1 (2%)
SPECIAL MORPHOLOGY SUMMARY			
No lesion reported		1	

TABLE D1. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE MICE IN THE TWO-YEAR FEED STUDY OF OXYTETRACYCLINE HYDROCHLORIDE (Continued)

* Number of animals receiving complete necropsy examination; all gross lesions including masses examined microscopically. # Number of animals examined microscopically at this site

(CONTR	ROL (UNTR)	LOW	DOSE	HIG	H DOSE
ANIMALS INITIALLY IN STUDY		······	50		50	
ANIMALS NECROPSIED	50		50		50	
ANIMALS EXAMINED HISTOPATHOLOGICALLY			50		50	
INTEGUMENTARY SYSTEM			<u></u>			
*Skin	(50)		(50)		(50)	
Mineralization	1	(2%)				
Ulcer, acute					1	(2%)
Inflammation, chronic	1	(2%)				
Erosion			-		1	(2%)
Hyperkeratosis	(50)			(4%)	(20)	
*Subcutaneous tissue	(50)		(50)		(50)	
Sebaceous cyst Hemorrhage		(4%) (2%)				
				<u> </u>		
RESPIRATORY SYSTEM	(20)				(#A)	
#Lung	(50)		(50)	(69)	(50)	(10)
Congestion, NOS Hemorrhage		(4%)		(6%)	2	(4%)
Pneumonia, interstitial chronic	3	(6%)		(12%) (8%)		(401)
Bronchopneumonia, chronic	6	(12%)		(8%)		(4%) (10%)
Cholesterol deposit		(4%)		(10%)		(10%)
Hyperplasia, alveolar epithelium		(16%)		(18%)	-	(10%)
Histiocytosis		(16%)		(20%)		(12%)
HEMATOPOIETIC SYSTEM #Brain/meninges Lymphocytosis	(50) 1	(2%)	(50) 2	(4%)	(50) 1	(2%)
#Brain	(50)		(50)	(1,0)	(50)	(~,~)
Lymphocytosis				(2%)		
*Multiple organs	(50)		(50)		(50)	
Hyperplasia, lymphoid			1	(2%)		
*Skin	(50)		(50)		(50)	
Mastocytosis				(2%)		
#Bone marrow	(50)	(a	(50)		(50)	
Fibrosis		(8%)		(12%)		(14%)
Hyperplasia, granulocytic #Spleen		(60%)		(56%)		(58%)
Inflammation, acute	(50)		(50)	(2%)	(50)	
Infarct, acute				(2%)		
Pigmentation, NOS	.46	(92%)		(92%)	49	(98%)
Angiectasis		. =,		(2%)	-0	
Hyperplasia, lymphoid	10	(20%)		(38%)	15	(30%)
Hematopoiesis		(92%)		(94%)		(98%)
#Lymph node	(48)		(46)		(49)	
Hemosiderosis					1	(2%)
Hyperplasia, lymphoid				(2%)		
#Mandibular lymph node	(48)		(46)		(49)	
Hemosiderosis	17	(35%)	20	(43%)		(41%)
Erythrophagocytosis		(0~)	-			(2%)
Hyperplasia, lymphoid		(8%)	1	(2%)		(8%)
Mastocytosis #Theresis lymph node		(2%)	(10)			(2%)
#Thoracic lymph node Hyperplasia, lymphoid	(48)	(29)	(46)		(49)	
#Mediastinal lymph node		(2%)	(40)		(40)	
	(48)		(46)		(49)	(90)
Hyperplasia, lymphoid					1	(2%)

TABLE D2. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN FEMALE MICE IN THETWO-YEAR FEED STUDY OF OXYTETRACYCLINE HYDROCHLORIDE

	CONTI	ROL (UNTR)	LOW	DOSE	HIG	H DOSE
HEMATOPOIETIC SYSTEM (Continued)						
#Mesenteric lymph node	(48)	1	(46)		(49)	
Hematoma, NOS	(10)		(40)			(2%)
Hemosiderosis						(2%)
Hyperplasia, reticulum cell			1	(2%)	-	(20,00)
Hyperplasia, lymphoid			•	(2~)	2	(4%)
#Inguinal lymph node	(48)		(46)		(49)	(4/0)
Hyperplasia, reticulum cell	(,		(10)			(2%)
#Liver	(50)		(50)		(50)	(2/0)
Hematopoiesis		(54%)		(62%)		(52%)
#Liver/periportal	(50)		(50)	(02,0)	(50)	(02/0/
Hematopoiesis		(2%)	(00)		(00)	
#Peyer's patch	(50)		(50)		(50)	
Hyperplasia, lymphoid		(2%)	(00)		(00)	
#Thymus	(49)		(50)		(50)	
Embryonal duct cyst	· · · /	(2%)		(8%)		(8%)
Cyst, NOS		(10%)		(4%)		(10%)
Congestion, NOS	Ū	(/	~			(2%)
Hyperplasia, reticulum cell						(2%)
Hyperplasia, lymphoid			3	(6%)	-	(2.0)
		``				
CIRCULATORY SYSTEM						
#Heart	(50)		(50)		(50)	
Mineralization			1	(2%)		
Inflammation, active chronic	1	(2%)				(2%)
Inflammation, chronic		(10%)	3	(6%)	1	(2%)
Periarteritis	2	(4%)				
*Pulmonary artery	(50)		(50)		(50)	
Mineralization		(2%)				
*Pulmonary vein	(50)		(50)		(50)	
Mineralization					1	(2%)
*Ovarian vein	(50)		(50)		(50)	
Thrombosis, NOS					1	(2%)
DIGESTIVE SYSTEM						· _ · _
#Salivary gland	(50)		.(48)		(49)	
Inflammation, chronic	·/	(14%)		(35%)		(29%)
Hemosiderosis		(2%)	- '	/		~~~/~/
Atrophy, NOS		(2%)	1	(2%)	1	(2%)
#Liver	(50)	\/	(50)	_ · • •	(50)	,
Cyst, NOS		(2%)	()		(20)	
Inflammation, acute			1	(2%)		
Inflammation, active chronic		(2%)			3	(6%)
Inflammation, chronic		(20%)	17	(34%)		(34%)
Peliosis hepatis		(2%)			- •	,
Necrosis, NOS		(8%)	3	(6%)	2	(4%)
Infarct, healed		(2%)	2		-	
Metamorphosis, fatty		(4%)	3	(6%)	3	(6%)
Focal cellular change		(2%)	-			(2%)
Hepatocytomegaly	-					(2%)
Metaplasia, osseous	1	(2%)			-	<u></u>
Regeneration, NOS	-	,	2	(4%)	1	(2%)
*Gallbladder	(50)		(50)	·-·-/	(50)	(
Cyst, NOS		(2%)				(6%)
#Pancreas	(50)		(49)		(50)	· · · · ·
Cystic ducts		(2%)		(2%)	()	
		(8%)		(12%)	3	(6%)
Inflammation, chronic						

TABLE D2.SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN FEMALE MICE IN THE
TWO-YEAR FEED STUDY OF OXYTETRACYCLINE HYDROCHLORIDE (Continued)

	CONTROL (UNTR)		LOW	DOSE	HIGH DOSE		
DIGESTIVE SYSTEM (Continued)		<u> </u>					
#Pancreatic acinus	(50)		(49)		(50)		
Cytoplasmic vacuolization		(62%)		(71%)		(78%)	
Hyperplasia, NOS		(0=,0)		(2%)		(6%)	
#Glandular stomach	(49)		(50)		(50)		
Mineralization	(40)			(2%)		(2%)	
Cyst, NOS	3	(6%)		(8%)		(2%)	
Inflammation, acute	Ū	(0,0)	•	(0,0)		(2%)	
Inflammation, active chronic	1	(2%)	1	(2%)	-	(2,2)	
Inflammation, chronic	-	(=)	•	(= / • /	1	(2%)	
Degeneration, cystic	3	(6%)	2	(4%)		(10%)	
Hyperplasia, epithelial	Ū	(0,0)	-	(1)0)	-	(2%)	
Metaplasia, squamous			9	(4%)	2		
#Forestomach	(49)		(50)	(4.0)	(50)	(4,0)	
Inflammation, acute	(49)			(2%)	(50)		
Inflammation, chronic							
				(2%)			
Hyperplasia, epithelial		(97)		(2%)	-	(90)	
Hyperkeratosis #Power's patch		(2%)		(4%)		(2%)	
#Peyer's patch	(50)	(90)	(50)		(50)		
Inflammation, acute		(2%)	180				
#Duodenum	(50)		(50)		(50)	(90)	
Hyperplasia, epithelial					1	(2%)	
JRINARY SYSTEM							
#Kidney	(50)		(50)		(50)		
Cyst, NOS		(2%)	(00)		(,		
Hemorrhage	ī						
Hematoma, NOS	•	(2,0)	1	(2%)			
Pyelonephritis, acute/chronic				(2%)	1	(2%)	
Inflammation, chronic	10	(38%)		(52%)		(46%)	
Infarct, healed		(2%)	20	(3270)	20	(4070)	
#Kidney/cortex		(270)	(50)		(20)		
•	(50)		(50)	(00)	(50)		
Infarct, healed	0	(60)	1	(2%)	1	(971)	
Metaplasia, osseous	3	(6%)	(20)			(2%)	
#Kidney/glomerulus	(50)		(50)		(50)	(0~)	
Amyloidosis	(50)		(50)			(2%)	
#Kidney/tubule	(50)		(50)		(50)		
Mineralization		(4 4 4 4 S		(00		(4%)	
Necrosis, NOS	7	(14%)		(22%)	10	(20%)	
Metamorphosis, fatty				(2%)			
Regeneration, NOS		(50%)		(46%)		(64%)	
#Kidney/pelvis	(50)		(50)		(50)		
Calculus, microscopic examination	1	(2%)		(2%)	1	(2%)	
Hemorrhage				(2%)			
#Urinary bladder	(48)		(49)		(49)		
Inflammation, acute			1	(2%)		(2%)	
Inflammation, chronic				(2%)			
Metaplasia, squamous			1	(2%)			
NDOCRINE SYSTEM							
#Anterior pituitary	(50)		(49)		(50)		
Cyst, NOS		(6%)		(4%)		(2%)	
Hyperplasia, NOS							
		(22%) (4%)		(8%)	14	(28%)	
Hyperplasia, focal	2	(4%)		(2%)	4	(00)	
Angiectasis	140			(6%)		(2%)	
#Adrenal/capsule	(49)		(50)	(0 m)	(50)		
Pigmentation, NOS		(100~)		(2%)			
Hyperplasia, NOS	10	(100%)	E0.	(100%)	E 0	(100%)	

TABLE D2. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN FEMALE MICE IN THE TWO-YEAR FEED STUDY OF OXYTETRACYCLINE HYDROCHLORIDE (Continued)

	CONTR	OL (UNTR)	LOW	DOSE	HIG	H DOSE
ENDOCRINE SYSTEM (Continued)						
#Adrenal cortex	(49)		(50)		(50)	
Cyst, NOS			1	(2%)		
Congestion, NOS			1	(2%)	1	(2%)
Inflammation, acute						(2%)
Inflammation, chronic			1	(2%)		(2%)
Metamorphosis, fatty	2	(4%)		(6%)		(2%)
Pigmentation, NOS		(73%)		(60%)		(82%)
Cytoplasmic vacuolization						(2%)
Hyperplasia, NOS	3	(6%)	1	(2%)		(10%)
Angiectasis	5	(0,0)		(2%)	· ·	(10/0)
#Adrenal medulla	(49)		(50)	(1))	(50)	
Hyperplasia, NOS	• •	(4%)		(6%)	(00)	
		• •	-	$(0, \mathbf{k})$	(40)	
#Thyroid	(50)		(50)	(90)	(49)	(001)
Embryonal duct cyst		(4%)		(2%)		(2%)
Cystic follicles		(44%)	20	(40%)		(31%)
Inflammation, active chronic		(2%)				(4%)
Inflammation, chronic	1	• •	-	(10~)		(2%)
Hyperplasia, C-cell		(18%)	-	(18%)		(27%)
Hyperplasia, follicular cell		(14%)		(32%)		(20%)
#Thyroid follicle	(50)		(50)		(49)	
Atrophy, NOS		(2%)				
#Parathyroid	(35)		(36)		(42)	
Cyst, NOS	1	(3%)	1	(3%)		
Hyperplasia, NOS	1	(3%)			1	(2%)
#Pancreatic islets	(50)		(49)		(50)	
Hyperplasia, NOS				•	1	(2%)
*Mammary gland Inflammation, chronic Hyperplasia, cystic #Uterus Hydrometra Hemorrhage Hematoma, organized Inflammation, acute Abscess, NOS Metaplasia, squamous #Uterus/endometrium Hyperplasia, cystic #Fallopian tube Inflammation chronic suppurative #Ovary Follicular cyst, NOS Parovarian cyst Congestion, NOS Hemorrhagic cyst Abscess, NOS	(50) 1 1 6 1 (50) 47 (50) (44) 3 9 1 1	(2%) (94%) (7%) (20%) (2%) (2%)	10 (50) 3 1 9 (50) 46 (50) 1 (48) 2 11	(2%) (20%) (6%) (2%) (18%) (2%) (92%) (2%) (4%) (23%)	(50) 4 6 2 (50) 48 (50) (49) 6 4 1	 (12%) (8%) (12%) (4%) (96%) (12%) (8%) (2%) (4%)
Inflammation, active chronic		(2%)		(0~)		
Inflammation, chronic	1	(2%)	1	(2%)		
Hyperplasia, epithelial					1	(2%)
ERVOUS SYSTEM						
#Brain	(50)		(50)		(50)	
Mineralization		(54%)		(50%)		(60%)
Atrophy, pressure	1	(2%)	1	(2%)		(2%)
Metaplasia, osseous						(2%)
*Spinal cord	(50)		(50)		(50)	
Degeneration, Wallerian			9	(4%)		

TABLE D2. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN FEMALE MICE IN THE
TWO-YEAR FEED STUDY OF OXYTETRACYCLINE HYDROCHLORIDE (Continued)

	CONTR	OL (UNTR)	LOW	DOSE	HIG	H DOSE
SPECIAL SENSE ORGANS		<u> </u>		<u> </u>		<u></u>
*Ear	(50)		(50)		(50)	
Inflammation, suppurative	1	(2%)				
MUSCULOSKELETAL SYSTEM						
*Abdominal muscle	(50)		(50)		(50)	
Inflammation chronic suppurative			1	(2%)		
Abscess, chronic					1	(2%)
BODY CAVITIES	<u></u>	,,				
*Abdominal cavity	(50)		(50)		(50)	
Abscess, chronic			1	(2%)		
*Mesentery	(50)		(50)		(50)	
Steatitis	3	(6%)	3	(6%)		
Inflammation, acute			2	(4%)		
ALL OTHER SYSTEMS		<u></u>				
*Multiple organs	(50)		(50)		(50)	
Inflammation, chronic	25	(50%)	19	(38%)	20	(40%)
Adipose tissue				-		
Mineralization	1					

TABLE D2. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN FEMALE MICE IN THE
TWO-YEAR FEED STUDY OF OXYTETRACYCLINE HYDROCHLORIDE (Continued)

None

• Number of animals receiving complete necropsy examination; all gross lesions including masses examined microscopically. # Number of animals examined microscopically at this site

Oxytetracycline Hydrochloride, NTP TR 315 120

APPENDIX E

ANALYSES OF PRIMARY TUMORS IN RATS AND MICE IN THE TWO-YEAR FEED STUDIES OF OXYTETRACYCLINE HYDROCHLORIDE

	Control	25,000 ppm	50,000 ppm
Skin: Squamous Cell Papilloma			
Overall Rates (a)	1/50 (2%)	3/50 (6%)	1/50 (2%)
Adjusted Rates (b)	4.5%	10.3%	2.6%
Terminal Rates (c)	1/22 (5%)	3/29 (10%)	1/38 (3%)
Week of First Observation	104	104	104
Life Table Tests (d)	P = 0.410N	P=0.407	P = 0.635N
Incidental Tumor Tests (d)	P = 0.410N	P = 0.407	P = 0.635N
Cochran-Armitage Trend Test (d)	P = 0.610	1 01101	
Fisher Exact Test (d)		P = 0.309	P = 0.753
Skin: Squamous Cell Papilloma or Carci	noma		
Overall Rates (a)	2/50 (4%)	3/50 (6%)	1/50 (2%)
Adjusted Rates (b)	6.7%	10.3%	2.6%
Terminal Rates (c)	1/22 (5%)	3/29 (10%)	1/38 (3%)
Week of First Observation	75	104	104
Life Table Tests (d)	P = 0.228N	P = 0.604	P = 0.361N
Incidental Tumor Tests (d)	P = 0.346N	P = 0.496	P = 0.581N
Cochran-Armitage Trend Test (d)	P = 0.399N	1 0.100	- 0.0011
Fisher Exact Test (d)		P = 0.500	P = 0.500 N
Subcutaneous Tissue: Fibroma			
Overall Rates (a)	4/50 (8%)	1/50 (2%)	(e) 2/50 (4%)
Adjusted Rates (b)	12.3%	2.6%	4.9%
Terminal Rates (c)	1/22 (5%)	0/29 (0%)	1/38 (3%)
Week of First Observation	66	94	99
Life Table Tests (d)	P = 0.132N	P = 0.142N	P = 0.185N
Incidental Tumor Tests (d)	P = 0.363N	P = 0.231N	P=0.487N
Cochran-Armitage Trend Test (d)	P = 0.238N		
Fisher Exact Test (d)		P = 0.181N	P=0.339N
Subcutaneous Tissue: Fibroma or Neurol	librosarcoma		
Overall Rates (a)	4/50 (8%)	2/50 (4%)	3/50 (6%)
Adjusted Rates (b)	12.3%	6.0%	7.0%
Terminal Rates (c)	1/22 (5%)	1/29 (3%)	1/38 (3%)
Week of First Observation	66	94	92
Life Table Tests (d)	P = 0.243N	P = 0.265N	P = 0.306N
Incidental Tumor Tests (d)	P = 0.552N	P = 0.382N	P = 0.632
Cochran-Armitage Trend Test (d)	P = 0.417N		
Fisher Exact Test (d)		P=0.339N	P = 0.500N
Hematopoietic System: Mononuclear Cell	Leukemia		
Overall Rates (a)	22/50 (44%)	22/50 (44%)	16/50 (32%)
Adjusted Rates (b)	57.7%	50.2%	34.0%
Terminal Rates (c)	7/22 (32%)	8/29 (28%)	8/38 (21%)
Week of First Observation	62	55	77
Life Table Tests (d)	P = 0.010N	P = 0.283N	P = 0.013N
Incidental Tumor Tests (d)	P = 0.318N	P = 0.569	P = 0.349N
Cochran-Armitage Trend Test (d)	P = 0.131N		
Fisher Exact Test (d)		P=0.580N	P = 0.152N
liver: Neoplastic Nodule			
Overall Rates (a)	6/50 (12%)	5/50 (10%)	7/50 (14%)
Adjusted Rates (b)	22.6%	15.2%	17.7%
Terminal Rates (c)	3/22 (14%)	3/29 (10%)	6/38 (16%)
Week of First Observation	95	87	99
Life Table Tests (d)	P = 0.330N	P=0.345N	P = 0.358N
Incidental Tumor Tests (d)	P = 0.508N	P=0.396N	P = 0.538N
Cochran-Armitage Trend Test (d)	P=0.439		
Fisher Exact Test (d)		P = 0.500N	P = 0.500

TABLE E1. ANALYSIS OF PRIMARY TUMORS IN MALE RATS IN THE TWO-YEAR FEED STUDY OF OXYTETRACYCLINE HYDROCHLORIDE

	Control	25,000 ppm	50,000 ppm
Liver: Neoplastic Nodule or Hepatocellu	lar Carcinoma		
Overall Rates (a)	6/50 (12%)	5/50 (10%)	9/50 (18%)
Adjusted Rates (b)	22.6%	15.2%	22.9%
Terminal Rates (c)	3/22 (14%)	3/29 (10%)	8/38 (21%)
Week of First Observation	95	87	99
Life Table Tests (d)	P = 0.524N		P = 0.530N
		P = 0.345N	P = 0.530 R P = 0.527
Incidental Tumor Tests (d)	P = 0.415	P=0.396N	P = 0.527
Cochran-Armitage Trend Test (d)	P=0.231	D 0 500N	D 0.000
Fisher Exact Test (d)		P = 0.500N	P = 0.288
ituitary Gland: Adenoma			
Overall Rates (a)	20/50 (40%)	27/50 (54%)	15/48 (31%)
Adjusted Rates (b)	61.7%	68.1%	36.7%
Terminal Rates (c)	11/22 (50%)	17/29 (59%)	12/37 (32%)
Week of First Observation	67	61	77
Life Table Tests (d)		• •	
	P = 0.006N	P = 0.454	P = 0.010N
Incidental Tumor Tests (d)	P = 0.137N	P = 0.180	P = 0.171N
Cochran-Armitage Trend Test (d)	P = 0.227 N		
Fisher Exact Test (d)		P = 0.115	P = 0.244N
ituitary Gland: Adenoma or Adenocarc	inoma		
Overall Rates (a)	21/50 (42%)	27/50 (54%)	15/48 (31%)
Adjusted Rates (b)	65,2%	68.1%	36.7%
Terminal Rates (c)	12/22 (55%)	17/29 (59%)	12/37 (32%)
Week of First Observation	67	61	77
Life Table Tests (d)	P=0.003N	P = 0.535	P = 0.005N
Incidental Tumor Tests (d)	P = 0.089N	P = 0.247	P = 0.110N
Cochran-Armitage Trend Test (d) Fisher Exact Test (d)	P = 0.171N	P = 0.158	P=0.186N
Fisher Exact Test (d)		P=0.156	F = 0.1801
Adrenal Cortex: Cortical Adenoma			
Overall Rates (a)	2/50 (4%)	2/50 (4%)	3/50 (6%)
Adjusted Rates (b)	8.5%	6.3%	7.4%
Terminal Rates (c)	1/22 (5%)	1/29 (3%)	2/38 (5%)
Week of First Observation	102	99	97
Life Table Tests (d)	P = 0.561N	P = 0.600 N	P = 0.637N
Incidental Tumor Tests (d)	P = 0.478	P = 0.645N	P = 0.583
Cochran-Armitage Trend Test (d)	P = 0.406	1 - 0.04010	1 - 0.000
Fisher Exact Test (d)	F = 0.400	P=0.691	P = 0.500
risher Exact Test (d)		P=0.091	P=0.500
drenal Cortex: Adenocarcinoma or Cor			
Overall Rates (a)	3/50 (6%)	2/50 (4%)	3/50 (6%)
Adjusted Rates (b)	12.9%	6.3%	7.4%
Terminal Rates (c)	2/22 (9%)	1/29 (3%)	2/38 (5%)
Week of First Observation	102	99	97
Life Table Tests (d)	P = 0.351N	P = 0.386N	P = 0.413N
Incidental Tumor Tests (d)	P = 0.488N	P = 0.425N	P=0.549N
Cochran-Armitage Trend Test (d)	P = 0.588		· ··· ··· ··· ··· ···
Fisher Exact Test (d)	× - 0.000	P = 0.500N	P=0.661
		10/50 (000)	94/60 (40/2)
		18/50 (36%)	24/50 (48%)
Overall Rates (a)	10/50 (20%)		FO 00
Overall Rates (a) Adjusted Rates (b)	37.2%	51.2%	52.9%
Overall Rates (a) Adjusted Rates (b) Terminal Rates (c)	37.2% 6/22 (27%)	51.2% 12/29 (41%)	17/38 (45%)
Adjusted Rates (b)	37.2%	51.2%	
Overall Rates (a) Adjusted Rates (b) Terminal Rates (c)	37.2% 6/22 (27%)	51.2% 12/29 (41%)	17/38 (45%)
Overall Rates (a) Adjusted Rates (b) Terminal Rates (c) Week of First Observation Life Table Tests (d) Incidental Tumor Tests (d)	37.2% 6/22 (27%) 95	51.2% 12/29 (41%) 94	17/38 (45%) 77
Overall Rates (a) Adjusted Rates (b) Terminal Rates (c) Week of First Observation Life Table Tests (d)	37.2% 6/22 (27%) 95 P=0.161	51.2% 12/29 (41%) 94 P=0.221	17/38 (45%) 77 P=0.166

TABLE E1. ANALYSIS OF PRIMARY TUMORS IN MALE RATS IN THE TWO-YEAR FEED STUDY OF OXYTETRACYCLINE HYDROCHLORIDE (Continued)

	Control	25,000 ppm	50,000 ppm
drenal Gland: Pheochromocytoma or M	alignant Pheochromoc	vtoma	
Overall Rates (a)	12/50 (24%)	19/50 (38%)	24/50 (48%)
Adjusted Rates (b)	41.0%	52.6%	52.9%
Terminal Rates (c)	6/22 (27%)	12/29 (41%)	17/38 (45%)
Week of First Observation	75	94	1738 (40 %)
Life Table Tests (d)	P = 0.305	P = 0.314	P = 0.312
Incidental Tumor Tests (d)	P = 0.305 P = 0.026	P = 0.314 P = 0.163	P = 0.312 P = 0.026
Cochran-Armitage Trend Test (d)	P = 0.020 P = 0.009	P=0.165	P - 0.020
Fisher Exact Test (d)	r = 0.008	P=0.097	P = 0.011
hyroid Gland: C-Cell Adenoma			
Overall Rates (a)	2/50 (4%)	2/50 (4%)	4/50 (8%)
Adjusted Rates (b)	9.1%		
•		6.9%	10.0%
Terminal Rates (c)	2/22 (9%)	2/29 (7%)	3/38 (8%)
Week of First Observation	104	104	99
Life Table Tests (d)	P=0.484	P = 0.593N	P = 0.597
Incidental Tumor Tests (d)	P = 0.436	P = 0.593N	P = 0.527
Cochran-Armitage Trend Test (d)	P = 0.252		
Fisher Exact Test (d)		P = 0.691	P=0.339
hyroid Gland: C-Cell Carcinoma			
Overall Rates (a)	1/50 (2%)	3/50 (6%)	3/50 (6%)
Adjusted Rates (b)	4.2%	9.2%	7.9%
Terminal Rates (c)	0/22 (0%)	1/29 (3%)	3/38 (8%)
Week of First Observation	102	99	104
Life Table Tests (d)	P = 0.435	P = 0.391	P = 0.505
Incidental Tumor Tests (d)	P=0.293	P = 0.326	P = 0.422
Cochran-Armitage Trend Test (d)	P = 0.238		
Fisher Exact Test (d)	1 - 0.200	P = 0.309	P=0.309
hyroid Gland: C-Cell Adenoma or Carcin			
Overall Rates (a)		E/EQ (100)	7/50 (140)
	3/50 (6%)	5/50(10%)	7/50 (14%)
Adjusted Rates (b)	12.9%	15.7%	17.7%
Terminal Rates (c)	2/22 (9%)	3/29 (10%)	6/38 (16%)
Week of First Observation	102	99	99
Life Table Tests (d)	P = 0.377	P = 0.500	P = 0.444
Incidental Tumor Tests (d)	P = 0.249	P = 0.453	P = 0.337
Cochran-Armitage Trend Test (d)	P = 0.122		
Fisher Exact Test (d)		P = 0.357	P = 0.159
ancreatic Islets: Islet Cell Adenoma			
Overall Rates (a)	2/50 (4%)	4/50 (8%)	7/50 (14%)
Adjusted Rates (b)	9.1%	13.8%	17.9%
Terminal Rates (c)	2/22 (9%)	4/29 (14%)	6/38 (16%)
Week of First Observation	104	104	100
Life Table Tests (d)	P = 0.208	P = 0.469	P = 0.271
Incidental Tumor Tests (d)	P = 0.183	P = 0.469	P = 0.228
Cochran-Armitage Trend Test (d)	P = 0.055		-
Fisher Exact Test (d)		P=0.339	P = 0.080
ancreatic Islets: Islet Cell Carcinoma			
Overall Rates (a)	4/50 (8%)	0/50 (0%)	0/50 (0%)
Adjusted Rates (b)	16.4%	0.0%	0.0%
Terminal Rates (c)	3/22 (14%)	0/29 (0%)	0/38 (0%)
Week of First Observation	95	0/20 (0/0)	
		D 0.00731	0-0.01007
	D = 0.00 E M		
Life Table Tests (d)	P = 0.005N	P = 0.037N	P = 0.019N
Life Table Tests (d) Incidental Tumor Tests (d)	P=0.006N	P = 0.037 N P = 0.041 N	P = 0.019 N P = 0.029 N
Life Table Tests (d)			

TABLE E1. ANALYSIS OF PRIMARY TUMORS IN MALE RATS IN THE TWO-YEAR FEED STUDY OF OXYTETRACYCLINE HYDROCHLORIDE (Continued)

	Control	25,000 ppm	50,000 ppm
Pancreatic Islets: Islet Cell Adenoma or	Carcinoma		
Overall Rates (a)	6/50 (12%)	4/50 (8%)	7/50 (14%)
Adjusted Rates (b)	25.2%	13.8%	17.9%
Terminal Rates (c)	5/22 (23%)	4/29 (14%)	6/38 (16%)
Week of First Observation	95	104	100
Life Table Tests (d)	P = 0.318N	P = 0.213N	P = 0.342N
Incidental Tumor Tests (d)	P = 0.375N	P = 0.221 N	P = 0.428N
Cochran-Armitage Trend Test (d)	P = 0.437		
Fisher Exact Test (d)		P = 0.370N	P = 0.500
Sestis: Interstitial Cell Tumor			
Overall Rates (a)	41/50 (82%)	37/50(74%)	40/50 (80%)
Adjusted Rates (b)	100.0%	85.9%	86.9%
Terminal Rates (c)	22/22 (100%)	23/29 (79%)	32/38 (84%)
Week of First Observation	62	65	79
Life Table Tests (d)	P<0.001N	P = 0.027 N	P<0.001N
Incidental Tumor Tests (d)	P = 0.079N	P = 0.085N	P = 0.073N
Cochran-Armitage Trend Test (d)	P = 0.451N		
Fisher Exact Test (d)		P = 0.235N	P = 0.500N
Preputial Gland: Adenoma or Adenocar			
Overall Rates (a)	1/50 (2%)	3/50 (6%)	1/50 (2%)
Adjusted Rates (b)	2.2%	9.0%	2.6%
Terminal Rates (c)	0/22 (0%)	2/29 (7%)	1/38 (3%)
Week of First Observation	67	86	104
Life Table Tests (d)	P = 0.462N	P = 0.381	P = 0.688N
Incidental Tumor Tests (d)	P = 0.549	P = 0.247	P = 0.652
Cochran-Armitage Trend Test (d)	P = 0.610		
Fisher Exact Test (d)		P=0.309	P = 0.753
All Sites: Mesothelioma			
Overall Rates (a)	0/50 (0%)	3/50 (6%)	0/50 (0%)
Adjusted Rates (b)	0.0%	10.0%	0.0%
Terminal Rates (c)	0/22 (0%)	2/29 (7%)	0/38 (0%)
Week of First Observation		103	
Life Table Tests (d)	P = 0.489N	P = 0.178	(f)
Incidental Tumor Tests (d)	P = 0.573N	P = 0.156	(f)
Cochran-Armitage Trend Test (d)	P = 0.640		
Fisher Exact Test (d)		P = 0.121	(f)

TABLE E1. ANALYSIS OF PRIMARY TUMORS IN MALE RATS IN THE TWO-YEAR FEED STUDY OF OXYTETRACYCLINE HYDROCHLORIDE (Continued)

(a) Number of tumor-bearing animals/number of animals examined at the site

(b) Kaplan-Meier estimated tumor incidence at the end of the study after adjusting for intercurrent mortality

(c) Observed tumor incidence at terminal kill

(d) Beneath the control incidence are the P values associated with the trend test. Beneath the dosed group incidence are the P values corresponding to pairwise comparisons between that dosed group and the controls. The life table analysis regards tumors in animals dying prior to terminal kill as being (directly or indirectly) the cause of death. The incidental tumor test regards these lesions as nonfatal. The Cochran-Armitage and Fisher exact tests compare directly the overall incidence rates. A negative trend or lower incidence in a dosed group is indicated by (N).

(e) A neurofibroma was also observed in one of these animals.

(f) No P value is reported because no tumors were observed in the 50,000-ppm and control groups.

	Control	25,000 ppm	50,000 ppm
Hematopoietic System: Mononuclear Cel	I Loukemia		***************************************
Overall Rates (a)	13/50 (26%)	9/50 (18%)	9/50 (18%)
Adjusted Rates (b)	30.8%	22.2%	22.9%
Terminal Rates (c)	4/31 (13%)	2/28 (7%)	5/34 (15%)
Week of First Observation	87	55	75
Life Table Tests (d)	P = 0.209N	P = 0.311N	P = 0.241N
Incidental Tumor Tests (d)	P = 0.209N P = 0.179N	P = 0.093N	P = 0.241N P = 0.333N
Cochran-Armitage Trend Test (d)	P = 0.194N	1 =0.03514	1 = 0.55514
Fisher Exact Test (d)	r=0.1941	P = 0.235N	P = 0.235N
iver: Neoplastic Nodule			
Overall Rates (a)	5/50 (10%)	4/50 (8%)	6/50 (12%)
Adjusted Rates (b)	12.5%	11.9%	17.1%
Terminal Rates (c)	1/31 (3%)	2/28 (7%)	5/34 (15%)
Week of First Observation	90	91	102
Life Table Tests (d)	P = 0.461	P = 0.540N	P = 0.524
Incidental Tumor Tests (d)	P = 0.353	P = 0.499N	P = 0.392
Cochran-Armitage Trend Test (d)	P = 0.434		
Fisher Exact Test (d)		P = 0.500 N	P = 0.500
ituitary Gland: Adenoma			
Overall Rates (a)	19/50 (38%)	17/50 (34%)	30/50 (60%)
Adjusted Rates (b)	44.9%	52.9%	69.5%
Terminal Rates (c)	9/31 (29%)	13/28 (46%)	21/34 (62%)
Week of First Observation	86	101	57
Life Table Tests (d)	P = 0.050	P = 0.544N	P=0.066
Incidental Tumor Tests (d)	P = 0.012	P = 0.477 N	P = 0.013
Cochran-Armitage Trend Test (d)	P = 0.017		
Fisher Exact Test (d)		P = 0.418N	P = 0.022
ituitary Gland: Adenocarcinoma			
Overall Rates (a)	2/50 (4%)	7/50 (14%)	3/50 (6%)
Adjusted Rates (b)	5.8%	17.5%	8.4%
Terminal Rates (c)	1/31 (3%)	1/28 (4%)	2/34 (6%)
Week of First Observation	99	83	99
Life Table Tests (d)	P = 0.431	P = 0.075	P = 0.520
Incidental Tumor Tests (d)	P = 0.294	P = 0.083	P = 0.429
Cochran-Armitage Trend Test (d)	P = 0.427		
Fisher Exact Test (d)		P=0.080	P=0.500
ituitary Gland: Adenoma or Adenocarc		04/00/40~	00/50/01/2
Overall Rates (a)	20/50 (40%)	24/50 (48%)	32/50 (64%)
Adjusted Rates (b)	47.4%	62.5%	72.6%
Terminal Rates (c)	10/31 (32%)	14/28 (50%)	22/34 (65%)
Week of First Observation	86	83	57
Life Table Tests (d)	P = 0.044	P = 0.202	P = 0.051
Incidental Tumor Tests (d)	P = 0.004	P = 0.230	P=0.007
Cochran-Armitage Trend Test (d) Fisher Exact Test (d)	P=0.011	P=0.273	P=0.014
drenal Gland: Cortical Adenoma	0/50 (10%)	E/EA /100	1/50 (07)
Overall Rates (a)	6/50 (12%)	5/50 (10%)	1/50 (2%)
Adjusted Rates (b)	19.4%	14.5%	2.9%
Terminal Rates (c)	6/31 (19%)	2/28 (7%)	1/34 (3%)
Week of First Observation	104 D-0.044N	91 D-0 501 D	104 D=0.040N
Life Table Tests (d)	P = 0.044N	P = 0.561N	P = 0.043N
Incidental Tumor Tests (d)	P = 0.053N	P = 0.541 N	P = 0.043N
Cochran-Armitage Trend Test (d) Fisher Exact Test (d)	P = 0.049N	P = 0.500N	P = 0.056N

TABLE E2. ANALYSIS OF PRIMARY TUMORS IN FEMALE RATS IN THE TWO-YEAR FEED STUDY OF OXYTETRACYCLINE HYDROCHLORIDE

	Control	25,000 ppm	50,000 ppm
Adrenal Gland: Adenocarcinoma or Cort	ical Adenoma		
Overall Rates (a)	6/50 (12%)	6/50 (12%)	1/50 (2%)
Adjusted Rates (b)	19.4%	17.8%	2.9%
Terminal Rates (c)	6/31 (19%)	3/28 (11%)	1/34 (3%)
Week of First Observation	104	91	104
Life Table Tests (d)	P = 0.048N	P = 0.556	P=0.043N
Incidental Tumor Tests (d)	P = 0.058N	P = 0.576	P = 0.043 N
Cochran-Armitage Trend Test (d)	P = 0.055N	1 = 0.070	1 - 0.04011
Fisher Exact Test (d)	1 -0.00014	P=0.620	P = 0.056N
drenal Gland: Pheochromocytoma			
Overall Rates (a)	6/50 (12%)	4/50 (8%)	3/50 (6%)
Adjusted Rates (b)	16.5%	14.3%	8.5%
Terminal Rates (c)	3/31 (10%)	4/28 (14%)	2/34 (6%)
Week of First Observation	93	104	101
Life Table Tests (d)	P = 0.170N	P = 0.425N	P = 0.227 N
Incidental Tumor Tests (d)	P = 0.219N	P = 0.400N	P = 0.336N
Cochran-Armitage Trend Test (d)	P = 0.187N		
Fisher Exact Test (d)	1 - 0.10111	P = 0.370N	P=0.243N
Thyroid Gland: C-Cell Adenoma			
Overall Rates (a)	6/50 (12%)	6/50 (12%)	5/50 (10%)
Adjusted Rates (b)	17.8%	20.0%	13.8%
Terminal Rates (c)	5/31 (16%)	5/28 (18%)	3/34 (9%)
Week of First Observation	86	96	99
Life Table Tests (d)	P = 0.396N	P = 0.551	P = 0.462N
Incidental Tumor Tests (d)	P = 0.450N	P = 0.565	P = 0.530N
Cochran-Armitage Trend Test (d)	P = 0.437N	1 - 0.000	
Fisher Exact Test (d)	1 - 0.40114	P = 0.620	P = 0.500N
Thyroid Gland: C-Cell Carcinoma			
Overall Rates (a)	2/50 (4%)	3/50 (6%)	2/50 (4%)
Adjusted Rates (b)	6.5%	9.7%	5.9%
Terminal Rates (c)	2/31 (6%)	2/28 (7%)	2/34 (6%)
Week of First Observation	104	99	104
Life Table Tests (d)	P = 0.558N	P = 0.458	P = 0.662N
Incidental Tumor Tests (d)	P = 0.586N	P = 0.470	P = 0.662N
Cochran-Armitage Trend Test (d)	P = 0.594		
Fisher Exact Test (d)		P = 0.500	P=0.691
Fhyroid Gland: C-Cell Adenoma or Carc			
Overall Rates (a)	8/50 (16%)	9/50 (18%)	6/50 (12%)
Adjusted Rates (b)	24.1%	29.0%	16.6%
Terminal Rates (c)	7/31 (23%)	7/28 (25%)	4/34 (12%)
Week of First Observation	86	96	99
Life Table Tests (d)	P = 0.293N	P = 0.413	P = 0.340N
Incidental Tumor Tests (d)	P = 0.348N	P = 0.432	P = 0.397N
Cochran-Armitage Trend Test (d)	P = 0.339N		
Fisher Exact Test (d)		P = 0.500	P = 0.387 N
Aammary Gland: Fibroadenoma			
Overall Rates (a)	21/50 (42%)	15/50 (30%)	15/50 (30%)
Adjusted Rates (b)	52.2%	44.3%	37.5%
Terminal Rates (c)	13/31 (42%)	10/28 (36%)	10/34 (29%)
Week of First Observation	86	93	81
Life Table Tests (d)	P = 0.112N	P = 0.254N	P = 0.141N
Incidental Tumor Tests (d)	P = 0.171N	P=0.193N	P = 0.203N
Cochran-Armitage Trend Test (d)	P = 0.123N		
Fisher Exact Test (d)		P=0.149N	P = 0.149N

TABLE E2. ANALYSIS OF PRIMARY TUMORS IN FEMALE RATS IN THE TWO-YEAR FEED STUDYOF OXYTETRACYCLINE HYDROCHLORIDE (Continued)

	Control	25,000 ppm	50,000 ppm
Mammary Gland: Adenoma or Fibroaden	oma		
Overall Rates (a)	22/50 (44%)	15/50 (30%)	16/50 (32%)
Adjusted Rates (b)	53.6%	44.3%	40.1%
Terminal Rates (c)	13/31 (42%)	10/28 (36%)	11/34 (32%)
Week of First Observation	86	93	81
Life Table Tests (d)	P = 0.114N	P = 0.202N	P = 0.144N
Incidental Tumor Tests (d)	P = 0.180N	P = 0.141N	P = 0.219N
Cochran-Armitage Trend Test (d)	P = 0.125N		
Fisher Exact Test (d)	1 - 0.12010	P = 0.107 N	P = 0.151 N
lammary Gland: Adenoma or Adenocard	cinoma		
Overall Rates (a)	2/50 (4%)	1/50 (2%)	3/50 (6%)
Adjusted Rates (b)	5.6%	2.4%	8.8%
Terminal Rates (c)			
Week of First Observation	0/31 (0%)	0/28 (0%)	3/34 (9%)
	99 D=0.418	93 D = 0 510N	104 D-0 595
Life Table Tests (d)	P = 0.418	P = 0.519N	P = 0.525
Incidental Tumor Tests (d)	P = 0.324	P = 0.471N	P = 0.429
Cochran-Armitage Trend Test (d)	P=0.399		D 0
Fisher Exact Test (d)		P = 0.500N	P = 0.500
ammary Gland: Adenoma, Fibroadenon			
Overall Rates (a)	22/50 (44%)	16/50 (32%)	17/50 (34%)
Adjusted Rates (b)	53.6%	45.7%	42.7%
Terminal Rates (c)	13/31 (42%)	10/28 (36%)	12/34 (35%)
Week of First Observation	86	93	81
Life Table Tests (d)	P = 0.158N	P = 0.265N	P = 0.188N
Incidental Tumor Tests (d)	P = 0.249N	P = 0.190N	P = 0.283N
Cochran-Armitage Trend Test (d)	P = 0.175N	• ••••••	
Fisher Exact Test (d)		P=0.151N	P = 0.206N
litoral Gland: Adenoma			
Overall Rates (a)	2/50 (4%)	5/50 (10%)	2/50 (4%)
Adjusted Rates (b)	5.3%	15.0%	5.1%
Terminal Rates (c)	1/31 (3%)	3/28 (11%)	1/34 (3%)
Week of First Observation			
	89 D. 0 5777)	89	84 D 0 000
Life Table Tests (d)	P = 0.577N	P = 0.187	P = 0.689
Incidental Tumor Tests (d)	P = 0.559	P = 0.200	P = 0.685
Cochran-Armitage Trend Test (d)	P=0.583		
Fisher Exact Test (d)		P = 0.218	P = 0.691
litoral Gland: Carcinoma			
Overall Rates (a)	3/50 (6%)	2/50 (4%)	2/50 (4%)
Adjusted Rates (b)	8.7%	6.2%	5.9%
Terminal Rates (c)	2/31 (Ġ%)	1/28 (4%)	2/34 (6%)
Week of First Observation	95	97	104
Life Table Tests (d)	P = 0.383N	P = 0.537 N	P = 0.473N
Incidental Tumor Tests (d)	P = 0.434N	P = 0.513N	P = 0.514N
Cochran-Armitage Trend Test (d)	P = 0.406N		
Fisher Exact Test (d)		P = 0.500 N	P = 0.500 N
litoral Gland: Adenoma or Carcinoma			
Overall Rates (a)	5/50 (10%)	7/50 (14%)	4/50 (8%)
Adjusted Rates (b)			
	13.7%	20.6%	10.8%
Terminal Rates (c)	3/31 (10%)	4/28 (14%)	3/34 (9%)
Week of First Observation	89	89	84
Life Table Tests (d)	P = 0.417N	P = 0.326	P = 0.482N
Incidental Tumor Tests (d)	P = 0.474N	P = 0.354	P = 0.519N
Cochran-Armitage Trend Test (d) Fisher Exact Test (d)	P = 0.436N		

TABLE E2. ANALYSIS OF PRIMARY TUMORS IN FEMALE RATS IN THE TWO-YEAR FEED STUDY OF OXYTETRACYCLINE HYDROCHLORIDE (Continued)

	Control	25,000 ppm	50,000 ppm
Uterus: Endometrial Stromal Polyp			
Overall Rates (a)	15/50 (30%)	10/50 (20%)	21/50 (42%)
Adjusted Rates (b)	41.7%	28.0%	50.4%
Terminal Rates (c)	11/31 (35%)	4/28 (14%)	14/34 (41%)
Week of First Observation	90	89	57
Life Table Tests (d)	P = 0.176	P = 0.262N	P = 0.218
Incidental Tumor Tests (d)	P=0.093	P = 0.206N	P = 0.149
Cochran-Armitage Trend Test (d)	P = 0.116		
Fisher Exact Test (d)		P = 0.178N	P = 0.149
Uterus: Endometrial Stromal Sarcoma			
Overall Rates (a)	0/50 (0%)	1/50 (2%)	3/50 (6%)
Adjusted Rates (b)	0.0%	2.1%	7.8%
Terminal Rates (c)	0/31 (0%)	0/28 (0%)	2/34 (6%)
Week of First Observation		83	72
Life Table Tests (d)	P=0.066	P = 0.492	P = 0.133
Incidental Tumor Tests (d)	P=0.105	P = 0.500	P = 0.259
Cochran-Armitage Trend Test (d)	P = 0.060		
Fisher Exact Test (d)		P = 0.500	P = 0.121
Uterus: Endometrial Stromal Polyp or S	arcoma		
Overall Rates (a)	15/50 (30%)	11/50 (22%)	22/50 (44%)
Adjusted Rates (b)	41.7%	29.5%	51.4%
Terminal Rates (c)	11/31 (35%)	4/28 (14%)	14/34 (41%)
Week of First Observation	90	83	57
Life Table Tests (d)	P = 0.134	P = 0.342N	P = 0.169
Incidental Tumor Tests (d)	P = 0.080	P = 0.281N	P = 0.149
Cochran-Armitage Trend Test (d)	P = 0.082		
Fisher Exact Test (d)		P = 0.247N	P = 0.107

TABLE E2. ANALYSIS OF PRIMARY TUMORS IN FEMALE RATS IN THE TWO-YEAR FEED STUDY OF OXYTETRACYCLINE HYDROCHLORIDE (Continued)

(a) Number of tumor-bearing animals/number of animals examined at the site

(b) Kaplan-Meier estimated tumor incidence at the end of the study after adjusting for intercurrent mortality

(c) Observed tumor incidence at terminal kill

(d) Beneath the control incidence are the P values associated with the trend test. Beneath the dosed group incidence are the P values corresponding to pairwise comparisons between that dosed group and the controls. The life table analysis regards tumors in animals dying prior to terminal kill as being (directly or indirectly) the cause of death. The incidental tumor test regards these lesions as nonfatal. The Cochran-Armitage and Fisher exact tests compare directly the overall incidence rates. A negative trend or lower incidence in a dosed group is indicated by (N).

	Control	6,300 ppm	12,500 ppm
Subcutaneous Tissue: Fibroma		<u></u>	
Overall Rates (a)	2/50 (4%)	4/50 (8%)	2/50 (4%)
Adjusted Rates (b)	6.5%	12.1%	5.9%
Terminal Rates (c)	2/31 (6%)	4/33 (12%)	2/34 (6%)
Week of First Observation	104	104	104
Life Table Tests (d)	P = 0.548N	P = 0.365	P = 0.662N
Incidental Tumor Tests (d)	P = 0.548N	P = 0.365	P = 0.662N
Cochran-Armitage Trend Test (d)	P = 0.587	1 - 0.000	1 - 0.00210
Fisher Exact Test (d)	1 -0.001	P=0.339	P = 0.691
ubcutaneous Tissue: Fibrosarcoma			
Overall Rates (a)	8/50 (16%)	5/50 (10%)	3/50 (6%)
Adjusted Rates (b)	19.0%	12.9%	6.8%
Terminal Rates (c)	1/31 (3%)	2/33 (6%)	0/34 (0%)
Week of First Observation	86	62	68
Life Table Tests (d)	P = 0.080N	P = 0.307N	P = 0.111N
Incidental Tumor Tests (d)	P = 0.106N	P = 0.470N	P = 0.137N
Cochran-Armitage Trend Test (d)	P = 0.073N		
Fisher Exact Test (d)		P = 0.277 N	P = 0.100N
ubcutaneous Tissue: Sarcoma			
Overall Rates (a)	3/50 (6%)	1/50 (2%)	1/50 (2%)
Adjusted Rates (b)	8.1%	2.8%	2.3%
Terminal Rates (c)	1/31 (3%)	0/33 (0%)	0/34 (0%)
Week of First Observation	95	98	85
Life Table Tests (d)	P = 0.203N	P = 0.314N	P = 0.304N
Incidental Tumor Tests (d)	P = 0.286N	P = 0.468N	P = 0.379N
Cochran-Armitage Trend Test (d)	P = 0.201 N		
Fisher Exact Test (d)		P=0.309N	P = 0.309N
ubcutaneous Tissue: Sarcoma or Fibros	arcoma		
Overall Rates (a)	10/50 (20%)	6/50 (12%)	4/50 (8%)
Adjusted Rates (b)	23.9%	15.3%	8.9%
Terminal Rates (c)	2/31 (6%)	2/33 (6%)	0/34 (0%)
Week of First Observation	86	62	68
Life Table Tests (d)	P = 0.062N	P = 0.239N	P = 0.086N
Incidental Tumor Tests (d)	P = 0.083N	P = 0.417N	P = 0.101 N
Cochran-Armitage Trend Test (d)	P = 0.053 N		
Fisher Exact Test (d)		P = 0.207N	P = 0.074N
ubcutaneous Tissue: Fibroma or Fibrosa			
Overall Rates (a)	10/50 (20%)	9/50 (18%)	5/50 (10%)
Adjusted Rates (b)	24.4%	24.2%	12.2%
Terminal Rates (c)	3/31 (10%)	6/33 (18%)	2/34 (6%)
Week of First Observation	86 B 0 100N	62 D	68
Life Table Tests (d)	P = 0.109N	P = 0.501 N	P = 0.135N
Incidental Tumor Tests (d)	P = 0.142N	P = 0.544	P = 0.168N
Cochran-Armitage Trend Test (d) Fisher Exact Test (d)	P = 0.110N	P = 0.500N	P = 0.131N
	on Fibrosonsome		
ibcutaneous Tissue: Fibroma, Sarcoma,	or ribrosarcoma 12/50 (24%)	10/50 (20%)	6/50 (12%)
Overali Rates (a)	29.1%	26.3%	14.2%
Overall Rates (a) Adjusted Rates (b)			2/34 (6%)
Adjusted Rates (b)		0/33 (1896)	
Adjusted Rates (b) Terminal Rates (c)	4/31 (13%)	6/33 (18%) 62	
Adjusted Rates (b) Terminal Rates (c) Week of First Observation	4/31 (13%) 86	62	68
Adjusted Rates (b) Terminal Rates (c)	4/31 (13%) 86 P=0.082N	62 P=0.413N	68 P=0.104N
Adjusted Rates (b) Terminal Rates (c) Week of First Observation Life Table Tests (d)	4/31 (13%) 86	62	68

TABLE E3. ANALYSIS OF PRIMARY TUMORS IN MALE MICE IN THE TWO-YEAR FEED STUDY OF OXYTETRACYCLINE HYDROCHLORIDE

	Control	6,300 ppm	12,500 ppm
ung: Alveolar/Bronchiolar Adenoma			
Overall Rates (a)	8/50 (16%)	4/50 (8%)	4/50 (8%)
Adjusted Rates (b)	23.5%	11.5%	11.8%
Rujusted Nates (b)	6/31 (19%)	3/33 (9%)	4/34 (12%)
Terminal Rates (c)	86	96	104
Week of First Observation	P = 0.103N	P = 0.164N	P = 0.143N
Life Table Tests (d)	P = 0.105 N P = 0.125 N	P = 0.204N	P==0.159N
Incidental Tumor Tests (d)		1 = 0.20 = 11	
Cochran-Armitage Trend Test (d)	P = 0.128N	P = 0.178N	P=0.178N
Fisher Exact Test (d)		P=0.1701	1-0.11011
ung: Alveolar/Bronchiolar Carcinoma			9 (KO (CO)
Overall Rates (a)	2/50 (4%)	6/50 (12%)	3/50 (6%)
Adjusted Rates (b)	6.5%	17.3%	8.8%
Terminal Rates (c)	2/31 (6%)	5/33 (15%)	3/34 (9%)
Week of First Observation	104	92	104
Life Table Tests (d)	P = 0.468	P = 0.150	P = 0.542
Incidental Tumor Tests (d)	P = 0.468	P = 0.152	P = 0.542
	P = 0.422		
Cochran-Armitage Trend Test (d) Fisher Exact Test (d)		P = 0.134	P = 0.500
n Alussian/Dusmakislan Adamama an f	[°] arcinoma		
ung: Alveolar/Bronchiolar Adenoma or (10/50 (20%)	9/50 (18%)	6/50 (12%)
Overall Rates (a)	29.6%	25.3%	17.6%
Adjusted Rates (b)	29.0% 8/31 (26%)	20.0 % 7/33 (21%)	6/34 (18%)
Terminal Rates (c)		92	104
Week of First Observation	86 D. 0.100N	P = 0.462N	P = 0.157N
Life Table Tests (d)	P = 0.132N	P = 0.402N P = 0.512N	P = 0.172N
Incidental Tumor Tests (d)	P = 0.151N	1 = 0.01211	
Cochran-Armitage Trend Test (d) Fisher Exact Test (d)	P = 0.174N	P = 0.500N	P=0.207N
Iematopoietic System: Malignant Lympho	oma, Mixed Type	1 (50 (90))	4/50 (8%)
Overall Rates (a)	4/50 (8%)	1/50 (2%)	
Adjusted Rates (b)	10.5%	2.4%	11.0%
Terminal Rates (c)	2/31 (6%)	0/33 (0%)	3/34 (9%)
Week of First Observation	55	91	92
Life Table Tests (d)	P = 0.560N	P = 0.188N	P = 0.613N
Incidental Tumor Tests (d)	P = 0.536N	P = 0.144N	P = 0.584N
Cochran-Armitage Trend Test (d)	P = 0.581N	,	
Fisher Exact Test (d)		P = 0.181N	P = 0.643N
Iematopoietic System: Lymphoma, All M	alionant		
Overall Rates (a)	8/50 (16%)	1/50 (2%)	8/50 (16%)
	22.1%	2.4%	19.1%
Adjusted Rates (b)	5/31 (16%)	0/33 (0%)	3/34 (9%)
Terminal Rates (c)	55	91	29
Week of First Observation		P = 0.020N	P = 0.562N
Life Table Tests (d)	P = 0.527N	P = 0.020 N P = 0.017 N	P = 0.597
Incidental Tumor Tests (d)	P = 0.552	F=0.01714	1 -0.001
Cochran-Armitage Trend Test (d)	P = 0.559N	D	D-0 607N
Fisher Exact Test (d)		P = 0.016N	P = 0.607 N
irculatory System: Hemangioma or Hem	angiosarcoma		0/50 (40)
Overall Rates (a)	3/50 (6%)	1/50 (2%)	2/50 (4%)
Adjusted Rates (b)	8.7%	2.4%	5.9%
Terminal Rates (c)	2/31 (6%)	0/33 (0%)	2/34 (6%)
ierminai aucesic/	95	86	104
Week of First Observation	P = 0.382N	P = 0.309N	P = 0.471N
Week of First Observation Life Table Tests (d)	P = 0.382N	P=0.309N P=0.348N	P = 0.471 N P = 0.507 N
Week of First Observation			

TABLE E3. ANALYSIS OF PRIMARY TUMORS IN MALE MICE IN THE TWO-YEAR FEED STUDYOF OXYTETRACYCLINE HYDROCHLORIDE (Continued)

	Control	6,300 ppm	12,500 ppm
Liver: Hepatocellular Adenoma			
Overall Rates (a)	7/50 (14%)	8/50 (16%)	6/50 (12%)
Adjusted Rates (b)	19.2%	23.1%	16.6%
Terminal Rates (c)	4/31 (13%)	7/33 (21%)	5/34 (15%)
Week of First Observation	86	91	73
Life Table Tests (d)	P=0.393N	P = 0.523	P = 0.454N
Incidental Tumor Tests (d)	P = 0.393N	P = 0.506	P = 0.454N
Cochran-Armitage Trend Test (d)	P = 0.444N		
Fisher Exact Test (d)		P=0.500	P = 0.500 N
iver: Hepatocellular Carcinoma			
Overall Rates (a)	11/50 (22%)	9/50 (18%)	11/50 (22%)
Adjusted Rates (b)	29.7%	22.4%	30.1%
Terminal Rates (c)	6/31 (19%)	3/33 (9%)	9/34 (26%)
Week of First Observation	91	75	94
Life Table Tests (d)	P=0.493N	P = 0.401 N	P = 0.528N
Incidental Tumor Tests (d)	P=0.481	P = 0.539N	P=0.535
Cochran-Armitage Trend Test (d)	P = 0.548N		
Fisher Exact Test (d)		P = 0.402N	P = 0.595N
iver: Hepatocellular Adenoma or Carci			
Overall Rates (a)	18/50 (36%)	15/50 (30%)	17/50 (34%)
Adjusted Rates (b)	45.2%	37.9%	45.3%
Terminal Rates (c)	10/31 (32%)	9/33 (27%)	14/34 (41%)
Week of First Observation	86	75	73
Life Table Tests (d)	P = 0.383N	P = 0.330N	P=0.416N
Incidental Tumor Tests (d)	P = 0.481N	P = 0.444N	P=0.521N
Cochran-Armitage Trend Test (d)	P = 0.457N		
Fisher Exact Test (d)		P = 0.336N	P = 0.500N
Adrenal Gland: Pheochromocytoma			
Overall Rates (a)	2/50 (4%)	5/49 (10%)	2/50 (4%)
Adjusted Rates (b)	6.2%	15.2%	5.9%
Terminal Rates (c)	1/31 (3%)	5/33 (15%)	2/34 (6%)
Week of First Observation	102	104	104
Life Table Tests (d)	P = 0.543N	P = 0.239	P = 0.663N
Incidental Tumor Tests (d)	P = 0.574N	P = 0.203	P=0.680
Cochran-Armitage Trend Test (d)	P = 0.581		
Fisher Exact Test (d)		P = 0.210	P=0.691
Adrenal Gland: Pheochromocytoma or M		toma	
Overall Rates (a)	3/50 (6%)	5/49 (10%)	2/50 (4%)
Adjusted Rates (b)	8.6%	15.2%	5.9%
Terminal Rates (c)	1/31 (3%)	5/33 (15%)	2/34 (6%)
Week of First Observation	96	104	104
Life Table Tests (d)	P = 0.381 N	P = 0.382	P = 0.467N
Incidental Tumor Tests (d)	P = 0.438N	P = 0.301	P = 0.556N
Cochran-Armitage Trend Test (d)	P = 0.424N		
Fisher Exact Test (d)		P = 0.346	P = 0.500N

TABLE E3. ANALYSIS OF PRIMARY TUMORS IN MALE MICE IN THE TWO-YEAR FEED STUDY OF OXYTETRACYCLINE HYDROCHLORIDE (Continued)

(a) Number of tumor-bearing animals/number of animals examined at the site

(b) Kaplan-Meier estimated tumor incidence at the end of the study after adjusting for intercurrent mortality

(c) Observed tumor incidence at terminal kill

⁽d) Beneath the control incidence are the P values associated with the trend test. Beneath the dosed group incidence are the P values corresponding to pairwise comparison between that dosed group and the controls. The life table analysis regards tumors in animals dying prior to terminal kill as being (directly or indirectly) the cause of death. The incidental tumor test regards these lesions as nonfatal. The Cochran-Armitage and Fisher exact tests compare directly the overall incidence rates. A negative trend or lower incidence in a dosed group is indicated by (N).

	Control	6,300 ppm	12,500 ppm
Lung: Alveolar/Bronchiolar Adenoma		·	
Overall Rates (a)	3/50 (6%)	1/50 (2%)	3/50 (6%)
Adjusted Rates (b)	9.7%	2.9%	6.9%
Terminal Rates (c)	3/31 (10%)	1/35 (3%)	1/36 (3%)
Week of First Observation	104	104	79
Life Table Tests (d)	P = 0.535N	P = 0.262N	P = 0.600N
Incidental Tumor Tests (d)	P = 0.562N	P = 0.262N	P = 0.632N
Cochran-Armitage Trend Test (d)	P = 0.592N		
Fisher Exact Test (d)		P = 0.309N	P = 0.661
ung: Alveolar/Bronchiolar Adenoma Car	cinoma		
Overall Rates (a)	3/50 (6%)	3/50 (6%)	3/50 (6%)
Adjusted Rates (b)	9.7%	8.6%	6.9%
Terminal Rates (c)	3/31 (10%)	3/35 (9%)	1/36 (3%)
Week of First Observation	104	104	79
Life Table Tests (d)	P = 0.517N	P = 0.607N	P = 0.600 N
Incidental Tumor Tests (d)	P = 0.541N	P = 0.607 N	P = 0.632N
Cochran-Armitage Trend Test (d)	P = 0.584		
Fisher Exact Test (d)		P=0.661	P=0.661
Hematopoietic System: Lymphoma, All M	alignant		
Overall Rates (a)	17/50 (34%)	12/50 (24%)	16/50 (32%)
Adjusted Rates (b)	45.2%	28.9%	37.8%
Terminal Rates (c)	11/31 (35%)	7/35 (20%)	11/36 (31%)
Week of First Observation	86	88	79
Life Table Tests (d)	P = 0.304N	P = 0.127N	P = 0.330N
Incidental Tumor Tests (d)	P=0.369N	P = 0.132N	P = 0.400N
Cochran-Armitage Trend Test (d)	P = 0.455N		
Fisher Exact Test (d)		P = 0.189N	P = 0.500 N
Hematopoietic System: Malignant Lymph	oma, Lymphocytic Type		
Overall Rates (a)	4/50 (8%)	2/50 (4%)	2/50 (4%)
Adjusted Rates (b)	11.1%	5.2%	5.2%
Terminal Rates (c)	2/31 (6%)	1/35 (3%)	1/36 (3%)
Week of First Observation	86	98	100
Life Table Tests (d)	P = 0.210N	P = 0.294N	P = 0.281 N
Incidental Tumor Tests (d)	P = 0.237 N	P = 0.334N	P = 0.322N
Cochran-Armitage Trend Test (d)	P = 0.252N		
Fisher Exact Test (d)		P=0.339N	P=0.339N
Hematopoietic System: Malignant Lymph	oma, Histiocytic Type		
Overall Rates (a)	2/50 (4%)	0/50 (0%)	3/50 (6%)
Adjusted Rates (b)	5.7%	0.0%	7.4%
Terminal Rates (c)	1/31 (3%)	0/35 (0%)	2/36 (6%)
Week of First Observation	98		79
Life Table Tests (d)	P = 0.436	P=0.219N	P = 0.552
Incidental Tumor Tests (d)	P = 0.409	P = 0.216N	P = 0.520
Cochran-Armitage Trend Test (d)	P=0.394		
Fisher Exact Test (d)		P = 0.248N	P = 0.500
Hematopoietic System: Malignant Lympho			
Overall Rates (a)	10/50 (20%)	10/50 (20%)	11/50 (22%)
Adjusted Rates (b)	29.8%	24.5%	27.1%
Terminal Rates (c)	8/31 (26%)	6/35 (17%)	8/36 (22%)
Week of First Observation	98	88	91
Life Table Tests (d)	P = 0.507 N	P = 0.486N	P = 0.551 N
Incidental Tumor Tests (d)	P = 0.533	P = 0.516N	P=0.594
Cochran-Armitage Trend Test (d)	P = 0.452		

TABLE E4. ANALYSIS OF PRIMARY TUMORS IN FEMALE MICE IN THE TWO-YEAR FEED STUDY OF OXYTETRACYCLINE HYDROCHLORIDE

	Control	6,300 ppm	12,500 ppm
Hematopoietic System: Lymphoma or Lo	eukemia	***************************************	
Overall Rates (a)	18/50 (36%)	12/50 (24%)	16/50 (32%)
Adjusted Rates (b)	46.3%	28.9%	37.8%
Terminal Rates (c)	11/31 (35%)	7/35 (20%)	11/36 (31%)
Week of First Observation	78	88	79
Life Table Tests (d)	P = 0.239N	P = 0.094N	P = 0.265N
Incidental Tumor Tests (d)	P = 0.349N	P = 0.114N	P = 0.400N
Cochran-Armitage Trend Test (d)	P = 0.371N		
Fisher Exact Test (d)		P = 0.138N	P = 0.417N
irculatory System: Hemangiosarcoma			
Overall Rates (a)	2/50 (4%)	2/50 (4%)	3/50 (6%)
Adjusted Rates (b)	4.3%	5.7%	'7. 9%
Terminal Rates (c)	0/31 (0%)	2/35 (6%)	2/36 (6%)
Week of First Observation	82	104	100
Life Table Tests (d)	P = 0.462	P = 0.657N	P = 0.552
Incidental Tumor Tests (d)	P = 0.414	P = 0.629	P=0.487
Cochran-Armitage Trend Test (d)	P = 0.408		
Fisher Exact Test (d)		P=0.691N	P = 0.500
irculatory System: Hemangioma or He			
Overall Rates (a)	2/50 (4%)	4/50 (8%)	3/50 (6%)
Adjusted Rates (b)	4.3%	11.4%	7.9%
Terminal Rates (c)	0/31 (0%)	4/35 (11%)	2/36 (6%)
Week of First Observation	82	104	100
Life Table Tests (d)	P = 0.481	P = 0.388	P = 0.552
Incidental Tumor Tests (d)	P=0.437	P = 0.294	P = 0.487
Cochran-Armitage Trend Test (d)	P = 0.416		
Fisher Exact Test (d)		P=0.339	P = 0.500
ver: Hepatocellular Adenoma			
Overall Rates (a)	5/50 (10%)	0/50 (0%)	1/50 (2%)
Adjusted Rates (b)	15.6%	0.0%	2.8%
Terminal Rates (c)	4/31 (13%)	0/35 (0%)	1/36 (3%)
Week of First Observation	101		104
Life Table Tests (d)	P = 0.025N	P = 0.024N	P = 0.074N
Incidental Tumor Tests (d)	P = 0.027N	P = 0.025N	P = 0.078N
Cochran-Armitage Trend Test (d)	P = 0.037 N		
Fisher Exact Test (d)		P = 0.028N	P = 0.102N
iver: Hepatocellular Adenoma or Carci			
Overall Rates (a)	6/50 (12%)	0/50 (0%)	2/50 (4%)
Adjusted Rates (b)	17.6%	0.0%	5.1%
Terminal Rates (c)	4/31 (13%)	0/35 (0%)	1/36 (3%)
Week of First Observation	91		99
Life Table Tests (d)	P=0.043N	P = 0.013N	P = 0.099N
Incidental Tumor Tests (d)	P = 0.052N	P = 0.018N	P = 0.118N
Cochran-Armitage Trend Test (d) Fisher Exact Test (d)	P = 0.059N	P-0.019N	D-0 194N
		P=0.013N	P=0.134N
tuitary Gland: Adenoma	10/00/00/00	10/40 (00%)	10/50 /00/
Overall Rates (a)	13/50 (26%)	16/49 (33%)	10/50 (20%)
Adjusted Rates (b)	41.9%	42.9%	25.9%
Terminal Rates (c)	13/31 (42%)	13/34 (38%)	8/36 (22%)
Week of First Observation	104	96	97
Life Table Tests (d)	P = 0.154N	P=0.445	P = 0.183N
Incidental Tumor Tests (d)	P = 0.163N	P = 0.439	P=0.190N
	D 0.00037		
Cochran-Armitage Trend Test (d) Fisher Exact Test (d)	P = 0.287N	P = 0.306	P = 0.318N

TABLE E4. ANALYSIS OF PRIMARY TUMORS IN FEMALE MICE IN THE TWO-YEAR FEED STUDY OF OXYTETRACYCLINE HYDROCHLORIDE (Continued)

	Control	6,300 ppm	1 2,500 pp m
Pituitary Gland: Adenocarcinoma			<u> </u>
Overall Rates (a)	3/50 (6%)	0/49 (0%)	2/50 (4%)
Adjusted Rates (b)	9.7%	0.0%	4.9%
Terminal Rates (c)	3/31 (10%)	0/34 (0%)	1/36 (3%)
	• •	0/34(0%)	94
Week of First Observation	104	B A LATM	-
Life Table Tests (d)	P = 0.337N	P = 0.105N	P≈0.433N
Incidental Tumor Tests (d)	P = 0.346N	P = 0.105N	$P \approx 0.446 N$
Cochran-Armitage Trend Test (d)	P = 0.389N		
Fisher Exact Test (d)		P = 0.125N	P = 0.500N
tuitary Gland: Adenoma or Adenocarc			
Overall Rates (a)	16/50 (32%)	16/49 (33%)	12/50 (24%)
Adjusted Rates (b)	51.6%	42.9%	30.1%
Terminal Rates (c)	16/31 (52%)	13/34 (38%)	9/36 (25%)
Week of First Observation	104	96	94
Life Table Tests (d)	P = 0.103N	P = 0.452N	P = 0.122N
Incidental Tumor Tests (d)	P = 0.109N	P = 0.456N	P = 0.129N
		F - 0.4001	1 0.1231
Cochran-Armitage Trend Test (d)	P = 0.223N	D-0 559	D 0 05037
Fisher Exact Test (d)		P = 0.558	P=0.252N
hyroid Gland: Follicular Cell Adenoma			
Overall Rates (a)	2/50 (4%)	3/50 (6%)	1/49 (2%)
Adjusted Rates (b)	6.5%	8.6%	2.8%
Terminal Rates (c)	2/31 (6%)	3/35 (9%)	1/36 (3%)
Week of First Observation	104	104	104
Life Table Tests (d)	P = 0.343N	P = 0.556	P=0.448N
Incidental Tumor Tests (d)	P = 0.343N	P = 0.556	P=0.448N
Cochran-Armitage Trend Test (d)	P = 0.409N	1 = 0.000	1 - 0.44011
Fisher Exact Test (d)	r - 0.40511	P=0.500	P=0.508N
fammary Gland: Adenocarcinoma or A	ionosquamous Carcinon	10	
Overall Rates (a)	2/50 (4%)	3/50 (6%)	1/50 (2%)
Adjusted Rates (b)	6.3%	7.8%	2.8%
Terminal Rates (c)	1/31 (3%)	1/35 (3%)	1/36 (3%)
Week of First Observation	101	96	104
Life Table Tests (d)	P = 0.347N	P = 0.557	P=0.449N
Incidental Tumor Tests (d)	P = 0.371N	P=0.549	P = 0.465N
Cochran-Armitage Trend Test (d)	P = 0.402N		
Fisher Exact Test (d)		P = 0.500	P = 0.500N
Jammany Cland, Fibradanama Adana	anainama an Adanasau	amous Caroinama	
lammary Gland: Fibroadenoma, Adeno Overall Rates (a)	3/50 (6%)	4/50 (8%)	1/50 (2%)
Adjusted Rates (b)	8.7%	10.1%	2.8%
Terminal Rates (c)	1/31 (3%)	1/35 (3%)	1/36 (3%)
Week of First Observation	98	96	104
Life Table Tests (d)	P = 0.211N	P = 0.559	P = 0.265N
Incidental Tumor Tests (d)	P = 0.226N	P=0,559	P = 0.279N
Cochran-Armitage Trend Test (d)	P = 0.254N		.
Fisher Exact Test (d)		P = 0.500	P = 0.309N
arderian Gland: Adenoma			
Overall Rates (a)	4/50 (8%)	3/50 (6%)	0/50 (0%)
Adjusted Rates (b)	11.8%	7.8%	0.0%
Terminal Rates (c)	2/31 (6%)	2/35 (6%)	0/36 (0%)
Week of First Observation	100	94	
	-		D-0.040N
Life Table Tests (d)	P = 0.036N	P = 0.440N	P = 0.049N
	P = 0.038N	P = 0.440N	P = 0.054N
Incidental Tumor Tests (d)			
Cochran-Armitage Trend Test (d) Fisher Exact Test (d)	P = 0.049N	P = 0.500N	P=0.059N

TABLE E4. ANALYSIS OF PRIMARY TUMORS IN FEMALE MICE IN THE TWO-YEAR FEED STUDY OF OXYTETRACYCLINE HYDROCHLORIDE (Continued)

TABLE E4. ANALYSIS OF PRIMARY TUMORS IN FEMALE MICE IN THE TWO-YEAR FEED STUDY OF OXYTETRACYCLINE HYDROCHLORIDE (Continued)

⁽a) Number of tumor-bearing animals/number of animals examined at the site

⁽b) Kaplan-Meier estimated tumor incidence at the end of the study after adjusting for intercurrent mortality

⁽c) Observed tumor incidence at terminal kill

⁽d) Beneath the control incidence are the P values associated with the trend test. Beneath the dosed group incidence are the P values corresponding to pairwise comparisons between that dosed group and the controls. The life table analysis regards tumors in animals dying prior to terminal kill as being (directly or indirectly) the cause of death. The incidental tumor test regards these lesions as nonfatal. The Cochran-Armitage and Fisher exact tests compare directly the overall incidence rates. A negative trend or lower incidence in a dosed group is indicated by (N).

APPENDIX F

HISTORICAL INCIDENCES OF TUMORS IN F344/N RATS RECEIVING NO TREATMENT

TABLE F1. HISTORICAL INCIDENCE OF ADRENAL GLAND TUMORS IN MALE F344/N RATS **RECEIVING NO TREATMENT (a)**

		Incidence in Controls			
	Pheochromocytoma	Pheochromocytoma, Pheochromocytoma or Malignant Pheochromocytoma, Malignar			
No 2-year studies by l	Physiological Research Laboratori	es are included in the his	torical data base.		
Overall Historical	ncidence				
TOTAL SD(b)	338/1,702 (19.9%) 9.87%	20/1,702 (1.2%) 1.49%	358/1,702 (21.0%) 9.63%		
	· · · · · · · · · · · · · · · · · · ·	, ,			

(a) Data as of August 3, 1984, for studies of at least 104 weeks

(b) Standard deviation

(c) Range and SD are presented for groups of 35 or more animals.

TABLE F2. HISTORICAL INCIDENCE OF PITUITARY GLAND TUMORS IN FEMALE F344/N RATS **RECEIVING NO TREATMENT (a)**

		Incidence in Controls		
	Adenoma	Carcinoma	Adenoma or Carcinoma	
No 2-year studies by Ph	ysiological Research Laboratories ar	e included in the histor	rical data base.	
Overall Historical In	cidence			
TOTAL	(b) 743/1,704 (43.6%)	(c) 62/1,704 (3.6%)	(b,c) 805/1,704 (47.2%)	
SD (d)	11.71%	4.24%	11.01%	
Range (e)				
Range (e) High Low	33/47 7/39	8/49 0/50	33/47 9/39	

(a) Data as of August 3, 1984, for studies of at least 104 weeks

(b) Includes 593 adenomas, NOS, and 150 chromophobe adenomas. No other benign tumors were observed. (c) Includes 51 carcinomas, NOS, and 11 chromophobe carcinomas. No other malignant tumors were observed.

(d) Standard deviation

(e) Range and SD are presented for groups of 35 or more animals.

APPENDIX G

GENETIC TOXICOLOGY OF OXYTETRACYCLINE HYDROCHLORIDE

139 Oxytetracycline Hydrochloride, NTP TR 315

		_	Revertants/plate (a,b	b)		
Strain	Dose (µg/plate)	- \$9	+ S 9 (rat)	+ S9 (hamster)		
TA100	0.000	106 ± 7.2	129 ± 0.6	122 ± 7.8		
	0.003	142 ± 8.5	128 ± 2.5	99 ± 3.3		
	0.010	122 ± 10.7	130 ± 8.4	120 ± 9.7		
	0.030	102 ± 13.1	124 ± 5.1	134 ± 2.1		
	0.100	113 ± 6.8	103 ± 10.5	134 ± 2.7		
	0.300	105 ± 4.0	128 ± 11.0	122 ± 7.2		
	1.000	61 ± 1.7	78 ± 4.4	74 ± 1.7		
TA1535	0.000	17 ± 3.5	10 ± 2.8	12 ± 1.8		
	0.003	15 ± 2.1	12 ± 3.9	10 ± 3.1		
	0.010	15 ± 2.6	8 ± 1.5	7 ± 1.7		
	0.030	15 ± 2.3	12 ± 0.6	10 ± 1.7		
	0.100	15 ± 2.8	10 ± 1.2	9 ± 0.9		
	0.300	13 ± 1.5	9± 0.7	7 ± 0.7		
	1.000	14 ± 3.5	7 ± 0.9	8 ± 0.9		
TA1537	0.000	5 ± 1.0	6± 0.9	12 ± 3.0		
	0.003	5 ± 1.5	6 ± 1.2	6 ± 1.8		
	0.010	7 ± 1.0	7 ± 2.2	8 ± 0.6		
	0.030	6 ± 0.9	6 ± 0.7	8 ± 2.3		
	0.100	3 ± 0.9	4 ± 0.0	4 ± 0.9		
	0.300	7 ± 1.2	6 ± 1.2	6 ± 0.7		
	1.000	4 ± 0.6	7 ± 1.2	7 ± 0.9		
TA98	0.000	15 ± 2.6	28 ± 0.7	20 ± 3.5		
	0.003	14 ± 3.1	25 ± 1.5	18 ± 2.2		
	0.010	15 ± 1.5	20 ± 1.8	26 ± 1.5		
	0.030	15 ± 1.5	22 ± 1.7	27 ± 6.1		
	0.100	14 ± 2.2	21 ± 5.5	25 ± 6.4		
	0.300	10 ± 3.1	18 ± 3.8	21 ± 3.2		
	1.000	10 ± 1.5	14 ± 3.2	17 ± 4.4		

TABLE G1. MUTAGENICITY OF OXYTETRACYCLINE HYDROCHLORIDE IN SALMONELLA TYPHIMURIUM

(a) The S9 fractions were prepared from the liver of Aroclor 1254-induced male Sprague-Dawley rats and male Syrian hamsters. Cells and study compound or solvent (DMSO) were incubated for 20 minutes at 37° C in the presence of either S9 or buffer. After the addition of soft agar, the contents of each tube were poured onto minimal medium, and the plates were incubated at 37° C for 48 hours (Haworth et al., 1983). The experiment was performed twice, each in triplicate; because the results were similar, data from only one experiment are shown.

(b) Mean ± standard error

Concentration (µg/ml)	Total Mutant Clones	Cloning Efficiency (percent)	Relative Total Growth (percent)	Mutation Frequency (mutants/10 ⁸ clonable cells)
Distilled water	<u> </u>			
	116	72.3	98	53
	122	59.7	101	68
Ethyl methanesulfonate				
200.0	433	71.8	73	201
	547	84.5	78	216
Oxytetracycline hydrochlorid	e			
12.5	116	66.2	102	58
	124	69.3	112	60
25.0	113	51.5	95	73
	121	65.8	106	61
50.0	89	52.2	93	57
	90	84.7	141	35
100.0	100	82.2	90	41
	87	51.3	64	56
200.0	108	51.8	65	69
	82	74.0	84	37
400.0	100	54.0	43	62
	95	60.0	34	53
800.0	Toxic			

TABLE G2. MUTAGENICITY OF OXYTETRACYCLINE HYDROCHLORIDE IN L5178Y/TK^{+/-} MOUSELYMPHOMA CELLS IN THE ABSENCE OF S9 (a)

(a) Experiments were performed twice, and all doses were tested in duplicate or triplicate. Because the results were similar, data from only one experiment are shown. The protocol was basically that of Clive et al. (1979). Cells (6×10^{5} /ml) were treated for 4 hours at 37° C in medium, washed, resuspended in medium, and incubated for 48 hours at 37° C. After expression, 3×10^{6} cells were plated in medium supplemented with trifluorothymidine for selection of cells that were mutant at the thymidine kinase (TK) locus, and 600 cells were plated in nonselective medium to determine the percentage of viable cells.

Concentration (µg/ml)	Total Mutant Clones	Cloning Efficiency (percent)	Relative Total Growth (percent)	Mutation Frequency (mutants/10 ⁶ clonable cells)
Distilled water				
	152	54.2	101	94
	176	64.5	84	91
	181	76.2	94	79
	166	69.8	117	79
Methylcholanthrene				
2.5	712	57.7	40	412
	663	37.8	33	584
Dxytetracycline hydrochlori	ide			
25.0	189	73.3	98	86
	204	69.0	102	99
50.0	201	73.0	66	92
00.0	179	62.2	85	96
100.0	307	71.0	29	144
100.0	238	45.5	34	174
	200	40.0	04	1 (**
200.0	920	(b) 3.8	(b) 1	8,000
	1,351	(b) 13 .0	4	3,464
400.0	Toxic			

TABLE G3. MUTAGENICITY OF OXYTETRACYCLINE HYDROCHLORIDE IN L5178Y/FK^{+/-} MOUSE LYMPHOMA CELLS IN THE PRESENCE OF S9 (a)

(a) Experiments were performed twice, and all doses were tested in duplicate except the solvent control (distilled water), which was tested in quadruplicate. Because the results were similar, data from only one experiment are shown. The protocol was basically that of Clive et al. (1979). Cells (6×10^{5} /ml) were treated for 4 hours at 37° C in medium, washed, resuspended in medium, and incubated for 48 hours at 37° C. After expression, 3×10^{6} cells were plated in medium supplemented with trifluorothymidine for selection of cells that were mutant at the thymidine kinase (TK) locus, and 600 cells were plated in non-selective medium to determine the percentage of viable cells. S9 was prepared from the liver of Aroclor 1254-induced male F344 rats.

(b) Extreme toxicity

TABLE G4. INDUCTION OF SISTER-CHROMATID EXCHANGES IN CHINESE HAMSTER OVARY CELLS BY OXYTETRACYCLINE HYDROCHLORIDE (a)

- S9 (b)		+ S9 (c)	
Dose (µg/ml)	SCE/Cell(d)	Dose (µg/ml)	SCE/Cell (d)
Water (pH 2.86)	10.9	Water (pH 2.86)	13.6
Oxytetracycline hydrochloride		Oxytetracycline hydrochloride	
60	12.9	400	16.0
70	13.5	500	16.6
80	12.7	700	17.6
Mitomycin C		Cyclophosphamide	
0.001	17.7	0.350	18.4
0.010	56.4	2.000	34.4

(a) SCE = sister-chromatid exchange

(b) In the absence of S9, Chinese hamster ovary cells were incubated with study compound or solvent at 37° C; 2 hours after initiation of treatment, 10 μ M BrdU was added, and incubation was continued for an additional 22-24 hours. Cells were washed, fresh medium containing BrdU (10 μ M) and colcemid (0.1 μ g/ml) was added, and incubation was continued for 2-3 hours (Galloway et al., 1985).

(c) In the presence of S9, cells were incubated with study compound or solvent for 2 hours at 37° C. Then cells were washed, and medium containing 10 µM BrdU was added. Cells were incubated for a further 26 hours, with colcemid (0.1 µg/ml) present for the final 2-3 hours. S9 was from the liver of Aroclor 1254-induced male Sprague-Dawley rats (Galloway et al., 1985).

(d) Cells were collected by mitotic shake-off, treated for 3 minutes with potassium chloride (75 mM), washed twice with fixative, and dropped onto slides and air-dried (Galloway et al., 1985).

TABLE G5. INDUCTION OF CHROMOSOMAL ABERRATIONS IN CHINESE HAMSTER OVARY CELLS BY OXTETRACYCLINE HYDROCHLORIDE (a)

	– S9 (b)	+ S9 (c)		
Dose (µg/ml)	Abs/100 Cells (percent cells with abs)	Dose (µg/ml)	Abs/100 Cells (percent cells with abs)	
Water (pH 2.86)	6 (6)	Water (pH 2.86)	4 (3)	
Oxytetracycline hydroc	hloride	Oxytetracycline hydroc	hloride	
80	4 (3)	700	5 (5)	
90	5 (4)	800	4 (4)	
100	5 (4)	900	3 (3)	
Mitomycin C		Cyclophosphamide		
0.050	112 (52)	15.000	88 (58)	

(a) Abs = aberrations

(b) In the absence of S9, Chinese hamster ovary cells were incubated with study compound or solvent for 8-10 hours at 37° C. Cells were then washed, and fresh medium containing colcemid (0.1 µg/ml) was added. After a further 2-3 hours of incubation, cells were harvested by mitotic shake-off, fixed, and stained in 6% Giemsa (Galloway et al., 1985).

(c) In the presence of S9, cells were incubated with study compound or solvent for 2 hours at 37°C. Cells were then washed, fresh medium was added, and incubation was continued for 8-10 hours. Colcemid (0.1 µg/ml) was added for the last 2-3 hours of incubation; then cells were harvested by mitotic shake-off, fixed, and stained in 6% Giemsa. S9 was from the liver of Aroclor 1254-induced male Sprague-Dawley rats (Galloway et al., 1985).

Oxytetracycline Hydrochloride, NTP TR 315 144

APPENDIX H

CHEMICAL CHARACTERIZATION OF OXYTETRACYCLINE HYDROCHLORIDE

APPENDIX H. CHEMICAL CHARACTERIZATION

I. Identity and Purity Determinations of Oxytetracycline Hydrochloride Performed by the Analytical Chemistry Laboratory

				Determined		<u>Literature V</u>	alues
A. 1	Lo	t no	. 304-G-004				
1	l.	РЪ	ysical properties				
		а.	Appearance:	Yellow, fluffy solid		Yellow platel (Merck Index,	
		b.	Melting point:	180° C (decomposes (visual, capillary, Büchi 510)	a);	181°-182° C (decomposes) (Merck Index,	, 1976)
		c.	Specific rotation:	[a] $\frac{26}{D}$: -202.5° ± 2	2.0°	[a] $\frac{25}{D}$: -196.	6°
				(solvent: 0.1 N hydrochloric acid)		(Merck Index, (solvent: 0.1 l	N
				[a] $\frac{26}{D}$: -196.6° ± 3	1.2°	hydrochloric a	(CIQ)
				(USP standard) (solvent: 0.1 N hydrochloric acid)			
2	2.	Sp	ectral data	•			
		a.	Infrared				
			Instrument:	Beckman IR-12			
			Phase:	1% in potassium bromide pellet			
			Results:	See Figure 5		Consistent wir literature spec (Sadtler Stand Spectra)	ctrum
		b.	Ultraviolet/visible			opectra)	
			Instrument:	Cary 118			
			Solvent:	0.1 N hydrochloric a	acid	0.1 N sulfuric	acid
			Results:	$\lambda \max(nm) \epsilon \times$	< 10 ⁻⁴	λ max (nm)	$\epsilon imes 10^{-4}$
				218 1.44 ± 0 268 1.91 ± 0 353 1.39 ± 0	0.01	269 352 (Clarke, 1969)	1.99 1.35
				$\begin{array}{cccc} 218 & 1.33 \pm 0 \\ 268 & 1.76 \pm 0 \\ 353 & 1.29 \pm 0 \\ (USP standard) \end{array}$	0.01		

.

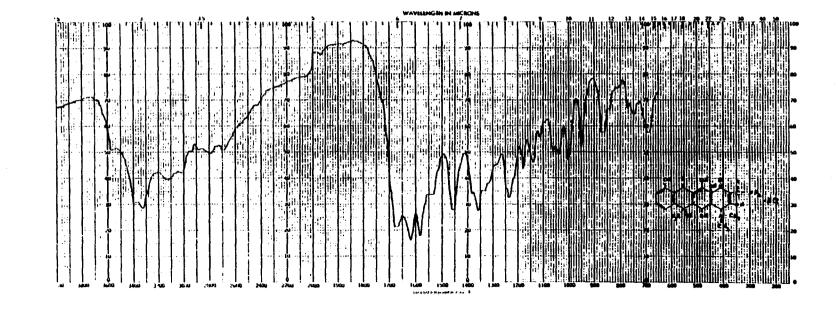
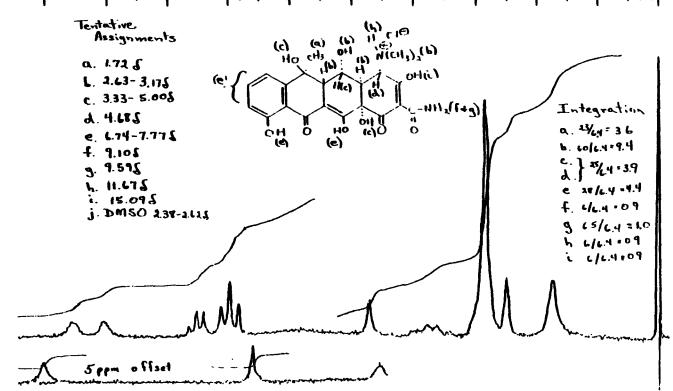


FIGURE 5. INFRARED ABSORPTION SPECTRUM OF OXYTETRACYCLINE HYDROCHLORIDE (LOT NO. 304-G-004)

		Determined	Literature Values
c.	Nuclear magnetic resonance		
	Instrument:	Varian EM-360A	
	Solvent:	Dimethyl sulfoxide, d ₆ with tetramethylsilane internal standard	
	Assignments:	See Figure 6	No literature reference found. Spectrum consistent with structure.
	Chemical shift (8):	a 1.72 b 2.63-3.17 c 3.33-5.00 d 4.68 e 6.74-7.77 f 9.10 g 9.59 h 11.67 i 15.09 j 2.38-2.62 (DMSO)	
	Integration ratios:	a 3.6 b 9.4 c d } 3.9 e 4.4 f 0.9 g 1.0 h 0.9 i 0.9	

3. Titration

a. Acidic functional group: Titration of three acidic protons with 0.1 N sodium methoxide. The compound was dissolved in dimethylformamide (Regosz, 1975).


A purity of 97.5% \pm 0.2(δ)% was indicated.

b. Amine group: Titration of one basic proton with 0.1 N perchloric acid in glacial acetic acid. The compound was dissolved in anhydrous formic acid:glacial acetic acid:1,4-dioxane (1:2:2) (Hansen, 1973).

A purity of 97.8% \pm 0.2(δ)% was indicated.

FIGURE 6. NUCLEAR MAGNETIC RESONANCE SPECTRUM OF OXYTETRACYCLINE HYDROCHLORIDE (LOT NO. 304-G-004)

4. Potency by chemical assay: Reaction of the compound with ferric chloride solution, measurement of the absorbance produced at 490 nm, and direct comparison with a USP standard of known potency treated in the same manner (CFR, 1977).

A potency of 1,006 \pm 3(δ) µg/mg compared with the USP standard quoted at 940 µg/mg.

5. Water analysis (Karl Fischer): $0.98\% \pm 0.08(\delta)\%$

6. Elemental analysis

Element	C	Н	N	0	Cl
Theory (T)	53.18	5.07	5.64	28.98	7.13
Determined (D)	53.01 53.14	5.33 5.24	5.62 5.61	28.34 28.47	7.15 7.09
Percent D/T	99.80	104.24	99.56	98.02	99.86

7. Chromatographic analysis

a. Thin-layer chromatography

Reference standard: 4-Hydroxyacetanilide

Amount spotted: 5, 40, and 120 µg of compound and 20 µg of reference standard **Visualization:** Ultraviolet at 254 and 356 nm; spray of a solution of boric acid (1 g/100 ml) in concentrated sulfuric acid:water (7:3) (Gyanchandi et al., 1970)

System 1

Plates: Silanized Silica Gel 60, F-254, 0.25-mm layer thickness, sprayed with 0.1 M aqueous disodium ethylenediamine tetraacetic acid and air dried overnight before use

Solvent: *n*-Butanol saturated with water. Manually programmed multiple development.

System 2

Plates: Cellulose F, 0.1 mm-layer thickness, sprayed with 0.1 M aqueous disodium ethylenediamine tetraacetic acid and air dried overnight before use **Solvent:** Isopropanol:0.1 M disodium ethylenediamine tetraacetic acid (1:1) with precipitate filtered before use. Manually programmed multiple development.

System 1			System 2			_
Spot <u>Intensity</u>	<u>R</u> f	<u>R</u> st	Spot <u>Intensity</u>	Rf	<u>R</u> st	
Major	0.58	0.72	Major	0.83	0.98	
Trace	0.69	0.85	Reference	0.85	1.00	
Trace	0.38	0.47				
Reference	0.81	1.00				

b. High-performance liquid chromatography

Instrument system

Pump: Waters 6000A
Programmer: Waters 660
Detector: Waters 440
Injector: Waters U6K
Column: μBondapak C₁₈, 300 × 3.9 mm ID
Detection: Ultraviolet, 254 nm
Guard column: CO:PELL ODS, 72 × 2.3 mm ID
Flow rate: 1 ml/min
Solvent system

(A) 1.5 mM tetraammonium ethylenediamine tetraacetic acid in water containing 5% acetic acid (v/v)
(B) Tetrahydrofuran

System 1

Solvent program: 5% (B), isocratic **Samples injected:** 20 µl of a 0.6 mg/ml methanolic solution of the compound and 20 µl of a 0.7 mg/ml methanolic solution of the USP standard

Results: The compound exhibited a major peak preceded by one minor impurity (shoulder). Three trace (relative area < 0.1%) impurities, one preceding and two following the major peak, were also detected. The USP standard exhibited the same minor impurity and the one trace impurity preceding the major peak.

<u>Peak No.</u>	Retention <u>Time (min)</u>	Retention Time Relative to <u>Major Peak</u>	Area (percent of <u>major peak)</u>
1 (shoulder)	7.5	0.89	0.30
2	8.4	1.00	100.0

System 2

Solvent program: 10% (B), isocratic (for quantitation against a USP standard) **Samples injected:** 25 µl of methanolic solutions of the compound and the USP standard containing acetophenone as an internal standard

Results: The results indicated a purity of $105.4\% \pm 1.6(\delta)\%$ relative to the USP standard by comparison of the areas of the major peaks (normalized with the internal standard area).

APPENDIX H. CHEMICAL CHARACTERIZATION

8. Conclusions: The results of the elemental analysis for carbon, hydrogen, nitrogen, and chlorine agreed with theoretical values, but the oxygen value was slightly low. The water content was 0.98% \pm 0.08(δ)% by Karl Fischer titrimetry. Titrations of acidic functional groups indicated a purity of 97.5% \pm 0.2(8)%. An amino group titration indicated a purity of 97.8% \pm 0.2(δ)%. The results of a chemical assay for potency indicated a value of 1,006 \pm 3(δ) µg/mg compared with a USP standard quoted as 940 µg/mg. Thin-layer chromatography detected a major spot and two trace impurities in one system, and only a major spot in the second. A high-performance liquid chromatographic system detected one minor shoulder, relative area of 0.3%, preceding the major peak, and three trace (relative area < 0.1%) impurities in addition to the major peak in the sample. A purity profile of a USP standard material indicated only the minor and trace impurity preceding the major peak. Quantitation by high-performance liquid chromatography (HPLC) indicated a purity of 105.4% \pm 1.6(δ)% relative to the USP standard. The optical activity was consistent with a literature value. The infrared and ultraviolet/visible spectra were also consistent with the literature. The ε_{max} values measured for the material were an average of 8% greater than the ε_{max} values for the USP standard material. The nuclear magnetic resonance spectrum was consistent with the structure.

В.

			Determine	ed	<u>Literature V</u>	alues
La	t n 0	. 69150380				
10						
1.	Ph	ysical properties				
	a .	Appearance:	Yellow, flui crystalline			
	b.	Specific rotation:	[α] ^{28°} : -2 ⁰ D	02.2° ± 0.7°	[a] ^{25°} : -196	3.6°
			(solvent: 0. hydrochlori		(Merck Index (solvent: 0.1 hydrochloric	N
2.	Sp	ectral data				
	a.	Infrared				
		Instrument:	Perkin-Elm	ner 283		
		Phase:	1% in potas bromide pel			
		Results:	See Figure	7	Consistent w structure and spectrum (Sadtler Stan Spectra)	lliterature
	b.	Ultraviolet/visible				
		Instrument:	Cary 219			
		Solvent:	0.1 N hydro	chloric acid	0.1 N sulfurio	e acid
		Results:	λ max (nm)	$\epsilon imes 10^{-4}$	λ max (nm)	$\epsilon imes 10^{-4}$
			318	$\begin{array}{c} 1.367 \pm 0.009 \\ 1.027 \pm 0.003 \\ 1.881 \pm 0.008 \\ 1.410 \pm 0.006 \end{array}$	352 269 (Clarke, 1969	1.35 1.99
			269	$\begin{array}{l} 1.280 \pm 0.008 \\ 0.966 \pm 0.008 \\ 1.749 \pm 0.009 \\ 1.332 \pm 0.023 \\ \mathrm{ard} \end{array}$	353 276 249 (as the free ba phosphate bu 4.5) (Merck In	ffer, pH

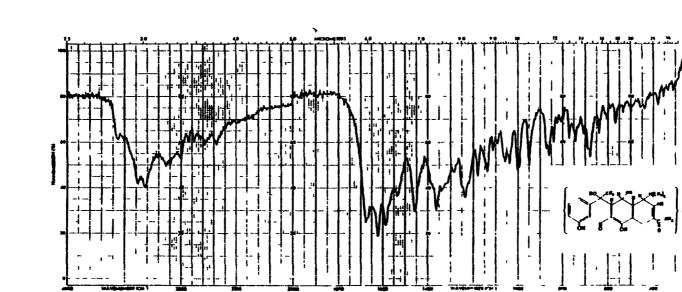
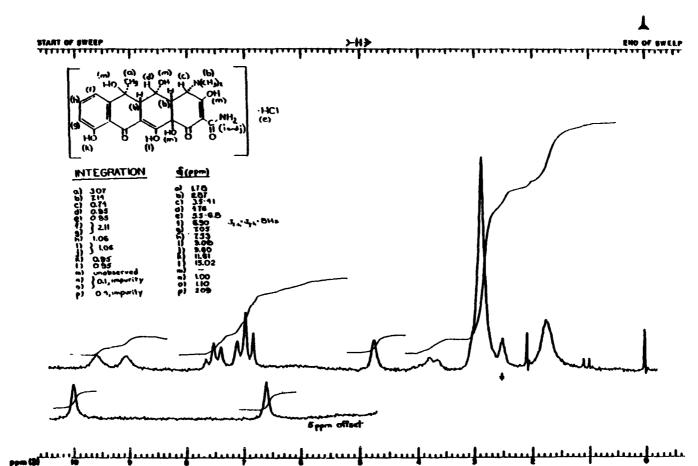



FIGURE 7. INFRARED ABSORPTION SPECTRUM OF OXYTETRACYCLINE HYDROCHLORIDE (LOT NO. 69150380)

c.	Nuclear magnetic resonance	Determine	ed	<u>Literature Values</u>
	Instrument:	Varian EM	-360A	
	Solvent:		dimethyl- vith tetramethyl- mal standard	
	Assignments:	See Figure	8	Consistent with structure and literature (Asleson et al., 1974; von Wittenau and Blackwood, 1966)
	Chemical shift (δ):	g unress h t i broad j broad k s l s m unobs n impur o impur p impur * This impurit that of aceton	s 2.87 m 3.5-4.1 s 4.76 s 5.5-6.8 plved d 6.90 $J_{f-h} =$ plved d 7.05 7.53 s 9.08 s 9.60 11.61 15.02 erved ity 1.00 ity 1.10 ity 2.08* y peak is a singlet with	a chemical shift consistent with etone, calculations from the inte-
	Integration ratios:	$\begin{array}{cccc} a & 3.07 \\ b & 7.14 \\ c & 0.74 \\ d & 0.95 \\ e & 0.95 \\ f \\ g \\ \end{array} \begin{array}{c} 2.11 \\ h & 1.06 \\ i \\ j \\ \end{array} \begin{array}{c} 1 \\ 1 \\ 0.95 \\ m \\ - \\ n \\ 0 \\ \end{array} \begin{array}{c} 0.95 \\ m \\ - \\ n \\ 0 \\ \end{array} \begin{array}{c} 0.95 \\ m \\ - \\ n \\ 0.1 \\ p \\ 0.4 \end{array}$		

FIGURE 8. NUCLEAR MAGNETIC RESONANCE SPECTRUM OF OXYTETRACYCLINE HYDROCHLORIDE (LOT NO. 69150380)

3. Titration

a. Acidic functional group: The sample was dissolved in dimethylformamide and titrated with 0.1 N sodium methoxide in methanol:toluene (1:4). The titration was monitored potentiometrically with a combination electrode (filled with aqueous 4 M potassium chloride).

A purity of 98.8% \pm 0.3(δ)% (for three equivalents per mole) was indicated.

b. Amine group: The sample was dissolved in formic acid:acetic acid:*p*-dioxane (1:2:2) and titrated with 0.1 N perchloric acid in the presence of mercuric acetate. The titration was monitored potentiometrically with a combination electrode.

A purity of 99.5% \pm 0.2(δ)% was indicated.

4. Visible spectrophotometric assay: The sample was dissolved in 0.1 N hydrochloric acid, and the absorptivity was compared with a USP standard, similarly treated, at 354 nm.

The percent relative absorptivity of the sample (calculated on the dried basis) versus a USP standard was $93.4\% \pm 0.9(\delta)\%$. The FDA requires the percent relative absorptivity to be $92.5\% \pm 4.3\%$ of a similarly treated standard, corrected for potency (CFR, 1977).

5. Potency by chemical assay: Reaction of the compound with ferric chloride solution, measurement of the absorbance produced at 490 nm, and direct comparison with a USP standard of known potency treated in the same manner (CFR, 1977).

A potency of 1,003 \pm 7(δ) µg/mg of free base compared with the USP standard of 940 µg/mg. The FDA requires a potency of not less than 835 µg of oxytetracycline per milligram, calculated on the dried basis.

- 6. Water analysis (Karl Fischer): $0.39\% \pm 0.05(\delta)\%$ The FDA requires moisture content to be equal to or less than 2.0% (CFR, 1977).
- 7. Elemental analysis

Element	С	Н	N	Cl
Theory (T)	53.18	5.07	5.64	7.13
Determined (D)	53.13 53.36	5.22 5.25	5.54 5.67	7.17 7.21
Percent D/T	100.1	103.2	99.38	100.8

8. Chromatographic analysis

a. Thin-layer chromatography

Plates: MN Cellulose, 0.25 mm layer thickness Reference standard: 10 µl of a 1 mg/ml solution of tryptophan in methanol; oxytetracycline USP reference standard, 30 µl of a 10 mg/ml solution in methanol Amount spotted: 1, 10, and 30 µl of a 10 mg/ml solution in methanol Visualization: Ultraviolet at 254 and 366 nm; 0.5% Fast Blue B salt in water/0.1 N sodium hydroxide (Stahl, 1969)

System 1

Solvent: 5% aqueous trisodium citrate saturated with *n*-butanol

System 2

Solvent: 0.1 M aqueous sodium fluoride

System 1		System 2			
Spot			Spot		
<u>Intensity</u>	Rf	$\underline{\mathbf{R}}_{st}$	Intensity	<u>R</u> f	$\underline{\mathbf{R}}_{\mathbf{st}}$
<u>Oxytetracyclin</u>	e				
Slight trace	0.83	1.20	Trace	0.83	1.22
Major	0.75	1.09	Major	0.75	1.10
Minor	0.56	0.81	Minor	0.51	0.75
USP reference					
Slight trace	0.84	1.22	Trace	0.84	1.24
Major	0.75	1.09	Major	0.75	1.10
Tryptophan*	0.69		Tryptophan*	0.68	

 ${}^{\bullet}$ Used for R_{st} calculations

b. High-performance liquid chromatography

Detection of impurities

Instrument system Pump: Waters M6000A Programmer: Waters 660 Detector: Waters 440 Injector: Waters U6K Column: μBondapak C₁₈, 300 × 3.9 mm ID Detection: Ultraviolet, 254 nm Guard column: Whatman CO:PELL ODS, 72 × 2.3 mm ID Flow rate: 1 ml/min Solvent system (A) 1.5 mM tetraammonium ethylenediamine tetraacetic acid in water containing 5% (v/v) acetic acid (B) Tetrahydrofuran Solvent ratio: A:B (95:5) Samples injected: Solution containing 0.786 mg/ml oxytetracycline hydrochloride in methanol filtered into an amber septum vial Volume injected: 20 µl

Results: The compound exhibited a major peak and one impurity with an area greater than 0.1% of the major peak area. The impurity eluted at 17.2 minutes and had an area equal to 0.42% of the major peak area. A second impurity eluted on the tail of the major peak but was less than 0.1% of the major peak area. In the original analysis, one impurity (0.3% of the major peak area) was observed on the front of the major peak in lot no. 304-G-004 but was not seen this time.

During the solvent ratio search, no additional impurities with areas > 0.1% of the major peak area were observed when injections of a solution of similar concentration to the one used for the analytical system were made at 100, 80, 60, 40, 20, or 10% B.

<u>Peak No.</u>	Retention <u>Time (min)</u>	Retention Time Relative to <u>Major Peak</u>	Area* (percent of <u>major peak)</u>
1	9.3	1.00	100.0
2	17.2	1.85	0.42

* Detector response is very dependent upon the absorbance of a substance at the detection wavelength used. The values reported are absolute areas expressed as percentages of the area of the major peak and do not take into account the different ε values of the compound and its impurities. Therefore, the areas reported do not necessarily reflect the actual weight percentages of the impurities in the sample.

Batch comparison by major peak analysis

Samples of the USP standard and both the previous lot, no. 304-G-004, and present lot, no. 69150380, were analyzed by high-performance liquid chromatography. Sample peak heights were compared with internal standard peak heights, and the percent oxytetracycline hydrochloride in each batch was calculated relative to the USP standard. The instrumental parameters listed above for detection of impurities were used with the exceptions noted below.

Solvent ratio: A:B (85:15)

Flow rate: 1.5 ml/min

Samples injected: Solutions containing 0.5 mg/ml accurately weighed oxytetracycline hydrochloride and 0.3 mg/ml acetophenone as internal standard in methanol and filtered into an amber septum vial

Retention times

Oxytetracycline hydrochloride: 4.2 min Acetophenone (internal standard): 8.0 min

APPENDIX H. CHEMICAL CHARACTERIZATION

Results

Sample	Percent Oxytetracycline Normalized to USP Reference
USP oxytetracycline	100.0 ± 2.0
Lot no. 304-G-004	100.9 ± 2.0
Lot no. 69150380	100.8 ± 2.0

9. Conclusions: The results of the elemental analysis for carbon, hydrogen, nitrogen, and chlorine were in agreement with theoretical values. Thin-layer chromatography, with one system, resolved a major, a minor, and a slight trace spot. The USP reference co-chromatographed with this system exhibited a major spot and a slight trace corresponding to the slight trace observed for the sample. The second thin-layer chromatographic system resolved a major spot and a minor and a trace impurity. The USP reference contained a trace impurity corresponding to the one observed in the sample. High-performance liquid chromatography resolved a major peak and one impurity with a relative area of 0.42%. Major peak comparisons made of the current lot and a USP reference indicated a purity of $100.8\% \pm 2.0(\delta)\%$ relative to the USP reference.

II. Chemical Stability Study Performed by the Analytical Chemistry Laboratory

- A. Sample preparation and storage: Samples of oxytetracycline hydrochloride were stored for 2 weeks in amber vials with Teflon®-lined caps at temperatures of -20°, 5°, 25°, or 60° C.
- **B.** Analytical method: Duplicate samples from each storage temperature were prepared by dissolving approximately 20 mg of the material, accurately weighed, in methanol, adding sufficient acetophenone, the internal standard, to produce a final concentration of 0.17 mg/ml, and diluting to 50 ml with methanol. Aliquots $(25 \ \mu)$ of these solutions were injected into the following high-performance liquid chromatographic system.

Instrument system Pump: Waters 6000A Programmer: Waters 660 Detector: Waters 440 Injector: Waters U6K Column: μBondapak C₁₈, 300 × 3.9 mm ID Detection: Ultraviolet, 254 nm Guard column: CO:PELL ODS, 72 × 2.3 mm ID Flow rate: 1 ml/min Solvent system (A) 1.5 mM tetraammonium ethylenediamine tetraacetic acid in water containing 5% acetic acid (v/v) (B) Tetrahydrofuran Program: 10% B, isocratic (for quantitation against a USP standard)

C. Results

ormalized to -20°C sample)
100.0
$100.0 \pm 1.6(\delta)$
$97.8 \pm 1.6(\delta)$
$98.7 \pm 1.6(\delta)$

D. Conclusions: Oxytetracycline hydrochloride is stable, within the limits of error of the analysis, when stored for 2 weeks at temperatures up to 60° C. However, because of the relatively large error, the possibility of decomposition at temperatures of 25° C or higher cannot be ruled out.

III. Chemical Stability Study at the Study Laboratory

A. Storage conditions

Bulk chemical: room temperature until 6/1/81, then 5° C Reference: -20° C

B. Analytical method

1. Identity determination: Infrared spectrometry Instrument: Perkin-Elmer 283 Phase: 1% in potassium bromide pellet

2. Purity determination

Ultraviolet spectrometry: A solution of 0.250 mg/ml of ferric chloride hexahydrate was prepared. Twenty milligrams of accurately weighed oxytetracycline hydrochloride was dissolved in 10 ml of 0.1 N hydrochloric acid and diluted to 100 ml. Then 10 ml of the ferric chloride hexahydrate solution was added to 10 ml of the oxytetracycline hydrochloric acid solution, and the mixture was allowed to stand for 15 minutes after which the absorbance was read at 490 nm.

Nonaqueous titration: Oxytetracycline hydrochloride (200 mg) was accurately weighed into 25 ml of solvent made up of formic acid:1,4-dioxane (purified on an alumina column and distilled):glacial acetic acid (1:2:2). Then 0.86 mg of mercuric acetate was added for each milligram of oxytetracycline hydrochloride, and the resulting solution was titrated with 0.1 N perchloric acid in glacial acetic acid. The potential of the solution was monitored from 0 to 750 mv.

C. Results

1. Identity: All bulk infrared spectra were comparable to the reference spectra and to the spectra supplied by the analytical chemistry laboratory.

2. Purity

a. Ultraviolet spectrometry

Date of <u>Analysis</u>	<u>Lot No.</u>	Potency of <u>Bulk Sample (µg/mg)</u>
11/79	304-G-004	(a) 998
02/80	304-G-004	(a) 1,004
	304-G-004 304-G-004	(a) 1,004 (a) 1,007
06/80		
10/80	304-G-004	(b) 997
02/81	304-G-004	(c) 1,006
06/81	304-G-004	(b) 1,009
06/81	69150380	(b) 1,020
10/81	69150380	(a) 1,006
02/82	69150380	(a) 991
06/82	69150380	(a) 998
10/82	69150380	(b) 1,024

(a) Result of triplicate analysis
(b) Result of duplicate analysis
(c) Result of quadruplicate analysis

b. Nonaqueous titration

Date of		Perce	Percent Purity (a)	
<u>Analysis</u>	Lot No.	Bulk	Reference	
02/81	304-G-004	98.9	98.8	
06/81	304-G-004	98.0	97.8	
06/81	69150380	98.3		
10/81	69150380	99.9	99 .6	
02/82	69150380	(b) 100.0	99.6	
06/82	69150380	100.5	100.7	
10/82	69150380	99.7	98.7	

(a) Results of duplicate analysis

(b) Result of triplicate analysis

D. Conclusion: No notable degradation occurred during the studies.

Oxytetracycline Hydrochloride, NTP TR 315 164

APPENDIX I

PREPARATION AND CHARACTERIZATION

OF FORMULATED DIETS

I. Studies Conducted by the Analytical Chemistry Laboratory

A. Homogeneity Study

- 1. **Premix:** Oxytetracycline hydrochloride (15.0 g) was transferred to a tared 600-ml beaker and thoroughly mixed by spatula with approximately 15 g of feed. Approximate portions (30-60 g) of additional feed were added and blended in the same manner; then a final portion of feed was incorporated so that the total weight of the premix was 215 g.
- 2. Bulk mixing: A 600-g quantity of feed was layered evenly in the blender; then the premix was added in roughly equal amounts to both sides of the blender. The fine material adhering to the beaker walls was taken up by stirring 100 g of feed in the beaker briefly and adding it to the blender. After an additional 600 g of feed was layered over the premix, the blender ports were sealed.

Blending was conducted with the intensifier bar for the first 5 minutes and without it for the next 10 minutes of mixing. During the mixing operation, the blender shells were periodically given a firm tap with a block of wood to knock loose any feed that may have become packed in the corners of the blender.

At the end of the 15-minute mixing period, approximately 40 g of the feed blend was sampled from the upper left- and right-hand shells and from the bottom discharge port. Triplicate 10.0-g portions of each sample were transferred into 200-ml centrifuge bottles for analysis. The theoretical level of oxytetracycline hydrochloride in the blend was 9.90 mg/g.

3. Extraction and analysis: Samples (10 g) were extracted with 100 ml of acidic methanol solution (1 ml hydrochloric acid/liter methanol) by shaking for 15 minutes on a Burrell Wrist-Action® shaker. The extracts were clarified by centrifuging; then 3-ml aliquots were diluted to 200 ml with acidic methanol solution.

The absorbance of the solutions was measured at 359 nm in 1-cm quartz cells versus acidic methanol on an ultraviolet spectrophotometer. Solutions were protected from light, and all sample readings were corrected before calculating results for the mean absorbance of feed blanks treated as the samples.

4. Quality control: All samples and the feed blanks were analyzed in triplicate. Absorbance readings of the samples were corrected for the mean feed blank absorbance before results were calculated. The spiked feed recovery yield was determined in triplicate at the same concentration as the samples and was applied to the analysis results.

The linearity of the spectrophotometric curve was evaluated with standard solutions of oxytetracycline hydrochloride that were prepared from two separate standard solutions and diluted. All sample results were calculated from the linear regression equation developed from the five standards.

5. Results

Sample <u>Location</u>	Oxytetracycline Hydrochloride in Feed (ppm) (a)	Average Percent Recovery (determined/target × 100) (b,c)
Right	9,890	99.9 ± 0.8
Left	9,740	98.4 ± 1.2
Bottom	9,680	97.8 ± 1.1

(a) Corrected for a spiked recovery yield of 95.8% \pm 1%

(b) Target concentration of oxytetracycline hydrochloride in feed was 9,900 ppm.

(c) Error values are maximum deviations of individual assay values from the mean.

6. Conclusion: Oxtetracycline hydrochloride was blended into rodent feed at a concentration of 9,900 ppm with approximately 1% variation in concentration from the mean blend level at three sampling points in the blender.

B. Stability study

- 1. Sample mixing and storage: Four 8-oz screw-cap bottles were each filled with about 100 g of the formulated diet prepared as described in Section I.A.2. of this appendix and tightly sealed. Single bottles were stored in the dark for 2 weeks at -20° , 5°, 25°, or 45° C.
- 2. Extraction and analysis: Triplicate 10 ± 0.01 -g samples of feed from each storage condition were extracted in 200-ml centrifuge bottles with 100 ml of acidic methanol (5 ml concentrated hydrochloric acid/liter methanol). The samples were shaken for 15 minutes on a Burrell Wrist-Action[®] shaker; then the extracts were clarified by centrifugation for 10 minutes at 2,000 rpm.

A 5-ml aliquot of each extract was mixed with 6 ml of internal-standard solution (50 mg propiophenone/100 ml methanol). After a thorough mixing, a few milliliters of each solution was filtered through a 0.5- μ Millipore filter and sealed in a 5-ml septum vial. The oxytetracycline hydrochloride content of the solutions was determined by the high-performance liquid chromatographic system described below.

Instrument: Waters Associates Liquid Chromatograph Model ALC202 Column: μBondapak C₁₈, 300 mm × 4 mm ID Detector: Ultraviolet, 254 nm Attenuation: 1.0 AUFS Mobile phase: [1.5 mM tetraammonium ethylenediamine tetraacetic acid in water:acetic acid (95:5 v/v)]:[tetrahydrofuran] (88:12) Injection volume: 25 μl Retention time Study chemical: 5.1 min Internal standard: 14.0 min 3. Quality control: Analyses were performed by making single injections of sample extracts prepared in triplicate. Recovery of the chemicals from feed was determined in triplicate with feed spiked at the same concentrations as the samples. Because the spiked recovery yield was $100.9\% \pm 1.0\%$, no correction for recovery was applied to the sample results.

Results were calculated from relative response factors (RRF) computed from peak heights of the calibration standards using the following equation:

RRF = <u>milligrams per milliliter study chemical × peak height of internal standard</u> peak height of study chemical × milligrams per millilter of internal standard

Then the milligrams per gram of chemical in the vehicle was calculated as

 $\frac{RRF \times sample peak height \times milligrams per milliliter internal standard \times DF}{peak height of internal standard \times grams of sample}$

where DF = dilution factor.

The linearity of the spectrophotometric curve was evaluated with standard solutions of oxytetracycline hydrochloride that were prepared from a weighed standard solution and diluted. All sample results were calculated from the linear regression equation developed from the four standards.

4. Results

Storage <u>Temperature</u>	Oxytetracycline Hydrochloride in Feed (ppm) (a)	Percent Recovered (determined/target × 100) (b)
– 20° C	9,920	100.2 ± 2.6
5° C	9,920	100.2 ± 3.5
25° C	10,090	101.9 ± 0.6
45° C	9,760	98.7 ± 2.2

(a) The target concentration of the chemical in feed was 9,900 ppm. The analytical results were not corrected for recovery because the zero-time spiked recovery yield was 100.9% \pm 1.0%. (b) Error values are maximum deviations from the mean and represent the sum of the analytical error plus variations in the composition of the feed blend.

5. Conclusions: The recovery of oxytetracycline hydrochloride from feed was influenced to some degree by the acidity of the extracting solvent. The samples from the stability study were extracted with 0.5% hydrochloric acid in methanol and exhibited essentially complete recovery of the chemical, whereas the homogeneity samples extracted with 0.1% hydrochloric acid-methanol showed 95.8% recovery. The weaker acid solution was used for the ultraviolet spectrophotometric method because it was found that the feed blank background in the ultraviolet method was directly related to the level of acid in the extracting solution.

Oxytetracycline hydrochloride blended into rodent feed at the 1% concentration exhibited no loss of stablity, within the limits of the mean test error (2.2%), after 2 weeks' storage in the dark at temperatures up to 45° C.

II. Homogeneity Study Conducted by the Study Laboratory

- A. Preparation: For each concentration, the premix was prepared by weighing a quantity of the bulk chemical, sufficient to prepare a 1-week supply of dosed feed, and quantitatively transferring the weighed chemical to a tared beaker containing approximately 200 g of feed. Another portion of feed was added to adjust the premix weight to 1,000 g. The combined ingredients were thoroughly mixed by spatula.
- **B.** Bulk mixing and sampling: Bulk mixing was performed in a Patterson-Kelly[®] twin-shell stainless steel blender fitted with an intensifier bar. For each formulation the appropriate amount of undosed feed was accurately weighed and transferred in one-fourth amounts to both sides of the blender. The premix was added in roughly equal amounts to both sides of the blender. The fine residue adhering to the beaker was taken up by using the premix beaker to transfer one or two beakers of remaining feed to the blender. The blender ports were sealed, and mixing was conducted with the intensifier bar for the first 5 minutes and without it for the remaining 10 minutes.

Three samples were taken from each of the 3,100-ppm and 50,000-ppm mixtures. About 50 g of subsurface formulation was taken from the upper left- and right-hand ports and from the discharge port of the twin-shell blender. Analyses were performed on duplicate 10-g samples.

C. Analysis: Samples were extracted with 100 ml of acidified methanol solution (1 ml hydrochloric acid/liter of methanol) by shaking for 15 minutes on a Burrell Wrist-Action® shaker. The extracts were clarified by centrifugation at 2,000 rpm for 10 minutes; then appropriate aliquots were volumetrically diluted with acidified methanol solution to yield final concentrations within the range of the standard curve.

The absorbance of the solutions was measured at 359 nm in 1-cm quartz cells versus acidic methanol on a Cary 219 ultraviolet spectrophotometer. Solutions were protected from light, and all sample readings were corrected before calculating results for the mean absorbance of feed blanks diluted as the samples.

D. Quality assurance measures: All samples and the feed blanks were analyzed in duplicate. Absorbance readings of the samples (0.367-0.572 AU) were corrected for the mean feed blank absorbance of that corresponding dilution before results were calculated. The spiked feed recovery yield (93.61% \pm 2.41%) was determined in duplicate at the lowest, median, and highest concentrations of the samples and was applied to the analysis results.

The linearity of the spectrophotometric curve was evaluated with standard solutions of oxytetracycline hydrochloride that were prepared from a weighed standard solution and diluted. All sample results were calculated from the linear regression equation developed from the five standards.

Sample <u>Location</u>	Target <u>Concentration (ppm)</u>	Measured <u>Concentration (ppm) (a</u>)	Percent <u>of Target</u>
Upper right	50,000	48,600	97.2
Upper left	50,000	48,600	97.2
Bottom	50,000	49,100	98.2
Batch	50,000	50,100	100.2
Upper right	3,100	3,000	96.8
Upper left	3,100	3,100	100.0
Bottom	3,100	3,000	96.8
Batch	3,100	3,000	96.8

E. Results

(a) Results of duplicate analysis

F. Conclusion: The determined concentrations were all within $\pm 10\%$ of the target values.

APPENDIX J

METHODS OF ANALYSIS OF FORMULATED DIETS

I. Study Laboratory

Procedure: A 10-g sample of formulated diet was placed in a 250-ml centrifuge bottle and extracted with 100 ml of acidified methanol (1 ml concentrated hydrochloric acid/liter methanol) by shaking for 15 minutes on a Kraft rotary shaker. The samples were centrifuged at 2,000 rpm for 10 minutes and diluted 1 ml to 100 ml with acidified methanol, and the sample was analyzed at 359 nm on a DMS-90 ultraviolet-visible spectrophotometer.

II. Analytical Chemistry Laboratory

A. Preparation of spiked feed standards: Oxytetracycline hydrochloride is light sensitive. All operations were therefore performed in subdued light with foil-covered or amber glassware.

Two standard solutions of oxytetracycline hydrochloride were prepared independently in extracting solution (1 ml concentrated hydrochloric acid diluted to 1,000 ml with methanol). These solutions were diluted with extracting solution to make four additional standards. Aliquots (10-40 ml) of the six standard solutions were pipetted into individual 200-ml centrifuge bottles containing 5 g of undosed feed to make spiked feed standards bracketing the specified concentration range of the referee sample. One 200-ml centrifuge bottle containing 5 or 10 g of undosed feed was treated with 10-40 ml of extracting solution for use as a blank. The spiked feeds and the feed blank were sealed and allowed to stand overnight at room temperature before being analyzed.

- **B.** Preparation of the referee sample: Triplicate weights of the referee feed sample (approximately 5 or 10 g weighed to the nearest 0.001 g) were transferred to individual 200-ml centrifuge bottles. Extracting solution (10-40 ml) was pipetted into each sample; then the bottles were sealed and allowed to stand overnight at room temperature before analysis by the procedure below.
- C. Analysis: Extracting solution (80 ml) was pipetted into each blank, standard, and referee sample bottle, and the bottles were shaken at maximum stroke for 15 minutes on a wrist-action shaker. After being centrifuged for 10 minutes, an aliquot of each extract was diluted with extracting solution. The absorbance of the soutions was measured at 356 or 358 nm versus methanol in 1-cm quartz cells on a Cary 118 or Cary 219 spectrophotometer.

The amount of oxytetracycline hydrochloride in the referee feed samples was determined from the linear regression equation obtained from the standard data, relating the absorbance of each spiked feed standard and blank sample to the amount of chemical in the respective spiked feed standard.

D. Quality assurance measures: The referee feed sample was analyzed in triplicate, and the undosed feed sample was analyzed once. Individually spiked portions of undosed feed (six levels bracketing the specified concentration range of the referee sample) were prepared from two independently weighed standards and were treated as the referee feed samples for obtaining standard curve data.

APPENDIX K

RESULTS OF ANALYSIS OF FORMULATED DIETS

Date Mixed	6,300 ppm	12,500 ppm	25,500 ppm	50,000 ppm
11/06/80	6,420	12,000		
11/12/80			25,400	50,000
12/03/80	6,110	12,900	25,900	51,800
12/18/81	6,100	12,500	26,800	50,500
04/01/81	6,320	11,500	24,700	48,100
06/10/81	6,700	12,800	25,100	50,800
07/29/81	6,400	12,300	25,000	50,300
09/23/81	6,500	12,800	25,100	50,200
11/25/81	6,150	12,500	25,400	52,300
12/22/81	6,390	12,400	25,800	52,100
02/24/82	6,170	12,600	24,700	48,700
05/19/82	6,650	12,900	24,600	49,700
07/14/82	6,400	12,900	24,700	50,700
07/28/82	6,800	13,200	24,700	48,100
09/29/82	6,700	12,900	23,400	48,000
Mean (ppm)	6,415	12,586	25,093	50,093
Standard deviation	233	440	784	1,450
Coefficient of variation (percent)	3.6	3.5	3.1	2.9
Range (ppm)	6,100-6,800	11,500-13,200	23,400-26,800	48,000-52,300
Number of samples	14	14	14	14

TABLE K1. RESULTS OF ANALYSIS OF FORMULATED DIETS IN THE TWO-YEAR FEED STUDIES OF OXYTETRACYCLINE HYDROCHLORIDE (a)

(a) Results of duplicate analysis

TABLE K2. RESULTS OF REFEREE ANALYSIS OF FORMULATED DIETS IN THE TWO-YEAR FEED STUDIES OF OXYTETRACYCLINE HYDROCHLORIDE

		Determined Concentration (ppm)	
Date Mixed	Target Concentration (ppm)	Study Laboratory (a)	Analytical Laboratory (b)
12/03/80	6,300	6,100	6,400
06/10/81	25,000	25,050	24,800
12/22/81	50,000	52,100	48,700
05/19/82	12,500	12,950	12,000
07/28/82	6,300	6,750	5,450
09/29/82	6,300	6,690	5,680

(a) Results of duplicate analysis(b) Results of triplicate analysis

APPENDIX L

SENTINEL ANIMAL PROGRAM

I. Methods

Rodents used in the Carcinogenesis Program of the National Toxicology Program are produced in optimally clean facilities to eliminate potential pathogens that may affect study results. The Sentinel Animal Program is part of the periodic monitoring of animal health that occurs during the toxicologic evaluation of chemical compounds. Under this program, the disease state of the rodents is monitored via viral serology on sera from extra (sentinel) animals in the study rooms. These animals are untreated, and these animals and the study animals are both subject to identical environmental conditions. The sentinel animals come from the same production source and weanling groups as the animals used for the studies of chemical compounds.

Fifteen $B6C3F_1$ mice and 15 F344/N rats of each sex are selected at the time of randomization and allocation of the animals to the various study groups. Five animals of each designated sentinel group are killed at 6, 12, and 18 months on study. Data from animals surviving 24 months are collected from 5/50 randomly selected control animals of each sex and species. The blood from each animal is collected and clotted, and the serum is separated. The serum is cooled on ice and shipped to Microbiological Associates' Comprehensive Animal Diagnostic Service for determination of the viral antibody titers. The following tests are performed:

	Hemagglutination <u>Inhibition</u>	Complement <u>Fixation</u>	ELISA
Mice	PVM (pneumonia virus of mice) Reo 3 (reovirus type 3) GDVII (Theiler's encephalomyelitis virus) Poly (polyoma virus) MVM (minute virus of mice) Ectro (infectious ectromelia) Sendai	M. Ad. (mouse adenovirus) LCM (lymphocytic choriomeningitis virus) MHV (6 mo)	MHV (mouse hepatitis virus) (12, 18, 24 mo)
Rats	PVM KRV (Kilham rat virus) H-1 (Toolan's H-1 virus) Sendai	RCV (rat coronavirus)	
Resul	ts		

Results are presented in Table L1.

II.

	Interval (months)	No. of Animals	Positive Serologic Reaction for
RATS	u	**	
	6		None positive
	12	10/10 10/10	RCV Sendai
	18	2/9	Sendai
	24	5/10	RCV
AICE			
	6		None positive
	12	9/9	Sendai
	18	2/10 9/10	PVM Sendai
	24	5/9 1/10	Sendai GDVII

TABLE L1. MURINE VIRUS ANTIBODY DETERMINATIONS FOR RATS AND MICE IN THE TWO-YEAR FEED STUDIES OF OXYTETRACYCLINE HYDROCHLORIDE (a)

(a) Blood samples were taken from sentinel animals (5/sex) at 6, 12, and 18 months after the start of dosing and from the control animals (5/sex) just before they were killed; samples were sent to Microbiological Associates, Inc. (Bethesda, MD) for the Animal Disease Screening Program.

Oxytetracycline Hydrochloride, NTP TR 315 178

APPENDIX M

FEED AND COMPOUND CONSUMPTION BY RATS AND MICE IN THE TWO-YEAR FEED STUDIES OF OXYTETRACYCLINE HYDROCHLORIDE

TABLE M1. FEED AND COMPOUND CONSUMPTION BY MALE RATS IN THE TWO-YEAR FEED STUDYOF OXYTETRACYCLINE HYDROCHLORIDE

	Cor	itrol		25,0	00 ppm		50,000 ppm			
Week	Grams Feed/ Day (a)	Body Weight (grams)	Grams Feed/ Day (a)	Body	Low/ Control (b)	Dose/ Day (c)	Grams Feed/ Day (a)	Body Weight (grams)	High/ Control (b)	Dose/ Day (c)
3	17	210	17	215	1.0	1,977	16	202	0.9	3,960
7	18	296	18	292	1.0	1,541	17	278	0.9	3,058
14	15	372	15	358	1.0	1,047	15	343	1.0	2,187
17	16	400	17	387	1.1	1,098	16	369	1.0	2,168
21	15	411	16	394	1.1	1,015	15	379	1.0	1,979
26	16	429	17	417	1.1	1,019	17	401	1.1	2,120
31	17	425	16	415	0.9	964	18	3 99	1.1	2,256
35	15	430	16	421	1.1	95 0	16	404	1.1	1,980
39	17	443	15	429	0. 9	874	16	418	0.9	1,914
43	16	450	16	440	1.0	909	18	428	1.1	2,103
47	15	453	14	449	0.9	780	16	432	1.1	1,852
51	15	460	16	451	1.1	887	16	441	1.1	1,814
55	14	461	15	452	1.1	830	15	444	1.1	1,689
60	14	472	15	454	1.1	826	15	448	1.1	1,674
64	14	464	15	457	1.1	821	15	447	1.1	1,678
68	14	461	15	455	1.1	824	15	447	1.1	1,678
73	13	454	13	451	1.0	721	14	444	1.1	1,577
77	14	453	15	454	1.1	826	15	450	1.1	1,667
81	14	448	14	446	1.0	785	14	441	1.0	1,587
85	15	449	14	444	0. 9	788	14	4 39	0.9	1,595
89	14	451	14	443	1.0	790	15	439	1.1	1,708
95	13	436	14	438	1.1	7 9 9	14	434	1.1	1,613
98	13	430	14	430	1.1	814	14	420	1.1	1,667
102	13	423	14	426	1.1	822	14	421	1.1	1,663
Mean	14.9	424	15.2	417	1.0	946	15.4	407	1.0	1,966
SD (d)	1.4		1.3		0.1	276	1.2		0.1	538
CV (e)	9.4		8.6		10.0	29.2	7.8		10.0	27.4

(a) Grams of feed removed from feed hopper per animal per day. Not corrected for scatter.

(b) Grams of feed per day for the dosed group divided by that for the controls
(c) Estimated milligrams of oxytetracycline hydrochloride consumed per day per kilogram of body weight

(d) Standard deviation

	Control			25,0	00 ppm		50,000 ppm			
Week	Grams Feed/ Day (a)	Body Weight	Grams Feed/ Day (a)	Body Weight (grams)	Low/ Control(b)	Dose/ Day (c)	Grams Feed/ Day (a)	Body	High/ Control(b)	Dose/ Day (c)
3	12	146	11	145	0.9	1,897	11	145	0.9	3,793
7	10	183	10	178	1.0	1,404	9	175	0.9	2,571
14	10	213	10	203	1.0	1,232	10	202	1.0	2,475
17	11	224	11	216	1.0	1,273	11	216	1.0	2,546
21	10	224	11	220	1.1	1,250	10	215	1.0	2,326
26	- 11	233	11	231	1.0	1,190	11	225	1.0	2,444
31	10	236	11	236	1.1	1,165	11	233	1.1	2,361
35	10	23 9	10	238	1.0	1,050	10	234	1.0	2,137
39	10	243	11	245	1.1	1,122	11	240	1.1	2,292
43	11	247	11	251	1.0	1,096	11	247	1.0	2,227
47	11	257	11	258	1.0	1.066	11	252	1.0	2,183
51	11	268	12	269	1.1	1,115	12	262	1.1	2,290
55	11	275	12	275	1.1	1,091	12	268	1.1	2,239
60	11	289	12	285	1.1	1,053	12	277	1.1	2,166
64	11	299	12	295	1.1	1,017	12	284	1.1	2,113
68	11	304	12	302	1.1	993	12	2 9 1	1.1	2,062
73	11	311	12	313	1.1	958	12	300	1.1	2,000
77	11	315	12	318	1.1	9 43	12	306	1.1	1,961
81	11	319	12	318	1.1	943	12	307	1.1	1,954
85	11	321	12	318	1.1	943	12	306	1.1	1,961
89	11	323	12	319	1.1	940	11	308	1.0	1,786
95	11	328	12	321	1.1	935	12	315	1.1	1,905
98	11	327	12	318	1.1	943	11	311	1.0	1,768
102	10	325	11	314	1.1	876	11	308	1.1	1,786
Mean	10.8	269	11.4	266	1.1	1,104	11.2	259	1.0	2,223
SD (d)	0.5		0.7		0.1	214	0.8		0.1	409
CV (e)	4.6		6.1		9.1	19.4	7.1		10.0	18.4

TABLE M2. FEED AND COMPOUND CONSUMPTION BY FEMALE RATS IN THE TWO-YEAR FEEDSTUDY OF OXYTETRACYCLINE HYDROCHLORIDE

(a) Grams of feed removed from feed hopper per animal per day. Not corrected for scatter.

(b) Grams of feed per day for the dosed group divided by that for the controls
(c) Estimated milligrams of oxytetracycline hydrochloride consumed per day per kilogram of body weight

(d) Standard deviation

	Cor	Control		6,3	6,300 ppm			12,500 ppm			
Week	Grams Feed/ Day (a)	Body Weight (grams)	Grams Feed/ Day (a)	Body Weight (grams)	Low/ Control (b)	Dose/ Day (c)	Grams Feed/ Day (a)	Body Weight (grams)	High/ Control (b)	Dose/ Day (c)	
2	4	26.9	4	27.1	1.0	930	4	26.3	1.0	1,901	
6	4	30.4	4	30.0	1.0	840	4	28.8	1.0	1,736	
10	3	32.4	3	32.5	1.0	582	3	31.3	1.0	1,198	
14	4	33.6	4	33. 9	1.0	743	4	33.3	1.0	1,502	
17	4	35.4	4	37.2	1.0	677	4	34.8	1.0	1,437	
21	4	36.9	4	38.0	1.0	663	4	36.6	1.0	1,366	
26	4	37.7	5	38.6	1.3	816	5	36.4	1.3	1,717	
31	4	39.2	4	38.6	1.0	653	4	37.0	1.0	1,351	
35	4	38.5	4	38.9	1.0	648	4	36.9	1.0	1,355	
39	4	39.6	4	39.8	1.0	633	4	37.7	1.0	1,326	
44	4	3 9 .5	4	39.8	1.0	633	4	37.8	1.0	1,323	
48	4	40.8	4	41.3	1.0	610	4	39.0	1.0	1,282	
52	4	41.2	4	41.8	1.0	603	4	3 9 .3	1.0	1,272	
56	4	42.5	4	42.8	1.0	58 9	4	40.1	1.0	1,247	
61	4	42.0	4	42.1	1.0	5 99	4	40.3	1.0	1,241	
65	4	41.8	4	41.4	1.0	609	4	39.5	1.0	1,266	
69	4	42.3	4	41.4	1.0	609	4	39.4	1.0	1,269	
74	4	41.4	4	40.4	1.0	624	4	39.0	1.0	1,282	
78	4	41.8	4	41.4	1.0	609	4	39.4	1.0	1,269	
82	4	41.0	4	40.3	1.0	625	4	39.0	1.0	1,282	
86	4	40.4	4	39.0	1.0	646	4	38.2	1.0	1,309	
90	4	40.3	4	38.4	1.0	656	4	37.8	1.0	1,323	
96	4	38.9	4	37. 9	1.0	665	4	37.3	1.0	1,340	
99	4	3 9 .5	4	38.2	1.0	660	4	37.2	1.0	1,344	
103	4	40.3	4	38.2	1.0	660	4	37.2	1.0	1,344	
Mean	4.0	38.6	4.0	38.4	1.0	663	4.0	36.8	1.0	1,371	
SD (d)	0.2		0.3		0.0	84	0.3		0.0	170	
CV (e)	5.0		7.5		0.0	12.7	7.5		0.0	12.4	

TABLE M3. FEED AND COMPOUND CONSUMPTION BY MALE MICE IN THE TWO-YEAR FEED STUDY OF OXYTETRACYCLINE HYDROCHLORIDE

(a) Grams of feed removed from feed hopper per animal per day. Not corrected for scatter.
(b) Grams of feed per day for the dosed group divided by that for the controls
(c) Estimated milligrams of oxytetracycline hydrochloride consumed per day per kilogram of body weight
(d) Standard deviation

	Control			6,3	00 ppm		12,500 ppm			
Week	Grams Feed/ Day (a)	Body Weight (grams)	Grams Feed/ Day (a)	Body	Low/ Control (b)	Dose/ Day (c)	Grams Feed/ Day (a)	Body Weight (grams)	High/ Control (b)	Dose/ Day (c)
2	3	20.6	3	20.6	1.0	917	3	20.1	1.0	1,866
6	3	22.0	3	22.2	1.0	851	3	21.9	1.0	1,712
10	3	23.2	3	23.7	1.0	797	3	23.3	1.0	1,609
14	3	25.7	3	25.7	1.0	735	3	25.3	1.0	1,482
17	3	28.0	3	28.2	1.0	670	3	26.7	1.0	1,404
21	3	29 .0	3	29.4	1.0	643	3	28.2	1.0	1,330
26	4	31.4	3	30.4	0.8	622	4	28.8	1.0	1,736
31	.3	31.8	3	31.2	1.0	606	4	29.1	1.3	1,718
35	3	32.3	3	31.1	1.0	608	3	29.5	1.0	1,271
39	4	34.2	4	33.8	1.0	746	4	32.1	1.0	1,558
44	3	34.7	3	33.5	1.0	564	3	32.5	1.0	1,154
48	3	36.3	3	34.7	1.0	545	3	33.9	1.0	1,106
52	4	37.8	4	36.5	1.0	690	4	35.8	1.0	1,397
56	4	39.4	4	38.4	1.0	656	4	37.1	1.0	1,348
61	3	39.3	3	38.7	1.0	488	4	37.2	1.3	1.344
65	3	39.2	3	37.8	1.0	500	3	36.9	1.0	1,016
69	3	40.5	3	39.1	1.0	483	4	38.0	1.3	1,316
74	3	40.3	3	39.0	1.0	485	3	38.0	1.0	987
78	3	39.8	3	39 .0	1.0	485	3	38.0	1.0	987
82	4	39.4	4	38.7	1.0	651	4	37.6	1.0	1,330
86	4	39.5	4	38.4	1.0	656	4	37.3	1.0	1,340
90	4	39.6	4	38.3	1.0	658	4	37.4	1.0	1,337
96	4	40.2	4	38.5	1.0	655	4	38.0	1.0	1,316
99	4	40.2	4	38.4	1.0	656	4	37.2	1.0	1,344
103	4	41.3	4	38.8	1.0	649	4	38.1	1.0	1,312
Mean	3.4	34.6	3.4	33.8	1.0	641	3.5	32.7	1.0	1,373
SD(d)	0,5		0.5		0.0	113	0.5		0.1	231
CV (e)	14.7		14.7		0.0	17.6	14.3		10.0	16.8

TABLE M4. FEED AND COMPOUND CONSUMPTION BY FEMALE MICE IN THE TWO-YEAR FEED STUDY OF OXYTETRACYCLINE HYDROCHLORIDE

(a) Grams of feed removed from feed hopper per animal per day. Not corrected for scatter.
(b) Grams of feed per day for the dosed group divided by that for the controls
(c) Estimated milligrams of oxytetracycline hydrochloride consumed per day per kilogram of body weight
(d) Standard deviation

APPENDIX N

INGREDIENTS, NUTRIENT COMPOSITION, AND CONTAMINANT LEVELS IN NIH 07 RAT AND MOUSE RATION

Meal Diet: September 1980 to October 1982 (Manufactured by Zeigler Bros., Inc., Gardners, PA)

Ingredients (b)	Percent by Weight
Ground #2 yellow shelled corn	24.50
Ground hard winter wheat	23.00
Soybean meal (49% protein)	12.00
Fish meal (60% protein)	10.00
Wheat middlings	10.00
Dried skim milk	5.00
Alfalfa meal (dehydrated, 17% protein)	4.00
Corn gluten meal (60% protein)	3.00
Soy oil	2.50
Brewer's dried yeast	2.00
Dry molasses	1.50
Dicalcium phosphate	1.25
Ground limestone	0.50
Salt	0.50
Premixes (vitamin and mineral)	0.25

TABLE N1. INGREDIENTS OF NIH 07 RAT AND MOUSE RATION (a)

(a) NIH, 1978; NCI, 1976 (b) Ingredients ground to pass through a U.S. Standard Screen No. 16 before being mixed

	Amount	Source
Vitamins		
A	5,500,000 IU	Stabilized vitamin A palmitate or acetate
D ₃	4,600,000 IU	D-activated animal sterol
d-a-Tocopheryl acet	ate 20,000 IU	
Riboflavin	3.4 g	
Thiamine	10.0 g	Thiamine mononitrate
Niacin	30.0 g	
d-Pantothenic acid	18.0 g	d-Calcium pantothenate
Folic acid	2.2 g	
Pyridoxine	1.7 g	Pyridoxine hydrochloride
B ₁₂	4,000 µg	
Biotin	140.0 mg	d-Biotin
K ₃	2.8 g	Menadione activity
Choline	560.0 g	Choline chloride
Minerals		
Iron	120.0 g	Iron sulfate
Manganese	60.0 g	Manganous oxide
Zinc	16.0 g	Zinc oxide
Copper	4.0 g	Copper sulfate
Iodine	1.4 g	Calcium iodate
Cobalt	0.4 g	Cobalt carbonate

TABLE N2. VITAMINS AND MINERALS IN NIH 07 RAT AND MOUSE RATION (a)

(a) Per ton (2,000 lb) of finished product

Nutrient	Mean ± Standard Deviation	Range	No. of Samples
·	<u></u>		
Crude protein (percent by weight)	24.22 ± 1.07	22.6-26.3	24
Crude fat (percent by weight)	5.09 ± 0.46	4.2-6.0	24
Crude fiber (percent by weight)	3.42 ± 0.39 6.63 ± 0.38	2.4-4.2 5.97-7.42	24 24
sh (percent by weight) ssential Amino Acids (percent of		0.97-7.42	24
-			
Arginine	1.260	1.21-1.31	2
Cystine	0.395	0.39-0.40	2
Glycine	1.175	1.15-1.20	2
Histidine	0.553	0.530-0.576	2
Isoleucine	0.908	0.881-0.934	2
Leucine	1.905	1.85-1.96	2
Lysine	1.250	1.20-1.30	2
Methionine	0.310	0.306-0.314	2
Phenylalanine	0.967	0.960-0.974	2
Threonine	0.834	0.827-0.840	2
Tryptophan	0.175	0.171-0.178	2
Tyrosine	0.587	0.566-0.607	2
Valine	1.085	1.05-1.12	2
ssential Fatty Acids (percent of to	otal diet)		
Linoleic	2.37		1
Linolenic	0.308		1
Arachidonic	0.008		1
itamins			
Vitamin A (IU/kg)	11,108 ± 1,093	9,100-14,000	24
Vitamin D (IU/kg)	6,300		1
a-Tocopherol (ppm)	37.6	31,1-44.0	2
Thiamine (ppm)	19.0 ± 2.73	16.0-26.0	(b) 23
Riboflavin (ppm)	6.9	6.1-7.4	2
Niacin (ppm)	75	65-85	2
Pantothenic acid (ppm)	30.2	29.8-30.5	2
Pyridoxine (ppm)	7.2	5.6-8.8	2
Folic acid (ppm)	2.1	1.8-2.4	2
Biotin (ppm)	0.24	0.21-0.27	2
Vitamin B ₁₂ (ppb)	12.8	10.6-15.0	2
Choline (ppm)	3,315	3,200-3,430	2
linerals			
Calcium (percent)	1.25 ± 0.15	1.10-1.53	24
Phosphorus (percent)	0.99 ± 0.08	0.84-1.10	24
Potassium (percent)	0.809	0.772-0.846	2
Chloride (percent)	0.557	0.479-0.635	$\overline{2}$
Sodium (percent)	0.304	0.258-0.349	2
Magnesium (percent)	0.172	0.166-0.177	2
Sulfur (percent)	0.278	0.270-0.285	2
Iron (ppm)	418	409-426	2
Manganese (ppm)	90.8	86.0-95.5	2
Zinc (ppm)	55.1	54.2-56.0	2
Copper (ppm)	12.68	9.65-15.70	2
Iodine (ppm)	2.58	1.52-3.64	2
Chromium (ppm)	1.86	1.79-1.93	2

TABLE N3. NUTRIENT COMPOSITION OF NIH 07 RAT AND MOUSE RATION (a)

(a) One or two batches of feed analyzed were manufactured in January and/or April 1983.
(b) One batch (7/22/81) not analyzed for thiamine.

TABLE N4. CONTAMINANT LEVELS IN NIH 07 RAT AND MOUSE RATION

Contaminant	Mean ± Standard Deviation	Range	No. of Samples
Arsenic (ppm)	0.41 ± 0.15	0.13-0.93	24
Cadmium (ppm) (a)	< 0.1		24
Lead (ppm)	1.07 ± 0.73	0.27-2.93	24
Mercury (ppm) (a)	< 0.05	0.21 2.00	24
elenium (ppm)	0.29 ± 0.07	0.16-0.48	24
••			
flatoxins (ppb) (a,b)	<10	<5.0-10.0	24
litrate nitrogen (ppm) (c)	9.18 ± 4.33	0.6-18.0	24
Nitrite nitrogen (ppm) (c)	1.99 ± 1.30	0.4-5.3	24
BHA (ppm) (d,e)	5.10 ± 4.19	< 0.4-15.0	24
HT (ppm) (d)	3.05 ± 1.52	1.2-6.0	24
verobic plate count (CFU/g)	$80,604 \pm 48,850$	7,000-210,000	24
Coliform (MPN/g) (f)	883 ± 908	<3-2,400	24
E. coli (MPN/g) (g)	8.0 ± 7.91	<3-23	23
C. coli (MPN/g) (h)	13.88 ± 30.00	<3-150	24
fotal nitrosamines (ppb) (i,j)	6.69 ± 5.60	1.2-18.8	22
fotal nitrosamines (ppb) (i,k)	14.55 ± 27.15	1.2-101.6	24
	5.25 ± 5.33	0.6-16.8	24 22
V-Nitrosodimethylamine (ppb) (i,l)			24
V-Nitrosodimethylamine (ppb) (i,m) V-Nitrosopyrrolidine (ppb)	13.02 ± 26.80 1.21 ± 0.66	0.6-99 <0.3-2.4	24 24
Pesticides (ppm)			
a-BHC (a,n)	< 0.01		24
β -BHC (a)	< 0.02		24
γ-BHC-Lindane (a)	< 0.01		24
δ-BHC (a)	< 0.01		24
	< 0.01		24
Heptachlor (a)			
Aldrin (a)	< 0.01		24
Heptachlor epoxide (a)	< 0.01	0.05 (5/1.4/04)	24
DDE (o)	< 0.01	0.05 (7/14/81)	24
DDD (a)	< 0.01		24
DDT (a)	< 0.01		24
HCB(a)	< 0.01		24
Mirex (a)	< 0.01		24
Methoxychlor (p)	< 0.05	0.13 (8/25/81); 0.6 (6/29/82)	24
Dieldrin (a)	< 0.01		24
Endrin (a)	< 0.01		24
Telodrin (a)	< 0.01		24
Chlordane (a)	< 0.05		24
Toxaphene (a)	< 0.1		24
Estimated PCBs (a)	< 0.2		24
Ronnel (a)	< 0.01		24
Ethion (a)	< 0.02		24
Trithion (a)	< 0.05		24
Diazinon (a)	< 0.1		24
Methyl parathion (a)	< 0.02		24
Ethyl parathion (a)	< 0.02		24
Malathion (q)	0.08 ± 0.05	< 0.05-0.25	24
Endosulfan I (a)	< 0.01		24
Endosulfan II (a)	< 0.01		24
ANTING WALLAND AND AND AND AND AND AND AND AND AND			~ -

.

TABLE N4. CONTAMINANT LEVELS IN NIH 07 RAT AND MOUSE RATION (Continued)

- (a) All values were less than the detection limit, given in the table as the mean.
- (b) Detection limit was reduced from 10 ppb to 5 ppb after 7/81.
- (c) Source of contamination: Alfalfa, grains, and fish meal
- (d) Source of contamination: Soy oil and fish meal
- (e) One batch contained less than 0.5 ppm. The value was <0.04, and it was produced on 4/27/81.
- (f) MPN = most probable number
- (g) Mean, standard deviation, and range exclude one value of 150 produced on 8/26/82.

(h) Mean, standard deviation, and range include the high value given in footnote g.

(i) All values were corrected for percent recovery.

(j) Mean, standard deviation, and range exclude two very high values of 101.6 and 100.3 ppb for batches produced on 1/26/81 and 4/27/81.

(k) Mean, standard deviation, and range include the very high values given in footnote j.

(1) Mean, standard deviation, and range exclude two very high values of 97.9 and 99 for batches produced on 1/26/81 and 4/27/81.

(m) Mean, standard deviation, and range include the very high values given in footnote l.

- (n) BHC = hexachlorocyclohexane or benzene hexachloride
- (o) There was one observation above the detection limit. The value and the date it was obtained are given under the range. (p) There were two observations above the detection limit. The values and the dates they were obtained are given under the range.
- (q) Ten batches contained more than 0.05 ppm.

APPENDIX O

DATA AUDIT SUMMARY

The experimental data and laboratory records for the 2-year toxicology and carcinogenesis studies of oxytetracycline hydrochloride in rats and mice were examined for completeness, consistency, and accuracy and for procedures consistent with Good Laboratory Practice regulations. The animal studies were conducted by Physiological Research Laboratories, Minneapolis, Minnesota, under a subcontract with Tracor Jitco, Inc., from the National Cancer Institute from November 1980 to November 1982 and were initiated prior to NTP's requirement for compliance with Good Laboratory Practice regulations in October 1981. The audit was conducted in June and July 1985 and involved the following personnel from Argus Research Laboratories: Jane E. Goeke, Ph.D.; James J. Hills, B.A.; Alan M. Hoberman, Ph.D.; David M. Willett, B.S.; Diana S. Copeland, D.V.M., D.A.C.V.P.; and Carol L. Veigle, HTL. The audit report was approved by the NTP and is on file at the National Toxicology Program, NIEHS, Research Triangle Park, North Carolina.

For the inlife toxicology portion of the audit, 10% of the study animal records for clinical signs were audited. One hundred percent of the records for animal deaths, moribund and terminal kills, and tissue masses were audited. All records concerning animal receipt, acclimation/quarantine, randomization, identification, body weight, feed consumption, environmental conditions, and sentinel animal data were reviewed. For the analytical chemistry portion of the audit, 100% of the available data was audited. A random 10% sample of the dose calculations was verified. For the pathology portion of this audit, all of the wet tissue bags of both species were counted and all of the control and high dose animals of both species had slides matched with blocks. Wet tissue examinations for untrimmed potential lesions and verification of animal identification were conducted on a random 10% of both rats and mice plus additional animals selected to resolve possible discrepancies between gross observations and microscopic diagnoses. Final pathology tables were correlated with the final report of the laboratory pathologist, corrected pathology tables, Individual Animal Data Records, and Pathology Working Group (PWG) slide review worksheet for a random 10% of the cases.

All data were considered adequate with the following exceptions: dose start and completion dates could not be verified from the available records, and the presence and size of masses were not consistently recorded in the clinical observation and gross necropsy records.

For the analytical chemistry portion of the audit, all data required were present at the archives except the usage dates for formulated diets and the standard curves and ultraviolet absorbance graphs for chemical reanalysis and chemical/vehicle analysis.

All pathology data and materials audited for oxytetracycline hydrochloride were complete and adequate with the following exceptions: the animal identity of 14/56 rats and 19/49 mice could not be verified because some or all of the feet had not been saved with the wet tissue. Tissue alterations suggesting untrimmed potential lesions were found in the residual wet tissues of 24/56 rats and 8/49 mice. In general, these were very minimal tissue alterations that were distributed among dose groups. Histopathologic sampling was judged to be adequate, and these potential lesions were not pursued further. For 14 rats and 6 mice, necropsy observations were made which had no correlating microscopic diagnosis. Lesions were not found on the slides or in the wet tissues. The slide and block match was good. Tissue accountability was poor by NTP standards in one or more of the various dose groups of mice for parathyroid, skin, ovary, gallbladder, and urinary bladder.

In conclusion, the data examined were considered adequate to fulfill the objectives of these studies. Any discrepancies noted were resolved as described or were judged not to affect the conclusions of these studies.