NATIONAL TOXICOLOGY PROGRAM Technical Report Series No. 285

TOXICOLOGY AND CARCINOGENESIS STUDIES OF C.I. BASIC RED 9

MONOHYDROCHLORIDE

(PARAROSANILINE)

(CAS NO. 569-61-9)

IN F344/N RATS AND B6C3F1 MICE

(FEED STUDIES)

U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES Public Health Service National Institutes of Health

NATIONAL TOXICOLOGY PROGRAM

The National Toxicology Program (NTP), established in 1978, develops and evaluates scientific information about potentially toxic and hazardous chemicals. This knowledge can be used for protecting the health of the American people and for the primary prevention of disease. By bringing together the relevant programs, staff, and resources from the U.S. Public Health Service, DHHS, the National Toxicology Program has centralized and strengthened activities relating to toxicology research, testing and test development/validation efforts, and the dissemination of toxicological information to the public and scientific communities and to the research and regulatory agencies.

The NTP is made up of four charter DHHS agencies: the National Cancer Institute (NCI), National Institutes of Health; the National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health; the National Center for Toxicological Research (NCTR), Food and Drug Administration; and the National Institute for Occupational Safety and Health (NIOSH), Centers for Disease Control. In July 1981, the Carcinogenesis Bioassay Testing Program, NCI, was transferred to the NIEHS.

NTP TECHNICAL REPORT ON THE

TOXICOLOGY AND CARCINOGENESIS

STUDIES OF

C.I. BASIC RED 9 MONOHYDROCHLORIDE

(PARAROSANILINE)

(CAS NO. 569-61-9)

IN F344/N RATS AND B6C3F1 MICE

(FEED STUDIES)

NATIONAL TOXICOLOGY PROGRAM P.O. Box 12233 Research Triangle Park, NC 27709

January 1986

NTP TR 285

NIH Publication No. 86-2541

U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES Public Health Service National Institutes of Health

NOTE TO THE READER

These studies are designed and conducted to characterize and evaluate the toxicologic potential, including carcinogenic activity, of selected chemicals in laboratory animals (usually two species, rats and mice). Chemicals selected for testing in the NTP Carcinogenesis Program are chosen primarily on the bases of human exposure, level of production, and chemical structure. Selection per se is not an indicator of a chemical's carcinogenic potential. Negative results, in which the test animals do not have a greater incidence of cancer than control animals, do not necessarily mean that a test chemical is not a carcinogen, inasmuch as the experiments are conducted under a limited set of conditions. Positive results demonstrate that a test chemical is carcinogenic for animals under the conditions of the test and indicate that exposure to the chemical has the potential for hazard to humans. The determination of the risk to humans from chemicals found to be carcinogenic in animals requires a wider analysis which extends beyond the purview of this study.

Five categories of interpretative conclusions were adopted for use in June 1983 in the Technical Reports series to specifically emphasize consistency and the concept of actual evidence of carcinogenicity. For each definitive study result (male rats, female rats, male mice, female mice), one of the following quintet will be selected to describe the findings. These categories refer to the strength of the experimental evidence and not to either potency or mechanism.

- Clear Evidence of Carcinogenicity is demonstrated by studies that are interpreted as showing a chemically related increased incidence of malignant neoplasms, studies that exhibit a substantially increased incidence of benign neoplasms, or studies that exhibit an increased incidence of a combination of malignant and benign neoplasms where each increases with dose.
- Some Evidence of Carcinogenicity is demonstrated by studies that are interpreted as showing a chemically related increased incidence of benign neoplasms, studies that exhibit marginal increases in neoplasms of several organs/tissues, or studies that exhibit a slight increase in uncommon malignant or benign neoplasms.
- Equivocal Evidence of Carcinogenicity is demonstrated by studies that are interpreted as showing a chemically related marginal increase of neoplasms.
- No Evidence of Carcinogenicity is demonstrated by studies that are interpreted as showing no chemically related increases in malignant or benign neoplasms.
- Inadequate Study of Carcinogenicity demonstrates that because of major qualitative or quantitative limitations, the studies cannot be interpreted as valid for showing either the presence or absence of a carcinogenic effect.

Additionally, the following concepts (as patterned from the International Agency for Research on Cancer Monographs) have been adopted by the NTP to give further clarification of these issues:

The term *chemical carcinogenesis* generally means the induction by chemicals of neoplasms not usually observed, the earlier induction by chemicals of neoplasms that are commonly observed, or the induction by chemicals of more neoplasms than are generally found. Different mechanisms may be involved in these situations. Etymologically, the term *carcinogenesis* means induction of cancer, that is, of malignant neoplasms; however, the commonly accepted meaning is the induction of various types of neoplasms or of a combination of malignant and benign neoplasms. In the Technical Reports, the words *tumor* and *neoplasm* are used interchangeably.

This study was initiated by the National Cancer Institute's Carcinogenesis Bioassay Program, now part of the National Institute of Environmental Health Sciences, National Toxicology Program. The studies described in this Technical Report have been conducted in compliance with NTP chemical health and safety requirements and must meet or exceed all applicable Federal, state, and local health and safety regulations. All NTP toxicology and carcinogenesis studies are subjected to a data audit before being presented for peer review.

Although every effort is made to prepare the Technical Reports as accurately as possible, mistakes may occur. Readers are requested to identify any mistakes so that corrective action may be taken. Further, anyone who is aware of related ongoing or published studies not mentioned in this report is encouraged to make this information known to the NTP. Comments and questions about the National Toxicology Program Technical Reports on Toxicology and Carcinogenesis Studies should be directed to Dr. J.E. Huff, National Toxicology Program, P.O. Box 12233, Research Triangle Park, NC 27709 (919-541-3780).

These NTP Technical Reports are available for sale from the National Technical Information Service, U.S. Department of Commerce, 5285 Port Royal Road, Springfield, VA 22161 (703-487-4650). Single copies of this Technical Report are available without charge (and while supplies last) from the NTP Public Information Office, National Toxicology Program, P.O. Box 12233, Research Triangle Park, NC 27709.

CONTENTS

PAGE

ABSI	TRACT ,
CONT	TRIBUTORS
PEEF	R REVIEW PANEL
SUM	MARY OF PEER REVIEW COMMENTS
I.	INTRODUCTION
II.	MATERIALS AND METHODS
	PROCUREMENT AND CHARACTERIZATION OF C.I. BASIC RED 9
	MONOHYDROCHLORIDE
	PREPARATION AND CHARACTERIZATION OF FORMULATED DIETS
	THIRTEEN-WEEK STUDIES
	FIFTY-TWO-WEEK STUDIES
	TWO-YEAR STUDIES
	STUDY DESIGN
	SOURCE AND SPECIFICATIONS OF ANIMALS
	ANIMAL MAINTENANCE
	CLINICAL EXAMINATIONS AND PATHOLOGY
	STATISTICAL METHODS
III.	RESULTS
	RATS
	THIRTEEN-WEEK STUDIES
	FIFTY-TWO-WEEK STUDIES
	TWO-YEAR STUDIES
	BODY WEIGHTS AND CLINICAL SIGNS
	SURVIVAL
	PATHOLOGY AND STATISTICAL ANALYSES OF RESULTS
	MICE
	THIRTEEN-WEEK STUDIES
	TWO-YEAR STUDIES
	BODY WEIGHTS AND CLINICAL SIGNS
	SURVIVAL
	PATHOLOGY AND STATISTICAL ANALYSES OF RESULTS
IV.	DISCUSSION AND CONCLUSIONS
v.	REFERENCES

C.I. Basic Red 9 Monohydrochloride, NTP TR 285 **TABLES**

TABLE 1	IDENTITY AND SOURCE OF LOTS USED IN THE FEED STUDIES OF
	C.I. BASIC RED 9 MONOHYDROCHLORIDE
TABLE 2	PREPARATION AND STORAGE OF FORMULATED DIETS IN THE FEED
	STUDIES OF C.I. BASIC RED 9 MONOHYDROCHLORIDE
TABLE 3	RESULTS OF ANALYSIS OF FORMULATED DIETS IN THE TWO-YEAR FEED
	STUDIES OF C.I. BASIC RED 9 MONOHYDROCHLORIDE
TABLE 4	EXPERIMENTAL DESIGN AND MATERIALS AND METHODS IN THE FEED
	STUDIES OF C.I. BASIC RED 9 MONOHYDROCHLORIDE
TABLE 5	SURVIVAL, MEAN BODY WEIGHTS, AND FEED CONSUMPTION OF RATS IN THE
	THIRTEEN-WEEK FEED STUDIES OF C.I. BASIC RED 9 MONOHYDROCHLORIDE32
TABLE 6	SURVIVAL AND MEAN BODY WEIGHTS OF RATS IN THE FIFTY-TWO-WEEK
	FEED STUDIES OF C.I. BASIC RED 9 MONOHYDROCHLORIDE
TABLE 7	RELATIVE THYROID GLAND WEIGHTS OF RATS IN THE FIFTY-TWO-WEEK
	FEED STUDIES OF C.I. BASIC RED 9 MONOHYDROCHLORIDE
TABLE 8	CONCENTRATIONS OF THYROXIN IN THE SERUM OF RATS IN THE FIFTY-
	TWO-WEEK FEED STUDIES OF C.I. BASIC RED 9 MONOHYDROCHLORIDE
TABLE 9	MEAN BODY WEIGHTS AND SURVIVAL OF RATS IN THE TWO-YEAR FEED
	STUDIES OF C.I. BASIC RED 9 MONOHYDROCHLORIDE
TABLE 10	SURVIVAL OF RATS IN THE TWO-YEAR FEED STUDIES OF C.I. BASIC RED 9
	MONOHYDROCHLORIDE
TABLE 11	INCIDENCES OF NEOPLASTIC AND NONNEOPLASTIC SKIN LESIONS IN RATS
	IN THE TWO-YEAR FEED STUDIES OF C.I. BASIC RED 9 MONOHYDROCHLORIDE 39
TABLE 12	ANALYSIS OF SKIN TUMORS IN MALE RATS IN THE TWO-YEAR FEED
	STUDY OF C.I. BASIC RED 9 MONOHYDROCHLORIDE
TABLE 13	ANALYSIS OF SUBCUTANEOUS TISSUE TUMORS IN RATS IN THE TWO-YEAR
	FEED STUDIES OF C.I. BASIC RED 9 MONOHYDROCHLORIDE
TABLE 14	ANALYSIS OF MAMMARY GLAND TUMORS IN FEMALE RATS IN THE TWO-
	YEAR FEED STUDY OF C.I. BASIC RED 9 MONOHYDROCHLORIDE
TABLE 15	NUMBERS OF RATS WITH NONNEOPLASTIC LESIONS OF THE THYROID GLAND
	IN THE TWO-YEAR FEED STUDIES OF C.I. BASIC RED 9 MONOHYDROCHLORIDE43

TABLES (Continued)

TABLE 16	ANALYSIS OF THYROID GLAND LESIONS IN RATS IN THE TWO-YEAR FEED
	STUDIES OF C.I. BASIC RED 9 MONOHYDROCHLORIDE
TABLE 17	ANALYSIS OF ZYMBAL GLAND TUMORS IN RATS IN THE TWO-YEAR FEED
	STUDIES OF C.I. BASIC RED 9 MONOHYDROCHLORIDE
TABLE 18	ANALYSIS OF LIVER TUMORS IN RATS IN THE TWO-YEAR FEED STUDIES OF
	C.I. BASIC RED 9 MONOHYDROCHLORIDE
TABLE 19	ANALYSIS OF UTERINE TUMORS IN FEMALE RATS IN THE TWO-YEAR FEED
	STUDY OF C.I. BASIC RED 9 MONOHYDROCHLORIDE
TABLE 20	ANALYSIS OF LUNG TUMORS IN MALE RATS IN THE TWO-YEAR FEED
	STUDY OF C.I. BASIC RED 9 MONOHYDROCHLORIDE
TABLE 21	SURVIVAL, MEAN BODY WEIGHTS, AND FEED CONSUMPTION OF MICE IN THE
	THIRTEEN-WEEK FEED STUDIES OF C.I. BASIC RED 9 MONOHYDROCHLORIDE 50
TABLE 22	MEAN BODY WEIGHTS AND SURVIVAL OF MICE IN THE TWO-YEAR FEED
	STUDIES OF C.I. BASIC RED 9 MONOHYDROCHLORIDE
TABLE 23	SURVIVAL OF MICE IN THE TWO-YEAR FEED STUDIES OF C.I. BASIC RED 9
	MONOHYDROCHLORIDE
TABLE 24	ANALYSIS OF LUNG LESIONS IN FEMALE MICE IN THE TWO-YEAR FEED
	STUDY OF C.I. BASIC RED 9 MONOHYDROCHLORIDE
TABLE 25	ANALYSIS OF LIVER TUMORS IN MICE IN THE TWO-YEAR FEED STUDIES OF
	C.I. BASIC RED 9 MONOHYDROCHLORIDE
TABLE 26	ANALYSIS OF ADRENAL GLAND TUMORS IN FEMALE MICE IN THE TWO-YEAR
	FEED STUDY OF C.I. BASIC RED 9 MONOHYDROCHLORIDE
TABLE 27	ANALYSIS OF HARDERIAN GLAND TUMORS IN FEMALE MICE IN THE TWO-
	YEAR STUDY OF C.I. BASIC RED 9 MONOHYDROCHLORIDE
TABLE 28	ANALYSIS OF HEMATOPOIETIC SYSTEM TUMORS IN MICE IN THE TWO-YEAR
	FEED STUDIES OF C.I. BASIC RED 9 MONOHYDROCHLORIDE
TABLE 29	COMPARISON OF RESULTS OF TWO-YEAR NCI/NTP STUDIES ON C.I. BASIC
	RED 9 MONOHYDROCHLORIDE AND RELATED COMPOUNDS

FIGURES

PAGE

FIGURE	1	GROWTH CURVES FOR RATS FED DIETS CONTAINING C.I. BASIC
		RED 9 MONOHYDROCHLORIDE FOR TWO YEARS
FIGURE	2	KAPLAN-MEIER SURVIVAL CURVES FOR RATS FED DIETS CONTAINING
		C.I. BASIC RED 9 MONOHYDROCHLORIDE FOR TWO YEARS
FIGURE	3	GROWTH CURVES FOR MICE FED DIETS CONTAINING C.I. BASIC
		RED 9 MONOHYDROCHLORIDE FOR TWO YEARS
FIGURE	4	KAPLAN-MEIER SURVIVAL CURVES FOR MICE FED DIETS CONTAINING
		C.I. BASIC RED 9 MONOHYDROCHLORIDE FOR TWO YEARS
FIGURE	5	INFRARED ABSORPTION SPECTRUM OF C.I. BASIC RED 9
		MONOHYDROCHLORIDE (LOT NO. PO1340)
FIGURE	6	NUCLEAR MAGNETIC RESONANCE SPECTRUM OF C.I. BASIC RED 9
		MONOHYDROCHLORIDE (LOT NO. PO1340)191
FIGURE	7	INFRARED ABSORPTION SPECTRUM OF C.I. BASIC RED 9
		MONOHYDROCHLORIDE (LOT NO. A7X)
FIGURE	8	NUCLEAR MAGNETIC RESONANCE SPECTRUM OF C.I. BASIC RED 9
		MONOHYDROCHLORIDE (LOT NO. A7X)
FIGURE	9	TYPICAL STANDARD CURVE FOR RADIOIMMUNOASSAY OF SERUM
		THYROXINE IN C.I. BASIC RED 9 MONOHYDROCHLORIDE FEED STUDIES

APPENDIXES

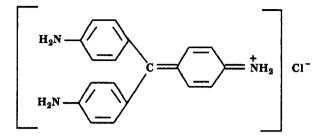
APPENDIX A	SUMMARY OF THE INCIDENCE OF NEOPLASMS IN RATS IN THE TWO-YEAR
	FEED STUDIES OF C.I. BASIC RED 9 MONOHYDROCHLORIDE69
TABLE A1	SUMMARY OF THE INCIDENCE OF NEOPLASMS IN MALE RATS IN THE
	TWO-YEAR FEED STUDY OF C.I. BASIC RED 9 MONOHYDROCHLORIDE71
TABLE A2	SUMMARY OF THE INCIDENCE OF NEOPLASMS IN FEMALE RATS IN THE
	TWO-YEAR FEED STUDY OF C.I. BASIC RED 9 MONOHYDROCHLORIDE
TABLE A3	INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE RATS IN THE
	TWO-YEAR FEED STUDY OF C.I. BASIC RED 9 MONOHYDROCHLORIDE ,78
TABLE A4	INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE RATS IN THE
	TWO-YEAR FEED STUDY OF C.I. BASIC RED 9 MONOHYDROCHLORIDE ,90

6

APPENDIX B	SUMMARY OF THE INCIDENCE OF NEOPLASMS IN MICE IN THE TWO-YEAR
	FEED STUDIES OF C.I. BASIC RED 9 MONOHYDROCHLORIDE101
TABLE B1	SUMMARY OF THE INCIDENCE OF NEOPLASMS IN MALE MICE IN THE
	TWO-YEAR FEED STUDY OF C.I. BASIC RED 9 MONOHYDROCHLORIDE102
TABLE B2	SUMMARY OF THE INCIDENCE OF NEOPLASMS IN FEMALE MICE IN THE
	TWO-YEAR FEED STUDY OF C.I. BASIC RED 9 MONOHYDROCHLORIDE105
TABLE B3	INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE MICE IN THE
	TWO-YEAR FEED STUDY OF C.I. BASIC RED 9 MONOHYDROCHLORIDE 108
TABLE B4	INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE MICE IN THE
	TWO-YEAR FEED STUDY OF C.I. BASIC RED 9 MONOHYDROCHLORIDE114
APPENDIX C	SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN RATS IN
	THE TWO-YEAR FEED STUDIES OF C.I. BASIC RED 9
	MONOHYDROCHLORIDE121
TABLE C1	SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE
	RATS IN THE TWO-YEAR FEED STUDY OF C.I. BASIC RED 9
	MONOHYDROCHLORIDE
TABLE C2	SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN FEMALE
	RATS IN THE TWO-YEAR FEED STUDY OF C.I. BASIC RED 9
	MONOHYDROCHLORIDE127
APPENDIX D	SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MICE IN THE
	TWO-YEAR FEED STUDIES OF C.I. BASIC RED 9
	MONOHYDROCHLORIDE
TABLE D1	SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE
	MICE IN THE TWO-YEAR FEED STUDY OF C.I. BASIC RED 9
	MONOHYDROCHLORIDE
TABLE D2	SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN FEMALE
	MICE IN THE TWO-YEAR FEED STUDY OF C.I. BASIC RED 9
	MONOHYDROCHLORIDE
APPENDIX E	ANALYSES OF PRIMARY TUMORS IN RATS AND MICE IN THE TWO-YEAR
	FEED STUDIES OF C.I. BASIC RED 9 MONOHYDROCHLORIDE
TABLE E1	ANALYSIS OF PRIMARY TUMORS IN MALE RATS IN THE TWO-YEAR
	FEED STUDY OF C.I. BASIC RED 9 MONOHYDROCHLORIDE

PAGE

TABLE E2	ANALYSIS OF PRIMARY TUMORS IN FEMALE RATS IN THE TWO-YEAR
	FEED STUDY OF C.I. BASIC RED 9 MONOHYDROCHLORIDE148
TABLE E3	ANALYSIS OF PRIMARY TUMORS IN MALE MICE IN THE TWO-YEAR
	FEED STUDY OF C.I. BASIC RED 9 MONOHYDROCHLORIDE
TABLE E4	ANALYSIS OF PRIMARY TUMORS IN FEMALE MICE IN THE TWO-YEAR
	FEED STUDY OF C.I. BASIC RED 9 MONOHYDROCHLORIDE154
APPENDIX F	HISTORICAL INCIDENCES OF TUMORS IN F344/N RATS AND B6C3F1 MICE
	RECEIVING NO TREATMENT
TABLE F1	HISTORICAL INCIDENCE OF INTEGUMENTARY SYSTEM TUMORS IN
	MALE F344/N RATS RECEIVING NO TREATMENT
TABLE F2	HISTORICAL INCIDENCE OF LIVER TUMORS IN MALE F344/N RATS
	RECEIVING NO TREATMENT161
TABLE F3	HISTORICAL INCIDENCE OF LEUKEMIA IN MALE F344/N RATS
	RECEIVING NO TREATMENT162
TABLE F4	HISTORICAL INCIDENCE OF THYROID GLAND FOLLICULAR CELL
	TUMORS IN MALE F344/N RATS RECEIVING NO TREATMENT
TABLE F5	HISTORICAL INCIDENCE OF LUNG TUMORS IN MALE F344/N RATS
	RECEIVING NO TREATMENT
TABLE F6	HISTORICAL INCIDENCE OF ZYMBAL GLAND CARCINOMAS IN MALE
	F344/N RATS RECEIVING NO TREATMENT165
TABLE F7	HISTORICAL INCIDENCE OF INTEGUMENTARY SYSTEM TUMORS IN
	FEMALE F344/N RATS RECEIVING NO TREATMENT166
TABLE F8	HISTORICAL INCIDENCE OF LIVER TUMORS IN FEMALE F344/N RATS
	RECEIVING NO TREATMENT
TABLE F9	HISTORICAL INCIDENCE OF THYROID GLAND FOLLICULAR CELL
	TUMORS IN FEMALE F344/N RATS RECEIVING NO TREATMENT
TABLE F10	HISTORICAL INCIDENCE OF MAMMARY GLAND TUMORS IN FEMALE
	F344/N RATS RECEIVING NO TREATMENT
TABLE F11	HISTORICAL INCIDENCE OF UTERINE GLANDULAR TUMORS IN FEMALE
	F344/N RATS RECEIVING NO TREATMENT
TABLE F12	HISTORICAL INCIDENCE OF UTERINE ENDOMETRIAL TUMORS IN
	FEMALE F344/N RATS RECEIVING NO TREATMENT


TABLE F13	HISTORICAL INCIDENCE OF ZYMBAL GLAND CARCINOMAS IN FEMALE
	F344/N RATS RECEIVING NO TREATMENT
TABLE F14	HISTORICAL INCIDENCE OF KIDNEY TUMORS IN FEMALE F344/N RATS
	RECEIVING NO TREATMENT
TABLE F15	HISTORICAL INCIDENCE OF URINARY BLADDER TUMORS IN FEMALE
	F344/N RATS RECEIVING NO TREATMENT
TABLE F16	HISTORICAL INCIDENCE OF LIVER TUMORS IN MALE B6C3F1 MICE
	RECEIVING NO TREATMENT
TABLE F17	HISTORICAL INCIDENCE OF HEMATOPOIETIC SYSTEM TUMORS IN MALE
	B6C3F ₁ MICE RECEIVING NO TREATMENT175
TABLE F18	HISTORICAL INCIDENCE OF LUNG TUMORS IN FEMALE B6C3F1 MICE
	RECEIVING NO TREATMENT
TABLE F19	HISTORICAL INCIDENCE OF ADRENAL GLAND TUMORS IN FEMALE
	B6C3F ₁ MICE RECEIVING NO TREATMENT
TABLE F20	HISTORICAL INCIDENCE OF HARDERIAN GLAND TUMORS IN FEMALE
	B6C3F1 MICE RECEIVING NO TREATMENT ,
TABLE F21	HISTORICAL INCIDENCE OF HEMATOPOIETIC SYSTEM TUMORS IN
	FEMALE B6C3F1 MICE RECEIVING NO TREATMENT
TABLE F22	HISTORICAL INCIDENCE OF LIVER TUMORS IN FEMALE B6C3F ₁ MICE
	RECEIVING NO TREATMENT
APPENDIX G	GENETIC TOXICOLOGY OF C.I. BASIC RED 9 MONOHYDROCHLORIDE181
TABLE G1	MUTAGENICITY OF C.I. BASIC RED 9 MONOHYDROCHLORIDE IN
	SALMONELLA TYPHIRURIUM
TABLE G2	MUTAGENICITY OF C.I. BASIC RED 9 MONOHYDROCHLORIDE IN
	L5178Y/TK ^{+/-} MOUSE LYMPHOMA CELLS IN THE PRESENCE OF S9
TABLE G3	MUTAGENICITY OF C.I. BASIC RED 9 MONOHYDROCHLORIDE IN
	L5178Y/TK ^{+/-} MOUSE LYMPHOMA CELLS IN THE ABSENCE OF S9
TABLE G4	INDUCTION OF SISTER-CHROMATID EXCHANGES IN CHINESE HAMSTER
	OVARY CELLS BY C.I. BASIC RED 9 MONOHYDROCHLORIDE
TABLE G5	INDUCTION OF CHROMOSOMAL ABERRATIONS IN CHINESE HAMSTER
	OVARY CELLS BY C.I. BASIC RED 9 MONOHYDROCHLORIDE
TABLE G6	INDUCTION OF UNSCHEDULED DNA SYNTHESIS IN RAT HEPATOCYTES
	BY C.I. BASIC RED 9 MONOHYDROCHLORIDE

C.I. Basic Red 9 Monohydrochloride, NTP TR 285

PAGE

APPENDIX H	CHEMICAL CHARACTERIZATION OF C.I. BASIC RED 9
	MONOHYDROCHLORIDE
APPENDIX I	PREPARATION AND CHARACTERIZATION OF FORMULATED DIETS
APPENDIX J	METHODS OF ANALYSIS OF FORMULATED DIETS
APPENDIX K	RESULTS OF ANALYSIS OF FORMULATED DIETS
TABLE K1	RESULTS OF ANALYSIS OF FORMULATED DIETS IN THE TWO-YEAR FEED
	STUDIES OF C.I. BASIC RED 9 MONOHYDROCHLORIDE
TABLE K2	REFEREE SAMPLE DATA IN THE TWO-YEAR FEED STUDIES OF C.I. BASIC
	RED 9 MONOHYDROCHLORIDE
APPENDIX L	SENTINEL ANIMAL PROGRAM
TABLE L1	MURINE VIRUS ANTIBODY DETERMINATIONS FOR RATS AND MICE IN THE
	TWO-YEAR FEED STUDIES OF C.I. BASIC RED 9 MONOHYDROCHLORIDE 215
APPENDIX M	FEED AND COMPOUND CONSUMPTION BY RATS AND MICE IN THE TWO-
	YEAR FEED STUDIES OF C.I. BASIC RED 9 MONOHYDROCHLORIDE
TABLE M1	FEED AND COMPOUND CONSUMPTION BY MALE RATS IN THE TWO-YEAR
	FEED STUDY OF C.I. BASIC RED 9 MONOHYDROCHLORIDE
TABLE M2	FEED AND COMPOUND CONSUMPTION BY FEMALE RATS IN THE TWO-
	YEAR FEED STUDY OF C.I. BASIC RED 9 MONOHYDROCHLORIDE
TABLE M3	FEED AND COMPOUND CONSUMPTION BY MALE MICE IN THE TWO-YEAR
	FEED STUDY OF C.I. BASIC RED 9 MONOHYDROCHLORIDE 220
TABLE M4	FEED AND COMPOUND CONSUMPTION BY FEMALE MICE IN THE TWO-
	YEAR FEED STUDY OF C.I. BASIC RED 9 MONOHYDROCHLORIDE
APPENDIX N	RADIOIMMUNOASSAY OF SERUM THYROXINE
APPENDIX O	DATA AUDIT SUMMARY

.

C.I. BASIC RED 9 MONOHYDROCHLORIDE

 $\mathbf{C_{19}H_{17}N_{3}}\cdot\mathbf{HCl}$

Molecular Weight: 323.8 CAS No. 569-61-9

(Pararosaniline; Benzenamine 4-((4-aminophenyl)(4-imino-2,5-cyclohexadien-1-ylidene)methyl)- monohydrochloride; Paramagenta)

ABSTRACT

C.I. Basic Red 9 monohydrochloride is a triphenylmethane dye used for coloring textiles, leather, and paper and as a biologic stain. Toxicology and carcinogenesis studies were conducted by administering the test chemical in feed to groups of 50 male and 50 female F344/N rats and B6C3F₁ mice for 103 weeks at concentrations of 0, 1,000, or 2,000 ppm for male rats and 0, 500, or 1,000 ppm for female rats and mice of each sex. The average daily doses of C.I. Basic Red 9 monohydrochloride were estimated to be 49 and 103 mg/kg for male rats, 28 and 59 mg/kg for female rats, 196 and 379 mg/kg for male mice, and 149 and 407 mg/kg for female mice. Two lots of the test chemical were used in the 2-year studies with purities of 93% (water content approximately 9%) and 99%.

In rats, the thyroid gland and pituitary gland were identified as target sites in the 13-week studies. Therefore, 10 additional rats of each sex were added to the control and high dose groups in the 2-year studies to examine the effects on these organs after 1 year of exposure.

In the 1-year studies in rats, final mean body weights were slightly decreased in both sexes. The thyroid gland weight to body weight ratio of dosed males was 1.7 times that of the controls, and the concentration of serum thyroxin in male and female rats was significantly lower than that of the controls at week 52. Compound-related histopathologic effects included thyroid gland cysts in both sexes (1/10; 1/10) and thyroid gland follicular cell hyperplasia (1/10), adenomas (1/10), and carcinomas (1/10) and fatty metamorphosis of the liver (4/10, two of these with focal necrosis) in males; no effect was seen in the controls.

The doses selected for the 2-year studies were based on the results of the 13-week studies. The absence of toxicologic signs, histopathologic changes, significant body weight depressions, or mortality after 13 weeks of exposure to C.I. Basic Red 9 monohydrochloride suggested that these concentrations would not shorten survival. However, throughout the 2-year studies, mean body weights of high dose rats and dosed mice were lower than those of the controls, and significantly reduced survival relative to controls was observed for high dose rats of each sex (P < 0.001), low dose male mice (P < 0.03), and low dose and high dose female mice (P < 0.001). In the 2-year studies, several types of neoplastic lesions occurred with significantly increased incidences in dosed animals (see the following tables). High dose male rats had increased incidences of squamous cell carcinomas, trichoepitheliomas, and sebaceous adenomas of the skin. Greater incidences of follicular cell carcinomas and of follicular cell adenomas were found in the thyroid glands of high dose male rats than in controls, whereas in high dose female rats, the combined incidence of follicular cell adenomas or carcinomas was greater than that in controls. Dosed rats of each sex had increased incidences of subcutaneous fibromas, and high dose rats had increased incidences of Zymbal gland carcinomas. Hepatocellular carcinomas were the compound-related neoplasms common to both species; the incidences were increased in high dose male rats and in dosed mice of each sex. Dosed female mice had an increased incidence of pheochromocytomas or malignant pheochromocytomas. In addition, marginally increased incidences of mammary gland tumors (23/50; 32/50; 32/50) in female rats, and malignant lymphomas (17/50; 24/50; 25/50) in female mice were observed.

Site/Lesion	Control	Low Dose	High Dose
MALE RATS		* *********************************	
Skin			
Squamous cell carcinoma	0/50	1/50	10/50
Trichoepithelioma	0/50	0/50	7/50
Sebaceous adenoma	0/50	0/50	5/50
Chyroid gland			
Follicular cell adenoma	0/49	0/46	9/44
Follicular cell carcinoma	0/49	5/46	18/44
Subcutaneous tissue			
Fibroma	2/50	20/50	16/50
Lymbal gland			
Carcinoma	1/50	1/50	13/50
Liver			
Neoplastic nodule	5/50	14/50	6/50
Hepatocellular carcinoma	0/50	2/50	8/50
FEMALE RATS			
Thyroid gland			
Follicular cell adenoma or carcinoma	0/47	2/48	6/50
Subcutaneous tissue	0/41	4/40	0,00
Fibroma	0/50	15/50	10/50
Lymbal gland	0/00	10/00	10/00
Carcinoma	0/50	2/50	7/50
Carcinolita	0/00	2/00	1100
MALE MICE			
liver			
Hepatocellular carcinoma	10/50	20/50	27/50
EMALE MICE			
liver			
Hver Hepatocellular adenoma	2/49	18/50	4/49
Hepatocellular carcinoma	3/49	19/50	37/49
Adrenal gland	0/70	10/00	01/20
Pheochromocytoma or			
malignant pheochromocytoma	1/48	8/47	8/45
merenan huorun anach anna	1/40		0/ 40

SUMMARY OF INCIDENCES OF PRIMARY NEOPLASMS IN RATS AND MICE IN THE TWO-YEAR FEED STUDIES OF C.I. BASIC RED 9 MONOHYDROCHLORIDE

	R	ats	Mice			
Site of Neoplastic Lesion	Male	Female	Male	Female		
 Skin	+					
Subcutaneous tissue	+	+	_	_		
Fhyroid gland	+	+		_		
Zymbal gland	+	+	_	_		
Liver	+	10.01	1			
Adrenal gland		and the second se	· •			
Mammary gland	_	±				
Hematopoietic system	-	-		±		

SITES OF NEOPLASTIC LESIONS IN RATS AND MICE IN THE TWO-YEAR FEED STUDIES OF C.I. BASIC RED 9 MONOHYDROCHLORIDE

+ = Clear evidence of carcinogenicity

 \pm = May have been related to compound exposure

– = No significant increase relative to controls

C.I. Basic Red 9 monohydrochloride was mutagenic in strains TA98 and TA100 of Salmonella typhimurium by the preincubation protocol with or without metabolic activation. It was not mutagenic in strains TA1535 and TA1537 in this system with or without metabolic activation. It was mutagenic in the L5178Y/TK^{+/-} mouse lymphoma assay with or without metabolic activation. C.I. Basic Red 9 monohydrochloride did not induce chromosomal aberrations in Chinese hamster ovary cells; it did induce sister-chromatid exchanges in the presence of Aroclor 1254-induced male Sprague-Dawley rat liver S9. C.I. Basic Red 9 monohydrochloride also induced unscheduled DNA synthesis in F344 male rat hepatocytes in vitro.

An audit of the experimental data was conducted for these 2-year studies of C.I. Basic Red 9 monohydrochloride. No data discrepancies were found that influenced the final interpretations.

Under the conditions of these 2-year feed studies, there was *clear evidence of carcinogenicity*^{*} of C.I. Basic Red 9 monohydrochloride for male and female F344/N rats and for male and female B6C3F₁ mice. In male rats, C.I. Basic Red 9 monohydrochloride caused squamous cell carcinomas, trichoepitheliomas and sebaceous adenomas of the skin, subcutaneous fibromas, thyroid gland follicular cell adenomas and follicular cell carcinomas, Zymbal gland carcinomas, and hepatocellular carcinomas. In female rats, C.I. Basic Red 9 monohydrochloride caused subcutaneous fibromas, thyroid gland follicular cell adenomas or carcinomas (combined), and Zymbal gland carcinomas. In male mice, C.I. Basic Red 9 monohydrochloride caused hepatocellular carcinomas. In female mice, C.I. Basic Red 9 monohydrochloride caused hepatocellular carcinomas and adrenal gland pheochromocytomas or malignant pheochromocytomas (combined). Exposure to C.I. Basic Red 9 monohydrochloride also may have been related to increased incidences of mammary gland tumors in female rats and hematopoietic system tumors in female mice.

^{*}Categories of evidence of carcinogenicity are defined in the Note to the Reader on page 2.

CONTRIBUTORS

The NTP Technical Report on the Toxicology and Carcinogenesis Studies of C.I. Basic Red 9 Monohydrochloride is based on the 13-week studies that began in May 1978 and ended in August 1978, on the 1-year studies that began in June 1979 and ended in June 1980, and on the 2-year studies that began in June 1979 and ended in June 1981.

National Toxicology Program (Evaluated Experiment, Interpreted Results, and Reported Findings)

William C. Eastin, Jr., Ph.D., Chemical Manager

Gary A. Boorman, D.V.M., Ph.D. J.E. French, Ph.D. David M. DeMarini, Ph.D. Joseph K. Haseman, Ph.D. James Huff, Ph.D. C.W. Jameson, Ph.D. William Kluwe, Ph.D. E.E. McConnell, D.V.M. G.N. Rao, D.V.M., Ph.D. B.A. Schwetz, D.V.M., Ph.D. Raymond W. Tennant, Ph.D.

NTP Pathology Working Group (Evaluated Slides and Prepared Pathology Report on Male Mice on 1/18/83)

Henk Solleveld, D.V.M., Ph.D. (Chair) (NTP) Gary A. Boorman, D.V.M., Ph.D. (NTP) Scot L. Eustis, D.V.M., Ph.D. (NTP)

(Evaluated Slides and Prepared Pathology Report on Rats and Female Mice on 6/29/82)

Robert Kovatch, D.V.M. (Chair) Tracor Jitco Deborah Banas, D.V.M. Experimental Pathology Laboratories Gary A. Boorman, D.V.M., Ph.D. (NTP) Scot L. Eustis, D.V.M., Ph.D. (NTP) Bhola Gupta, B.V.Sc., Ph.D. (NTP) W. Macklin, D.V.M., Ph.D. Burroughs Wellcome Laboratories

Principal Contributors at EG&G Mason Research Institute (Conducted Studies and Evaluated Tissues)

Herman S. Lilja, Ph.D. Principal Investigator Alan J. Block, Ph.D. Assistant Principal Investigator Miasnig Hagopian, Ph.D. Chemist A.S. Krishna Murthy, Ph.D. Pathologist

Experimental Pathology Laboratory (Provided Pathology Quality Assurance)

Deborah Banas, D.V.M.

Principal Contributors at Carltech Associates, Inc. (Contractor for Technical Report Preparation)

William D. Theriault, Ph.D. Project Manager Abigail C. Jacobs, Ph.D. Senior Scientist John Warner, M.S. Chemist/Statistician

C.I. Basic Red 9 Monohydrochloride, NTP TR 285

PEER REVIEW PANEL

The members of the Peer Review Panel who evaluated the draft Technical Report on C.I. Basic Red 9 monohydrochloride on March 29, 1985, are listed below. Panel members serve as independent scientists, not as representatives of any institution, company, or governmental agency. In this capacity, Panel members have five major responsibilities: (a) to ascertain that all relevant literature data have been adequately cited and interpreted, (b) to determine if the design and conditions of the NTP studies were appropriate, (c) to ensure that the Technical Report presents the experimental results and conclusions fully and clearly, (d) to judge the significance of the experimental results by scientific criteria, and (e) to assess the evaluation of the evidence of carcinogenicity and other observed toxic responses.

National Toxicology Program Board of Scientific Counselors Technical Reports Review Subcommittee

Jerry B. Hook, Ph.D. (Chair) Vice President, Preclinical Research and Development Smith Kline & French Laboratories Philadelphia, Pennsylvania

Curtis Harper, Ph.D. (Principal Reviewer) Associate Professor of Pharmacology School of Medicine University of North Carolina Chapel Hill, North Carolina James Swenberg, D.V.M., Ph.D. Chief of Pathology Chemical Industry Institute of Toxicology Research Triangle Park, North Carolina

Ad Hoc Subcommittee Panel of Experts

John J. Crowley, Ph.D. Division of Public Health Science The Fred Hutchinson Cancer Research Center Seattle, Washington

Kim Hooper, Ph.D. Chief, Hazard Evaluation System and Information Department of Health Services State of California Berkeley, California

Thomas C. Jones, D.V.M.* Professor, Comparative Pathology New England Regional Primate Research Center Harvard Medical School Southborough, Massachusetts

Richard J. Kociba, D.V.M., Ph.D. (Principal Reviewer) Dow Chemical USA Midland, Michigan

David Kotelchuck, Ph.D. Environmental Health Science Program Hunter School of Health Sciences New York, New York

*Unable to attend

Frederica Perera, Ph.D. Division of Environmental Sciences School of Public Health Columbia University New York, New York

I.F.H. Purchase, Ph.D. (Principal Reviewer) Central Toxicology Laboratory Imperial Chemical Industries, PLC Alderley Park, England

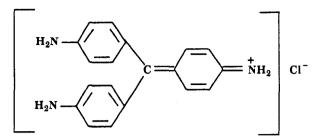
Steven R. Tannenbaum, Ph.D. Professor, Department of Nutrition and Food Science Massachusetts Institute of Technology Cambridge, Massachusetts

Bruce W. Turnbull, Ph.D. Professor and Associate Director College of Engineering Cornell University Ithaca, New York

SUMMARY OF PEER REVIEW COMMENTS ON THE TOXICOLOGY AND CARCINOGENESIS STUDIES OF C. I. BASIC RED 9 MONOHYDROCHLORIDE

On March 29, 1985, the draft Technical Report on the toxicology and carcinogenesis studies of C.I. Basic Red 9 monohydrochloride received peer review by the National Toxicology Program Board of Scientific Counselors' Technical Reports Review Subcommittee and associated Panel of Experts. The review meeting began at 9:00 a.m. in the Conference Center, Building 101, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina.

Dr. Harper, a principal reviewer, agreed with the conclusions. He commented on the poor survival but said that, based on the 13-week studies, the doses selected seemed justified. Dr. Harper said that more flexibility in the design protocol would allow discontinuing or adjusting dosing when there is an obvious trend of toxicity or decreased survival.


As a second principal reviewer, Dr. Kociba agreed in principle with the conclusions, although he questioned the association of increased incidences of bile duct tumors in male rats and of mammary gland tumors in female rats with chemical exposure. With regard to the bile duct tumors, Dr. W. Eastin, NTP, said one was diagnosed as a carcinoma and the other two were difficult to diagnose and mention of bile duct tumors would be deleted. Concerning mammary gland tumors, Dr. Kociba noted that combining fibroadenomas with adenomas and adenocarcinomas was a departure from NTP guidelines. Dr. E. McConnell, NTP, said this was a departure reflecting more recent NTP experiences that indicate occasional occurrence of fibroadenomas and malignant tumors within the same tissue and some evidence that malignant tumors can arise from fibroadenomas. Dr. Kociba stated that thyroid gland function measurements in the short-term studies may have helped select doses for the 2-year studies.

As a third principal reviewer, Dr. Purchase agreed with the conclusions in male and female rats but thought that the categorization of the findings in male and female mice should be some evidence of carcinogenicity. He said the reduction in body weight gain, the compound-induced mortality, and possibly compromised health of surviving mice made these conclusions suspect. Dr. Swenberg supported these comments for male mice in view of a high historical rate and variability for liver tumors but agreed with clear evidence of carcinogenicity in female mice. Dr. Harper noted that the liver carcinoma rates in males at both the low dose (40%) and the high dose (54%) were above the highest historical rate of 36%. Dr. J. Huff, NTP, agreed and added that the findings in both male and female mice were supportive.

Dr. Purchase questioned the positive findings reported in the mutagenicity studies, noting the marginally positive increase for mutations in *Salmonella typhimurium* and for sister-chromatid exchanges (SCE's) in Chinese hamster ovary cells along with an incomplete experimental design and/or reporting in the latter system. He said the guidelines of the United Kingdom Environmental Mutagen Society recommended a doubling of the sister-chromatid exchange incidence as being necessary for a positive effect. Dr. E. Zeigler, NIEHS, replied that regardless of the statistics used there was a strong positive response in *S. typhimurium* whereas in Chinese hamster ovary cells, the chemical was studied up to a concentration showing toxicity and there were dose-related increases in SCE's that were 30% above background for two of the three doses. Dr. Tannenbaum said the differences measured were statistically significant. Dr. Hook suggested that the discussion on the interpretation of the mutagenicity data be expanded. [See p. 19.]

Dr. Harper moved that the conclusion of clear evidence of carcinogenicity for male and female rats and female mice be accepted as written. Dr. Perera seconded the motion, and it was approved unanimously. Dr. Harper then moved that the conclusion of clear evidence of carcinogenicity for male mice be accepted as written. Dr. Hooper seconded the motion, and it was approved with six affirmative votes; there were four negative votes (Dr. Kotelchuck, Dr. Purchase, Dr. Swenberg, and Dr. Tannenbaum).

I. INTRODUCTION

C.J. BASIC RED 9 MONOHYDROCHLORIDE

C₁₉H₁₇N₃·HCl

Molecular Weight: 323.8 CAS No. 569-61-9

(Pararosaniline;

Benzenamine 4-((4-aminophenyl)(4-imino-2,5-cyclohexadien-1-ylidene)methyl)-monohydrochloride;

Paramagenta)

C.I. Basic Red 9 monohydrochloride belongs to the triphenylmethane class of triarylmethane dyes. These brilliant dyes may be applied to a wide range of substrates. (For a review of triphenylmethane dyes, see Bannister and Elliott, 1983.) In 1972, 3,800 metric tons $(3.8 \times 10^9 \text{ g})$ of triarylmethane dyes were manufactured, an amount thought to represent about 4% of the total dyestuff production in the United States (USITC, 1972). The 1977 production estimate for C.I. Basic Red 9 monohydrochloride alone was reported to be 1-10 million pounds (4.5 \times 10^8 g to 4.5×10^9 g) per year in the United States (USEPA, 1980). C.I. Basic Red 9 monohydrochloride (as a component of magenta) is used to color textiles, leather, and paper and as a biologic stain (IARC, 1974).

The basic fuchsins (C.I. Basic Red 9 monohydrochloride and related dyes) have been described as among the most powerful nuclear dyes (Witterholt, 1969). Basic fuchsin is a mixture of three closely related 4,4',4''-triaminotriarylmethane dyes (C.I. Basic Red 9 monohydrochloride, rosaniline, and Magenta II) in the form of their monohydrochloride salts (IARC, 1974; Lillie, 1977). The relative amounts of each depend on the desired color. For example, magenta as a commercial product is a mixture containing mostly rosaniline, some C.I. Basic Red 9 monohydrochloride, and a small amount of Magenta II (Witterholt, 1969).

The only evidence for the carcinogenicity of C.I. Basic Red 9 monohydrochloride found in the literature is the induction of sarcomas at the injection site following subcutaneous administration in rats (Druckey et al., 1956). Intragastric administration of 600 mg/kg C.I. Basic Red 9 monohydrochloride in 0.9% sodium chloride to 40 male and 40 female Sprague-Dawley rats two times per week for life beginning at 12 weeks of age resulted in rapid weight loss, diarrhea, and short average survival, showing that C.I. Basic Red 9 monohydrochloride was toxic and not well tolerated (Ketkar and Mohr, 1982). Dosing was discontinued for 1 week after week 2 and week 12 of exposure, and at week 18 the dose was halved. Average survival time for dosed males was 70 \pm 27 days; for dosed females, 69 ± 29 days; and for controls, 104 \pm 11 days for males and 92 \pm 22 days for females. Thus, the study could not be considered an adequate test for carcinogenic potential. One adenoma and one carcinoma of the thyroid gland were observed in dosed male rats; none was observed in the controls.

In mice, 0.2 ml of magenta (methylated C.I. Basic Red 9) as a 3% suspension in arachis oil was given by stomach tube (12 mg/kg) to 30 males and 30 females for 52 weeks (Bonser et al., 1956). After 52 weeks, dosing was stopped and the mice were allowed to live as long as possible. Seven males and 13 females died before 90 weeks on study. The authors reported one hepatoma at week 101 in one female and concluded that magenta was without carcinogenic activity in this experiment. No differences (compared with controls) were observed in dosed mice in lifetime exposure studies by feeding, gavage, subcutaneous injection, or cutaneous applications when leucoparafuchsin (the reduced form of C.I. Basic Red 9) was used (Malyugina and Prokof'yeva, 1957; Prokof'yeva, 1973; Prokof'yeva and Zabezhinskiy, 1976).

When 0, 300, or 600 mg/kg C.I. Basic Red 9 monohydrochloride in 0.9% sodium chloride was intragastrically administered two times per week for life to groups of 40 male and 40 female 12-week-old Syrian golden hamsters, the majority of the high dose animals (600 mg/kg) died within the first 10 weeks (Green et al., 1979). These authors concluded that the 300 mg/kg dose had no effect on body weight or survival. Fifty percent of the males in both the dosed (300 mg/kg) and control groups survived to 56 weeks; dosed (300 mg/kg) females survived to week 32 versus week 40 for controls.

The evaluation of the carcinogenic risk to humans of magenta (including C.I. Basic Red 9 monohydrochloride) was the subject of an IARC monograph (IARC, 1974). The IARC conclusions cited the Druckey et al. (1956) study in rats (already discussed) as providing the only evidence of carcinogenicity in animals and one epidemiologic study indicating a carcinogenic risk to workers involved in the manufacture of magenta (of which C.I. Basic Red 9 monohydrochloride is a component) (Case and Pearson, 1954).

C.I. Basic Red 9 monohydrochloride was not mutagenic in a variety of strains of Salmonella typhimurium in the presence or absence of mouse or rat liver S9 when tested according to the standard plate-incorporation protocol (Mc-Cann et al., 1975; Dunkel, 1979; Rosenkranz and Poirier, 1979; Simmon, 1979a; DeFlora, 1981) or by host-mediated assay in mice (Simmon et al., 1979). However, C.I. Basic Red 9 monohydrochloride was mutagenic in the plate-incorporation assay in the presence of Aroclor 1254induced hamster liver S9 (Dunkel, 1979). Using the preincubation protocol, the NTP found that C.I. Basic Red 9 monohydrochloride was mutagenic in strains TA100 and TA98 of S. typhimurium in the presence of Aroclor 1254-induced male rat or male hamster liver S9 (Appendix G, Table G1). The urine of dosed $B6C3F_1$ mice in the present 2-year studies was found to be mutagenic (Haworth et al., 1981). The urine from male mice was mutagenic in strains TA98 and

TA100, and the urine from female mice was mutagenic in strain TA98. The addition of rat or hamster liver S9 increased the mutagenicity of the urine.

C.I. Basic Red 9 monohydrochloride also induced DNA damage in Escherichia coli (Rosenkranz and Poirier, 1979), but it did not induce mitotic recombination in yeast (Simmon, 1979b). The NTP found that C.I. Basic Red 9 monohydrochloride was mutagenic in the L5178Y/TK^{+/-} mouse lymphoma assay in the presence or absence of Aroclor 1254-induced male rat liver S9 (Appendix G, Tables G2 and G3). Although C.I. Basic Red 9 monohydrochloride did not induce chromosomal aberrations in Chinese hamster ovary cells, it did induce sister-chromatid exchanges in the presence of Aroclor 1254-induced male rat liver S9 (Tables G4 and G5). The level of induction (20%-30% over background) is highly significant in the system being used (Galloway et al., 1985). The difference in doses used with the activation versus nonactivation systems is due to treatment procedure; i.e., in the former, cells are treated for only 2 hours whereas in the latter they are exposed for 26 hours. C.I. Basic Red 9 monohydrochloride was positive for DNA damage in the in vitro alkaline elution assay for single-stranded DNA with V79 cells (Swenberg et al., 1976). In addition, the NTP found that C.I. Basic Red 9 monohydrochloride induced unscheduled DNA synthesis in rat hepatocytes in vitro (Table G6). In summary, C.I. Basic Red 9 monohydrochloride is mutagenic and causes DNA damage in bacteria and mammalian cells; it induces sister-chromatid exchanges; and it produces mutagenic urine in mice that have been exposed to C.I. Basic Red 9 monohydrochloride in feed.

As an aromatic amine, C.I. Basic Red 9 monohydrochloride may form potentially carcinogenic metabolites by N-hydroxylation. It is structurally related to the known carcinogens 4,4'methylenebis(2-methylaniline) and 4,4'-methylenebis(2-chloroaniline) (Stula et al., 1975, 1977, 1978). The compound was selected for study because it is produced in large volume with considerable potential for human exposure and because it is structurally related to known carcinogens and is a component of a mixture known to be carcinogenic.

C.I. Basic Red 9 Monohydrochloride, NTP TR 285

20

II. MATERIALS AND METHODS

 PROCUREMENT AND CHARACTERIZATION OF C.I. BASIC RED 9 MONOHYDROCHLORIDE
 PREPARATION AND CHARACTERIZATION OF FORMULATED DIETS
 THIRTEEN-WEEK STUDIES
 FIFTY-TWO-WEEK STUDIES
 TWO-YEAR STUDIES
 Study Design Source and Specifications of Animals Animal Maintenance

> Clinical Examinations and Pathology Statistical Methods

> > C.I. Basic Red 9 Monohydrochloride, NTP TR 285

PROCUREMENT AND CHARACTERIZATION OF C.I. BASIC RED 9 MONOHYDROCHLORIDE

C.I. Basic Red 9 monohydrochloride was obtained in two batches (Table 1). Purity and identity analyses were conducted at Midwest Research Institute (Kansas City, Missouri) (Appendix H).

Both lots were identified as C.I. Basic Red 9 monohydrochloride by spectroscopy. Infrared and nuclear magnetic resonance spectra were consistent with those expected for the structure of C.I. Basic Red 9 monohydrochloride and with literature data; ultraviolet/visible spectra were consistent with its structure.

For lot no. PO1340, cumulative data from elemental analysis, nonaqueous amine titration, Karl Fischer water analysis, and thin-layer and high-performance liquid chromatography indicated a purity of approximately 93% with the major impurity being identified as water (approximately 9%). Cumulative data for lot no. A7X from elemental analysis, nonaqueous amine titration, Karl Fischer water analysis, and thin-layer and high-performance liquid chromatography indicated a purity of approximately 99%, with water again being identified as the major impurity (approximately 0.5%). A sample of this lot was sent to Thermo Electron Corporation for analysis of possible nitrosamine impurities. High-performance liquid chromatography/thermal energy analyzer analysis of the test sample indicated a single, nonpolar nitrosamine at a concentration of 0.5 ppm; the nitrosamine was not identified.

C.I. Basic Red 9 monohydrochloride was stored in the dark at 4° C. Results of periodic bulk reanalyses of lot no. A7X at EG&G Mason Research Institute by thin-layer chromatography and infrared spectroscopy indicated that no degradation of the bulk chemical occurred during the course of the 2-year studies.

TABLE 1.	IDENTITY	AND	SOURCE	OF	LOTS	USED	IN	THE	FEED	STUDIES	OF	C.1.	BASIC	C REI	D 9
MONOHYDROCHLORIDE															

	Thirteen-Week Studies	Fifty-Two-Week Studies	Two-Year Studies
Lot Numbers	PO1340	PO1340 until 9/23/79 (first 16 weeks of study); A7X from 9/23/79 until the end of the study	Same as 52-wk studies
Supplier	Pfaltz and Bauer (Stamford, CT)	PO1340Pfaltz and Bauer (Stamford, CT); A7XFisher Scientific (St. Louis, MO)	Same as 52-wk studies

PREPARATION AND CHARACTERIZATION OF FORMULATED DIETS

Formulated diets were prepared as described in Table 2 and Appendix H. C.I. Basic Red 9 monohydrochloride was found to be stable in feed for 2 weeks when stored at 5° C or below (Appendix I). Test diets were stored at 4° C for no longer than 14 days.

Formulations of C.I. Basic Red 9 monohydro-

chloride in feed were analyzed periodically by the testing and referee laboratories to confirm test chemical content. The analytical method included a methanolic extraction as a purification step and either high-performance liquid chromatographic assay (testing laboratory) or ultraviolet/visible spectroscopy (referee laboratory) as the quantitation step (Appendix J). All 35 mixes analyzed for the 2-year studies were formulated within \pm 10% of the target concentration (Table 3; Appendix K).

TABLE 2. PREPARATION AND STORAGE OF FORMULATED DIETS IN THE FEED STUDIES OF C.I. BASIC RED 9 MONOHYDROCHLORIDE

	Thirteen-Week Studies	Fifty-Two-Week Studies	Two-Year Studies
Preparation	C. I. Basic Red 9 mono- hydrochloride was weighed into a plastic bag and an aliquot of meal added; the bag was shaken until a homogenous mixture was obtained; the premix was sandwiched between the remaining meal in a Patterson-Kelly® twin-shell V-blender and mixed for 20 min	A premix of C. I. Basic Red 9 monohydrochloride was homogenized in a mortar with a pestle, layered between appropriate amounts of feed, and mixed for 20 min in an 8-qt Patterson- Kelly® V-blender with no intensifier bar	Same as 52-wk studies
Maximum Storage Time	1 wk	14 d	Same as 52-wk studies
Storage Conditions	Sealed in double plastic bags, stored in the dark	In double plastic bags within plastic buckets at 4° C	In double plastic bags withir plastic buckets at 4° C

TABLE 3. RESULTS OF ANALYSIS OF FORMULATED DIETS IN THE TWO-YEAR FEED STUDIES OF C.I. BASIC RED 9 MONOHYDROCHLORIDE

	Determined	Determined Concentration for Target Concentration of			
	500 ppm	500 ppm 1,000 ppm			
Mean (ppm)	513	1,048	2,062		
Standard deviation	25.1	51.9	93.8		
Coefficent of variation (percent)	4.9	5.0	4.5		
Range (ppm)	460-540	950-1,100	1,900-2,200		
Number of samples	12	12	11		

THIRTEEN-WEEK STUDIES

Thirteen-week studies were conducted to evaluate the cumulative toxicity of C.I. Basic Red 9 monohydrochloride and to determine the concentrations to be used in the 2-year studies. Fourto five-week-old male and F344/N female rats and 5- to 6-week-old B6C3F₁ mice were obtained from Harlan Industries. Rats were quarantined for 3 weeks and mice for 2 weeks. Animals were then randomized by weight and assigned to test groups so that average cage weights were approximately equal for all animals of the same sex and species. Diets containing 0, 250, 500, 1,000, 2,000, or 4,000 ppm C.I. Basic Red 9 monohydrochloride were fed for 13 weeks to groups of 10 rats and mice of each sex.

Rats and mice were housed five per cage in polycarbonate cages. Test diets, control diets, and water were available ad libitum. Further experimental details are summarized in Table 4. Animals were checked twice daily, and moribund animals were killed. Feed consumption was measured weekly by cage. Animal weights were recorded weekly. At the end of the 13-week studies, survivors were killed. A necropsy was performed on all animals except those excessively autolyzed or cannibalized. Tissues and groups examined are listed in Table 4.

FIFTY-TWO-WEEK STUDIES

Fifty-two-week studies were conducted to observe the effects of C.I. Basic Red 9 monohydrochloride on the thyroid gland of rats. Four- to five-week-old male and female F344/N rats were obtained from Charles River Breeding Laboratories, observed for 2 weeks, and then randomized by weight and assigned to test groups so that the average cage weights were approximately equal for all animals of the same sex. Diets containing 0 or 1,000 ppm C.I. Basic Red 9 monohydrochloride were fed for 52 weeks to groups of 10 female rats. Groups of 10 male rats received 0 or 2,000 ppm.

Rats were housed five per cage in polycarbonate cages. Test diets, control diets, and water were available ad libitum. Further experimental details are summarized in Table 4. Animals were checked twice daily. Animal weights were recorded once per week for the first 13 weeks and once every 4 weeks thereafter. The thyroid glands of all animals were palpated once per month. Blood was collected from the orbital sinus during the 1st and 2nd weeks of quarantine and at weeks 13, 26, 39, and 52. Serum thyroxin levels were determined by radioimmunoassay with a SPAC[®] T4 RIA kit from Malinckrodt (St. Louis, Missouri) (Appendix N).

TWO-YEAR STUTIDES

Study Design

Diets containing 0, 1,000, or 2,000 ppm C.I. Basic Red 9 monohydrochloride were fed to groups of 50 male rats for 103 weeks. Groups of 50 female rats and groups of 50 mice of each sex were fed diets containing 0, 500, or 1,000 ppm for 103 weeks.

Source and Specifications of Animals

The male and female F344/N rats and B6C3F1 (C57BL/6N, female, \times C3H/HeN MTV⁻, male) mice used in this study were produced under strict barrier conditions at Charles River Breeding Laboratories under a contract to the Carcinogenesis Program. Breeding starts for the foundation colony at the production facility originated at the National Institutes of Health Repository. Animals shipped for testing were progeny of defined microflora-associated parents that were transferred from isolators to barriermaintained rooms. Male and female F344/N rats and female $B6C3F_1$ mice were shipped to the testing laboratory at 4 weeks of age. The animals were quarantined at the testing facility for 2 weeks. Male $B6C3F_1$ mice were shipped to the testing laboratory at 5-6 weeks of age and quarantined at the testing facility for 26 days. Thereafter, a complete necropsy was performed on five animals of each sex and species to assess their health status. The rats and female mice were placed on study at 6 weeks of age and male mice, at 9-10 weeks of age. The health of the animals was monitored during the course of the study according to the protocols of the NTP Sentinel Animal Program (Appendix L).

A quality control skin grafting program has been in effect since early 1978 to monitor the genetic integrity of the inbred mice used to

	Thirteen-Week Studies	Fifty-Two-Week Studies	Two-Year Studies
EXPERIMENTAL DE	SIGN		
Size of Test Groups	10 males and 10 females of each species	10 male and 10 female rats	50 males and 50 females of each species
Doses	0, 250, 500, 1,000, 2,000, or 4,000 ppm C.I. Basic Red 9 monohydrochloride in feed	0, 1,000 (females only), or 2,000 (males only) ppm C.I. Basic Red 9 monohydrochloride in feed	Male rats0, 1,000, or 2,000 ppm; female rats and male and female mice0, 500, or 1,000 ppm C. I. Basic Red 9 mono- hydrochloride in feed
Date of First Dose	5/17/78	6/4/79	Rats6/4/79; mice6/21/79 (fe- male), 4/21/80 (restarted male)
Date of Last Dose	8/16/78	6/10/80	Rats5/27/81; female mice 6/14/81; male mice4/12/82
Duration of Dosing	13 wk	52 wk	103 wk
Type and Frequency of Observation	Observed 2 \times d; weight and feed consumption measured 1 \times wk	Observed $2 \times d$; weighed $1 \times wk$ for 13 wk, $1 \times mo$ thereafter; thyroid glands palpated $1 \times mo$	Observed 2 \times d; weighed 1 \times wk for 13 wk, 1 \times 4 wk until 3/25/81, 2 \times mo thereafter
Necropsy and Histologic Examination	Necropsy performed on all animals; histologic exam performed on control and 4,000-ppm groups; the following tissues were examined: gross lesions and tissue masses, skin, mandibular and mesenteric lymph nodes, mammary gland, salivary gland, thigh muscle, lungs and mainstem bronchi, heart, thyroid gland, parathyroids, esophagus, stomach, duodenum, colon, jejunum, ileum, cecum, rectum, gallbladder (mice), liver, sciatic nerve, sternebrae, costochondral junction, thymus, larynx, trachea, pancreas, spleen, kidneys, adrenal glands, urinary bladder, nasal cavity, brain, pituitary gland, spinal cord, eyes, seminal vesicles/prostate/ testes or ovaries/uterus; thyroid gland and pituitary gland of 2,000-ppm rats and 1,000-ppm female rats were also examined histologically	Blood for thyroxin determinations was taken at 0, 13, 26, 39, and 52 wk; necropsy performed on all animals; tissues examined same as in 13-wk studies; thyroid gland and pituitary gland were examined histo- logically	Necropsy performed on all animals; histologic exam performed on all animals; tissues examined include: gross lesions and tissue masses, skin, mandibular and mesenteric lymph node, mammary gland, salivary gland, thigh muscle, lungs and mainstem bronchi, heart, thyroid gland, parathyroids, esophagus, stomach, small intestine, colon, gallbladder (mice), liver, sternebrae (including marrow), costochondral junction, thymus, larynx, trachea, pancreas, spleen, kidneys, adrenal glands, urinary bladder, brain, pituitary gland, spinal cord (if neurologic signs present), eyes (if grossly abnormal), seminal vesicles/prostate/testes or ovaries/uterus
ANIMALS AND ANIM		F244/N note	EVAADI matas BCOOP
Strain and Species	F344/N rats; B6C3F ₁ mice	F344/N rats	F/344/N rats; B6C3F ₁ mice
Animal Source	Harlan Industries (Indianapolis, IN)	Charles River Breeding Laboratories (Portage, MI)	Rats and female miceCharles River Breeding Laboratories (Portage, MI); male mice Charles River Breeding Laboratories (Kingston, NY)

TABLE 4. EXPERIMENTAL DESIGN AND MATERIALS AND METHODS IN THE FEED STUDIES OFC.I. BASIC RED 9 MONOHYDROCHLORIDE

C.I. Basic Red 9 Monohydrochloride, NTP TR 285

TABLE 4. EXPERIMENTAL DESIGN AND MATERIALS AND METHODS IN THE FEED STUDIES OF
C. I. BASIC RED 9 MONOHYDROCHLORIDE (Continued)

	Thirteen-Week Studies	Fifty-Two-Week Studies	Two-Year Studies
ANIMALS AND ANIM	AL MAINTENANCE (Continue	.d)	
Testing Laboratory	EG&G Mason Research Institute	Same as 13-wk studies	Same as 13-wk studies
Time Held Before Test	Rats21 d; mice14 d	14 d	Rats14 d; female mice16 d male mice26 d
Age When Placed on Study	7-9 wk	6-7 wk	Rats and female mice6-7 wk; male mice9-10 wk
Age When Killed	Rats21-22 wk; mice20-21 wk	59-60 wk	Rats, female mice110-113 wk male mice113-115 wk
Necropsy Dates	Rats8/24/78-8/28/78; mice8/17/78-8/23/78	6/11/80-6/12/80	Rats6/4/81-6/17/81; female mice6/22/81-6/23/81; male mice4/20/82-4/29/82
Method of Animal Distribution	Randomized by weight so that average body weights for each group were approximately equal	Same as 13-wk studies	Assigned to cages, according to a table of random numbers; cages then assigned to groups according to another table of random numbers
Method of Animal Identification	Ear punch	Ear punch	Ear punch
Feed	Ground Wayne Lab Blox® (Allied Mills, Chicago, IL); freely available	Same as 13-wk studies	Same as 13-wk studies
Bedding	Aspen® bed (American Excelsior, Baltimore, MD)	Same as 13-wk studies; and Betta Chips®; Agway Corp. (Syracuse, NY)	Same as 13-wk studies
Water	Automatic watering system (Edstrom Industries, Waterford, WI); freely available	Same as 13-wk studies	Same as 13-wk studies
Cages	Polycarbonate Lab Products (Maywood, NJ)	Same as 13-wk studies	Same as 13-wk studies
Cage Filters	RatsWebrex [®] nonwoven (Negus Container Co., Madison, WI); micespun- bonded bonnets (Lab Products, Rochelle Park, NJ)	Nonwoven (Lab Products, Rochelle Park, NJ, or Snow Filtration Co., Cincinnati, OH)	Same as 52-wk studies
Animals per Cage	5	5	Rats and female mice5; male mice1
Other Chemicals on Test in Same Room	None	None	None
Animal Room Environment	Temp20°-30°C; humidity34%-81%; fluorescent light 12 h/d; 10 room air changes/h	Temp19°-30° C; humidity20%-95%; fluorescent light 12 h/d; 10-15 room air changes/h	Temp18°-27° C; humidity20%-95%; fluorescent light 12 h/d; 12 room air changes/h

produce the hybrid $B6C3F_1$ test animal. In mid-1981, data were obtained that showed incompatibility between the NIH C3H reference colony and the C3H colony from a Program supplier. In August 1981, inbred parental lines of mice were further tested for genetic integrity via isozyme and protein electrophoretograms that demonstrate phenotype expressions of known genetic loci.

The C57BL/6 mice were homogeneous at all loci tested. Eighty-five percent of the C3H mice monitored were variant at one to three loci, indicating some heterogeneity in the C3H line from this supplier. Nevertheless, the genome of this line is more homogeneous than that of randomly bred stocks.

Male mice from the C3H colony and female mice from the C57BL/6 colony were used as parents for the hybrid B6C3F₁ mice used in these studies. The influence of the potential genetic nonuniformity in the hybrid mice on these results is not known, but results of the studies are not affected because concurrent controls were included in each study.

Animal Maintenance

Rats and female mice were housed five per cage. Male mice were initially housed five per cage, but fighting among cagemates caused a significant number of deaths in all test groups, including controls. The study in male mice was restarted, and the male mice were housed individually. Feed and water were available ad libitum. Details of animal maintenance are summarized in Table 4.

Clinical Examinations and Pathology

All animals were observed twice daily, and clinical signs were recorded once per week. Body weights by cage were recorded once per week for the first 12 weeks of the study and once per month thereafter. Mean body weights were calculated for each group. Feed consumption was recorded every 4 weeks. Moribund animals were killed, as were animals that survived to the end of the study. A necropsy was performed on all animals, including those found dead unless they were excessively autolyzed or cannibalized. Thus, the number of animals from which particular organs or tissues were examined microscopically varies and is not necessarily equal to the number of animals that were placed on study in each group.

Examinations for grossly visible lesions were performed on major tissues or organs. Tissues were preserved in 10% neutral buffered formalin, embedded in paraffin, sectioned, and stained with hematoxylin and eosin. Tissues examined microscopically are listed in Table 4.

When the pathology examination was completed, the slides, individual animal data records, and summary tables were sent to an independent quality assurance laboratory. Individual animal records and tables were compared for accuracy, slides and tissue counts were verified, and histotechnique was evaluated. All tumor diagnoses, all target tissues, and all tissues from a randomly selected 10% of the animals were evaluated by a quality assurance pathologist. Slides of all target tissues and those about which the original and quality assurance pathologists disagreed were submitted to the Chairperson of the Pathology Working Group (PWG) for evaluation. Representative coded slides selected by the Chairperson were reviewed by PWG pathologists, who reached a consensus and compared their findings with the original and quality assurance diagnoses. When diagnostic differences were found, the PWG sent the appropriate slides and comments to the original pathologist for review. This procedure has been described, in part, by Maronpot and Boorman (1982) and Boorman et al. (1985). The final diagnoses represent a consensus of contractor pathologists and the NTP Pathology Working Group. For subsequent evaluations, the diagnosed lesions for each tissue type are combined according to the guidelines of McConnell et al. (1986).

Nonneoplastic lesions are not examined routinely by the quality assurance pathologist or PWG. Certain nonneoplastic findings are reviewed by the quality assurance pathologist and PWG if they are considered part of the toxic response to a chemical or if they are deemed of special interest.

Statistical Methods

Data Recording: Data on this experiment were recorded in the Carcinogenesis Bioassay Data

System (Linhart et al., 1974). The data elements include descriptive information on the chemicals, animals, experimental design, survival, body weight, and individual pathologic results, as recommended by the International Union Against Cancer (Berenblum, 1969).

Survival Analyses: The probability of survival was estimated by the product-limit procedure of Kaplan and Meier (1958) and is presented in the form of graphs. Animals were censored from the survival analyses at the time they were found dead of other than natural causes or were found to be missing; animals dying from natural causes were not censored. Statistical analyses for a possible dose-related effect on survival used the method of Cox (1972) for testing two groups for equality and Tarone's (1975) life table test for a dose-related trend. All reported P values for the survival analysis are two-sided.

Calculation of Incidence Rates: The incidence of neoplastic or nonneoplastic lesions is given as the ratio of the number of animals bearing such lesions at a specific anatomic site to the number of animals in which that site was examined. In most instances, the denominators included only those animals for which the site was examined histologically. However, when macroscopic examination was required to detect lesions (e.g., skin or mammary tumors) prior to histologic sampling, or when lesions could have appeared at multiple sites (e.g., lymphomas), the denominators consist of the number of animals on which a necropsy was performed.

Analysis of Tumor Incidence: Three statistical methods are used to analyze tumor incidence data. The two that adjust for intercurrent mortality employ the classical method for combining contingency tables developed by Mantel and Haenszel (1959). Tests of significance included pairwise comparisons of high dose and low dose groups with controls and tests for overall doseresponse trends.

For studies in which compound administration has little effect on survival, the results of the three alternative analyses will generally be similar. When differing results are obtained by the three methods, the final interpretation of the data depends on the extent to which the tumor under consideration is regarded as being the cause of death. All reported P values for tumor analyses are one-sided.

Life Table Analyses -- The first method of analysis assumed that all tumors of a given type observed in animals dying before the end of the study were "fatal"; i.e., they either directly or indirectly caused the death of the animal. According to this approach, the proportions of tumorbearing animals in the dosed and control groups were compared at each point in time at which an animal died with a tumor of interest. The denominators of these proportions were the total number of animals at risk in each group. These results, including the data from animals killed at the end of the study, were then combined by the Mantel-Haenszel method to obtain an overall P value. This method of adjusting for intercurrent mortality is the life table method of Cox (1972) and of Tarone (1975). The underlying variable considered by this analysis is time to death due to tumor. If the tumor is rapidly lethal, then time to death due to tumor closely approximates time to tumor onset. In this case, the life table test also provides a comparison of the time-specific tumor incidences.

Incidental Tumor Analyses--The second method of analysis assumed that all tumors of a given type observed in animals that died before the end of the study were "incidental"; i.e., they were merely observed at necropsy in animals dying of an unrelated cause. According to this approach, the proportions of tumor-bearing animals in dosed and control groups were compared in each of five time intervals: weeks 0-52, weeks 53-78, weeks 79-92, week 93 to the week before the terminal-kill period, and the terminal-kill period. The denominators of these proportions were the number of animals on which a necropsy was actually performed during the time interval. The individual time interval comparisons were then combined by the previously described method to obtain a single overall result. (See Haseman, 1984, for the computational details of both methods.)

Unadjusted Analyses--Primarily, survival-adjusted methods are used to evaluate tumor incidence. In addition, the Fisher exact test for pairwise comparisons and the Cochran-Armitage linear trend test (Armitage, 1971; Gart et al., 1979) were carried out. These two tests are based on the overall proportion of tumor-bearing animals and do not adjust for survival differences.

Historical Control Data: Although the concurrent control group is always the first and most appropriate control group used for making decisions, there are certain instances in which historical control data can be helpful in the overall evaluation of tumor incidence. Consequently, control tumor incidences from the NTP historical control data base (Haseman et al., 1984) are included for those tumors in these studies appearing to show compound-related effects.

III. RESULTS

RATS

THIRTEEN-WEEK STUDIES

FIFTY-TWO-WEEK STUDIES

TWO-YEAR STUDIES

Body Weights and Clinical Signs Survival Pathology and Statistical Analyses of Results

MICE

THIRTEEN-WEEK STUDIES

TWO-YEAR STUDIES

Body Weights and Clinical Signs Survival Pathology and Statistical Analyses of Results

THIRTEEN-WEEK STUDIES

One male and two female rats that received 4,000 ppm C.I. Basic Red 9 monohydrochloride died before the end of the studies (Table 5). Final mean body weights relative to those of the controls were 14% and 37% lower for females that received 2,000 ppm or 4,000 ppm and 40% lower for males that received 4,000 ppm.

At necropsy, enlarged thyroid glands were found in 8/10 male and 8/10 female rats that received 4,000 ppm and in 3/10 female rats that received 2,000 ppm. Adenomatous goiter was seen in 9/10 males and 9/9 females that received 4,000 ppm. Diffuse hyperplasia of the thyroid gland occurred in 1/10 male rats that received 4,000 ppm and in 7/10 female rats that received 2,000 ppm, as compared with 0/10 male controls and 0/9 female controls. Adenomatous goiter was characterized by overdistended cells with an excess of colloid, papillary infolding of follicular epithelium, retrogressive changes such as intrafollicular hemorrhage, and capsular and interstitial fibrosis. In the high dose male rat with diffuse follicular hyperplasia, the follicular cells were columnar with focal piling up of cells. Colloid was not found in follicular lumens.

Pituitary basophil hypertrophy was seen with H&E and Aldehyde Thionine PAS staining. The hypertrophied cells were identified as basophils by the presence of dark blue cytoplasmic granules after staining. Basophil hypertrophy was found in 5/7 male and 8/9 female rats that received 4,000 ppm and in 1/9 male and 1/10 female rats that received 2,000 ppm, as compared with none in the 9 male and 8 female controls examined.

A fatty change in the liver was found in 1/10 male and 4/10 female rats that received 4,000 ppm but not in rats that received lower concentrations.

Dose Selection Rationale: Because lower mean body weights were observed at higher concentrations, doses selected for rats for the 2-year studies were 1,000 or 2,000 ppm C.I. Basic Red 9 monohydrochloride for males and 500 or 1,000 ppm for females.

Concen-		Mean l	Body Weight ((grams)	Final Weight Relative to	Fee Consum	ed ption (d)
tration (ppm)	Survival (a)	Initial (b)	Final	Change (c)	Controls (percent)	Week 4	Week 12
MALE	· · · · ·						
0	10/10	136 ± 3	281 ± 6	$+145 \pm 5$		112	85
250	10/10	135 ± 2	265 ± 7	$+130 \pm 6$	94.3	111	87
500	10/10	135 ± 3	290 ± 8	$+155 \pm 7$	103.2	102	72
1,000	10/10	136 ± 3	286 ± 8	$+150 \pm 6$	101.8	95	72
2,000	10/10	136 ± 3	274 ± 7	$+138 \pm 6$	97.5	96	74
4,000	(e) 9/10	137 ± 3	169 ± 6	$+ 32 \pm 5$	60.1	84	74
FEMALE							
0	10/10	106 ± 3	178 ± 4	$+72 \pm 2$		98	90
250	10/10	106 ± 3	170 ± 7	$+ 64 \pm 5$	95.5	96	71
500	10/10	107 ± 3	170 ± 5	$+63 \pm 3$	95.5	95	74
1,000	10/10	107 ± 3	170 ± 4	$+63 \pm 2$	95.5	93	70
2,000	10/10	106 ± 2	153 ± 3	$+47 \pm 2$	86.0	147	72
4,000	(f) 8/10	107 ± 4	112 ± 4	$+ 6 \pm 4$	63.0	86	82

TABLE 5. SURVIVAL, MEAN BODY WEIGHTS, AND FEED CONSUMPTION OF RATS IN THE THIRTEEN-WEEK FEED STUDIES OF C.I. BASIC RED 9 MONOHYDROCHLORIDE

(a) Number surviving/number initially in the group

(b) Initial mean body weight \pm standard error of the mean of all animals in the group. Subsequent calculations are based on those animals surviving to the end of the study.

(c) Mean body weight change of the survivors of the group \pm standard error of the mean

(d) Grams of feed consumed per kilogram of body weight per day

(e) Week of death: 3

(f) Week of death: 7,9

C.I. Basic Red 9 Monohydrochloride, NTP TR 285

FIFTY-TWO-WEEK STUDIES

One control male and one male that received 2,000 ppm died (Table 6). Final mean body weights were 13% lower than that of controls for dosed male rats and 9% lower for dosed female rats. Of male rats exposed at 2,000 ppm, 1/10 had hyperplasia, 1/10 had an adenoma, and 1/10 had a carcinoma of the follicular epithelium of the thyroid gland at the end of 1 year. One of 10 males exposed at 2,000 ppm had thyroid gland follicular cysts; this lesion also occurred in 2/10 females exposed at 1,000 ppm.

The mean absolute thyroid gland weight of dosed males was 1.40 times that of the controls,

and the mean relative thyroid gland weight of the dosed males was 1.69 times that of the controls (Table 7). In contrast, the relative thyroid gland weight of the female rats was only 1.13 times that of the controls.

The concentration of thyroxin in dosed rats was significantly lower than that of the controls by week 13 in males and by week 52 in females (Table 8).

Four of 10 males had fatty metamorphosis of the liver; 2 of the males with fatty metamorphosis had focal necrosis of the liver, and 1 of these had a neoplastic nodule.

TABLE 6. SURVIVAL AND MEAN BODY WEIGHTS OF RATS IN THE FIFTY-TWO-WEEK FEEDSTUDIES OF C.I. BASIC RED 9 MONOHYDROCHLORIDE

		Mean Body Weight (grams)			Final Body Weight Relative to	
Concentration (ppm)	Survival	Initial	Final (a)	Change	Controls (percent)	
MALE						
0 2,000	9/10 9/10	129 122	472 409	343 287	86.7	
FEMALE						
0	10/10	96	264	168		
1,000	10/10	95	240	145	90.9	

(a) Weight at final monthly weighing

Concentration (ppm)	Mean Body Weight ± SD (a) (grams)	No. of Animals	Mean Thyroid Gland Weight ± SD (grams × 10 ⁻³)	Ratio (Thyroid Gland Wt:Body Wt) (× 10 ⁻⁵)
MALE	. <u> </u>	<u> </u>	······································	······································
0	457 ± 22	9	28.3 ± 4.6	6.18 ± 0.90
2,000	(b) 389 ± 56	(c) 7	(b) 39.6 ± 1.3	(b) 10.42 ± 2.01
Ratio (dosed:control)	0.82		1.40	1.69
FEMALE				
0	254 ± 20	10	23.3 ± 4.1	9.23 ± 1.84
1,000	(b) 231 ± 18	10	24.3 ± 3.5	10.56 ± 1.67
Ratio (dosed:control)	0.91		1.04	1.13

TABLE 7. RELATIVE THYROID GLAND WEIGHTS OF RATS IN THE FIFTY-TWO-WEEK FEED STUDIES OF C.I. BASIC RED 9 MONOHYDROCHLORIDE

(a) Mean body weight at necropsy \pm standard deviation

(b) P < 0.05 by two-sided *t*-test comparison with the controls

(c) Two animals with thyroid gland tumors were deleted from this group as outliers; thyroid gland weights: 98.8 mg and 61.6 mg.

TABLE 8. CONCENTRATIONS OF THYROXIN IN THE SERUM OF RATS IN THE FIFTY-TWO-WEEK FEED STUDIES OF C.I. BASIC RED 9 MONOHYDROCHLORIDE

Week	No. of Animals (a) (controls)	Thyroxin Level of Controls (b)	No. of Animals (dosed)	Thyroxin Level of Dosed Groups (b)	Ratio (c)	P Value (d)
MALE	<u></u>					
-1	10	5.34 ± 0.58	10	4.98 ± 0.49	0.93	0.13
0	10	3.74 ± 0.74	10	3.66 ± 0.72	0.98	0.38
13	9	4.19 ± 0.42	10	3.25 ± 0.64	0.78	0.002
26	8	4.28 ± 0.34	10	3.23 ± 0.68	0.75	< 0.001
39	8	3.08 ± 0.33	10	1.99 ± 0.40	0.65	< 0.001
52	8	3.30 ± 0.46	9	1.72 ± 0.59	0.52	<0.001
FEMALE						
-1	10	3.72 ± 0.49	10	4.09 ± 0.53	1.10	0.11
0	10	3.73 ± 0.34	10	3.48 ± 0.54	0.93	0.18
13	10	3.17 ± 0.60	10	2.90 ± 0.45	0.91	0.20
26	9	2.76 ± 0.52	10	2.20 ± 0.39	0.80	0.019
39	9	2.51 ± 0.53	10	2.27 ± 0.55	0.90	0.24
52	9	2.60 ± 0.56	10	1.66 ± 0.41	0.64	< 0.001

(a) No serum sample was obtainable from one male and one female control after 13 weeks on study.

(b) Mean: micrograms/100 ml ± standard deviation; dietary concentration of C.I. Basic Red 9 monohydrochloride for males is 2,000 ppm and for females, 1,000 ppm.

(c) Ratio of thyroxin level in dosed groups to that in controls

(d) Two-tailed t-test comparison of the control and dosed groups

TWO-YEAR STUDIES

Body Weights and Clinical Signs

Mean body weights of high dose rats of each sex were marginally lower than those of the controls (Table 9 and Figure 1). This effect appears to have been progressive. The average daily feed consumption per rat by low dose and high dose rats was 99% that of the controls for males and 96% and 97% for females (Appendix L, Tables L1 and L2). The average daily doses of C.I. Basic Red 9 monohydrochloride were approximately 49 and 103 mg/kg body weight for low dose and high dose male rats and 28 and 59 mg/kg body weight for low dose and high dose female rats.

Av. Wt. (grams)	No. of Survivors	Av. Wt. (grams)	Wt. (percent of controls)	No. of Survivors	Av. Wt. (grams)	Wt. (percent of controls)	No. of
		-		SULAINOLS	(grama)		Survivors
			1,000 ppm			2,000 ppm	_
111	50	108 152	97 100	50 50 50	110 146	99 96	50 50
187	50	187	100	50	178 200	95 94	50 50
212 229	50	209	100	50	219	96	50
247 256	50 50	246 255	100	50	248	97	50
266	50	263 267	99 96	50 50	258 261	97 94	50
288	50	279	97	50 50	273 285	95 95	50 50
300	50	299	97	50	293	95 94	50 50
300 341	50 50	335	98	50 50	322	94	49
358	50 50	347 367	97 97	50 50	342	95	47
394	50	380	96	50 50	373 385	95 97	47 47
415	50	401	97 97	50	392	94 94	47 47
426 434	50 50	412 422	97	50	407	94	46
441 448	50 50	430 434	98 97	50 50	414 416	93 93	40
447	50	438	98 98	49 49	418 411	94 93	48 44
442	48	439	98	48	415	93	41 38
450 450	48 48	435	97	48	398	88	35
454 461	47 47	437 448	96 97	48 48	409	91	24
460	45 45	447 449	97 97	47 44	413 403	90 87	20 14
467	43				415 408		11 9
					379 393		50055005500550055005500550055005500550
					388		2
435	37	430		31		 1,000 ppm	
98	50	99		50	96		50
124	50	124 141	100 99	50 50	122 139	98 98	50
179	50	151	84	50 50	148 154	83 97	50 50
168	50	166	99	50	162	96 96	50 50
173 1 79	50 50	172	99	50	173	97	50
185 188	50 50	182 186	98 99	50 50	180	96	50
192	50	197	103 98	50 50	183 184	95 94	50
196	50	190	97	50	180	92 90	50 50
215	50	212	99	50	202	94	50 50
221 225	50 50	223				93	50
230 234	50 50	225 231	98 99	50	219	94 94	49
246	50	239 242	97 96	50 50	224 229	91 91	49 49
257	50	251	98 97	50 50	235 240	91 91	49 49
265	49	267	97	50	249	91 89	49 48
282 289	49 49	270 280	97	50	258	89	46
300 306	49 49	287 295	96 96	50 50	265 271	89	43
317	49 47	302	95 95	50 50	277 288	87 87	43 42
336	47	320	95	49	294 308	88 90	39 34
343 343	44 43	324 329	96	48	306	89	31
348	40	332	95	45	314	90	24
	40	349	100	41	326 315	90	5000000000000009999999865332941742962
	27		98	34	325 324	94	16
	221 225 230 234 252 257 265 275 282 289 300 306 317 330 336 3343 343 343	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

TABLE 9. MEAN BODY WEIGHTS AND SURVIVAL OF RATS IN THE TWO-YEAR FEED STUDIESOF C.I. BASIC RED 9 MONOHYDROCHLORIDE

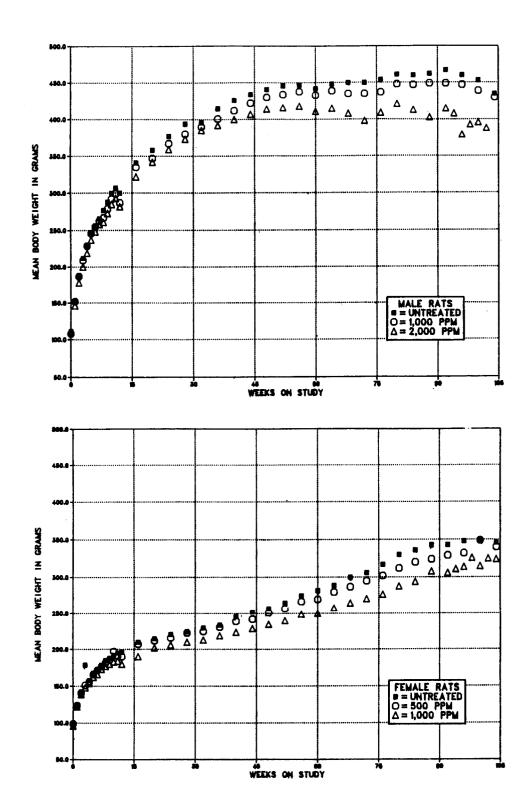


FIGURE 1. GROWTH CURVES FOR RATS FED DIETS CONTAINING C. I. BASIC RED 9 MONOHYDROCHLORIDE FOR TWO YEARS

Survival

Estimates of the probabilities of the survival of male and female rats fed diets containing C.I. Basic Red 9 monohydrochloride at the concentrations used in these studies and those of the controls are shown in the Kaplan and Meier curves in Figure 2. Survival of the high dose male and female rats was significantly lower than that of either the low dose or control groups (P < 0.001) (Table 10). No high dose male rats survived to 104 weeks (see Table 9).

Pathology and Statistical Analyses of Results

This section describes significant or noteworthy changes in the incidence of rats with neoplastic or nonneoplastic lesions of the skin, subcutaneous tissue, mammary gland, thyroid gland, Zymbal gland, liver, urinary system, uterus, lung, and hematopoietic system. Histopathologic findings on neoplasms in rats are summarized in Appendix A (Tables A1 and A2); Appendix A (Tables A3 and A4) also gives the survival and tumor status for individual male and female rats. Findings on nonneoplastic lesions are summarized in Appendix C (Tables C1 and C2). Appendix E (Tables E1 and E2) contains the statistical analyses of those primary tumors that occurred with an incidence of at least 5% in one of the three groups. The statistical analyses used are discussed in Chapter II (Statistical Methods) and Appendix E (footnotes). Historical incidences of tumors in control animals are listed in Appendix F.

The statistical analyses and interpretation of the tumor incidence data for high dose male and female rats were complicated by the marked reduction in survival in these groups when compared with that of the controls. In this situation, the incidental tumor test has relatively little sensitivity; hence, results of this test were not given major emphasis for rats, although, for completeness, they are included in Appendix E. Instead, in this section, the results of unadjusted analyses (Fisher exact test and Cochran-Armitage test) and life table analyses are presented.

A positive effect by both life table and unadjusted analyses was considered evidence that an increase in tumor incidence was related to chemical exposure, except when neoplasms were clearly recognized as the cause of death (life table analysis would be appropriate in this instance).

 TABLE 10. SURVIVAL OF RATS IN THE TWO-YEAR FEED STUDIES OF C.I. BASIC RED 9

 MONOHYDROCHLORIDE

	Control	Low Dose	High Dose
MALE (a)	Control	1,000 ppm	2,000 ppm
Animals initially in study	50	50	50
Nonaccidental deaths before termination (b)	14	21	50
Killed at termination	33	28	0
Died during termination period	3	1	0
Survival P values (c)	< 0.001	0.215	< 0.001
FEMALE (a)	Control	500 ppm	1,000 ppm
Animals initially in study	50	50	50
Nonaccidental deaths before termination (b)	13	15	36
Killed at termination	37	31	12
Died during termination period	Ŭ,	4	2
Survival P values (c)	< 0.001	0.967	< 0.001

(a) Terminal kill period: male--weeks 105-106; female--weeks 104-106

(b) Includes animals killed in a moribund condition

(c) The result of the life table trend test is in the control column, and the results of the life table pairwise comparisons with the controls are in the dosed columns.

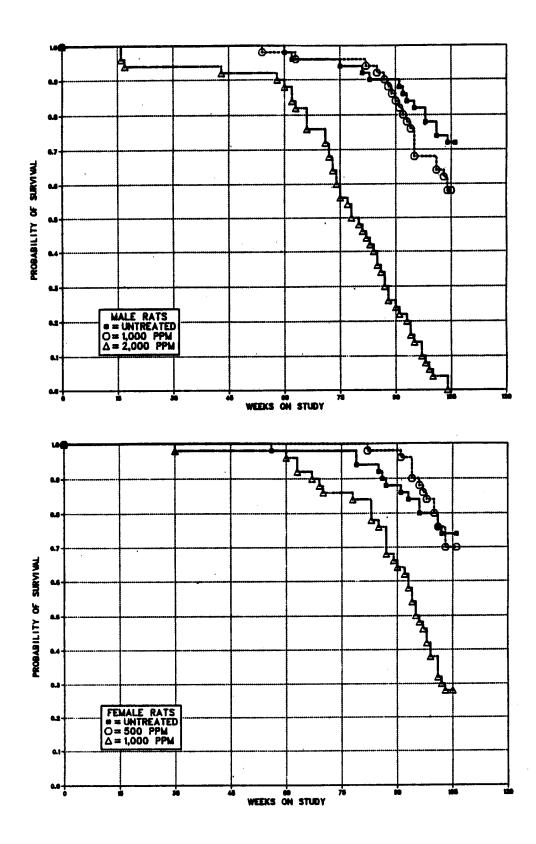


FIGURE 2. KAPLAN-MEIER SURVIVAL CURVES FOR RATS FED DIETS CONTAINING C. I. BASIC RED 9 MONOHYDROCHLORIDE FOR TWO YEARS

Skin: Hyperkeratosis, basal cell hyperplasia, necrosis, and inflammation occurred at increased incidences in high dose male rats (Table 11). These lesions were not seen in dosed female rats.

Squamous cell carcinomas, squamous cell papillomas or carcinomas (combined), trichoepitheliomas, and sebaceous adenomas in male rats occurred with significant positive trends, and the incidences in the high dose group were significantly greater than those in the controls (Table 12). These neoplasms were not observed at significantly increased incidences in female rats.

Many of the male rats had multiple masses on the skin. These began to appear after about 13 months of exposure and were noted commonly on the sides of the animal. Squamous cell

carcinomas were often well differentiated and comprised nests or sheets of epithelial cells in various stages of differentiation. Some had invaded the dermis. Keratin pearls were commonly found in the squamous cell. Carcinomas and keratohyalin granules were present in some cells. One squamous cell carcinoma metastasized to the lung in a high dose male rat. The sebaceous adenomas contained cells with a foamy cytoplasm and a centrally or eccentrically located nucleus. Trichoepitheliomas were characterized by nests or sheets of cells circumscribed by delicate or dense fibrovascular stroma. The cells were oval or polygonal with eosinophilic cytoplasm; the nuclei had coarse or granular cytoplasm. Some of the numerous small keratinous cores in the parenchyma were lined by concentric rings of squamous epithelial cells suggesting differentiation toward formation of hair.

 TABLE 11. INCIDENCES OF NEOPLASTIC AND NONNEOPLASTIC SKIN LESIONS IN RATS IN THE

 TWO-YEAR FEED STUDIES OF C. I. BASIC RED 9 MONOHYDROCHLORIDE

	Cor	Concentration (ppm)		Concentration (ppm)		
Lesion	Control	1,000	2,000	Control	500	1,000
		Male (a)			Female (a)
Inflammation	2	1	8	1	0	0
Necrosis	0	0	6	0	0	0
Hyperkeratosis	2	2	10	0	0	0
Keratoacanthoma	0	1	2	0	0	0
Sebaceous adenoma	0	0	5	0	0	0
Frichoepithelioma	0	0	7	0	0	0
Basal cell hyperplasia	0	0	5	0	0	0
Basal cell carcinoma	1	0	4	1	0	1
Squamous cell papilloma	2	1	4	0	0	0
Squamous cell carcinoma	0	1	10	0	0	1

(a) Fifty animals were examined in each group.

	Control	1,000 ppm (b)	2,000 ppm (b)
Squamous Cell Papilloma			······································
Overall Rates	2/50 (4%)	1/50 (2%)	4/50 (8%)
Squamous Cell Carcinoma			
Overall Rates	0/50 (0%)	1/50 (2%)	10/50 (20%)
Adjusted Rates	0.0%	3.4%	85.4%
Terminal Rates	0/36 (0%)	1/29 (3%)	0/0
Life Table Tests	P<0.001	P = 0.457	P<0.001
Cochran-Armitage Trend Test	P<0.001		
Fisher Exact Tests		P = 0.500	P<0.001
Squamous Cell Papilloma or Carcinoma (c)			
Overall Rates	2/50 (4%)	2/50 (4%)	14/50 (28%)
Adjusted Rates	5.6%	6.9%	89.6%
Terminal Rates	2/36 (6%)	2/29(7%)	0/0
Life Table Tests	P<0.001	P = 0.615	P<0.001
Cochran-Armitage Trend Test	P<0.001		
Fisher Exact Tests		P=0.691	P<0.001
Trichoepithelioma (d)			
Overall Rates	0/50 (0%)	0/50 (0%)	7/50 (14%)
Adjusted Rates	0.0%	0.0%	71.1%
Terminal Rates	0/36 (0%)	0/29 (0%)	0/0
Life Table Tests	P<0.001	(e)	P<0.001
Cochran-Armitage Trend Test	P = 0.001		
Fisher Exact Tests		(e)	P=0.006
Sebaceous Adenoma (f)			
Overall Rates	0/50 (0%)	0/50 (0%)	5/50 (10%)
Adjusted Rates	0.0%	0.0%	27.3%
Terminal Rates	0/36 (0%)	0/29 (0%)	0/0
Life Table Tests	P<0.001	(e)	P = 0.001
Cochran-Armitage Trend Test	P = 0.006		
Fisher Exact Tests		(e)	P = 0.028

TABLE 12. ANALYSIS OF SKIN TUMORS IN MALE RATS IN THE TWO-YEAR FEED STUDY OF C.I. BASIC RED 9 MONOHYDROCHLORIDE (a)

(a) The statistical analyses used are discussed in Chapter II (Statistical Methods) and Appendix E.
(b) The estimated dose in milligrams per kilogram per day is given in Chapter III (Body Weights and Clinical Signs) and in Appendix L. (c) Historical incidence at testing laboratory (mean ± SD): 17/699 (2% ± 1%); historical incidence in NTP studies: 44/2,372

 $(2\% \pm 2\%)$

(d) Historical incidence at testing laboratory (mean ± SD): 1/699 (0.1% ± 0.5%); historical incidence in NTP studies: 4/2,372 $(0.2\% \pm 0.6\%)$

(e) No P value is reported because no tumors were observed in the control and 1,000-ppm groups. (f) Historical incidence at testing laboratory (mean \pm SD): 1/699 (0.1% \pm 0.5%); historical incidence in NTP studies: 3/2,372 $(0.1\% \pm 0.4\%)$

Subcutaneous Tissue: Fibromas occurred in male and female rats with significant positive trends, and the incidences in the dosed groups were significantly greater than those in the controls (Table 13). The fibromas were circumscribed, were either single or multiple, and varied in size. Fusiform cells occurred in palisades or whorls, and the fibromas contained mature collagen. A review of the gross descriptions revealed that none of these tumors was in the mammary gland area.

	Control	Low Dose	High Dose
MALE	********	1,000 ppm	2,000 ppm
Fibroma			
Overall Rates	2/50 (4%)	20/50 (40%)	16/50 (32%
Adjusted Rates	5.6%	47.8%	100.0%
Terminal Rates	2/36 (6%)	9/29 (31%)	0/0
Life Table Tests	P<0.001	P<0.001	P<0.001
Cochran-Armitage Trend Test	P<0.001	F < 0.001	1 < 0.001
Fisher Exact Tests	1 <0.001	P<0.001	P<0.001
Fibrosarcoma or Sarcoma			
Overall Rates	4/50 (8%)	5/50 (10%)	4/50 (8%)
Fibroma or Fibrosarcoma (a)			
Overall Rates	3/50 (6%)	22/50 (44%)	16/50 (32%
Adjusted Rates	7.8%	53.0%	100.0%
Terminal Rates	2/36 (6%)	11/29 (38%)	0/0
Life Table Tests	P<0.001	P<0.001	P<0.001
Cochran-Armitage Trend Test	P=0.003		
Fisher Exact Tests		P<0.001	P<0.001
Fibroma, Sarcoma, or Fibrosarcoma			
Overall Rates	6/50 (12%)	24/50 (48%)	19/50 (38%)
Adjusted Rates	14.1%	55.5%	100.0%
Terminal Rates	3/36 (8%)	11/29 (38%)	0/0
Life Table Tests	P<0.001	P<0.001	P<0.001
Cochran-Armitage Trend Test	P = 0.004		
Fisher Exact Tests		P<0.001	P = 0.002
FEMALE		500 ppm	1,000 ppm
Fibroma			
Overall Rates	0/50 (0%)	15/50 (30%)	10/50 (20%)
Adjusted Rates	0.0%	37.8%	40.3%
Terminal Rates	0/37 (0%)	11/35 (31%)	3/14 (21%)
Life Table Tests	P<0.001	P<0.001	P<0.001
Cochran-Armitage Trend Test	P = 0.005		
Fisher Exact Tests		P<0.001	P<0.001
Fibrosarcoma			
Overall Rates	0/50 (0%)	2/50 (4%)	0/50 (0%)
Fibroma or Fibrosarcoma (b)		10/20 (00%)	10/50/0000
Overall Rates	0/50 (0%)	16/50 (32%)	10/50 (20%)
Adjusted Rates	0.0%	39.5%	40.3%
Terminal Rates	0/37 (0%)	11/35 (31%)	3/14 (21%)
Life Table Tests	P<0.001	P<0.001	P<0.001
Cochran-Armitage Trend Test	P = 0.006		.
Fisher Exact Tests		P<0.001	P<0.001
Fibroma, Sarcoma, or Fibrosarcoma	1/60/000	17/60 (047)	19/50 (940)
Overall Rates	1/50 (2%)	17/50 (34%)	12/50 (24%)
Adjusted Rates	2.7%	40.9%	47.2%
Terminal Rates	1/37 (3%)	11/35 (31%)	3/14 (21%)
Life Table Tests	P<0.001	P<0.001	P<0.001
Cochran-Armitage Trend Test	P = 0.004		
Fisher Exact Tests		P<0.001	P<0.001

TABLE 13. ANALYSIS OF SUBCUTANEOUS TISSUE TUMORS IN RATS IN THE TWO-YEAR FEEDSTUDIES OF C. I. BASIC RED 9 MONOHYDROCHLORIDE

(a) Historical incidence at testing laboratory (mean \pm SD): 29/699 (4% \pm 4%); historical incidence in NTP studies: 124/2,372 (5% \pm 3%)

(b) Historical incidence at testing laboratory (mean \pm SD): 15/747 (2% \pm 2%); historical incidence in NTP studies: 42/2,422 (2% \pm 2%)

III. RESULTS: RATS

Mammary Gland: Fibroadenomas and adenomas, fibroadenomas, or adenocarcinomas (combined) in female rats occurred with significant positive trends, and the incidence of fibroadenomas in the high dose group was significantly greater than in the controls (Table 14).

TABLE 14. ANALYSIS OF MAMMARY GLAND TUMORS IN FEMALE RATS IN THE TWO-YEARFEED STUDY OF C.I. BASIC RED 9 MONOHYDROCHLORIDE

	Control	500 ррт	1,000 ppm
Fibroadenoma			
Overall Rates	22/50(44%)	31/50 (62%)	29/50 (58%)
Adjusted Rates	49 .7%	73.4%	96.2%
Terminal Rates	15/37 (41%)	24/35 (69%)	13/14 (93%)
Life Table Tests	P<0.001	P = 0.061	P<0.001
Cochran-Armitage Trend Test	P = 0.096		
Fisher Exact Tests		P = 0.054	P = 0.115
Adenoma or Fibroadenoma(a)			
Overall Rates	22/50 (44%)	31/50 (62%)	29/50 (58%)
Adjusted Rates	49.7%	73.4%	96.2%
Terminal Rates	15/37 (41%)	24/35 (69%)	13/14 (93%)
Life Table Tests	P<0.001	P = 0.061	P<0.001
Cochran-Armitage Trend Test	P = 0.096		
Fisher Exact Tests		P = 0.054	P = 0.115
Adenocarcinoma			
Overall Rates	2/50 (4%)	2/50 (4%)	5/50 (10%)
Adenoma, Fibroadenoma, or Adenocarcinoma			
Overall Rates	23/50 (46%)	32/50 (64%)	32/50 (64%)
Adjusted Rates	52.0%	75.8%	96.6%
Terminal Rates	16/37 (43%)	25/35 (71%)	13/14 (93%)
Life Table Tests	P<0.001	P = 0.059	P<0.001
Cochran-Armitage Trend Test	P = 0.043		
Fisher Exact Tests	- 0.000	P = 0.054	P = 0.054

(a) Historical incidence at testing laboratory (mean \pm SD): 226/747 (30% \pm 9%); historical incidence in NTP studies: 549/2,422 (23% \pm 10%)

Thyroid Gland: Follicular cell hyperplasia was observed in 16/44 high dose males and 2/48 low dose females but not in other groups of male or female rats (Table 15). Follicular cysts were observed in 3/46 (7%) low dose males, 3/44 (7%) high dose males, 3/48 (6%) low dose females, and 2/50 (4%) high dose females but in none of the controls. A large or distended follicle with eosinic or pale colloid and lined by cuboidal epithelial cells was considered a follicular cyst. Features of hyperplasia included diffuse follicular enlargement or papillary ingrowth of the epithelium resulting in follicles of various sizes. The cells were either columnar or cuboidal.

Follicular cell adenomas in males and females, follicular cell carcinomas in males, and follicular cell adenomas or carcinomas (combined) in males and females occurred with statistically significant positive trends. The incidences of follicular cell adenomas and follicular cell carcinomas in high dose males, follicular cell adenomas or carcinomas (combined) in high dose males and females, and follicular cell carcinomas in low dose males were significantly greater than those in the controls (Table 16).

Follicular cell neoplasms were vascularized and contained a prominent fibrous capsule. Follicular cell adenomas involved part or all of a lobe and compressed the adjacent tissue. Both macrofollicular and microfollicular types were recognized. The cytoplasm of the cells stained bright red, and nuclei were hyperchromatic. A follicular papillary pattern of the cells and infiltration of the cells into the capsule or blood vessels were features of a follicular cell carcinoma. Areas of necrosis, hemorrhage, pigment, and mineralization were common in carcinomas. A follicular cell carcinoma metastasized to the lung in one low dose male rat.

	Control	Low Dose	High Dose
MALE		1,000 ppm	2,000 ppm
Number examined microscopically	49	46	44
Mineralization	0	0	1 (2%)
Follicular cyst	0	3(7%)	3 (7%)
Inflammation	Ó	0	1 (2%)
Fibrosis	0	Ō	1 (2%)
Necrosis	Ō	õ	1 (2%)
Hyperplasia, C-cell	2(4%)	2(4%)	0
Hyperplasia, follicular cell	0	0	16(36%)
Metaplasia, squamous	0	0	1 (2%)
FEMALE		500 ppm	1 ,000 ppm
Number examined microscopically	47	48	50
Follicular cyst	0	3 (6%)	2(4%)
Necrosis	0	1 (2%)	0
Hyperplasia, C-cell	7 (15%)	4 (8%)	0
Hyperplasia, follicular cell	0	2 (4%)	0

TABLE 15. NUMBERS OF RATS WITH NONNEOPLASTIC LESIONS OF THE THYROID GLAND IN THETWO-YEAR FEED STUDIES OF C. I. BASIC RED 9 MONOHYDROCHLORIDE

	Control	Low Dose	High Dose
MALE		1,000 ppm	2,000 ppm
Follicular Cell Hyperplasia			
Overall Rates	0/49 (0%)	0/46 (0%)	16/44 (36%)
Follicular Cell Adenoma			
Overall Rates	0/49(0%)	0/46 (0%)	9/44 (20%)
Adjusted Rates	0.0%	0.0%	78.4%
Terminal Rates	0/36(0%)	0/27 (0%)	0/0
Life Table Tests	P<0.001	(a)	P<0.001
Cochran-Armitage Trend Test	P<0.001		
Fisher Exact Tests		(a)	P<0.001
Follicular Cell Carcinoma			
Overall Rates	0/49 (0%)	5/46(11%)	18/44 (41%)
Adjusted Rates	0.0%	15.9%	81.6%
Terminal Rates	0/36 (0%)	3/27 (11%)	0/0
Life Table Tests	P<0.001	P = 0.020	P<0.001
Cochran-Armitage Trend Test	P<0.001		
Fisher Exact Tests		P = 0.024	P<0.001
Follicular Cell Adenoma or Carcinoma (b)			
Overall Rates	0/49 (0%)	5/46(11%)	25/44 (57%)
Adjusted Rates	0.0%	15.9%	91.4%
Terminal Rates	0/36 (0%)	3/27 (11%)	0/0
Life Table Tests	P<0.001	P = 0.020	P<0.001
Cochran-Armitage Trend Test	P<0.001		
Fisher Exact Tests		P = 0.024	P<0.001
FEMALE		500 ppm	1 ,000 ppm
Follicular Cell Hyperplasia			
Overall Rates	0/47 (0%)	2/48 (4%)	0/50 (0%)
Follicular Cell Adenoma			
Overall Rates	0/47 (0%)	0/48 (0%)	4/50 (8%)
Adjusted Rates	0.0%	0.0%	20.4%
Terminal Rates	0/37 (0%)	0/33 (0%)	1/14(7%)
Life Table Tests	P = 0.002	(c)	P=0.009
Cochran-Armitage Trend Test	P = 0.017		
Fisher Exact Tests		(c)	P = 0.066
Follicular Cell Carcinoma			
Overall Rates	0/47 (0%)	2/48 (4%)	2/50 (4%)
Follicular Cell Adenoma or Carcinoma (d)			
Overall Rates	0/47 (0%)	2/48 (4%)	6/50 (12%)
Adjusted Rates	0.0%	5.3%	29.2%
Terminal Rates	0/37 (0%)	1/33 (3%)	2/14 (14%)
Life Table Tests	P<0.001	P = 0.232	P<0.001
Cochran-Armitage Trend Test	P = 0.009		
Fisher Exact Tests		P = 0.253	P=0.016

TABLE 16. ANALYSIS OF THYROID GLAND LESIONS IN RATS IN THE TWO-YEAR FEED STUDIES OFC.I. BASIC RED 9 MONOHYDROCHLORIDE

(a) No P value is reported because no tumors were observed in 1,000-ppm and control groups.
(b) Historical incidence at testing laboratory (mean ± SD): 4/664 (0.6% ± 1%); historical incidence in NTP studies: 38/2,282 (2% ± 2%)

(c) No P value is reported because no tumors were observed in the 500-ppm and control groups.
(d) Historical incidence at testing laboratory (mean ± SD): 3/724 (0.4% ± 1%); historical incidence in NTP studies: 15/2,317 (0.6% ± 1%)

Zymbal Gland: Necrosis and hyperkeratosis of the Zymbal gland were observed in high dose male and dosed female rats but not in the controls (necrosis: male--control, 0/50; low dose, 1/50, 2%; high dose, 6/50, 12%; female--control, 0/50; low dose, 1/50, 2%; high dose, 5/50, 10%; hyperkeratosis: male--control, 0/50; low dose, 1/50, 2%; high dose, 8/50, 16%; female--control, 0/50; low dose, 2/50, 4%; high dose, 3/50, 6%). Zymbal gland carcinomas in male and female rats occurred with significant positive trends, and the incidences in the high dose groups were significantly greater than those in the controls (Table 17). These carcinomas were generally large. A fairly uniform population of cells occurred in sheets; many cells had a foamy cytoplasm. Nuclei were vesicular or had coarse chromatin. Hyperkeratosis and necrosis were common in many of these tumors.

TABLE 17. ANALYSIS OF ZYMBAL GLAND TUMORS IN RATS IN THE TWO-YEAR FEED STUDIES OF C.I. BASIC RED 9 MONOHYDROCHLORIDE

	Control	Low Dose	High Dose
MALE	1	1,000 ppm	2,000 ppm
Carcinoma (a)			
Overall Rates	1/50 (2%)	1/50 (2%)	13/50 (26%)
Adjusted Rates	2.4%	3.4%	80.5%
Terminal Rates	0/36 (0%)	1/29 (3%)	0/0
Life Table Tests	P<0.001	P = 0.715	P<0.001
Cochran-Armitage Trend Test	P<0.001		
Fisher Exact Tests		P=0.753	P<0.001
FEMALE		500 ppm	1,000 ppm
Carcinoma (b)			
Overall Rates	0/50 (0%)	2/50 (4%)	7/50 (14%)
Adjusted Rates	0.0%	4.0%	24.1%
Terminal Rates	0/37 (0%)	0/35 (0%)	1/14 (7%)
Life Table Tests	P<0.001	P = 0.261	P = 0.002
Cochran-Armitage Trend Test	P=0.003		
Fisher Exact Tests		P = 0.247	P=0.006

(a) Historical incidence at testing laboratory (mean \pm SD): 3/699 (0.4% \pm 1%); historical incidence in NTP studies: 11/2,372 (0.5% \pm 1%)

(b) Historical incidence at testing laboratory (mean \pm SD): 2/747 (0.3% \pm 1%); historical incidence in NTP studies: 6/2,422 (0.2% \pm 1%)

Neoplastic nodules in males, hepato-Liver: cellular carcinomas in males, and neoplastic nodules or hepatocellular carcinomas (combined) in males and females occurred with significant positive trends (Table 18). The incidences of neoplastic nodules in low dose males, hepatocellular carcinomas in high dose males, and neoplastic nodules or carcinomas (combined) in dosed males were significantly greater than those in the controls. Neoplastic nodules compressed the adjacent liver tissue. Multiple nodules were found in some rats. Cells in the nodules were generally larger than normal hepatocytes, and the cytoplasmic staining was varied. The nucleus in many cells had a stippled chromatin and a large nucleolus. Hepatocellular carcinomas involved part or all of a lobe of the liver. In some tumors, dense fibrovascular stroma had dissected the tumor parenchyma into nodules of varying sizes. The cells were arranged in sheets or in trabecular or acinar patterns. The cytoplasm stained eosinophilic or basophilic or was vacuolated. A few nucleoli had inclusions. The hepatocellular carcinomas metastasized to the lung in one low dose and two high dose males.

The incidence of necrosis (primarily focal or ischemic) of the liver was increased in high dose

male rats (control, 2/50, 4%; low dose, 4/50, 8%; high dose, 20/50, 40%). One bile duct adenoma and two bile duct carcinomas were found in high dose male rats. The incidence of bile duct adenomas or carcinomas (combined) in male rats was significant by trend tests. These lesions may be compound related, since they are very uncommon in NTP historical controls (1/2,358). However, each lesion occurred in a liver that already had a hepatocellular carcinoma. Further, each lesion was distinct and different morphologically from the others. Finally, it was difficult to determine whether one lesion represented a distinct entity or was bile duct proliferation as part of the hepatocellular carcinoma.

Urinary System: Two uncommon tumors were observed in low dose female rats. One rat had a renal tubular cell adenoma, and a second had a transitional cell carcinoma of the urinary bladder. Two transitional cell urinary bladder tumors have been observed in 728 female controls at the testing laboratory, and no renal tubular cell tumors have been observed in 742 female controls. The incidence of renal tubular cell tumors in NTP studies is 4/2,411 (0.2%) and that of urinary bladder transitional cell tumors is 4/2,422 (0.2%).

	Control	Low Dose	High Dose
MALE		1,000 ppm	2,000 ppm
Neoplastic Nodule			
Overall Rates	5/50(10%)	14/50 (28%)	6/50 (12%)
Adjusted Rates	13.9%	46.3%	38.9%
Terminal Rates	5/36(14%)	13/29 (45%)	0/0
Life Table Tests	P<0.001	P = 0.004	P<0.001
Cochran-Armitage Trend Test	P = 0.447		1 401001
Fisher Exact Tests		P = 0.020	P = 0.500
Hepatocellular Carcinoma			
Overall Rates	0/50 (0%)	2/50 (4%)	8/50 (16%)
Adjusted Rates	0.0%	6.9%	57.4%
Terminal Rates	0/36(0%)	2/29 (7%)	0/0
Life Table Tests	P<0.001	P = 0.192	P<0.001
Cochran-Armitage Trend Test	P = 0.001		
Fisher Exact Tests		P = 0.247	P=0.003
Neoplastic Nodule or Hepatocellular Carc	inoma (a)		
Overall Rates	5/50 (10%)	15/50 (30%)	14/50 (28%
Adjusted Rates	13.9%	49.6%	74.0%
Terminal Rates	5/36(14%)	14/29 (48%)	0/0
Life Table Tests	P<0.001	P = 0.002	P<0.001
Cochran-Armitage Trend Test	P = 0.021		
Fisher Exact Tests		P = 0.011	P = 0.020
Bile Duct Adenoma or Carcinoma (b)			
Overall Rates	0/50 (0%)	0/50 (0%)	3/50 (6%)
Adjusted Rates	0.0%	0.0%	25.5%
Terminal Rates	0/36 (0%)	0/29 (0%)	0/0
Life Table Tests	P = 0.002	(c)	P = 0.005
Cochran-Armitage Trend Test	P = 0.037		
Fisher Exact Tests		(c)	P = 0.121
FEMALE		500 ppm	1,000 ppm
Neoplastic Nodule			
Overall Rates	1/50 (2%)	4/50 (8%)	3/50 (6%)
Adjusted Rates	2.7%	11.0%	8.4%
Terminal Rates	1/37 (3%)	3/35 (9%)	0/14(0%)
Life Table Tests	P = 0.073	P = 0.170	P = 0.174
Cochran-Armitage Trend Test	P = 0.252		
Fisher Exact Tests	- • • • •	P=0.181	P = 0.309
Hepatocellular Carcinoma			
Overall Rates	0/50 (0%)	0/50 (0%)	1/50 (2%)
Neoplastic Nodule or Hepatocellular Carc			
Overall Rates	1/50 (2%)	4/50 (8%)	4/50 (8%)
Adjusted Rates	2.7%	11.0%	14.9%
Terminal Rates	1/37 (3%)	3/35 (9%)	1/14 (7%)
Life Table Tests	P = 0.025	P = 0.170	P = 0.062
Cochran-Armitage Trend Test	P = 0.146		
Fisher Exact Tests		P = 0.181	P = 0.181

TABLE 18. ANALYSIS OF LIVER TUMORS IN RATS IN THE TWO-YEAR FEED STUDIES OFC.I. BASIC RED 9 MONOHYDROCHLORIDE

(a) Historical incidence at testing laboratory (mean \pm SD): 25/693 (4% \pm 4%); historical incidence in NTP studies: 110/2,358 (5% ± 5%)

(b) Historical incidence at testing laboratory (mean): 1/693 (0.1%); historical incidence in NTP studies: 1/2,358 (<0.1%)

(c) No P value is reported because no tumors were observed in the 1,000-ppm and control groups.
(d) Historical incidence at testing laboratory (mean ± SD): 26/741 (4% ± 3%); historical incidence in NTP studies: 89/2,408 (4% ± 5%)

> C.I. Basic Red 9 Monohydrochloride, NTP TR 285

-

Uterus: Endometrial stromal sarcomas alone occurred with a significant positive trend; however, the sarcomas appeared to originate in stromal polyps (Table 19). Therefore, the incidence of stromal sarcomas was combined with that of stromal polyps; the combined incidence was significantly greater than that in the controls by the life table test. The sarcomas were well vascularized in some rats and had a striking resemblance to vascular neoplasms. The cells were pleomorphic in size and shape. The fusiform cells were arranged in whorls or palisades; the large polygonal cells were arranged in sheets or nests. Cells with bizarre or multiple nuclei were numerous in some neoplasms. Adenocarcinomas of the uterus were observed in two high dose female rats.

TABLE 19.	ANALYSIS OF UTERINE TUMORS IN FEMALE RATS IN THE TWO-YEAR FEED STUDY
	OF C.I. BASIC RED 9 MONOHYDROCHLORIDE

.

	Control	500 ppm	1,000 ppm
Endometrial Stromal Polyp (a)			<u></u>
Overall Rates	15/50 (30%)	14/50 (28%)	10/49 (20%)
Adjusted Rates	36.9%	35.3%	41.4%
Terminal Rates	12/37 (32%)	10/35 (29%)	4/14 (29%)
Life Table Tests	P = 0.225	P = 0.541 N	P = 0.266
Cochran-Armitage Trend Test	P = 0.166N		
Fisher Exact Tests		P = 0.500N	P=0.193
Endometrial Stromal Sarcoma (b)			
Overall Rates	1/50 (2%)	5/50 (10%)	6/49 (12%)
Adjusted Rates	2.7%	13.3%	22.6%
Terminal Rates	1/37 (3%)	4/35 (11%)	1/14 (7%)
Life Table Tests	P = 0.004	P=0.099	P = 0.010
Cochran-Armitage Trend Test	P = 0.045		
Fisher Exact Tests		P = 0.102	P = 0.053
Endometrial Stromal Polyp or Sarcoma			
Overall Rates	16/50 (32%)	18/50 (36%)	,16/49 (33%)
Adjusted Rates	394%	44.3%	56.2%
Terminal Rates	13/37 (35%)	13/35 (37%)	5/14 (36%)
Life Table Tests	P = 0.014	P = 0.379	P = 0.024
Cochran-Armitage Trend Test	P = 0.514		
Fisher Exact Tests		P = 0.416	P = 0.558

(a) Historical incidence at testing laboratory (mean \pm SD): 154/733 (21% \pm 8%); historical incidence in NTP studies: 429/2,370 (18% \pm 8%)

(b) Historical incidence at testing laboratory (mean \pm SD): 7/733 (1% \pm 2%); historical incidence in NTP studies: 22/2,370 (0.9% \pm 2%)

Lung: Alveolar/bronchiolar adenomas and alveolar/bronchiolar adenomas or carcinomas (combined) in dosed male rats occurred with significant positive trends, and the incidence of alveolar/bronchiolar adenomas or carcinomas (combined) in high dose male rats was increased over controls by the life table tests (Table 20).

Hematopoietic System: Leukemia in male rats occurred with a significant negative trend, and the incidences in the dosed groups were significantly lower (P=0.01) than those in the controls (control, 7/50, 14%; low dose, 1/50, 2%; high dose, 1/50, 2%). The incidence of leukemia in the high dose male rats may be lower than that of the controls because of decreased survival.

TABLE 20. ANALYSIS OF LUNG TUMORS IN MALE RATS IN THE TWO-YEAR FEED STUDY OFC.I. BASIC RED 9 MONOHYDROCHLORIDE

	Control	1,000 ppm	2,000 ppm
Alveolar/Bronchiolar Adenoma			<u> </u>
Overall Rates	0/50 (0%)	3/50 (6%)	3/50 (6%)
Adjusted Rates	0.0%	8.9%	8.4%
Terminal Rates	0/36(0%)	2/29 (7%)	0/0
Life Table Tests	P = 0.008	P = 0.101	P = 0.076
Cochran-Armitage Trend Test	P = 0.101		
Fisher Exact Tests		P = 0.121	P = 0.121
Alveolar/Bronchiolar Carcinoma			
Overall Rates	1/50 (2%)	0/50 (0%)	1/50 (2%)
Alveolar/Bronchiolar Adenoma or Carcir	ioma (a)		
Overail Rates	1/50 (2%)	3/50 (6%)	4/50 (8%)
Adjusted Rates	2.4%	8.9%	31.3%
Terminal Rates	0/36(0%)	2/29 (7%)	0/0
Life Table Tests	P = 0.004	P = 0.258	P = 0.017
Cochran-Armitage Trend Test	P = 0.133		
Fisher Exact Tests		P = 0.309	P = 0.181

(a) Historical incidence at testing laboratory (mean \pm SD): 13/696 (2% \pm 2%); historical incidence in NTP studies: 57/2,357 (2% \pm 2%)

THIRTEEN-WEEK STUDIES

One male that received 2,000 ppm C.I. Basic Red 9 monohydrochloride died on day 5 (Table 21). This death was probably not compound related, since no deaths occurred at 4,000 ppm during 13 weeks of exposure. One female that received 2,000 ppm died accidentally during week 12. Final mean body weights relative to those of the controls were at least 10% lower for male mice that received 4,000 ppm and for female mice that received 1,000 ppm or more. No compound-related clinical signs of toxicity or histopathologic effects were observed. Mice that received 4,000 ppm had a higher rate of feed consumption than did the other groups.

Dose Selection Rationale: Because of weight gain depression in males at 4,000 ppm and in females at 2,000 ppm, doses selected for mice for the 2-year studies were 500 or 1,000 ppm C.I. Basic Red 9 monohydrochloride in feed.

TWO-YEAR STUDIES

Body Weights and Clinical Signs

Mean body weights of dosed mice of each sex were lower than those of the controls throughout the studies (Table 22 and Figure 3). The average daily feed consumption by low dose and high dose male mice was 97% and 92% that of the controls and by low dose and high dose female mice, 120% and 155% that of the controls (Appendix M, Tables M3 and M4). Feed consumption measurements are not corrected for scatter. The average daily doses of C.I. Basic Red 9 monohydrochloride were approximately 196 and 379 mg/kg body weight for low dose and high dose male mice and 149 and 407 mg/kg body weight for low dose and high dose female mice.

Concen-		Mean B	ody Weight (g	Final Weight Relative to	Feed Consumption (d)		
tration (ppm)	Survival (a)	Initial (b)	Final	Change (c)	Controls (percent)	Week 4	Week 12
MALE		<u></u>					
0	10/10	22.7 ± 0.6	33.5 ± 0.9	$+10.8 \pm 0.5$		282	339
250	10/10	22.3 ± 0.5	32.0 ± 1.1	$+ 9.7 \pm 0.8$	95.5	270	355
500	10/10	21.3 ± 0.7	30.2 ± 1.1	$+ 8.9 \pm 0.9$	90.1	300	343
1.000	10/10	21.7 ± 0.5	31.3 ± 0.8	$+ 9.6 \pm 0.4$	93.4	222	337
2,000	(e) 9/10	21.6 ± 0.5	30.5 ± 0.6	$+ 8.9 \pm 0.3$	91.0	321	377
4,000	10/10	21.7 ± 0.4	28.8 ± 0.4	$+ 7.1 \pm 0.4$	86.0	413	514
FEMALE							
0	10/10	18.6 ± 0.3	29.5 ± 0.9	$+10.9 \pm 0.8$		248	311
250	10/10	18.5 ± 0.2	27.8 ± 0.8	$+ 9.3 \pm 0.7$	94.2	194	304
500	10/10	18.6 ± 0.3	27.1 ± 0.5	$+ 8.5 \pm 0.5$	91.9	210	346
1,000	10/10	18.5 ± 0.3	26.5 ± 0.5	$+ 8.0 \pm 0.4$	89.8	217	385
2,000	(f) 9/10	18.6 ± 0.3	25.3 ± 0.4	$+ 6.6 \pm 0.4$	85.8	253	368
4,000	10/10	18.4 ± 0.3	23.5 ± 0.4	$+ 5.1 \pm 0.2$	79.7	320	465

TABLE 21. SURVIVAL, MEAN BODY WEIGHTS, AND FEED CONSUMPTION OF MICE IN THE THIRTEEN-WEEK FEED STUDIES OF C.I. BASIC RED 9 MONOHYDROCHLORIDE

(a) Number surviving/number initially in the group

(b) Initial mean body weight \pm standard error of the mean of all animals in the group. Subsequent calculations are based on those animals surviving to the end of the study.

(c) Mean weight change of the survivors of the group \pm standard error of the mean

(d) Grams of feed consumed per kilograms of body weight per day

(e) Week of death: 1

(f) Death judged to be accidental

Weeks on Study		ntrol		500 ppm			1,000 ppm	
on Study	Av. Wt. (grams)	No. of Survivors	Av. Wt. (grams)	Wt. (percent of controls)	No. of Survivors	Av. Wt. (grams)	Wt. (percent of controls)	No. of Survivors
IALE								
0 1 2 3 4 5 6 7 8 9 10 11 12 16 20 24 32 36 40 44 48 52 64 68 72 76 80 84 88 92 96 100	$\begin{array}{c} 27.0\\ 28.8\\ 29.9\\ 29.9\\ 30.9\\ 31.9\\ 33.4\\ 35.5\\ 0.7\\ 83.3\\ 34.5\\ 57.7\\ 83.3\\ 34.5\\ 57.7\\ 83.3\\ 34.5\\ 57.7\\ 84.5\\ 47.7\\ 48.6\\ 77.5\\ 45.4\\ 47.7\\ 48.6\\ 77.5\\ 45.4\\ 45.4\\ 45.4\\ 45.1\\ 4.5\\ 45.1\\ 4.5\\ 4.5\\ 4.5\\ 4.5\\ 4.5\\ 4.5\\ 4.5\\ 4.5$	500 550 550 550 550 550 550 550 550 550	$\begin{array}{c} 26.1\\ 288.5\\ 299.9\\ 299.9\\ 299.9\\ 331.8\\ 3322.9\\ 334.5\\ 8.4\\ 1.2\\ 1.2\\ 2.8\\ 9.8\\ 335.5\\ 335.4\\ 1.6\\ 6.4\\ 1.2\\ 1.2\\ 1.2\\ 8.9\\ 8.1\\ 5.9\\ 339.5\\ 9\\ 339.5\\ 9\\ 337.9\\ 340.4\\ 1.2\\ 1.2\\ 1.2\\ 1.2\\ 1.2\\ 1.2\\ 1.2\\ 1.2$	97 98 99 98 97 99 97 95 97 95 97 96 94 93 93 95 93 95 93 91 91 91 91 91 91 91 91 91 88 88 87 88 88 88 88 88 88 88 88 88 88	509 499 488 488 488 488 488 488 488 488 48	$\begin{array}{c} 26.3\\ 28.4\\ 28.6\\ 29.0\\ 29.9\\ 30.5\\ 31.9\\ 31.2\\ 32.8\\ 33.8\\ 35.0\\ 35.1\\ 36.5\\ 37.2\\ 38.7\\ 40.4\\ 53.8\\ 39.7\\ 40.4\\ 40.4\\ 40.4\\ 39.9\\ 39.0\\ 41.8\\ 40.4\\ 38.9\\ 39.7\\ 40.5\\ 38.7\\ 38.7\\ 38.7\\ 38.7\\ 38.7\\ 38.7\\ 38.7\\ 36.7\\ 34.7\\ 36.7\\$	97 999 999 100 999 100 999 97 98 98 96 95 95 94 92 89 90 90 88 88 88 88 88 85 88 85 88 84 83 84 81 82 80	50 50 50 50 50 50 50 50 50 50 50 50 50 5
68 72 76 80 84 88 92 96 100 104 YEMALE	48.9 46.6 47.7 47.5 47.0 46.6 45.9 45.4 45.1 43.4	49 48 48 46 46 43 43 43 43 42	42.8 41.9 40.9 40.8 38.8 39.1 39.5 37.9	88 90 88 88 87 88 85 85 86 88 88 87	46 46 40 40 37 37 33 33 32	41.4 40.1 39.7 38.9 37.4 37.2 36.7 34.7	85 85 84 83 84 81 82 81 80	45 44 43 42 40 39 39 37 36
$\begin{array}{c} 0\\ 1\\ 2\\ 3\\ 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 10\\ 11\\ 12\\ 20\\ 228\\ 32\\ 36\\ 40\\ 448\\ 52\\ 560\\ 648\\ 72\\ 60\\ 884\\ 88\\ 92\\ 94\\ 96\\ 884\\ 92\\ 94\\ 96\\ 102\\ 104 \end{array}$	$\begin{array}{c} 20.5\\ 21.5\\ 22.7\\ 23.6\\ 26.1\\ 25.1\\ 25.1\\ 25.7\\ 26.9\\ 230.2\\ 30.5\\ 34.4\\ 36.8\\ 390.5\\ 334.4\\ 42.5\\ 446.2\\ 447.6\\ 47.5\\ 1\\ 490.1\\ 553.5\\ 59.9\\ 50.9\\ 5$	50 500 500 500 500 500 500 500 500 500	$\begin{array}{c} \textbf{2013}\\ \textbf{224.03}\\ \textbf{224.03}\\ \textbf{224.03}\\ \textbf{224.03}\\ \textbf{224.03}\\ \textbf{2255.889}\\ \textbf{024.60}\\ \textbf{0351.69}\\ \textbf{2255.249}\\ \textbf{2255.222}\\ \textbf{2255.24}\\ \textbf{2255.249}\\ 2$	100 99 98 102 96 98 98 99 99 96 93 99 96 93 99 99 96 93 99 99 96 93 99 90 86 84 85 80 80 97 78 774 73 70 68 70 69 66 70 67 66	500 500 500 500 500 500 500 500 500 500	$\begin{array}{c} 20.8\\ 21.5\\ 23.1\\ 22.6\\ 24.2\\ 24.5\\ 25.4\\ 26.3\\ 26.3\\ 26.3\\ 26.3\\ 26.3\\ 26.3\\ 27.2\\ 28.5\\ 32.6\\ 33.2\\ 5.5\\ 32.5\\ 33.2\\ 5.5\\ 5.5\\ 5.5\\ 5.5\\ 5.5\\ 5.5\\ 5.5\\ 5$	$ \begin{array}{c} 101\\ 100\\ 102\\ 98\\ 88\\ 96\\ 99\\ 99\\ 99\\ 98\\ 99\\ 98\\ 93\\ 85\\ 84\\ 81\\ 81\\ 80\\ 77\\ 76\\ 67\\ 74\\ 72\\ 69\\ 67\\ 65\\ 61\\ 60\\ 58\\ 61\\ 60\\ 63\\ 61\\ 60\\ 63\\ 63\\ 63\\ 63\\ 63\\ 63\\ 63\\ 63\\ 63\\ 63$	50 50 50 50 50 50 50 50 50 50 50 50 50 5

TABLE 22. MEAN BODY WEIGHTS AND SURVIVAL OF MICE IN THE TWO-YEAR FEED STUDIESOF C.I. BASIC RED 9 MONOHYDROCHLORIDE

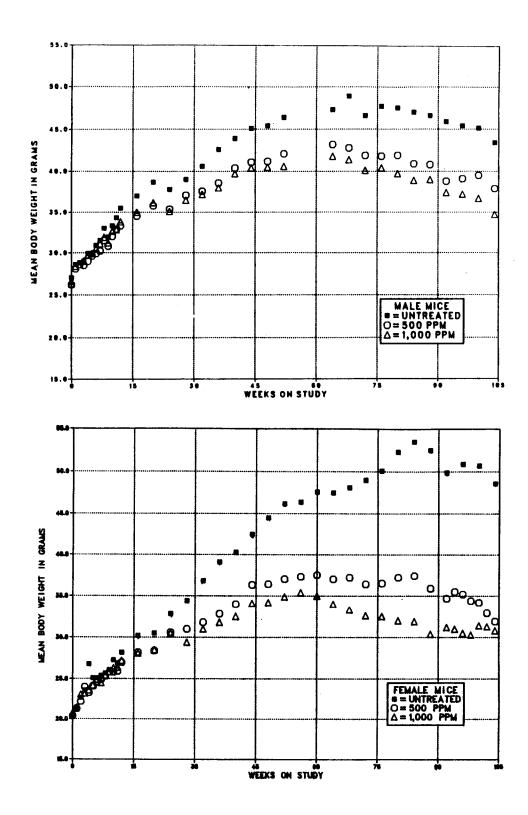


FIGURE 3. GROWTH CURVES FOR MICE FED DIETS CONTAINING C. I. BASIC RED 9 MONOHYDROCHLORIDE FOR TWO YEARS

C.I. Basic Red 9 Monohydrochloride, NTP TR 285

52

Survival

Estimates of the probabilities of survival of male and female mice fed diets containing C.I. Basic Red 9 monohydrochloride at the concentrations used in these studies and those of the controls are shown in the Kaplan and Meier curves in Figure 4. The survival of the low dose group of male mice was significantly lower than that of the control group. In female mice, the survival of both dosed groups was significantly lower than that of the control group (Table 23).

In the initial study, fighting caused high mortality in the group-housed male mice. The male mice were restarted approximately 11 months after the female study and were individually housed. The doses (0, 500, 1,000 ppm) used in the original study were the same as those used in the restarted study of male mice.

Pathology and Statistical Analyses of Results

This section describes significant or noteworthy changes in the incidence of mice with neoplastic or nonneoplastic lesions of the lung, liver, adrenal gland, harderian gland, and hematopoietic system. Histopathologic findings on neoplasms in mice are summarized in Appendix B (Tables B1 and B2); Appendix B (Tables B3 and B4) also gives the survival and tumor status for individual male and female mice. Findings on nonneoplastic lesions are summarized in Appendix D (Tables D1 and D2). Appendix E (Tables E3 and E4) contains the statistical analyses of those primary tumors that occurred with an incidence of at least 5% in one of the three groups. The statistical analyses used are discussed in Chapter II (Statistical Methods) and Appendix E (footnotes). Historical incidences of tumors in control animals are listed in Appendix F.

The statistical analyses and interpretation of the tumor incidence data for low dose and high dose female mice were complicated by the marked reduction in survival in this group when compared with that of the controls. In this situation, the incidental tumor test has relatively little sensitivity; hence, results of this test for female mice were not given major emphasis but, for completeness, are included in Appendix E. Instead, in this section, the results of unadjusted analyses (Fisher exact test and Cochran-Armitage test) and life table analyses are presented. A positive effect by both life table and unadjusted analyses was considered evidence that an increase in tumor incidence was related to chemical administration, except when neoplasms are clearly recognized as the cause of death (life table analysis would be appropriate in this instance).

TABLE 23.	SURVIVAL OF MICE IN THE TWO-YEAR FEED STUDIES OF C.I. BASIC RED 9
	MONOHYDROCHLORIDE

	Control 500 ppm		1,000 ppm	
MALE (a)				
Animals initially in study	50	50	50	
Nonaccidental deaths before termination (b)	8	18	14	
Killed at termination	42	31	35	
Died during termination period	0	1	1	
Survival P values (c)	0.192	0.032	0.190	
FEMALE (a)				
Animals initially in study	50	50	50	
Nonaccidental deaths before termination (b)	19	38	44	
Killed at termination	31	12	6	
Survival P values (c)	< 0.001	< 0.001	< 0.001	

(a) Terminal kill period: male--weeks 104-105; female--week 105

(b) Includes animals killed in a moribund condition

(c) The result of the life table trend test is in the control column, and the results of the life table pairwise comparisons with the controls are in the dosed columns.

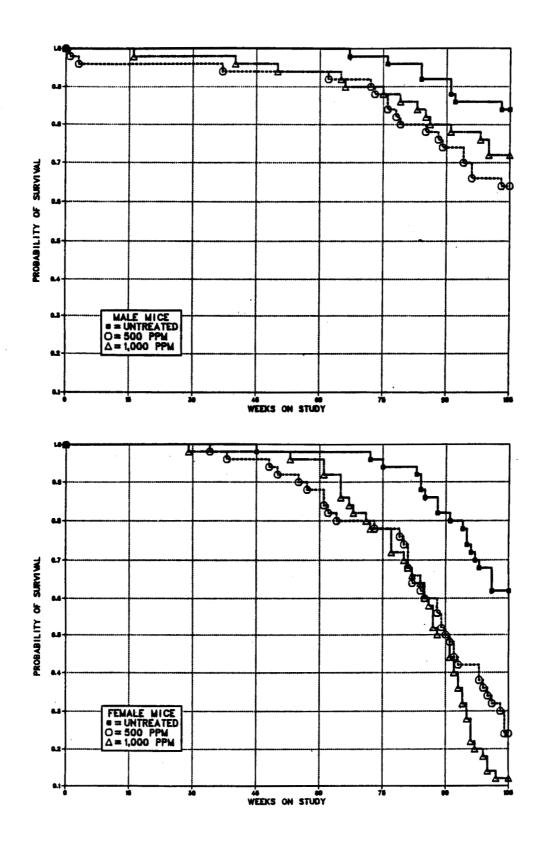


FIGURE 4. KAPLAN-MEIER SURVIVAL CURVES FOR MICE FED DIETS CONTAINING C. I. BASIC RED 9 MONOHYDROCHLORIDE FOR TWO YEARS

Lung: Alveolar/bronchiolar adenomas and alveolar/bronchiolar adenomas or carcinomas (combined) in female mice occurred with significant positive trends (Table 24). The incidence of adenomas or carcinomas (combined) in high dose group was significantly greater than that in concurrent controls. The historical incidence for adenomas or carcinomas is $10\% \pm 5\%$ at the testing laboratory and $7\% \pm 4\%$ in NTP studies.

Liver: Hepatocellular carcinomas and hepatocellular adenomas or carcinomas (combined) in male and female mice occurred with statistically significant positive trends (Table 25). The incidences of hepatocellular carcinomas and hepatocellular adenomas or carcinomas (combined) in dosed males and females and of hepatocellular adenomas in low dose female mice were significantly greater than those in the controls. Hepatocellular adenomas compressed the adjacent parenchyma. The cells of the adenomas were large, the cytoplasm stained eosinophilic, and the nuclei had coarse or stippled chromatin. The hepatocellular carcinomas involved part or all of a lobe of the liver. Trabecular, acinar, or pseudoglandular patterns were common.

Cytoplasmic staining in the carcinomas varied, and eosinophilic globules were present in some cells. An occasional nucleus had inclusions. Sinusoids were dilated and/or congested. Areas of necrosis, hemorrhage, and mineralization were common in large tumors.

Hepatocellular carcinomas metastasized to the lung in 5 low dose males, 12 high dose males, 3 low dose females, and 13 high dose females; to the kidney in 1 high dose male; and to the lymph node in 1 high dose female. Necrosis was observed at increased incidences in dosed female mice (control, 10/49, 20%; low dose, 15/50, 30%; high dose, 26/49, 52%).

	Control	500 ppm (b)	1,000 ppm (b)
Epithelial Hyperplasia		······	·····
Overall Rates	1/50 (2%)	0/49 (0%)	0/47 (0%)
Alveolar/Bronchiolar Adenoma			
Overall Rates	0/50 (0%)	2/49 (4%)	4/47 (9%)
Adjusted Rates	0.0%	11.4%	25.2%
Terminal Rates	0/31 (0%)	1/12 (8%)	1/6 (17%)
Life Table Tests	P = 0.004	P = 0.112	P = 0.011
Cochran-Armitage Trend Test	P = 0.032		
Fisher Exact Tests		P = 0.242	P=0.051
Alveolar/Bronchiolar Carcinoma			
Overall Rates	0/50 (0%)	0/49 (0%)	1/47 (2%)
Alveolar/Bronchiolar Adenoma or Carci	inoma (c)		
Overall Rates	0/50 (0%)	2/49 (4%)	5/47 (11%)
Adjusted Rates	0.0%	11.4%	27.6%
Terminal Rates	0/31 (0%)	1/12 (8%)	1/6(17%)
Life Table Tests	P = 0.002	P = 0.112	P = 0.005
Cochran-Armitage Trend Test	P = 0.014	2	
Fisher Exact Tests		P = 0.242	P = 0.024

TABLE 24.	ANALYSIS C	F LUNG LESIONS I	N FEMALE MICE IN	THE TWO-YEAR FEED STUDY
		OF C. I. BASIC RI	ED 9 MONOHYDROC	HLORIDE (a)

(a) The statistical analyses used are discussed in Chapter II (Statistical Methods) and Appendix E (footnotes).

(b) The estimated dose in milligrams per kilogram per day is given in Chapter III (Body Weights and Clinical Signs) and in Appendix L.

(c) Historical incidence at testing laboratory (mean \pm SD): 73/745 (10% \pm 5%); historical incidence in NTP studies: 179/2,439 (7% \pm 4%)

	Control	500 ppm	1,000 ppm
MALE	<u></u>		
Hepatocellular Adenoma			
Overall Rates	22/50 (44%)	21/50 (42%)	17/50 (34%)
Adjusted Rates	48.7%	55.9%	44.7%
Terminal Rates	19/42 (45%)	16/32 (50%)	15/36 (42%)
Life Table Tests	P=0.395N	P = 0.260	P = 0.413N
Incidental Tumor Tests	P = 0.264N	P = 0.532	P = 0.239N
Cochran-Armitage Trend Test	P = 0.179N	x = 0.00x	0,20011
Fisher Exact Tests		P = 0.500N	P = 0.206N
Hepatocellular Carcinoma			
Överall Rates	10/50 (20%)	20/50 (40%)	27/50 (54%)
Adjusted Rates	23.1%	49.0%	62.5%
Terminal Rates	9/42 (21%)	12/32 (38%)	20/36 (56%)
Life Table Tests	P<0.001	P = 0.005	P<0.001
Incidental Tumor Tests	P<0.001	P = 0.017	P<0.001
Cochran-Armitage Trend Test	P<0.001		
Fisher Exact Tests		P = 0.024	P<0.001
Hepatocellular Adenoma or Carcinoma (a)			
Överall Rates	29/50 (58%)	37/50 (74%)	41/50 (82%)
Adjusted Rates	62.8%	83.8%	91.1%
Terminal Rates	25/42 (60%)	25/32 (78%)	32/36 (89%)
Life Table Tests	P = 0.001	P = 0.004	P = 0.001
Incidental Tumor Tests	P<0.001	P = 0.035	P = 0.002
Cochran-Armitage Trend Test	P=0.005		
Fisher Exact Tests		P=0.069	P = 0.008
FEMALE			
Hepatocellular Adenoma			
Överall Rates	2/49 (4%)	18/50 (36%)	4/49 (8%)
Adjusted Rates	6.5%	73.8%	22.6%
Terminal Rates	2/31 (6%)	7/12 (58%)	1/6 (17%)
Life Table Tests	P=0.004	P<0.001	P = 0.063
Cochran-Armitage Trend Test	P = 0.341		
Fisher Exact Tests		P<0.001	P=0.339
Hepatocellular Carcinoma			
Överall Rates	3/49 (6%)	19/50 (38%)	37/49 (76%)
Adjusted Rates	9.2%	70.5%	97.1%
Terminal Rates	2/31 (6%)	6/12 (50%)	5/6 (83%)
Life Table Tests	P<0.001	P<0.001	P<0.001
Cochran-Armitage Trend Test	P<0.001		
Fisher Exact Tests		P<0.001	P<0.001
Hepatocellular Adenoma or Carcinoma (b) Overall Rates	5/49 (10%)	95/50 (700)	A1 140 (0 401)
		35/50 (70%)	41/49 (84%)
Adjusted Rates	15.5%	96.9%	100.0%
Terminal Rates	4/31 (13%)	11/12 (92%)	6/6 (100%)
Life Table Tests	P<0.001	P<0.001	P<0.001
Cochran-Armitage Trend Test	P<0.001	D <0 001	D <0.001
Fisher Exact Tests		P<0.001	P<0.001

TABLE 25. ANALYSIS OF LIVER TUMORS IN MICE IN THE TWO-YEAR FEED STUDIES OFC.I. BASIC RED 9 MONOHYDROCHLORIDE

(a) Historical incidence at testing laboratory (mean ± SD): 237/745 (32% ± 9%); historical incidence in NTP studies: 730/2,386 (31% ± 8%)
(b) Historical incidence at testing laboratory (mean ± SD): 68/745 (9% ± 5%); historical incidence in NTP studies:

205/2,519 (8% ± 5%)

Adrenal Gland: Pheochromocytomas in female mice occurred with significant positive trends, and the incidences in the dosed groups were significantly greater than those in the controls (Table 26). The pheochromocytomas varied in size and infiltrated into the cortex in a few animals. Cells were arranged as cords or as follicles and had granular, basophilic cytoplasm. Nuclei were vesicular or had coarse chromatin. Mitotic figures were not numerous.

Harderian Gland: Adenomas or cystadenomas (combined) in female mice occurred with a significant positive trend (Table 27). A carcinoma was observed in one control female mouse. However, the harderian glands in mice were only examined microscopically if they appeared abnormal at necropsy. In male mice, the number of adenomas or cystadenomas (combined) was 4/50 for control, 6/50 for low dose, and 4/50 for high dose mice.

Hematopoietic System: For both male and female mice, the incidences of all types of malignant lymphomas were not statistically significant by the Cochran-Armitage or Fisher exact tests (Table 28). However, lymphomas are considered lethal tumors, and in females there was a clear increase based on life table analyses.

all a start

TABLE 26. ANALYSIS OF ADRENAL GLAND TUMORS IN FEMALE MICE IN THE TWO YEAR FEEDSTUDY OF C.I. BASIC RED 9 MONOHYDROCHLORIDE

	Control	500 ppm	1,000 ppm
Pheochromocytoma			
Overall Rates	1/48 (2%)	7/47 (15%)	7/45 (18%)
Adjusted Rates	3.2%	32.4%	59.8%
Terminal Rates	1/31 (3%)	2/12 (17%)	3/6 (50%)
Life Table Tests	P<0.001	P = 0.003	P<0.001
Cochran-Armitage Trend Test	P = 0.025		
Fisher Exact Tests	- ••••	P = 0.027	P =0.024
Pheochromocytoma, Malignant			
Overall Rates	0/48 (0%)	1/47 (2%)	1/45 (2%)
Pheochromocytoma or Pheochromocyt	oma, Malignant (a)		
Overall Rates	1/48 (2%)	8/47 (17%)	8/45 (18%)
Adjusted Rates	3.2%	37.2%	73.2%
Terminal Rates	1/31 (3%)	2/12 (17%)	4/6 (67%)
Life Table Tests	P<0.001	P = 0.001	P<0.001
Cochran-Armitage Trend Test	P = 0.015		
Fisher Exact Tests		P = 0.014	P = 0.012

(a) Historical incidence at testing laboratory (mean \pm SD): 5/704 (0.7% \pm 1%); historical incidence in NTP studies: 15/2,357 (0.6% \pm 1%)

,	Control (a)	500 ppm (a)	1 ,000 ppm (a
Adenoma			
Overall Rates	0/50 (0%)	0/50 (0%)	3/50 (6%)
Adjusted Rates	0.0%	0.0%	27.6%
Terminal Rates	0/31 (0%)	0/12(0%)	1/6 (17%)
Life Table Tests	P = 0.004	(b)	P = 0.011
Cochran-Armitage Trend Test	P = 0.037		
Fisher Exact Tests		(b)	P = 0.121
ystadenoma			
Overall Rates	0/50 (0%)	0/50 (0%)	2/50 (4%)
Adenoma or Cystadenoma			
Overall Rates	0/50 (0%)	0/50 (0%)	5/50 (10%)
Adjusted Rates	0.0%	0.0%	44.3%
Terminal Rates	0/31 (0%)	0/12 (0%)	2/6 (33%)
Life Table Tests	P<0.001	(b)	P<0.001
Cochran-Armitage Trend Test	P = 0.006		
Fisher Exact Tests		(b)	P = 0.028
Carcinoma			
Overall Rates	1/50 (2%)	0/50 (0%)	0/50 (0%)
Adenoma, Cystadenoma, or Carcinoma (c)			
Adenoma, Cystadenoma, or Carcinoma(c) Overall Rates	1/50 (2%)	0/50 (0%)	5/50 (10%)
Adjusted Rates	2.5%	0.0%	44.3%
Terminal Rates	0/31 (0%)	0/12(0%)	2/6 (33%)
Life Table Tests	P = 0.002	P = 0.628N	P = 0.004
Cochran-Armitage Trend Test	P = 0.037		
Fisher Exact Tests		P = 0.500N	P = 0.102

TABLE 27. ANALYSIS OF HARDERIAN GLAND TUMORS IN FEMALE MICE IN THE TWO-YEAR FEED STUDY OF C.I. BASIC RED 9 MONOHYDROCHLORIDE

(a) The denominator is the number of animals on which a necropsy was performed.
(b) No P value is reported because no tumors were observed in the 500-ppm and control groups.
(c) Historical incidence at testing laboratory (mean ± SD): 14/748 (2% ± 1%); historical incidence in NTP studies: 33/2,537

 $(1\% \pm 2\%)$

TABLE 28. ANALYSIS OF HEMATOPOIETIC SYSTEM TUMORS IN MICE IN THE TWO-YEAR FEED STUDIES OF C. I. BASIC RED 9 MONOHYDROCHLORIDE

	Control	500 ppm	1,000 ppm
MALE	· · · · · · · · · · · · · · · · · · ·		
Lymphoma, All Malignant (a) Overall Rates Adjusted Rates Terminal Rates Life Table Tests Incidental Tumor Tests Cochran-Armitage Trend Test Fisher Exact Tests	7/50 (14%) 15.6% 5/42 (12%) P=0.131 P=0.301 P=0.181	9/50 (18%) 23.7% 4/32 (13%) P=0.228 P=0.494 P=0.393	11/50 (22%) 24.9% 5/36 (14%) P=0.158 P=0.459 P=0.218
FEMALE			
Lymphoma, All Malignant (b) Overall Rates Adjusted Rates Terminal Rates Life Table Tests Cochran-Armitage Trend Test Fisher Exact Tests	17/50 (34%) 43.3% 10/31 (32%) P<0.001 P=0.065	24/50 (48%) 74.1% 6/12 (50%) P<0.001 P=0.111	25/50 (50%) 77.9% 2/6 (33%) P = 0.001 P = 0.078

(a) Historical incidence at testing laboratory (mean \pm SD): 119/745 (16% \pm 8%); historical incidence in NTP studies: 281/2,395 (12% \pm 7%)

(b) Historical incidence at testing laboratory (mean \pm SD): 232/748 (31% \pm 13%); historical incidence in NTP studies: 637/2,537 (25% \pm 10%)

IV. DISCUSSION AND CONCLUSIONS

.

The toxicology and carcinogenicity of C.I. Basic Red 9 monohydrochloride was studied by giving the dye mixed with feed to F344/N rats and $B6C3F_1$ mice. The compound was first given at concentrations of 0, 250, 500, 1,000, 2,000, or 4,000 ppm to groups of 10 animals of each sex and species for 13 weeks. In addition to providing data for the selection of dietary concentrations for the 2-year studies, results from the 13-week studies indicated that the chemical produced effects in the thyroid and pituitary glands in rats. C.I. Basic Red 9 monohydrochloride exposure for 13 weeks caused enlarged thyroid glands, adenomatous goiter, and pituitary gland basophil hypertrophy in rats of each sex at the highest dose. However, any functional physiologic effects produced by the abnormal conditions of these two organs (which were seen grossly or microscopically) could not be determined.

The pituitary and thyroid glands are intimately associated by a feedback mechanism that maintains appropriate levels of circulating thyroxine (T_4) and triiodothyronine (T_3) , iodine-containing derivatives of the amino acid tyrosine. Thyroidstimulating hormone (TSH) is secreted by the basophils of the anterior pituitary gland and promotes the uptake of iodine by the thyroid gland and the synthesis of the thyroid hormones. Under normal conditions, an excess of circulating T_3 and T_4 suppresses pituitary gland secretion of TSH and thyroid gland activity diminishes, whereas the anterior pituitary gland responds to low levels of circulating T_3 and T_4 by increasing the secretion of TSH and thereby promoting increased thyroid gland activity. One measure of a perturbation to the thyroidpituitary feedback system would be a change in the plasma levels of T_4 .

Long-term toxicology and carcinogenesis studies were conducted by administering C.I. Basic Red 9 monohydrochloride in feed to groups of 50 animals for 103 weeks at concentrations of 0, 1,000, or 2,000 ppm for male rats and 0, 500, or 1,000 ppm for female rats and mice of each sex. In these studies, 10 additional rats were included with the high dose and control groups to determine the effect of C.I. Basic Red 9 monohydrochloride on the thyroid and pituitary glands after 1 year and on circulating levels of T_4 at weeks 13, 26, 39, and 52.

Effects on the thyroid gland became apparent soon after exposure to C.I. Basic Red 9 monohydrochloride began, and they appeared to be similar in male and female rats. Male rats were exposed to the dye at dietary concentrations twice that for females, which may account for the greater response in males. For example, during exposure, serum T₄ levels of dosed males were significantly lower than those of the male controls at the first measurement after exposure began (13 weeks) and remained low throughout the study, whereas the serum T_4 levels of dosed females were significantly lower than those of the female coefficies only after week 26 and week 52; at 104 weeks, mean thyroid gland weights were significantly increased in dosed males but not in dosed females at week 52 when compared with the thyroid gland weights of controls. However, the final mean body weights for male and female rats (13% and 9%) were lower than those for the controls. No significant changes in the pituitary glands were observed in either sex.

After 1 year of exposure at 2,000 ppm, 1 male rat out of 10 had hyperplasia, adenoma, or carcinoma of the thyroid gland follicular epithelium, and one male (2,000 ppm) and two females (1,000 ppm) had thyroid gland follicular cysts. Exposure of rats to C.I. Basic Red 9 monohydrochloride for 2 years increased incidences of neoplastic lesions at several sites, including the thyroid gland follicular cells. Astwood et al. (1945) studied the changes in thyroid gland weight and iodine concentration in rats administered thioureylene and aminobenzene derivatives in the diet for 10 days compared with the effect of the antithyroid compound thiouracil. The investigators estimated the activity for basic fuschin to be 3% that of thiouracil. In the same study, 4,4'diaminodiphenylmethane (4,4'-methylenedianiline) was one-fourth as active as thiouracil; 4,4'-methylenedianiline dihydrochloride was studied and found to cause thyroid gland neoplasms in F344/N rats and B6C3F1 mice of each sex (NTP, 1983). Neoplastic lesions of the thyroid gland were also produced by the structurally related aromatic amines 4,4'-methylenebis(N,N-dimethyl)benzenamine (NCI, 1979a), 4,4'-oxydianiline (NCI, 1980), and 4,4'thiodianiline (NCI, 1978) but not by Michler's ketone (NCI, 1979b) (Table 29). Thyroid gland hormones were not measured in any of these

Test Substance	e Structure	Route of Exposure	Species (a)	Sex	Dose (ppm)	<u>Neo</u> Liver	Site of <u>plastic Lesion</u> Thyroid Gland
C.I. Basic Red 9 monohydroc (current stud	hloride	Feed	Rat Mouse	M F M F	2,000 1,000 1,000 1,000	+ + +	+ +
4,4'-Methylened dihydrochlor (NTP, 1983)	ride HCI · HeN CHe/NHe · HCI	Drinking water	Rat Mouse	M F M F	300 300 300 300	+ + +	+ + + +
4,4'-Methylenel (N,N-dimeth benzenamin (NCI, 1979a		Feed	Rat Mouse	M F M F	750 750 2,500 2,500	+	+ +
Michler's Keton (NCI, 1979b	$(H_3) \qquad (H_3) \qquad (H_3$	Feed	Rat Mouse	M F M F	500 1,000 2,500 2,500	+ + +	
4,4'-Oxydianili (NCI, 1980)	ne HgN NHg	Feed	Rat Mouse	M F M F	500 500 800 800	+ + +	+ + +
4,4'-Thiodianili (NCI, 1978)		Feed	Rat Mouse	M F M F	3,000 3,000 5,000 5,000	+ + +	+ + + +

TABLE 29. COMPARISON OF RESULTS OF TWO-YEAR NCL/NTP STUDIES ON C.I. BASIC RED 9 MONOHYDROCHLORIDE AND RELATED COMPOUNDS

1

(a) Rat: F344/N; mouse: $B6C3F_1$ (b) + = Neoplastic lesion occurred at statistically significant incidence (P<0.025 by the Fisher exact test).

studies. Of these related chemicals, only 4,4'methylenebis(N,N-dimethyl)benzenamine did not produce lesions of the mouse thyroid glands. The relationships of these chemicals to thyroid gland function were discussed in the NTP Technical Report on 4,4'-methylenedianiline dihydrochloride (NTP, 1983).

Although organ weights were not recorded in the 2-year studies, the observations of enlarged thyroid glands in the high dose rats in the 13week studies, follicular cell hyperplasia in high dose males in the 2-year studies (Table C1), and decreased T_4 in dosed animals in the 52-week supplemental study all support the hypothesis that secretion of TSH increases in response to the decreased circulating thyroid hormone levels. TSH stimulates the thyroid gland to increased thyroid hormone synthesis and discharge. However, if C.I. Basic Red 9 monohydrochloride interfered with thyroid hormone metabolism, TSH stimulation of the thyroid gland would continue, resulting in enlarged thyroid glands as a compensatory response to produce increased amounts of thyroid hormone.

None of the structurally related compounds produced skin lesions (see Table 29). In the present studies, neoplastic and nonneoplastic skin lesions occurred at increased incidences in high dose male but not in high dose female rats (see Table 12; Table C1). There is evidence of thyroid hormone involvement in the increase in keratin synthesis in vivo and in vitro in amphibian skin; this increase is apparently due to an increase in keratin mRNA (Reeves, 1977). Epidermal keratin mRNA has been identified and purified by Gibbs and Freedberg (1980, 1982) from the skin of guinea pigs and by Fuchs and Green (1980) from cultured human epidermal cells and rabbit epidermis. It is unclear if thyroid hormones are involved in de novo synthesis of keratin mRNA and subsequent keratin synthesis. In addition, thyroid hormones markedly affect many aspects of hair follicle activity, as is shown by experiments on sheep and rats as well as by clinical observations of humans (see Ebling and Hale, 1983).

Thyroid hormones, like the steroid hormones, are lipophilic, are bound to transport proteins in the plasma, and cross the cell membrane readily. Unlike steroid hormones, thyroid hormones are not carried by a cytosol receptor into the

nucleus. Although nuclear receptors for thyroid hormones have been found in cells of several organs, these receptors have not been as well documented in the skin. However, at least one study has demonstrated the high affinity of T_3 for nuclear binding sites of fibroblasts grown from the skin of the deltoid region (Bernal et al., 1978). The aforementioned studies from the literature present evidence to suggest that skin and its appendages are affected by thyroid hormones and that there is probably some receptor(s) for these hormones at these sites. It is tempting to speculate that the C.I. Basic Red 9 monohydrochloride molecule or its metabolites are recognized both by the thyroid gland, such that there is competitive inhibition in the synthesis of T_3 or T_4 , and by target-site thyroid hormone nuclear receptors.

Zymbal gland carcinomas in rats of each sex occurred with significant positive trends, and the incidences in the high dose groups were significantly greater ($P \le 0.002$) than those in the controls. Necrosis and hyperkeratosis of this organ also appeared to be dose related in both sexes (Tables C1 and C2). Female rats, however, appeared to be more likely to develop Zymbal gland tumors at 1,000 ppm than were males at the same dose. Zymbal gland tumors have been shown to be associated with exposure to aromatic amines.

In the liver, focal and ischemic necrosis (Table C1) and the incidences of neoplastic nodules or carcinomas (combined) were increased in dosed male but not female rats. Neoplastic lesions in the liver also occurred in rats in the studies of the structurally related compounds previously discussed, except for 4,4'-methylenebis(N,N-dimethyl)benzenamine (see Table 29). In that study, the compound was administered for only 59 weeks to rats.

The results of exposure of $B6C3F_1$ mice to C.I. Basic Red 9 monohydrochloride at 0, 250, 500, 1,000, 2,000, or 4,000 ppm in the feed indicated no compound-related histopathologic effects after 13 weeks. Depressions in body weight gain were used as the basis for selection of doses of 0, 500, and 1,000 ppm for the 2-year studies. The 2-year studies of male mice had to be restarted after 9 months of exposure because excessive deaths were caused by fighting among cagemates. The male groups were restarted 11

C.I. Basic Red 9 Monohydrochloride, NTP TR 285 months after the female groups were started, and the males in the restarted study were individually caged; only the results from the restarted study were complete and are presented in this report.

Survival of low dose male mice in the 2-year study was lower than that of the controls (P=0.032), and the survival of low dose and high dose female mice was significantly lower than that of the controls (P<0.001). Females also had a greater variety of significantly increased neoplastic lesions. The incidences of hepatocellular carcinomas in dosed male and female mice were significantly greater (P<0.001) than those in the controls.

Chemically related incidences of neoplastic lesions at other sites occurred only in female mice. These lesions included adenomas or carcinomas (combined) of the lung in the high dose group. The mean historical incidences of alveolar/ bronchiolar adenomas or carcinomas (combined) are $10\% \pm 5\%$ at the testing laboratory and 7% $\pm 4\%$ in NTP studies. Thus, the incidence of 11% in high dose female mice may not be a result of administration of the test chemical. (However, the survival of the high dose group was only 12% compared with a survival of historical controls of 60%.)

Female mice also had a greater incidence of adrenal gland pheochromocytomas than did controls. The incidence was well above historical values for both EG&G Mason Research Institute and other NTP studies (Appendix F, Table F19). Pheochromocytomas were recorded at incidences of 1/48 for control, 8/47 for low dose, and 8/45 for high dose female mice. Of these, 1 each of 23 low dose and 24 high dose mice that died before 90 weeks had this lesion.

C.I. Basic Red 9 monohydrochloride induced DNA damage (Rosenkranz and Poirier, 1979) and was mutagenic in bacteria (Dunkel, 1979; Appendix G, Table G1) and mammalian cells (Tables G2 and G3), induced sister-chromatid exchanges (Tables G4 and G5), and produced mutagenic urine in $B6C3F_1$ mice that had been exposed to the compound in feed at the concentrations used in the present study. In general, C.I. Basic Red 9 monohydrochloride required metabolic activation (rodent liver S9) in order to exhibit its genotoxic effects. Thus, one or more metabolites of C.I. Basic Red 9 monohydrochloride are likely responsible for the mutagenicity of this compound. A probable pathway that leads to activated C.I. Basic Red 9 monohydrochloride might involve N-hydroxylation of an amine followed by acetylation and/or conjugation. In the absence of more definitive information regarding the metabolism of C.I. Basic Red 9 monohydrochloride, it is not possible to ascribe the mutagenic activity of this compound to the formation of specific metabolites.

Conclusions: Under the conditions of these 2year feed studies, there was clear evidence of carcinogenicity* of C.I. Basic Red 9 monohydrochloride for male and female F344/N rats and for male and female B6C3F1 mice. In male rats, C.I. Basic Red 9 monohydrochloride caused squamous cell carcinomas, trichoepitheliomas and sebaceous adenomas of the skin, subcutaneous fibromas, thyroid gland follicular cell adenomas and follicular cell carcinomas, Zymbal gland carcinomas, and hepatocellular carcinomas. In female rats, C.I. Basic Red 9 monohydrochloride caused subcutaneous fibromas, thyroid gland follicular cell adenomas or carcinomas (combined), and Zymbal gland carcinomas. In male mice, C.I. Basic Red 9 monohydrochloride caused hepatocellular carcinomas. In female mice, C.I. Basic Red 9 monohydrochloride caused hepatocellular carcinomas and adrenal gland pheochromocytomas or malignant pheochromocytomas (combined). Exposure to C.I. Basic Red 9 monohydrochloride also may have been related to increased incidences of mammary gland tumors in female rats and hematopoietic system tumors in female mice.

^{*}Categories of evidence of carcinogenicity are defined in the Note to the Reader on page 2.

C.I. Basic Red 9 Monohydrochloride, NTP TR 285

.

64

.

V. REFERENCES

C.I. Basic Red 9 Monohydrochloride, NTP TR 285 1. Armitage, P. (1971) Statistical Methods in Medical Research. New York: John Wiley & Sons, Inc., pp. 362-365.

2. Astwood, E.; Bissell, A.; Hughes, A. (1945) Further study on the chemical nature of compounds which inhibit the thyroid gland. Endocrinology 37:456-481.

3. Bannister, D.; Elliott, J. (1983) Triphenylmethane and related dyes. Kirk, R.; Othmer, D., Eds.: Encyclopedia of Chemical Technology, 3rd ed., Vol. 23. New York: John Wiley & Sons, Inc., pp. 399-412.

4. Berenblum, I., Ed. (1969) Carcinogenicity Testing: A Report of the Panel on Carcinogenicity of the Cancer Research Commission of UICC, Vol. 2. Geneva: International Union Against Cancer.

5. Bernal, J.; Refetoff, S.; Degroot, L. (1978) Abnormalities of triiodothyronine binding to lymphocyte and fibroblast nuclei from a patient with peripheral tissue resistance to thyroid hormone action. J. Clin. Endocrinol. Metab. 47:1266-1272.

6. Bonser, G.; Clayson, D.; Jull, J. (1956) Induction of tumours of the subcutaneous tissues, liver and intestine in the mouse by certain dyestuffs and their intermediates. Br. J. Cancer 10:653-667.

7. Boorman, G.; Montgomery, C., Jr.; Hardisty, J.; Eustis, S.; Wolfe, M., McConnell, E. (1985) Quality assurance in pathology for rodent toxicology and carcinogenicity tests. Milman, H.; Weisburger, E., Eds.: Handbook of Carcinogen Testing. Park Ridge, NJ: Noyes Publications, pp. 345-357.

8. Case, R.; Pearson, J. (1954) Tumours of the urinary bladder in workmen engaged in the manufacture and use of certain dyestuff intermediates in the British chemical industry. Part II. Further consideration of the role of aniline and of the manufacture of auramine and magenta (fuchsine) as possible causative agents. Br. J. Ind. Med. 11:213. 9. Clive, D.; Johnson, K.; Spector, J.; Batson, A.; Brown, M. (1979) Validation and characterization of the L5178Y/TK^{+/-} mouse lymphoma mutagen assay system. Mutat. Res. 59:61-108.

10. Cox, D. (1972) Regression models and life tables. J. R. Stat. Soc. B34:187-220.

11. DeFlora, S. (1981) Study of 106 organic and inorganic compounds in the *Salmonella*/microsome test. Carcinogenesis 2:283-298.

12. Druckey, H.; Nieper, H.; Lo, H. (1956) Carcinogene Wirkung von Parafuchsin im Injektionsversuch an Ratten. Naturwissenschaften 43:543-544.

13. Dunkel, V. (1979) Collaborative studies on the Salmonella/microsome mutagenicity assay. J. Assoc. Off. Anal. Chem. 62:874-882.

14. Ebling, F.; Hale, P. (1983) Hormones and hair growth. Goldsmith, L., Ed.: Biochemistry and Physiology of the Skin. New York: Oxford University Press, pp. 522-552.

15. Fuchs, E.; Green, H. (1980) Changes in keratin gene expression during terminal differentiation of the keratinocyte. Cell 19:1033-1042.

16. Galloway, S.; Bloom, A.; Resnick, M.; Margolin, B., Nakamura, F.; Archer, P.; Zeiger, E. (1985) Development of a standard protocol for in vitro cytogenetic testing with Chinese hamster ovary cells: Comparison of results for 22 compounds in two laboratories. Environ. Mutagen. 7:1-51.

17. Gart, J.; Chu, K.; Tarone, R. (1979) Statistical issues in interpretation of chronic bioassay tests for carcinogenicity. J. Natl. Cancer Inst. 62(4):957-974.

18. Gibbs, P.; Freedberg, I. (1980) Mammalian epidermal messenger RNA: Identification and characterization of the keratin messengers. J. Invest. Derm. 74:382-388.

19. Gibbs, P.; Freedberg, I. (1982) Epidermal keratin messenger RNAs--A heterogeneous family. Biochim. Biophys. Acta 696:124-133.

20. Goto, K.; Maeda, S.; Kano, Y.; Sugimura, T. (1978) Factors involved in differential Giemsastaining of sister chromatids. Chromosoma 66:351-359.

21. Green, U.; Holste, J.; Spikermann, A. (1979) A comparative study of the chronic effects of magenta, paramagenta, and phenyl- β -naphthyl-amine in Syrian golden hamsters. J. Cancer Res. Clin. Oncol. 95:51-55.

22. Haseman, J. (1984) Statistical issues in the design, analysis and interpretation of animal carcinogenicity studies. Environ. Health Perspect. 58:385-392.

23. Haseman, J.; Huff, J.; Boorman, G. (1984) Use of historical control data in carcinogenicity studies in rodents. Toxicol. Pathol. 12:126-135.

24. Haworth, S.; Lawlor, T.; Lilja, H.; Douglas, J.; Cameron, T.; Dunkel, V. (1981) Mutagenicity evaluation of urine collected from rodents treated with either 2-acetylaminofluorene (2AAF), *p*-rosaniline, 8-hydroxyquinoline, or aniline HCl. Environ. Mutagen. 3:379 (abstr).

25. Haworth, S.; Lawlor, T.; Mortelmans, K.; Speck, W.; Zeiger, E. (1983) Salmonella mutagenicity test results for 250 chemicals. Environ. Mutagen. Suppl. 1, 5:3-142.

26. International Agency for Research on Cancer (IARC) (1974) Some aromatic amines, hydrazine and related substances, N-nitroso compounds and miscellaneous alkylating agents. IARC Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Man, Vol. 4. Lyon, France: IARC, pp. 57-64.

27. Kaplan, E.; Meier, P. (1958) Nonparametric estimation of incomplete observations. J. Am. Stat. Assoc. 53:457-481.

28. Ketkar, M.; Mohr, U. (1982) The chronic effects of magenta, paramagenta and phenyl- β -naphthylamine in rats after intragastric administration. Cancer Lett. 16:203-206.

29. Lillie, R. (1977) H.J. Conn's Biological Stains: A Handbook on the Nature and Uses of the Dyes Employed in the Biological Laboratory, 9th ed. Baltimore: Williams and Wilkins Company, pp. 200-261. 30. Linhart, M.; Cooper, J.; Martin, R.; Page, N.; Peters, J. (1974) Carcinogenesis bioassay data system. Comp. Biomed. Res. 7:230-248.

31. Malyugina, L.; Prokof'yeva, O. (1957) On the oncological characteristics of mice of the C3HA line. Vopr. Onkol. 3:197-203.

32. Mantel, N.; Haenszel, W. (1959) Statistical aspects of the analysis of data from retrospective studies of disease. J. Natl. Cancer Inst. 22:719-748.

33. Maronpot, R.; Boorman, G. (1982) Interpretation of rodent hepatocellular proliferative alterations and hepatocellular tumors in chemical safety assessment. Toxicol. Pathol. 10:71-80.

34. McCann, J.; Choi, E.; Yamasaki, E.; Ames, B. (1975) Detection of carcinogens as mutagens in the *Salmonella*/microsome test. Assay of 300 chemicals. Proc. Natl. Acad. Sci. U.S.A. 72:5135-5139.

35. McConnell, E.; Solleveld, H.; Swenberg, J.; Boorman, G. (1986) Guidelines for combining neoplasms for evaluation of rodent carcinogenesis studies. J. Natl. Cancer Inst. (in press).

36. National Cancer Institute (NCI) (1978) Bioassay of 4,4'-Thiodianiline for Possible Carcinogenicity. Technical Report No. 47. Washington, DC: U.S. Department of Health, Education, and Welfare.

37. National Cancer Institute (NCI) (1979a) Bioassay of 4,4'-Methylenebis-(N,N-dimethyl)benzenamine for Possible Carcinogenicity. Technical Report No. 186. Washington, DC: U.S. Department of Health, Education, and Welfare.

38. National Cancer Institute (NCI) (1979b) Bioassay of Michler's Ketone for Possible Carcinogenicity. Technical Report No. 181. Washington, DC: U.S. Department of Health, Education, and Welfare.

39. National Cancer Institute (NCI) (1980) Bioassay of 4,4'-Oxydianiline for Possible Carcinogenicity. Technical Report No. 205. Washington, DC: U.S. Department of Health and Human Services. 40. National Toxicology Program (NTP) (1983) Carcinogenesis Studies of 4,4'-Methylenedianiline Dihydrochloride in F344/N Rats and B6C3F₁ Mice (Drinking Water Studies). Technical Report No. 248. Washington, DC: U.S. Department of Health and Human Services.

41. Perry, P.; Wolff, S. (1974) New Giemsa method for the differential staining of sister chromatids. Nature (London) 251:156-158.

42. Prokof yeva, O. (1973) Oncological characteristics of mice of the CC57 Br culture. Vopr. Onkol. 19:101-102.

43. Prokofyeva, O.; Zabezhinskiy, M. (1976) Carcinogenicity of fuchsin derivatives. Vopr. Onkol. 22:66-71.

44. Reeves, R. (1977) Hormonal regulation of epidermis-specific protein and messenger RNA synthesis in amphibian metamorphosis. Dev. Biol. 66:163-179.

45. Rosenkranz, H.; Poirier, L. (1979) Evalution of the mutagenicity and DNA-modifying activity of carcinogens and noncarcinogens in microbial systems. J. Natl. Cancer Inst. 62:873-892.

46. Sadtler Standard Spectra, Sadtler Research Laboratories, Philadelphia, PA, IR No. 23585; UV No. 22014.

47. Simmon, V. (1979a) In vitro mutagenicity assays of chemical carcinogens and related compounds with *Salmonella typhimurium*. J. Natl. Cancer Inst. 62:893-899.

48. Simmon, V. (1979b) In vitro assays for recombinogenic activity of chemical carcinogens and related compounds with *Saccharomyces cerevisiae* D3. J. Natl. Cancer Inst. 62:901-909.

49. Simmon, V.; Rosenkranz, H.; Zeiger, E.; Poirier, L. (1979) Mutagenic activity of chemical carcinogens and related compounds in the intraperitoneal host-mediated assay. J. Natl. Cancer Inst. 62:911-918. 50. Stula, E.; Sherman, H.; Zapp, J., Jr.; Clayton, J., Jr. (1975) Experimental neoplasia in rats from oral administration of 3,3'-dichlorobenzidine, 4,4'-methylene-bis(2-chloroaniline), and 4,4'-methylene-bis(2-methylaniline). Toxicol. Appl. Pharmacol. 31:159-176.

51. Stula, E.; Barnes, J.; Sherman, H.; Reinhardt, C.; Zapp, J., Jr. (1977) Urinary bladder tumors in dogs from 4,4'-methylene-bis(2-chloroaniline) (MOCA^{*}). J. Environ. Pathol. Sci. 1:31-50.

52. Stula, E; Barnes, J.; Sherman, H.; Reinhardt, C.; Zapp, J., Jr. (1978) Liver and lung tumors in dogs from 4,4'-methylene-bis(2-methylaniline). J. Environ. Pathol. Toxicol. 1:339-356.

53. Swenberg, J.; Petzold, G.; Harbach, P. (1976) In vitro DNA damage/alkaline elution assay for predicting carcinogenic potential. Biochem. Biophys. Res. Commun. 72:732-738.

54. Tarone, R. (1975) Tests for trend in life table analysis. Biometrika 62:679-682.

55. U.S. Environmental Protection Agency (USEPA) (1980) TSCA Inventory.

56. U.S. International Trade Commission (USITC) (1972) Synthetic Organic Chemicals, United States Production and Sales. Washington, DC: Government Printing Office.

57. Williams, G. (1977) Detection of chemical carcinogens by unscheduled DNA synthesis in rat liver primary cell cultures. Cancer Res. 37:1845-1851.

58. Williams, G.; Bermudez, E.; Scaramuzzino, D. (1977) Rat hepatocyte primary cell cultures: III. Improved dissociation and attachment techniques and the enhancement of survival by culture medium. In Vitro 13:809-817.

59. Witterholt, V. (1969) Triphenylmethane and related dyes. Kirk, R.; Othmer, D., Eds.: Encyclopedia of Chemical Technology, 2nd ed., Vol. 20. New York: John Wiley & Sons, Inc., p. 710.

C.I. Basic Red 9 Monohydrochloride, NTP TR 285

APPENDIX A

SUMMARY OF THE INCIDENCE OF NEOPLASMS IN RATS IN THE TWO-YEAR FEED STUDIES OF C. I. BASIC RED 9 MONOHYDROCHLORIDE

C.I. Basic Red 9 Monohydrochloride, NTP TR 285

.

С	ONTR	IOL (UNTR)	LOW	DOSE	HIG	h dose
ANIMALS INITIALLY IN STUDY	50	· <u>·····</u> <u>···</u>	50		50	
ANIMALS NECROPSIED	50		50		50	
ANIMALS EXAMINED HISTOPATHOLOGICALLY	50		50		50	
NTEGUMENTARY SYSTEM						
*MULTIPLE ORGANS	(50)		(50)		(50)	
FIBROUS HISTIOCYTOMA, MALIGNANT				(4%)	(- -)	
*SKIN	(50)	(400)	(50)	(0	(50)	(0.00)
SQUAMOUS CELL PAPILLOMA SQUAMOUS CELL CARCINOMA	2	(4%)		(2%) (2%)		(8%) (20%)
BASAL-CELL CARCINOMA	1	(2%)	-	(470)		(20%)
TRICHOEPITHELIOMA	-	(=,,,,				(14%)
SEBACEOUS ADENOMA						(10%)
KERATOACANTHOMA			1	(2%)	2	(4%)
*SUBCUT TISSUE	(50)		(50)		(50)	
SARCOMA, NOS		(6%)		(4%)		(8%)
FIBROMA		(4%)		(40%)	16	(32%)
FIBROSARCOMA	1	(2%)	3	(6%)		
RESPIRATORY SYSTEM						
#LUNG	(50)		(50)		(50)	(a - 4)
CARCINOMA, NOS, METASTATIC						(2%)
SQUAMOUS CELL CARCINOMA, METASTA HEPATOCELLULAR CARCINOMA, METAST			1	(2%)		(2%) (4%)
ALVEOLAR/BRONCHIOLAR ADENOMA				(6%)		(6%)
ALVEOLAR/BRONCHIOLAR CARCINOMA	1	(2%)	•			(2%)
FOLLICULAR-CELL CARCINOMA, METAS			1	(2%)		,
PHEOCHROMOCYTOMA, METASTATIC		(2%)				
FIBROSARCOMA, METASTATIC		(2%)				
OSTEOSARCOMA, METASTATIC	1	(2%)			1	(2%)
HEMATOPOIETIC SYSTEM						
*MULTIPLE ORGANS	(50)		(50)		(50)	
MALIGNANT LYMPHOMA, NOS	-	(100)		(2%)	1	(99)
LEUKEMIA, MONONUCLEAR CELL *HEMATOPOIETIC SYSTEM	5 (50)	(10%)	(50)	(2%)	(50)	(2%)
LEUKEMIA, NOS		(4%)	(00)		(00)	
CIRCULATORY SYSTEM						
#SPLEEN	(49)		(49)		(49)	
HEMANGIOMA	,				1	(2%)
DIGESTIVE SYSTEM		,				
*MOUTH	(50)		(50)		(50)	
SQUAMOUS CELL PAPILLOMA						(2%)
*ORAL MUCOUS MEMBRANE	(50)	(90)	(50)		(50)	
SQUAMOUS CELL CARCINOMA		(2%)	(50)		(50)	
#LIVER BILE DUCT ADENOMA	(50)		(00)			(2%)
BILE DUCT CARCINOMA						(4%)
NEOPLASTIC NODULE	5	(10%)	14	(28%)		(12%)

TABLE A1. SUMMARY OF THE INCIDENCE OF NEOPLASMS IN MALE RATS IN THE TWO-YEARFEED STUDY OF C. I. BASIC RED 9 MONOHYDROCHLORIDE

DIGESTIVE SYSTEM (Continued)						
				<u></u>		
	(47)		(50)		(46)	
#PANCREAS ACINAR-CELL ADENOMA			(50)	(40)		
		(2%)		(4%)		(2%)
#STOMACH ADENOCARCINOMA, NOS	(48)		(50)		(48)	
		(2%)	(10)		(10)	
#DUODENUM	(44)		(48)		(42)	
ADENOCARCINOMA, NOS						(2%)
#JEJUNUM AND ILEUM COMBINED SITE	(44)		(48)		(42)	
ADENOCARCINOMA, NOS		(2%)			(10)	
#COLON	(45)		(45)		(42)	
ADENOCARCINOMA, NOS					Z	(5%)
JRINARY SYSTEM						
#KIDNEY	(49)		(50)		(49)	
TUBULAR-CELL ADENOMA	(40)			(2%)	(
LIPOSARCOMA				(2%)		
					<u> </u>	
ENDOCRINE SYSTEM						
#PITUITARY	(48)		(47)		(46)	
CARCINOMA, NOS				(2%)		
ADENOMA, NOS	17	(35%)	16	(34%)	8	(17%)
#ADRENAL	(49)		(49)		(48)	
CORTICAL ADENOMA				(2%)		
PHEOCHROMOCYTOMA		(20%)	14	(29%)	3	(6%)
PHEOCHROMOCYTOMA, MALIGNANT	1	(2%)				
#THYROID	(49)		(46)		(44)	
FOLLICULAR-CELL ADENOMA					9	(20%)
FOLLICULAR-CELL CARCINOMA			5	(11%)	18	(41%)
C-CELL ADENOMA	4	(8%)	2	(4%)		
C-CELL CARCINOMA			1	(2%)	1	(2%)
#PANCREATIC ISLETS	(47)		(50)		(46)	
ISLET-CELL ADENOMA		(4%)	2	(4%)	3	(7%)
ISLET-CELL CARCINOMA				(6%)		(2%)
						<u> </u>
REPRODUCTIVE SYSTEM	(50)		(50)		(50)	
*MAMMARY GLAND			(00)		(00)	
ADENOMA, NOS		(2%)	c	(190.)	•	(4%)
FIBROADENOMA		(8%)		(12%)		(1270)
*PREPUTIAL GLAND	(50)	(00)	(50)		(50)	(00)
CARCINOMA, NOS		(2%)		(10)		(2%)
ADENOMA, NOS	3	(6%)		(4%)		(2%)
#TESTIS	(48)		(48)		(50)	
INTERSTITIAL-CELL TUMOR	43	(90%)	46	(96%)	37	(74%)
NERVOUS SYSTEM						
#BRAIN	(49)		(50)		(50)	
CARCINOMA, NOS, INVASIVE			1	(2%)		
ASTROCYTOMA	1	(2%)			1	(2%)
SPECIAL SENSE ORGANS	<u> </u>					
*EXTERNAL EAR	(50)		(50)		(50)	
SQUAMOUS CELL PAPILLOMA	(00)		(00)			(2%)
	(50)		(50)		(50)	. =,
*ZYMBAL GLAND					(00)	

TABLE A1. SUMMARY OF THE INCIDENCE OF NEOPLASMS IN MALE RATS IN THE TWO-YEAR FEED STUDY OF C. I. BASIC RED 9 MONOHYDROCHLORIDE (Continued)

C.I. Basic Red 9 Monohydrochloride, NTP TR 285

	CONTR	OL (UNTR)	LOW	DOSE	HIG	H DOSE
MUSCULOSKELETAL SYSTEM NONE			****			
BODY CAVITIES						
*BODY CAVITIES MESOTHELIOMA, NOS	(50)		(50)		(50) 1	(2%)
*THORACIC CAVITY	(50)		(50)		(50)	(270)
MESOTHELIOMA, INVASIVE				(2%)		
*ABDOMINAL CAVITY	(50)		(50)		(50)	
SARCOMA, NOS						(2%)
OSTEOSARCOMA						(2%)
*TUNICA VAGINALIS	(50)		(50)	(1~)	(50)	(0.01)
MESOTHELIOMA, NOS MESOTHELIOMA, MALIGNANT	1	(2%)		(4%) (2%)	1	(2%)
ALL OTHER SYSTEMS	<u></u>					
MULTIPLE SITES						
MESOTHELIOMA, NOS			1		(50)	
*MULTIPLE ORGANS HEPATOCELLULAR CARCINOMA, INVAS	(50)		(50)		,	(2%)
SARCOMA, NOS, INVASIVE	51		1	(2%)	1	(2π)
SARCOMA, NOS, METASTATIC				(2%)	1	(2%)
SARCOMA, NOS, UNC PRIM OR META			-	(=)		(2%)
MESOTHELIOMA, NOS				(2%)	1	(2%)
MESOTHELIOMA, METASTATIC			1	(2%)		
CHEEK						
SQUAMOUS CELL PAPILLOMA					1	
ORBITAL REGION FIBROSARCOMA	1					
ANIMAL DISPOSITION SUMMARY					50	
ANIMALS INITIALLY IN STUDY	50		50		50 29	
NATURAL DEATH@ MORIBUND SACRIFICE	10 7		13 9		29 21	
SCHEDULED SACRIFICE	1		3		41	
TERMINAL SACRIFICE	33		28			
DOSING ACCIDENT	50		20			
ACCIDENTALLY KILLED, NDA						
ACCIDENTALLY KILLED, NOS						
ANIMAL MISSING						
ANIMAL MISSEXED						
OTHER CASES @ INCLUDES AUTOLYZED ANIMALS						
WINDOUDO AO I OU LADO AMIMADO						

TABLE A1. SUMMARY OF THE INCIDENCE OF NEOPLASMS IN MALE RATS IN THE TWO-YEAR FEED STUDY OF C. I. BASIC RED 9 MONOHYDROCHLORIDE (Continued)

TABLE A1. SUMMARY OF THE INCIDENCE OF NEOPLASMS IN MALE RATS IN THE TWO-YEAR FEED STUDY OF C.I. BASIC RED 9 MONOHYDROCHLORIDE (Continued)

	CONTROL (UNTR)	LOW DOSE	HIGH DOSE
TUMOR SUMMARY		·····	
TOTAL ANIMALS WITH PRIMARY TUMO	RS** 48	50	46
TOTAL PRIMARY TUMORS	116	160	186
TOTAL ANIMALS WITH BENIGN TUMOR	S 48	49	42
TOTAL BENIGN TUMORS	89	117	106
TOTAL ANIMALS WITH MALIGNANT TU	MORS 17	21	34
TOTAL MALIGNANT TUMORS	21	25	70
TOTAL ANIMALS WITH SECONDARY TU	MORS## 3	5	6
TOTAL SECONDARY TUMORS	3	7	7
TOTAL ANIMALS WITH TUMORS UNCER	TAIN		
BENIGN OR MALIGNANT	6	15	9
TOTAL UNCERTAIN TUMORS	6	18	9
TOTAL ANIMALS WITH TUMORS UNCER	TAIN		
PRIMARY OR METASTATIC			1
TOTAL UNCERTAIN TUMORS			1

* NUMBER OF ANIMALS NECROPSIED

** PRIMARY TUMORS: ALL TUMORS EXCEPT SECONDARY TUMORS

NUMBER OF ANIMALS WITH TISSUE EXAMINED MICROSCOPICALLY ## SECONDARY TUMORS: METASTATIC TUMORS OR TUMORS INVASIVE INTO AN ADJACENT ORGAN

(CONTR	OL (UNTR)	LOW	DOSE	HIG	H DOSE
ANIMALS INITIALLY IN STUDY	50				50	
ANIMALS NECROPSIED	50		50		50	
ANIMALS EXAMINED HISTOPATHOLOGICALLY			50		50	
NTEGUMENTARY SYSTEM						
*MULTIPLE ORGANS	(50)		(50)		(50)	
FIBROUS HISTIOCYTOMA, MALIGNANT				(2%)		
*SKIN SQUAMOUS CELL CARCINOMA	(50)		(50)		(50)	(901)
BASAL-CELL CARCINOMA	1	(2%)				(2%) (2%)
*SUBCUT TISSUE	(50)	(=,	(50)		(50)	(2,0)
SARCOMA, NOS	1	(2%)		(4%)		(4%)
FIBROMA				(30%)	10	(20%)
FIBROSARCOMA CARCINOSARCOMA			2	(4%)	•	(00)
			4 11.		1	(2%)
RESPIRATORY SYSTEM						
#LUNG	(50)		(50)		(50)	
ADENOCARCINOMA, NOS, METASTATIC			0	(10)	1	(2%)
ALVEOLAR/BRONCHIOLAR ADENOMA PHEOCHROMOCYTOMA, METASTATIC			-	(4%) (2%)		
SARCOMA, NOS, METASTATIC			1	(270)	1	(2%)
LIPOSARCOMA, METASTATIC	1	(2%)			-	(=,0)
CARCINOSARCOMA, METASTATIC				(2%)		
OSTEOSARCOMA, METASTATIC			1	(2%)		
HEMATOPOIETIC SYSTEM						
*MULTIPLE ORGANS	(50)		(50)		(50)	
MALIGNANT LYMPHOMA, NOS	1	(2%)	1	(2%)		
MALIG. LYMPHOMA, HISTIOCYTIC TYPE	10	(90%)		(000)		(2%)
LEUKEMIA, MONONUCLEAR CELL *HEMATOPOIETIC SYSTEM	(50)	(20%)	(50)	(22%)	(50)	(12%)
LEUKEMIA, NOS		(2%)	(00)		(00)	
#SPLEEN	(49)	(2,0)	(49)		(50)	
LIPOMA					1	(2%)
CIRCULATORY SYSTEM NONE						
DIGESTIVE SYSTEM						
#LIVER	(50)		(50)		(50)	
NEOPLASTIC NODULE		(2%)		(8%)		(6%)
HEPATOCELLULAR CARCINOMA						(2%)
PHEOCHROMOCYTOMA, METASTATIC			1	(2%)		
ENDOMETRIAL STROMAL SARCOMA, MET			(50)			(2%)
#ILEUM ADENOCARCINOMA, NOS	(49)		(50)		(49) 1	(2%)
JRINARY SYSTEM					<u> </u>	
#KIDNEY	(50)		(50)		(50)	
TUBULAR-CELL ADENOMA				(2%)		
#URINARY BLADDER	(48)		(50)		(49)	
TRANSITIONAL-CELL CARCINOMA				(2%)		

TABLE A2. SUMMARY OF THE INCIDENCE OF NEOPLASMS IN FEMALE RATS IN THE TWO-YEARFEED STUDY OF C. I. BASIC RED 9 MONOHYDROCHLORIDE

·	JONTR	OL (UNTR)	LOW	DOSE	HIGI	H DOSE
ENDOCRINE SYSTEM	<u> </u>					
#PITUITARY	(50)		(48)		(49)	
CARCINOMA, NOS	1	(2%)	2	(4%)	1	(2%)
ADENOMA, NOS	26	(52%)	20	(42%)	21	(43%)
#ADRENAL	(50)		(50)		(49)	
CORTICAL ADENOMA				(2%)		(4%)
CORTICAL CARCINOMA				(2%)	-	()
PHEOCHROMOCYTOMA				(4%)	1	(2%)
PHEOCHROMOCYTOMA, MALIGNANT				(2%)	•	(4/0)
#THYROID	(47)		(48)		(50)	
FOLLICULAR-CELL ADENOMA	((40)			(8%)
FOLLICULAR-CELL CARCINOMA			9	(4%)		(4%)
C-CELL ADENOMA	1	(2%)		(6%)		(2%)
C-CELL CARCINOMA		(2%)		(4%)		(2%)
#PANCREATIC ISLETS	(49)	(470)	(47)	(=,0)	(49)	(2,0)
ISLET-CELL ADENOMA		(2%)	(=()		(40)	
		(270)			. <u></u>	
REPRODUCTIVE SYSTEM						
*MAMMARY GLAND	(50)		(50)		(50)	
ADENOMA, NOS			3	(6%)	1	(2%)
ADENOCARCINOMA, NOS	2	(4%)	2	(4%)	5	(10%)
FIBROADENOMA	22	(44%)		(62%)		(58%)
*CLITORAL GLAND	(50)	((50)	(02.00)	(50)	(,
CARCINOMA, NOS		(2%)	()	(2%)		(4%)
SQUAMOUS CELL CARCINOMA		(2%)	•	(1,0)	-	(4,0)
ADENOMA, NOS		(4%)			3	(6%)
#UTERUS	(50)	(=/0)	(50)		(49)	(0,0)
ADENOCARCINOMA, NOS	(00)		(00)			(4%)
ENDOMETRIAL STROMAL POLYP	15	(30%)	14	(28%)		(20%)
ENDOMETRIAL STROMAL FOL IP ENDOMETRIAL STROMAL SARCOMA						
	I	(2%)		(10%)	0	(12%)
CARCINOSARCOMA			1	(2%)		(0~~)
FIBROADENOMA						(2%)
#CERVIX UTERI	(50)		(50)		(49)	
SQUAMOUS CELL CARCINOMA	1	(2%)				
#UTERUS/ENDOMETRIUM	(50)		(50)		(49)	
CARCINOMA, NOS			2	(4%)	1	(2%)
#OVARY	(49)		(49)		(47)	
GRANULOSA-CELL TUMOR	(,			(4%)		
NERVOUS SYSTEM #BRAIN	(50)		(49)		(50)	
ASTROCYTOMA		(4%)	(40)			(2%)
	Z	(*±70)		<u> </u>	L	(270)
SPECIAL SENSE ORGANS						
*ZYMBAL GLAND	(50)		(50)		(50)	
CARCINOMA, NOS			2	(4%)	7	(14%)
MUSCULOSKELETAL SYSTEM	•	<u></u>				
*VERTEBRA	(50)		(50)		(50)	
LIPOSARCOMA		(2%)	(50)		(50)	
BODY CAVITIES			(50)		(EO)	
*ABDOMINAL CAVITY	(50)		(50)		(50)	(4%)
ENDOMETRIAL STROMAL CARCONA INT					2	(1170)
ENDOMETRIAL STROMAL SARCOMA, INV *MESENTERY	(50)		(50)		(50)	

TABLE A2.SUMMARY OF THE INCIDENCE OF NEOPLASMS IN FEMALE RATS IN THE TWO-YEAR
FEED STUDY OF C.I. BASIC RED 9 MONOHYDROCHLORIDE (Continued)

C.I. Basic Red 9 Monohydrochloride, NTP TR 285

	CONTROL (UNTR)	LOW DOSE	HIGH DOSE
ALL OTHER SYSTEMS	*******		
*MULTIPLE ORGANS	(50)	(50)	(50)
SARCOMA, NOS, UNC PRIM OR META CARCINOSARCOMA, INVASIVE		1 (2%)	1 (2%)
DIAPHRAGM		1 (270)	
CARCINOSARCOMA, METASTATIC		1	
LEG OSTEOSARCOMA		1	
NIMAL DISPOSITION SUMMARY			· · · · · · · · · · · · · · · · · · ·
ANIMALS INITIALLY IN STUDY	50	50	50
NATURAL DEATH@	5	13	20
MORIBUND SACRIFICE	8	6	18
SCHEDULED SACRIFICE			
TERMINAL SACRIFICE	37	31	12
DOSING ACCIDENT			
ACCIDENTALLY KILLED, NDA			
ACCIDENTALLY KILLED, NOS			
ANIMAL MISSING ANIMAL MISSEXED			
OTHER CASES			
DINCLUDES AUTOLYZED ANIMALS			
TUMOR SUMMARY TOTAL ANIMALS WITH PRIMARY TUMOF	RS** 41	50	48
TOTAL PRIMARY TUMORS	93	139	130
TOTAL ANIMALS WITH BENIGN TUMORS		43	43
TOTAL BENIGN TUMORS	67	93	84
TOTAL ANIMALS WITH MALIGNANT TUN		30	29
TOTAL MALIGNANT TUMORS	25	40	42
TOTAL ANIMALS WITH SECONDARY TUN		3	4
TOTAL SECONDARY TUMORS	1	6	5
TOTAL ANIMALS WITH TUMORS UNCERT		C	9
BENIGN OR MALIGNANT TOTAL UNCERTAIN TUMORS	1 1	6 6	3 3
TOTAL ANIMALS WITH TUMORS UNCER	-	U	U
PRIMARY OR METASTATIC	B 4 3.8.4 7		1

TABLE A2. SUMMARY OF THE INCIDENCE OF NEOPLASMS IN FEMALE RATS IN THE TWO-YEAR FEED STUDY OF C.I. BASIC RED 9 MONOHYDROCHLORIDE (Continued)

* NUMBER OF ANIMALS NECROPSIED ** PRIMARY TUMORS: ALL TUMORS EXCEPT SECONDARY TUMORS

NUMBER OF ANIMALS WITH TISSUE EXAMINED MICROSCOPICALLY

SECONDARY TUMORS: METASTATIC TUMORS OR TUMORS INVASIVE INTO AN ADJACENT ORGAN

TABLE A3. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE RATS IN THE TWO-YEAR FEED STUDY OF C. I. BASIC RED 9 MONOHYDROCHLORIDE: UNTREATED CONTROL

ANIMAL NUMBER	0	002	0	004	005	006	007	008	009	0 1 0	0 1 1	012	013	0	015	0 1 6	0 1 7	018	019	ONO	021	0 1 1	0 4 3	024	025
weeks on Study	104	032	075	0 9	106	106	106	106	106	106	106	106	106	106	106	106	106	106	098	106	105	083	106	106	041
INTEGUMENTARY SYSTEM Skin Squamous cell papilloma Bassi cell carcinoms Subcutaneous tissus Sarcoma, NOS	+	+	+ + *	++	++	+	+	++	++	+ *	++	++	++	+ + *	++	+x +	+	+	+	+	+	++	+	+	•
Pibroma Fibrosercoma RESPIRATORY SYSTEM							_		х —														-		_
Lungs and bronchi Alveolar/bronchiolar carcinoma Phoschromocytoma, metastatic Fibrosarcoma, metastatic Ostosarcoma, metastatic Traches	+	+	+	+	+	++	++	+	+	+++	++	++	++	+	+	+	+	+	+	+	+	+	+	+ X +	-
HEMATOPOIETIC SYSTEM					_								_						_	_					
Bone marrow Spieen	1 ‡	+	+	Ŧ	‡	* +	* +	÷	+	+	‡	‡	‡	‡	+	‡	+	‡	+	+	+	‡	‡	+	1
Lymph nodes Thymus	-	+++	+	++	+	+	+	++	++	++	++	++	++	+	‡	+	++	+	+	+	+	+	+	+ •	-
CIRCULATORY SYSTEM Heart	+	+	+	+	+	÷	+	+	+	+	+	+	+	+	+	+	÷	+	+	+	+	+	+	+	•
DIGESTIVE SYSTEM Oral cavity Squamous cell carcinoma	м	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
Selivery gland Liver Neoplastic nodule	+	+	Ŧ	+	+	+	+	+	++ X	+	+	++ X	+	+	+	+	+	+	+	+	+	+	+	++ X	+
Bile duct Gelibladder & common bile duct Pancreas Acinar cell adenoma	+ +	+ N +	н -	н +	+ + +	+ N +	N +	+ N +	+ N +	+ N +	+ + +	+ N +	+ X +	+ + +	+ N +	+N +	н +	+ N +	• • •	+ N +	+N +	+ N +	+N +	+ N +	ž
Esophagus Stomach Adenocarcinoma, NOS	‡	‡	++	+	+ +	++	+ +	+	+	‡	+	+	+ +	+ +	+ +	+	++	++	++	++	+	++	+ +	++	;
Small intestine Adenocarcinoma, NOS Large intestine	-	++	-	+ +	+ +	+ +	+ +	++++	+ +	+ +	++++	+++++++++++++++++++++++++++++++++++++++	+ +	+ +	+ +	+ +	+ +	+++	+++	+ +	-	- +	+++	+ +	++++
URINARY SYSTEM Kidney	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	-
Urinary bladder	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	-	+	+	+
ENDOCRINE SYSTEM Pituitary Adanoma, NOS	+	ż	+	+	+	ż	+		*	÷	+	+	+	+	+	ż	+	+	*	*	ż	*	+	÷	•
Adrenai Pheochromocytoma Pheochromocytoma, malignant	+	+	+	+	+	+	+	*	+	+	*. X	*	ż	+	+	*	+	+	+	+	+	+	+	+	+
Thyroid C-cell adenoma Parathyroid	+	+	-	+	+	+	+	+	*	÷.	+	+	+	+	+	+	+	+	+	+	+	•	+	+	+
Pancreatic islets Islet cell adenoma	Ŧ	÷	-	Ŧ	Ŧ	÷	÷	÷	+	+	Ŧ	÷	÷	+	Ť	÷	÷	÷	Ť	÷	÷	+	÷	+	÷
REPRODUCTIVE SYSTEM Mammary gland Adanoma, NOS	+	N	N	N	N	N	+	N	N	N	N	N	+	N	+	N	N	N	N	N	N	N	+	N	N
Fibroadenoma Testis	x *	÷	*	÷	ţ	÷	÷	÷	÷	;	\$	÷	÷	ŧ	ŧ	\$	÷	ţ	+	;	ţ	-	x *	ŧ	+
Interstitial cell tumor Prostate	+	× +	+	×	X + N	X + N	¥ +	+	+	× +	+X + N X	+X + N	* *	A + V	X + N	X + N	+	X + N	+ N	+x + N	X + N	-	+	X +	÷
Preputial/clitoral gland Carcinoma, NOS Adenoma, NOS	N	Ņ	14	Ń	N	N X		N	N	N	X	14	t.	14	N	N	N	14	14	ţ4	n	N	N	N	1
NERVOUS SYSTEM Brain Astrocytoma	*	+	+	+	+	+	+	+	÷	+	+	+	+	+	+	-	+	+	+	+	+	+	+	+	+
	L			_		_				_															. .

 + : Tissue Examined Microscopically

 - : Required Tissue Not Examined Microscopically

 X : Tumor Incidence

 N : Necropsy, No Autolysis, No Microscopic Examination

 S : Animal Missered

No Tissue Information Submitted
C : Necropsy, No Histology Due To Protocol
A : Autolysis
M : Animal Missing
B : No Necropsy Performed

TABLE AS.	INDIVIDUAL ANIMAL TUMOR	R PATHOLOGY OF	'MALE RATS:	UNTREATED
	CONT	ROL (Continued)		

ANTMAL	1 0	0	0	0	a	0	Ø	0	0	0	0Į	0	a	ল	0	0	Ø	0	or	0	0	0	or	Q	0	T
NUMBER	2	27	28	29	3	3 1	32	3	34	35	3 6	3) 7)	3	3	40	4	42	43	4	45	4	1	48	49	5	TOTAL:
Weeks on Study	10	106	106	0 8 8	0	106	106	100	106	106	080	106	105	100	098	106	1 0 6	0 8 1	106	1 0 1	095	106	1 0 1	106	0 6	TISSUES TUMORS
INTEQUMENTARY SYSTEM			_							+		-						_		4		4			_	*50
Squamous cell papilloma Bassi cell carcinoma	x	. •	Ť	Ţ	Τ.		T	Ť	Ŧ	T	Ŧ	T	Ť	Ť	Ŧ	-	-	Ŧ	T	-	Ŧ	Ŧ	-	Ť	Ŧ	2
Subcutaneous tiesse	+	+	+	+	÷	+	+	÷	+	+	*	+	+	+	+	÷	÷	+	+	+	+	+	+	+	+	*50
Sercome, NOS Fibroma Fibromercome											•										x	x				3 2 1
RESPIRATORY SYSTEM		+		+	+		+		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	-	50
Alveolar/bronchiolar carcinema Pheochromocytoma, metastatic		·	·	·			•			•		x	·	•	X	-			·	•		•	·			1
Fibrosarcoma, metastatic Osteosarcoma, metastatic											x	••														ļį
Traches	+	+	+	+	÷	÷	+	+	+	+	Ŧ	+	÷	+	+	+	+	÷	÷	+	÷	+	+	+	+	50
HEMATOPOIETIC SYSTEM					-					,	,	.,									_	,	.,	,		47
Spieen	‡	+	++	‡	-	+++	+++	+	Ŧ	+	+	‡	÷	+	++	÷	+++	+	+	-	‡	+	+	+	+	47
Lymph nodes Thymus	+	++	++	+	++	++++	÷	+++	++	++	<u>+</u>	++	++	++	<u>+</u>	+	+	+	+	+	<u>+</u>	<u>+</u>	+	<u>+</u>	+++	49 31
CIRCULATORY SYSTEM Heart	-	+	•+	+	+	+	+	+	+	+	+	+	+	+	+	+.	+	+	+	+	+	+	+	+	+	50
DIGESTIVE SYSTEM	-																									
Oral cavity Squamous cell carcinoma	N	N	N	N	N.	N	N	X	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	*50 1
Salivary gland Liver	‡	+	++	++	+++	++++	++	++	++	+	++	++	++	++	+	+	++	++	+	+	‡	+	+	++	+++++++++++++++++++++++++++++++++++++++	48 50
Neoplastic nodule Bile duct		+		+	-	+			ž	1				Ť	+			+	+	+						5
Gallbladder & common bile duct Pancreas	Ń	Ń	Ň	Ń	Ň	Ń	Ň	Ň	* N	Ń	Ń	N	Ň	N N	Ň	Ň	Ń	Ň	Ň	Ň	Ň	Ń	Ń	Ň	Ń	48 50 50 *50 47 1 45 48 1
Acinar cell adenoma		Ť	Ť	Ţ	Ţ	x	Ţ	T	Ť	Ţ	T	Ť	Ţ	Τ.	Ť	T	Ţ	Ţ	Ţ			Ţ	T	Ŧ		1
Esophagus Stomach	+	+	+	+	++	+	++	Ŧ	Ŧ	+	++	‡	+	÷	Ŧ	Ŧ	++	++	÷	<u>+</u>	+	+	+	Ŧ	++	45
Adenocarcinoma, NOS Small intestine	1.	+	+	+	+	+	+	+	+	+	÷	+	+	+	+	+	+	+	+	-	_	+	+	+	X +	44
Adenocarcinoma, NOS Large intestine	+	+	+	+	× +	+	+	+	+	+	÷	+	+	+	+	+	+	+	+	-	-	+	+	÷	+	1 46
URINARY SYSTEM					<u> </u>									-											-	49
Kidney Urinary bladder	1 ‡	÷	+	÷	++	÷	÷	÷	÷	÷	÷	÷	+	÷	÷	+	+	+	÷	-	-	+	÷	÷	++	47
ENDOCRINE SYSTEM Pituitary					-				-	*	-	*	_	<u> </u>		-	+		+		-	-	-	-		49
Adenoma, NOS			x		Ţ	Ţ	Ţ	Ţ	x	Ţ	Ţ	x		Ţ	x.	Ţ	ž.	Ţ	Ţ	-	Ţ	X.	Ţ	x	x	48 17
Adrenal Pheochromocytoma	1 x	+	+	+	+	x	+	+	+	+	Ť.	+	ž.	•	+	Ť.	+	+	+	-	+	*	+	+	+	49 10
Pheochromocytome, malignant Thyroid	+	+	+	+	+	+	+	+	+	+	+	¥	+	+	+	+	÷	+	+	+	+	+	+	+	+	1 49
C-cell adenoma		·	X		•	÷	·	•	•	÷		•							×.	+	_			_	4	49 4 13
Parathyroid Pancreatic islets Islet cell adenoma	Ŧ	Ŧ	Ŧ	Ŧ	÷	Ŧ	Ŧ	Ŧ	+	÷	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	÷	÷	-	-	÷	Ŧ	÷	÷	47 2
REPRODUCTIVE SYSTEM	-					»·				N*	~	v	N	~	N	~	N	N			v	N			-	•50
Mammary gland Adenoma, NOS		N	+		N	N	14	11	м	14	N	14	N	14	N	1	a	1	-	+	L.	14		-	×	1
[•] Fibroadesioma Testia	+	+	+	X + X	·+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	-	+	+	X + X	+	+	4
Interstitial cell tumor Prostate	+	+ X +	X +	+	** +	+ × +	+x +	+ x +	+ x + x	×	+	+ × +	+ x +	¥.	+	+ X + N	X + N	X + N	X + N	-	¥	+	¥.	+	+*+	48 43 45
Preputial/ciitoral giand		Ń	Ň	Ń	+ N	+ N	+ N	Ń	Ń	+ N	Ň	+ N	+ N	+ N	Ń	N	Ň	Ň	Ň	N	Ň	N	+ N	Ň	Ń	*50 1
Carcinoma, NOS Adenoma, NOS					x	X																				3
NERVOUSSYSTEM	• –					<u></u>	,		 								+	<u> </u>			*	*	+	<u> </u>		49
Brain Astrocytoma	*	+	+	+	+	+	+	+	+	+	۴	*	+	+	+	+	+	*	+	-	+	-	+	-	*	1
·	. L		_		-						_	_							_	_					_	

* Animals Necropsied

TABLE A3. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE RATS IN THE TWO-YEAR FEED STUDY OF C. L. BASIC RED 9 MONOHYDROCHLORIDE: UNTREATED CONTROL (Continued)

ANIMAL NUMBER		0	001	003	04	005	006	007	008	009	10	0 1 1	12	13	1	0 1 5	0	017	1	0 1 9	ONO	0 2 1	022	0 4 3	0 2 4	25
WEEKS ON STUDY		04	00.2	075	9	0	106	10	106	1 0 6	106	106	106	1	1	100	10	10	10	09.8	1 0 6	105	083	10	106	062
SPECIAL SENSE ORGANS Zymbel gland Carcinoma, NOS		N	N	٠N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
BODY CAVITIES Tunica vaginalis Masothelioma, NOS	- -	+	+	+	+	+	+	+	+	+	+	+	+	+	ż	+	+	+	+	+	+	+	N	+	+	+
ALL OTHER SYSTEMS Multiple organs, NOS Leukemia, monocuulear cell Orbital region Fibrosarcoma Homatopoietic system Leukemia, NOS	•	N	N	N	NX	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	NX	N	И	N X X	N

+ : Tissue Examined Microscopically - : Required Tissue Not Examined Microscopically X : Tumor Incidence N : Necropsy, No Autolysis, No Microscopic Examination S : Animal Missexed

- No Tissue Information Submitted
 Sub

TABLE AS. INDIVIDU		PATHOLOGY OF I OL (Continued)	MALE RATS:	UNTREATED
--------------------	--	----------------------------------	------------	-----------

ANIMAL NUMBER	026	0217	02480	020	030	0 3 1	0 3 2	0 8 8	034	035	036	037	038	0 8 0	040	04	042	048	844	045	040	047	048	043	0 5 0	TOTAL:
weeks on Study	0	106	0	0 9 3	106	106	106	106	106	106	000	0	105	106	098	100	106	0 8 1	106	10	095	106	1 0 1	106	106	TISSUES TUMORS
SPECIAL SENSE ORGANS Zymbal giand Carcinoma, NOS	N	N	N	N	N	N	N	N	N	N	N	N	N	N	*	N	N	N	N	N	N	N	N	N	N	*50
BODY CAVITIES Tunica vagibalis Meesthelioma, NOS	-	+	+	.+	+	+	+	÷	+	+	+	+	+	+	+	+	+	+	+	N	+	+	+	+	+	*50
ALL OTHER SYSTEMS Multiple organs, NOS Leukemin, mononuclear cell	N	N	N	N	NX	N	N	N	N	N	N	N	N X	N	N	N	N	N	N	N	N	N	N	N	N	*50 5
Orbital region Fibroarcoma Hematopointic system Leukemia, NOS	.										-							x			x		_			1 2

* Animals Necropsied

e

ANIMAL NUMBER	0	002	003	004	005	006	007	008	000	0	0	012	0 1 3	0	0 1 5	016	0 1 7	0 1 8	0 1 9	0 2 0	021	022	0 2 2	024	025
WEEKS ON STUDY	0 8 7	105	105	085	082	1 0 5	080	092	105	105	105	105	105	105	1 0 1	105	105	105	095	105	105	104	105	080	1 0 5
INTEGUMENTARY SYSTEM			-	N		-	N	+		-	*	-		N		-	+				<u> </u>		_		_
Sumous cell papilloma Squamous cell papilloma Squamous cell carcinoma Keratoacapthoma		-	Ť	N	-	Ť	14	Ī	Ť	-	-	x	Ŧ	N	Ī	Ť	Ī	Ŧ	Ŧ	-	Ť	Ŧ	T	Ŧ	Ŧ
Subcutaneous tiasue Sarcoma, NOS Fibroma Fibrosarcoma	+ x	+ X	+	N	+ X	+	N	+ X	+	+	+ X	+	+ XX	N	+	+ X	+	+ X	+ X	+	+	+ X	+ X	*	+ X
RESPIRATORY SYSTEM Lungs and brenchi Hepatocellular carcinoma, metastatic Alveolar/bronchiolar adapoma Follicular cell carcinoma, metastatic Traches	+	+	+	+ x +	+	+	++	+	+	+	+	+	++	+	+	+	++	+ +	++	+	+	+	+	+	+++
HEMATOPOLETIC SYSTEM Bone marrow Spieen Lymph nodes Thymus	-+++	++++	++++	+++	+++	++++	++++	++++	++++	++++	++++	++++	++++	++++	++++	++++	++++	+++	++++	++++	+++	++++	++++	+++	L +++ -
CIRCULATORY SYSTEM Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	- +
DIGESTIVE SYSTEM Salivary gland Liver Neoplastic nodule	+	++x	+ * X	++	++	+++	++	++	++	++	++ *	++	+++	+ + x	+++	+ + x	+++	+++	++	++	+ + x	++	+ + * X	++	++
Hepatocellular carcinoma Bile duct Gallbladder & common bile duct Pancreas Acinar cell adenoma	+ N +	+ N +	+ N +	+ N +	+ N +	+ N +	+ N +	+ N +	+ N +	+ N +	+ N +	+ N +	+ N +	4 + N +	+ N +	+ N +	+ N +	+ N +	+ N +	+ N +	+ N +	+ N +	+ X +	+ N +	+ N +
Esophagus Stomach Small intestine Large intestine	++++++	-+++	-+++	+++ -	++	-+++	-+++	++++	++++	+++++	++++	++++	++++	++++	++++	++++	++++	++++	-++-	++++	++++	++++	++++	++++	-+++
URINARY SYSTEM Kidney Tubular cell adenoma Liposarcoma	+	+	+	+	+	+	+	+	+	+	+	+	+	÷	÷	+	+	+	+	+	+	+	+	+	÷ x
Urinary bladder	+	+	+	+	-	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Pituitary Carcinoma, NOS	+	+	+	-	+	+	+	+	+	+	÷	+	+	+	+	+	+	+	÷	÷	+	+	+	+	-
Adenoma, NOS Adrenai Corticai adenoma	* *	¥ +	X +	+	х -	+	¥	+	+	+	+	+	X +	X +	ж +	+	+	X +	+	+	+	+	+	+	ż
Pheochromocytoma Thyroid Follicular cell carcinoma Ç-cell adenoma	+	+	¥ +	+	-	X +	+	+	X +	¥ +	+	X +	+	ż	ż	+	+	+	+	X +	+	+	+	+	+
C-cell carcinoma Parathyroid Pancreatic isleta Islet cell adenoma Islet cell carcinoma	Ŧ	+	X Ŧ	+	+++	++	Ŧx	- +	-+	++	Ŧ	++	++	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	++	Ŧ	Ŧ	Ŧ	+ +	++	Ŧ
REPRODUCTIVE SYSTEM Mammary gland Fibroadenoma	N			N	N	х	N		ŧ		N					N	N	+	N	х			N	N'	- +
Testis Interstitial cell tumor Prostate Preputia kclitoral gland Adenoma, NOS	+x + N X	-	+ x + N	-	+ + N	-	+x + N	-	+	-	-	+	-		+	1	+ X + N	+	-	+x + N	-	+	+		+x + N
NERVOUS SYSTEM Brain Carcinoma, NOS, invasive	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+

TABLE A3. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE RATS IN THE TWO-YEAR FEED STUDY OF C. I. BASIC RED 9 MONOHYDROCHLORIDE: LOW DOSE

 + : Tissue Examined Microscopically

 - : Required Tissue Not Examined Microscopically

 X : Tumor Incidence

 N : Netropsy, No Autolysis, No Microscopic Examination

 S : Animal Missered

No Tissue Information Submitted
 C : Necropsy, No Histology Due To Protocol
 A : Autolysis
 M : Animal Missing
 B : No Necropsy Performed

ANIMAL NUMBER	0 2 6	0217	0248	020	080	0 3 1	032	0 8 8	0 3 4	035	036	037	038	039	040	04	042	043	944	045	040	047	048	049	0 5 0	TOTAL
WEEKS ON STUDY	1 0 1	1 0 5	0 9 1	1 0 3	105	0 8 8	1 0 5	094	105	1 0 5	095	0 9 5	105	104	063	105	1 0 5	105	105	11 0 5	093	1 0 5	105	054	0 9 5	TOTAL: TISSUES TUMORS
INTEGUMENTARY SYSTEM Skin Squamous cell papilloma Squamous cell carcinoma	+	+	+	+	+ X	+	+	+	+	+	+	+	N	+	+	+	+	+	+	+	+	ż	+	+	+	*50 1 1
Keratoscanthoma Subcutaneous Lissue Sarcoma, NOS Fibrosa Fibrosarcoma	*	+ X	+ x	+	+	+ X	+	+	+	+ X	+ X	+ X	N	+	+ X	+ X	+	+	+	+	+	+	+ X	+	+ X	1 *50 2 20 3
RESPIRATORY SYSTEM Lungs and bronchi Hepatocellular carcinoma, metastatic Alveolar/bronchiolar adenoma Follicular cell carcinoma, metastatic Trachea	+	+	+	+	+ xx +	+	++	+	+++	+ x +	+	+ +	+	+	+	+	+	+	+	+++	+ X+	+	+	+++	++	50 1 3 1 50
HEMATOPOIETIC SYSTEM Bose marrow Spieen Lymph nodes Thymus	+++-	++++	+++=	+++ +	+++ =	++++	++++	++++	++++	++++	+++-	++++	++++	+++-	+++-	++++	++++	+++-	+++-	++++	+++-	++++	++++	+++ -	+ +	49 49 49 34
CIRCULATORY SYSTEM Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	•+	+	+	+	+	+	÷	+	+	50
DIGESTIVE SYSTEM Salivary gland Liver Neoplastic nodule Hepatocellular carcinoma Bile duct	+	+ + x +	+++++++++++++++++++++++++++++++++++++++	++++	++ X+	+++++	+ ** +	Ŧ	++++++	+ + x +	+++++	++++++	+++++++++++++++++++++++++++++++++++++++	++++++	++++++	+++++++++++++++++++++++++++++++++++++++	++ +	-+x +	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+ + x +	+ * x +	+++++++++++++++++++++++++++++++++++++++	+ ×++	47 50 14 2 50
Gallbladder & common bile duct Pancreas Acinar cell adenoma Esophagus Stomach	N + + +	N + X + +	N+X++	·Z+++	·N+++	.N. + + + +		·x+ ++	N + ++	N+++	·N+++	·N+++	+ -+	N+ ++	+ ++	N + ++	+ -+	+ ++	+ +++	++++	× + + +	·X+ ++	N + ++	× + + ×	- Z + ++	*50 50 2 41 50
Small intestine Large intestine	+	++	++	++	++	++	++	++	+++	++	+-	++	+++	++	+	++	++	+	++	++	+++	+++	++	Ŧ	++	48 45
ORINARY SYSTEM Kidney Tubular ceil adenoma Liposarcoma	+	+	+	+	+	+	+	+	+	+	+ X	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50 1 1 49
Urinary bladder ENDOCRINE SYSTEM Pituitary		-	+	- -	- -		- -	-	-	-		-	-	-	-	- -	- -			<u> </u>			<u>_</u>		-	47
Carcinoma, NOS Adenoma, NOS Adrenai	x	+	• •	× +	• •	, +	× ×	X,	x	x +	X ¥	•	+	× +	•	•	•	•	+	• •	+	+	•	+	+	1 16 49
Cortical adenoma Pheochromocytoma Thyroid Pollicular ceil carcinoma C-ceil adenoma	+ x	X +	÷	+	+ X	+	+	-	+	X +	X +	X +	x + x	+	+	+	+	-	-	¥ +	+ X	X +	x + x	+	+	1 14 46 5 2 1
C-cell carcinoma Parathyroid Pancreatic isleta Islet cell adenoma	+ + +	+	+	++	A ++ +	++	-+	Ŧ	++	++	+ +	Ŧ	-+x	Ŧ	++	Ŧ	Ŧ	Ŧ	-+	- +	++	-+	Ŧ	++	++	19 50 2
Islet cell carcinoma REPRODUCTIVE SYSTEM		X					X										X								-	3
Mammary gland Fibroadsnoma Testia Interstitial cell tumor Prostate Prostate Proputial/clitoral gland		+ *	+ x + n	-	÷ ¥	N +N+N	÷	÷	+ +x+N	÷	+ x	+ x	÷	+ x	+	+x + x - N	+ x	+ x	+ x	*	X + X	N + X + N	X + x	+ x	N + X + N	*50 6 48 46 48 *50 2
Adenoma, NOS NERVOUS SYSTEM Brain Carcinoma, NOS, invasive	+	+	*	*	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	-+	50 1

TABLE A3. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE RATS: LOW DOSE (Continued)

* Animals Necropsied

TABLE AS. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE RATS IN THE TWO-YEAR FEED STUDY OF C. I. BASIC RED 9 MONOHYDROCHLORIDE: LOW DOSE (Continued)

ANIMAL NUMBER	0	002	800	004	005	900	100	008	000	010	0 1 1	012	0 1 3	0	015	0	0 1 7	0 1 8	0 1 9	ONO	0 2 1	022	023	024	025
weeks on Study	0 8 7	105	105	085	082	1 0 5	89	092	1 0 5	105	1 0 5	105	105	105	և 0 Լ	105	105	105	095	105	105	104	1 0 5	090	1 0 5
SPECIAL SENSE ORGANS Zymbal gland Carcinoma, NOS	N	N	N	N	N	N	N	N	*	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
BODY CAVITIES Plaura Mesothelioma, invasive Tunica vaginalis Mesothelioma, NOS Mesothelioma, melignant	N +	N + X	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	NX+ X	N +	N +	N +
ALL OTHER SYSTEMS Multiple sites, NOS Mesothesions, NOS Multiple organs, NOS Sercoms, NOS, investve Sercoms, NOS, metastatic	м	N	N		N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	XN	N	N	N X X	N
Fibrous histiocytoma, malignant Meeothelioma, metastatic Meignant lymphoma, NOS Leukemia, mononuclear cell	x			X																		x			

- + : Tissue Examined Microscopically ~ : Required Tissue Not Examined Microscopically X : Tumor Incidence N : Necropsy, No Autolysis, No Microscopic Examination S : Animal Missexed
- No Tissue Information Submitted
 C : Necropsy, No Histology Due To Protocol
 A Autolysis
 M : Animal Missing
 B : No Necropsy Performed

TABLE AS.	INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE RATS:	LOW	DOSE
	(Continued)		

WEEKS ON STUDY SPECIAL SENSE ORGANS Zymbal gland Carcinoma, NOS BODY CAVITIES Platra Meethelioma, invasive	<u> </u>	N	0 9 1	1 3 3	105 5	0 8 8	105 N	094	105		9	90			105	105	105	105	105	203	105	105	6 2 4	095	TOTAL: TISSUES TUMORS
Zymbal gland Carcinoma, NOS BODY CAVITIES Pleura	<u> </u>		N	N	N	N	N	N				_	_						-			-		-	
Plears	N		-					.,	N	N	N	NI	NI	NN	t N	N	N	N	N	N	N	N	N	N	*50 1
Mesothelioma, NOS Mesothelioma, NOS	1			N N					N +	N +	N +	N 1 +	N 1	N 1 + -	N N	N +	N +	N +	N +	N +	N +	N X	N +	N +	*50 2 1
ALL OTHER SYSTEMS Multiple size, NOS Multiple size, NOS Sarcoma, NOS, invasive Sarcoma, NOS, invasive Sarcoma, NOS, invasive Sarcoma, NOS, metastatic Fibrous histiocytoma, malignant Mesotheliona, motastatic Malignant lymphoma, NOS Leukema, monoucleur cell	N	N	N	N	N	N	N	N	N	N	N	N	N 1	N 1	1 1	N	N X	N	N .		N X	N	N	N	1 *50 1 2 1 1 1

* Animals Necropsied

ANIMAL Number	0	5 6 N	03	004	00	906	007	08	000	10	1	0 1 2	13	14	U 11 5	1	17	1	19	040	21	200	0 113	24	
WEEKS ON STUDY	0 5 8	0 1 6	067	0 8 7	0 11 6	990	066	0 9 1	088	094	06	0 8 5	104	0 1 7	0 7 4	0 7 1	066	084	0 7 3	062	0	0 9 9	0 9 5	104	
NTEGUMENTARY SYSTEM	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Squamous cell papilloma Squamous cell carcinoma Basai cell carcinoma Trichospithelioma Sobaccous adenoma Keratoacunthoma				X				X	x	X									X		X	XX		X X	
Neratoecaniona Useutaecona tiasue Sarcoma, NOS Fibroma	+	+	+	+ X	+	+	'+ Х	+ X	+	+	+	+	+xx	+	+	+	+	*	+	+	+	+ X	х Х	+ X	•
ESPIRATORY SYSTEM ungs and bronchi Carcinoma, NOS, metastatic Squamous cell carcinoma, metastatic	+	+	+	+	+	+	+	+	+	+	+	+	+	+	*	+	+	+	+	+	÷	+	+	+	
Hepatocellular carcinoma, metastatic Alveolar/bronchiolar adenoma Alveolar/bronchiolar carcinoma Osteosarcoma, metastatic								X			x					X						x			
raches	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	4
IEMATOPOIETIC SYSTEM	+	++	++	++	++	++	++	++	+	++;	++	++	++	++	++	++	++	++	++	++	++	++	+ +	+ +	4
Hemangioma ymph nodes hymus	+	+ +	Ŧ	+	+	+-	+	<u>+</u>	++	A + -	+-	+ -	+ +	+	+	+ +	+	+ +	++	+ +	++	+ +	+ +	+ +	• •
IRCULATORY SYSTEM	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	÷	+	+	+	+	+	+	+	4
IGESTIVE SYSTEM rai cavity Squamous cell papilloma	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	Ņ	N	N	Ņ
livary giand ver Bile duct adenoma	‡	+ +	++	+	++	++	+ +	+ +	Ŧ	+ +	++	Ŧ	+ +	+ +	Ŧ	+ +	+ +	Ŧ	+ +	÷	+ +	4 + +	+ · + ·	+ +	• •
Bile duct carcinoma Neoplastic nodule Hepatocellular carcinoma				x												X					X	X	x.		
ile duct allbladder & common bile duct ancreas	*N +N	+ N +	+N +	* *	* *	* *	* N +	+ N +	+ N +	* N +	* *	Ň.	* N +	Ň	+ N +	* *	+ N +	+ N +	* *	+ N +	+ N +	+ N -	* i * i	+ x +	N
Acinar ceil adenoma sophagus Iomach	+	++	+++++++++++++++++++++++++++++++++++++++	++	-	++	X + +	+	++	+++	++	+	+++	+	+++	+ +	++	+++	+ +	Ŧ	+	- · +	+ · + ·	+	4
mall intestine Adenocarcinoma, NOS arge intestine Adenocarcinoma, NOS	+++	+	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	-	+ + X	- +	+ +	+ +	+ -	+ +	+ +	+ +	÷ +	÷ +	÷ - + -	+ +	•
RINARY SYSTEM									-				<u>~</u>				_		-		-				-
idn sy rinary bladder	+	++	++	+	++	+	+	+	÷	+	÷	÷ -	+	+	++	++	++	+++	++	+	+++	+ +	+ ·	+	-
NDOCRINE SYSTEM ituitary Adenoma, NOS	+	+	+	+	-	+	+	+	+	+	+	+	+	+	+	+	+	-	+	*	+	+	+ .	-	4
drenal Pheochromocytoma hyroid	+	+	++	ŧ,	++	+	+	+ +	+	+ ::	+ ::	++	+ +	+ +	++	+ +	+ * +	+ ::	+ +	+	+ + .	+ +	+ · + :	+	+
Follicular cell adenoma Follicular cell carcinoma C-cell carcinoma - carcinoma			X	x		X		X		X	X	x			X	X :	x	X			x	X	2	2	
arathyroid ancreatic islets Islet cell adenoma Islet cell carcinoma	+	Ŧ	Ŧ	Ŧ	++	Ŧ	Ŧ	Ŧ	+	Ŧ	+	-	÷	-	+ +	÷	Ŧ	Ŧ	+	Ŧ	+	+		-	+
EPRODUCTIVE SYSTEM anmary gland Fibroadenoma	N	+	+	N	N	N	N	N	+	N	N			N	N	N	N	N	N	N	N I	N ·	+ 1	1	- +
estis Interstitial cell tumor costate	+	++	+++	+ x +	+	+ x -	* :	÷	+ x :	* ×	* :	+ x	X + X +		*	+ ·	+	+ X +	+			* *		ζ.	+
Carcinoma, NOS Adenoma, NOS	Ň	Ň	Ň	Ň	ที	Ň	ที่	Ň	Ń	Ň	N I	Ň	Ň	Ň	n 1	Ń	Ň	Ň	Ň	ที่เ	Ň	Ň	i b	ן א ג	
ERVOUS SYSTEM rain Astrocytoma	+	+	+	+	+	+	+	+	+	÷ •	+	+	+	+	+	+ X	+	+	+	+	÷ ·	+ ·			+

TABLE A3. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE RATS IN THE TWO-YEAR FEED STUDY OF C. L BASIC RED 9 MONOHYDROCHLORIDE: HIGH DOSE

 + :
 Tissue Examined Microscopically

 - :
 Required Tissue Not Examined Microscopically

 X :
 Tumor Incidence

 N :
 Necropsy, No Autolysis, No Microscopic Examination

 S :
 Animal Missered

No Tissue Information Submitted
 C : Necropsy, No Histology Due To Protocol
 A : 'Autolysis
 M : Animal Missing
 B : No Necropsy Performed

٠

TABLE AS.	INDIVIDUAL ANIMAL	TUMOR	PATHOLOGY	OF	MALE	RATS:	HIGH	Dose
		(C	ontinued)					

ANIMAL NUMBER	0 N 6	0217	0 14 80	0 1 0	0 90	0 3 1	032	088	034	085	036	0 3 7	038	039	040	0 4 1	042	043	044	045	046	047	04	049	0 5 0	TOTAL
WEEKS ON STUDY	0 8 8	098	8	100	0 7 1	0 9 7	003	073	075	0 8 1	072	074	078	0 7 8	087	0 8 5	097	0772	060	075	000	083	077	087	094	TUMORS
INTEGUMENTARY SYSTEM Skin Squamous cell papilloma Squamous cell carcinoma Basal cell carcinoma Trichospithelionna Sebacous adenoma	+	ż	+ X	+ X	+	+ X	+	+	+	*	+	+	+	+	ż	+	+ X	N	+	+	+ X	+ x	+	+	+ *	*50 4 10 4 7 5
Karstoscasthoma Subcutaneous tiasue Sarcoma, NOS Pibroma	+ X	+	+	+	+	+ X	+	+	+	+ X	+	+	+	+ X	+ X	ż	+ X	N	+	+ X	+ X	ż	+	+ X	+	2 4 16
RESPIRATORY SYSTEM Lungs and bronchi Carcinoma, NOS, metastatic Squamous cell carcinoma, metastatic Hepatocellular carcinoma, metastatic Alveolar/bronchiolar adenoma Alveolar/bronchiolar carcinoma Osteosarcoma, metastatic Traches	+	+ +	+	+ x +	+ +	+	+	+	+	+	+	+	+	+	+	+ X +	+	+	+ +	+	+	+	+ x x+	+	+	50 1 2 3 1 1 50
HEMATOPOIETIC SYSTEM Bone marrow Soleen Hemangioma	++	++	++	++	+++	++	+++	++	++	++	++	+++	+++	++	++	++	+ +	Ŧ	++	++	+++	++	++	++	+ + + + + + + + + + + + + + + + + + +	45 49 1
Lymph nodes Thymus		+	+	+	+	-	+	+	+	+	+	+	-	+	-	2	+	<u>+</u>	-	<u>+</u>	++	+	+	+	+	48
CIRCULATORY SYSTEM	+	+	+	+	÷	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
DIGESTIVE SYSTEM Oral cavity Squamous cell papilloma Salivary gland Liver Bile duct adenoma Bile duct carcinoma	N ++	N +	N ++	N ++	N ++	+++	N 7	N ++	N ++	N ++	м ++	N ++	N ++	N ++	N ++x	n Ŧ	N ++	и Т	N -	и + +	N ++	N ++	N ++	N ++	N +	*50 1 40 50 1 2
Neopiastic nodule Hepatocellular carcinoma Bile duct Gallbladder & common bile duct Pancreas	+ N +	+ 2 -	+ N +	+ 2 +	+ 2 +	X X+N+	+ 2 +	+ N +	+ X +	X +N+	+ N +	+ 2 +	+ N +	+ N +	X+N+	+	X + N +	+ N +	+ N +	X +N+	A X+N+	+ 7 +	+ N +	+++	+ 2 +	6
Acinar cell adenoma Esophagus Stomach Small intestine Adenocarcinoma, NOS Large intestine Adenocarcinoma, NOS	+++++++++++++++++++++++++++++++++++++++	+++ +	+++ +	+++ +	+++ +	++++++	++	+++ +	+++ +	+++ +	+++ +	+++ +	+++ +	+++ + X	++- +	-++ +	+++ +	-+	-+	+++ +	+++x+	+++ +	++	+++++++++++++++++++++++++++++++++++++++	+++ +	50 +50 46 1 44 45 42 1 42 2
URINARY SYSTEM Kidney Urinary bladder	+ +	+ +	++	++	++	+	+	+++	++	++	++	++	++	+++	+ +	+++	+ +	+ +	+++	+ +	++	++	++	++	+++	49 47
ENDOCRINE SYSTEM Pituitary Adenoma, NOS Adrenal Pheochromocytoma Thyroid Follicular cell adenoma Follicular cell adenoma C-cell carcinoma C-cell carcinoma Parathyroid	++++++	+x+ + x -	++++	+++	++++	+x+ +x	+++++	+x+ + x -	+ + + x -	+ + + -	+++++	++++	- + + x +	+ + + x +	+ + + X -	++	+x+ + x -	+x	++	++++	+ x + x	+x+ + x -	+ + + + + + + + + =	+++-	+ + + x =	46 8 48 3 44 9 18 1 10
Pancreatic islets Islet cell adenoma Islet cell carcinoma	• +		+	+	+	*	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	*	46 3 1
REPRODUCTIVE SYSTEM Maximum ry gland Fibroadenoma Testis Interstitial cell tumor Prostate Preputial/clitoral gland Carcinoma, NOS Adenoma, NOS	+ x + x + N	+x -	+ x +	+x +	+	+ + + + N + N	+x +	+	+x +	*	‡	*	+	÷ x	+ + X + N	*	+ x	÷ x	+	+ x	+ x	+ x	*	+ x	+ x	*50 2 50 37 48 *50 1 1
NERVOUS SYSTEM Brain Astrocytoma	+	+	+	+	+	+	+	+	+	+	+	+	+	+	÷	+	+	+	+	+	+	+	+	+	+	50 1

*Animals Necropsied

TABLE AS. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE RATS IN THE TWO-YEAR FEED STUDY OF C. L BASIC RED 9, MONOHYDROCHLORIDE: HIGH DOSE (Continued)

ANIMAL NUMBER	0	004	003	004	900	900	007	008	000	0	0 1 1	012	013	0 1 4	015	0	0 1 7	0	0	040	021	022	DND	024	25
weiks on Study	000	1	002	0 8 7	010	080	000	091	088	004	088	085	104	0 1 7	014	071	000	084	073	002	080	099	095	104	043
SPECIAL SENSE ORGANS Ear Squamous call papilloms Zymbal gland Carsinoms, NOS	+ + X	N N	Ņ N	N N	N N	+ *	N N	+ *		+ *			N N							N N	÷.	N N	+ *	+ *	N N
BODY CAVITIES Poritoneum Sercosta, NOS Ostacesrooma Tunica vaginalia Mesothelioma, NOS Body cavities Mesothelioma, NOS	N + N	+	ท + ท	+	+	พ + พ	+	+	+	+	+	+	N + N	+	+	+	ท + ท	ท + ท	ท + ท	+	+	ท + ท	+	+	+
ALL OTHER SYSTEMS Multiple organs, NOS Hopatocellular carcinoma, invasive Sarcoma, NOS, une prim or metastatic Sarcoma, NOS, une prim or metastatic Magothelioma, NOS Leukamia, mononeuclear cell Cheek, NOS Squamous cell papilloma	N	N	N	N	N	N	N	N	N	N	N	N	N X	N	N	N	N	N	N	N	N	N	N	N	N

 + : Tissue Examined Microscopically

 - : Required Tissue Net Examined Microscopically

 X : Tumor Incidence

 N : Necrosey, No Autolysis, No Microscopic Examines

 S : Animal Missersed

No Tissue Information Submitted
 C : Neuropsy, No Histology Due To Protocol
 A : Autolysis
 M : Animal Missing
 B : No Neuropsy Performed

TABLE AS. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE RATS: HIGH DOSE (Continued)

ANTMAL NUMBER	0 2 6	0217	0248	040	080	0 3 1	032	033	034	0 2 2	0 3 6	037	038	3	040	4	042	043	044	045	4	047	048	049	0 5 0	TOTAL:
Weeks on Study	8	000	086	100	071	97	063	013	075	0 8 1	072	074	810	078	082	0 8 5	0 9 7	072	060	075	0.88	83	077	0 8 7	94	TISSUES TUMORS
SPECIAL SENSE ORIANS Ear Squemous cell papilloma Zymbel gland Cartinoma, NOS	+ *	+ *			•	N N		•••	N N	N N		N N			N N	N N	N N	•••	N N	+ *	+ + X	N N	N N	N N	****	*50 1 *50 13
BODY CAVITIES Pariteneum Sartema, NOS Outseestrooma Tunica vaginalia Meesthalioma, NOS Body avvities Meesthelioma, NOS	N +XN	N + N	N + N	NX + N	N + NX	N + N	N + N	N + N	N + N	N + N	+	ท + ท	N + N	+	א + א	N + N	พ + พ	+	พ + พ	N + N	N + N	+	N X N	N + N	+	*50 1 *50 1 *50 1
ALL OTHER SYSTEMS Multiple organs, NOS Hopetocellular carcinoma, invasive Sarcoma, NOS, une prim or metastatic Sarcoma, NOS, une prim or metastatic Mesochelioma, NOS Leukemia, mononuclear cell Cheek, NOS Squamous cell papilloma	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N X	N	N	N	N	N	N	N	N	N X	*50 1 1 1 1 1

*Animais Necropsied

.

.

C.I. Basic Red 9 Monohydrochloride, NTP TR 285

.

TABLE A4. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE RATS IN THE
TWO-YEAR FEED STUDY OF C. I. BASIC RED 9 MONOHYDROCHLORIDE:
UNTREATED CONTROL

ANIMAL NUMBER	0 0 1	000	003	004	000	006	007	008	000	010	0 1 1	012	0 1 3	014	015	0 1 6	017	1	0 1 9	000	21	022	ONB	0 24	0 2 5
WEEKS ON STUDY	9	1 0 1	106	106	100	106	085	106	106	1 0 6	106	106	10	056	106	0	1 0 6	106	106	1	10	106	106	106	106
INTEGUMENTARY SYSTEM	+	N	÷	+	N	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	-
Bassi cell carcinoma Subcutaneous tissue Sarcema, NOS	+	N	+	+	N	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
RESPIRATORY SYSTEM Lungs and bronchi Lipsarcoma, metastatic Trachea	++	'+ +	+++	+ +	++	+ +	+ +	++	++	+++	++	++	++	+×+	++	+	+++	++	+++	+++	++	+++	++	+++	•
SYSTEM																									- 1
Bone marrow Spieen Lymph nodes Thymus	+++	++++	++++	++++	++++	++++	+++-	++++	++++	++++	++++	++++	++++	+++-	++++	++++	++++	++++	++++	+++ =	++++	++++	++++	++++	• • • •
CIRCULATORY SYSTEM Heart	+	+	+	+	+	÷	+	÷	+	÷	÷	+	+	+	+	+	+	+	+	+	+	+	+	+	-
DIGESTIVE SYSTEM Selivary gland Liver Neglestic actuals	+	++	+++	++	++	+ +	+ +	+ +	++++	++	+	+	+	+	+++	++	+++	++	++	+	+	++	+	++	
Neoplastic nodule Bile duct Gallbladder & common bile duct Pancreas	+ X +	+ z +	+ x +	+ Z +	+ z +	+х +	+ z +	+ N +	+ x +	+ x +	+ x +	+ x +	+ × +	+ x +	+ N +	+	+ z +	+ z +	+ 2 +	+ × +	+ × +	X+X+	+ z +	+ x +	12.1
Esophagus Stomach	‡	‡	‡	‡	‡	‡	‡	‡	‡	‡	‡	‡	‡	‡	‡	‡	+	+	+	‡	+	+	‡	Ŧ	1
Small intestine Large intestine	+	+	ŧ	+	+	‡	÷	+	:	+	+	‡	÷	÷	+	+	+	+	+	÷	+	÷	+	+	;
URINARY SYSTEM Kidney Urinary bladder	+ +	++	+	+++	++	+ +	+	+ +	+ +	+++	+	+	++	++	++	++	+	+ +	++	++	++	+	++	+	
ENDOCRINE SYSTEM Pituitary	+	+	+	+	+	+	+	+	+	+	+	+	+	•	+	+	+	+	+	+	+	+	÷	+	7
Carcinema, NOS Adenoma, NOS Adrenai	X +	¥	+	X +	X +	X +	+	× +	+	¥	X +	X	+	+	X +	+	¥	+	X +	X +	X +	X +	¥	X +	•
Thyroid C-cell adenoma C-cell carcinoma	+	+	+	+	+	+	+	+	+	+	+	+	+	+	*	+	+	+	+	+	+	+	+	+	1
Parathyroid Pancreatic islets Islet ceil adenoma	:	Ŧ	Ŧ	- +	+	Ŧ	+ +	Ŧ	Ŧ	Ŧ	Ŧ	+	++	+ +	Ŧ	+ +	Ŧ	++	Ŧ	Ŧ	Ŧ	Ŧ	+	-+	;
Mammary giand	N		N	-	N		•	•				N	+	N		N		*	N	+	N	-	+	N	-
Adenocarcinoma, NOS Fibruadenoma	N	+ x		X	Ņ	Ŧ	x	T	x	x	X	N		N		N	x	x	*4		N				
Proputal/clitoral gland Carcinoma, NOS Squamous cell carcinoma	N	Ñ	N	N		N X	Ñ	Ñ	Ň	Ñ	Ñ	N	Ñ	N	Ñ	N	Ň	Ñ	N	Ñ	N	X N	Ñ	N	N
Adenoma, NOS Uterus	+	+	÷	+	+	+	+	+	+	+	+	+	÷	+	+	+	+	÷	+	+	÷	+	+	+	•
Squamous cell carcinoma Endemetrial stromal polyp Endometrial stromal sartoma						x			X		X				x	x		X					X		
Overy NERVOUS SYSTEM	+	+	+	+	+	+	+	-	+	+	+	+	+	+	+	+	+	-	+	+	+	+	+	-	-
Brain Astrocytoma	+	+	+	+	+	+	,+	+	+	+	+	+	+	+	+	+	+	ż	+	+	+	+	+	+	+
MUSCULOSKELETAL SYSTEM Bone Liposarcoma	N	N	N	N	N	N	N	N	N	N	N	N		N X	N	N	N	N	N	N	N	N	N	N	N
ALL OTHER SYSTEMS Multiple organs, NOS	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
Malignant lymphoma, NOS Leukemia, mononuclear cell Hematopoietic system Leukemia, NOS	x	x					X						X								x	x			
		<u>~</u>																							_

Tissue Examined Microscopically Required Tissue Not Examined Microscopically Tumor Incidence Necropsy. No Autolysis, No Microscopic Examination Animal Missexed

+ :: - :: N :: S ::

No Tissue Information Submitted Necropsy, No Histology Due To Protocol Autolysis Animal Missing No Necropsy Performed

C: A: M: B:

.

				~				-		911		4 100 1	,													•
ANIMAL NUMBER	0 2 6	027	022	029	030	0 3 1	0 3 2	033	034	0 3 5	0 3 6	0 3 7	0 3 8	0 3 9	040	4	0 4 2	043	044	045	046	047	048	049	0 5 0	
WEEKSON Study	1 0 6	086	1 0 6	106	106	079 9	1 0 6	0 9 3	106	087	106	1 0 6	102	0 9 1	106	106	106	1 0 1	096	106	106	106	0 7 9	106	1 0 6	TOTAL: TISSUES TUMORS
INTEGUMENTARY SYSTEM Skin Basal cell carcinoma Subcutaneous tissue Sarcoma, NOS	+++	+ +	+ *	+ +	+ .	+ +	++	+ +	+ +	++	+ +	+ +	++	+ +	++	++	* * *	++	++	++	+ +	++	++	++	+	*50 1 *50 1
RESPIRATORY SYSTEM Lungs and bronchi Liposarcoma, metastatic Trachea	++++	++	++	++	+++	+++	+++	++	++	+ +	+ +	+	++	++	+++	++	++	++	+++	+ +	+ +	++	+ +	++	+	50 1 50
HEMATOPOIETIC SYSTEM Boas marrow Spieen Lymph nodes Thymus	++++++	++++	++++	++++	++++	+ + + + =	++++	+++ -	++++	+++	++++	++++	++++	+++ -	++++	+++++	++++	++++	++++	++++	++++	++++	++++	+++++	++++	50 49 50 42
CIRCULATORY SYSTEM Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	÷	+	+	+	+	+	+	+	+	+	+	50
DIGESTIVE SYSTEM Salivary gland Liver Neoplastic nodule Bile duct Calibladder & common bile duct Pancreas Esophagus Stomach Stomach Small intestine Large intestine	++ +2+++++	++ +Z+++++	++ +2+++++	++ +2+++++	++ +Z+++++	++ +2 ++ 1 1	++ +z+++++	++ +Z+++++	++ +z+++++	++ +Z+++++	++ +Z+++++	++ +Z+++++	1+ +2+++++	++ +z+++++	++ +Z+++++	++ +Z+++++	++ +z+++++	++ +z+++++	++ +Z+++++	++ +Z+++++	++ +Z+++++	++ +2+++++	++ +Z+++++	+++++++++++	++ +z++++	49 50 50 50 49 49 48 49 47
URINARY SYSTEM Kidney Urinary bladder	+	+++	*	++++	+++	+	++	+++	++	+ +	+ +	+	+++	+++	++++	+++	++	+++	+++	++	+++	+++	+++	+++	++	50 48
ENDOCRINE SYSTEM Pituitary Carcinoma, NOS Adenoma, NOS Adrenai Thyroid C-ceil adenoma C-ceil adenoma Parcrastic islets Talet ceil adenoma	+ X + + +	+ ++ ++	+ ++ -+	+ x++ -+	+ ++ =+	+ +	+ ++ ++	+ x++ ++	+ ++ ++	* X+- ++	+ ++ ++	+ ++ ++	+ x+- +	+ ++ ++	+ ++ -+	+ x++ -+	+ x++ -+	+ X++ -+	+ x++ -+	+ x++ 1+	+ ++ ++	+ ++ ++	+ ++ · -+x	+ ++ ++	+ ++ × ++	50 1 26 50 47 1 1 14 49 1
REPRODUCTIVE SYSTEM Mammary gland Adenocarcinoma, NOS Fibroadenoma Preputial/clitoral gland Carcipoma, NOS		N N	• ·	+ N	N N	+ N		N N	-										+ X N			+ N		N N		*50 2 22 *50 1
Squamous cell carcinoma Adenoma, NOS Uterus Squamous cell carcinoma Endometriai stromai polyp Endometriai stromai sarcoma Ovary	+	++	+	+ x +	+	+	¥ +	+	+	+ x +	+	+ X +	+	+	+	+	X + X ∻	+ X +	+	+x +x +	++	+ X +	+ X +	+	+ X +	1 2 50 1 15 1 49
NERVOUS SYSTEM Brain Astrocytoma	+	+	+	+	+	+	+	+	+	+	+	+	÷ x	+	+	+	+	+	+	+	+	+	+	+	-+	50 2
MUSCULOSKELETAL SYSTEM Bone Liposarcoma	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	- N	*50 1
ALL OTHER SYSTEMS Multiple organs, NOS Malignant lymphoma, NOS Leukemia, moronuclear cell Hematopoietic system Leukemia, NOS	N	N X	N	N	N	N	N	N X	N	N	N	N	N X	N	N	N		N X		N X	N	N		N X	N	*50 1 10 1
		_		_	_	_		_	_		_	_		_			_		_		-	_		_		

 TABLE A4. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE RATS: UNTREATED

 CONTROL (Continued)

* Animals Necropsied

ANIMAL NUMBER	0	000	003	004	005	000	007	008	009	0	0	012	013	0	0 11 5	0	0 1 7	0 1 8	0 1 9	0 2 0	0 2 1	022	ONN	SN4	0 2 5
weeks on Study	105	105	99	105	1 0 5	1 0 5	1 0 5	105	104	105	105	1 0 1	094	1 0 5	105	0 8 2	0 9 1	106	106	1 0 5	106	106	100	106	1 0 5
INTEGUMENTARY SYSTEM Subcutaneous tissue Sarcoma, NOS Fibrona Fibrona Fibrona	+	+ X	. +	+	+ X	+	+	+ x	+	+	+	+ X X	+ X	+ X	. +	+	+	+ X	+ X	+	+ X	+	*	+	+
RESPIRATORY SYSTEM Lungs and bronchi Alveolar/bronchiolar adenoma Pheochromocytoma, metastatic Carcinosarcoma, metastatic Ostossarcoma, metastatic Traches	+	* *	+	+	+	+	+	+	+	+	+	+	+	+	*x +	+	+ x+	+	+	+	+	+	+	+	 + x +
HEMATOPOLETIC SYSTEM Bone marrow Spisen Lymph nodes Thymus		++++	++++	++++	++++	++++	++++	++++	++++	++++	+ + +	* + * =	* * * ~	+++ -	+++	++++	++++	+++*	++++	++++	++++	++++	+++ -	+++++	++++
CIRCULATORY SYSTEM Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
DIGESTIVE SYSTEM Salivary gland Liver Neoplastic nodule Pheochromocytoma, metastatic	‡	++	+	++	++	+++++++++++++++++++++++++++++++++++++++	++	+++	+++	++	++	++	++	++++	++	++	++	++	++	+ + *	+++	++	+++	‡	- + + x
Fine duct Gallbladder & common bile duct Pancreas Esophagua Stomach Small intestine Large intestine	+2++++	+2+++++	+ z + + + + + + +	+2+++++	+2+++++	+z++++	+2+++++	+z++++	+z++++	+2+++++	+2+++++	+2++++	+2+++++	+2+++++	+2+++++	+2+++++	+2+++++	+2+++++	+2+++++	+2+++++	+z++++	+2+++++	+2+++++	+z++++	1+2+++++
URINARY SYSTEM Kidney Tubular cell adenoma Urinary bladder Transitional cell carcinoma	+	++	++	++	++	++	++	+x +	++	+ +	++	+	+ + +	+	++	++	++	++	+++	+ +	++	++	+. +	++	- + + +
ENDOCRINE SYSTEM Pituitary Carcinoma, NOS Adenoma, NOS Adenoma, NOS	+	+	-	+ X	+	+	+ X	+	+	+ X	+ X	+ X	+ x	+	+ X	+	-	+ X	+	+ X	+ X	+ X	+ X	+	+
Cortical adenoma Cortical carcinoma Pheochromocytoma Pheochromocytoma, malignant Thyroid	+	+	+	+	+	+	+	•	τ +	+	+.	+	+	•	+	+	•	+	+	+	•	+	+	+	X +
Follicular cell carcinoma C-cell adenoma C-cell carcinoma Parathyroid	-	-	-	-	-	-	-	x -	-		-	+	-	+	-	-	-	-	-	-	X	-	+	+	+
REPRODUCTIVE SYSTEM Mammary gland Admona, NOS	+	+x;	*	+	+	+	+	+	+	+	N	+	+	+	N	N	+	+	+	N	+	+	N	+	N
Adenocarcinema, NOS Fibroaderoma Proputal/clitoral gland Carcinoma, NOS Uterus	N +	AXN +	X N +	XN +	XN +	XN +	N +	X N +	XN N+	X N +	N +	XN +	X N +	X N +	N +	N +	N +	X N +	X N +	א +	XN +	X N +	N +	XN +	N +
Carcinoma, NOS Endometriai stromai polyp Endometriai stromai sarcoma Carcinosarcoma Ovary	x	x +	x +	+	+	+	X X +	+	+	+	x +	x +	+	X +	+	+	+	+	x +	+	x +	+	x +	XX X +	+
Granuiosa cell tumor NERVOUS SYSTEM Brain	.					_		بد			X								_			+	-	•	_

TABLE A4. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE RATS IN THE TWO-YEAR FEED STUDY OF C. I. BASIC RED 9 MONOHYDROCHLORIDE: LOW DOSE

 + : Tissue Examined Microscopically

 - : Required Tissue Not Examined Microscopically

 X : Tumor Incidence

 N : Necropsy, No Autolysis, No Microscopic Examination

 S : Animal Missezed

No Tissue Information Submitted
 C : Necropsy, No Histology Due To Protocol
 A : Autolysis
 M : Animal Missing
 B : No Necropsy Performed

TABLE A4.	INDIVIDUAL ANIMAL	TUMOR PATHOLOGY	OF	FEMALE RATS:	LOW	DOSE
		(Continued)				

ANIMAL NUMBER	020	0217	0 14 8	0209	080	0 3 1	032	033	034	0 3 5	036	037	038	0 8 0	040	041	042	043	242	940	240	240	048	049	050	TOTAL:
WEEKS ON STUDY	094 4	103	106	0	10	1 0 1	106	103	20	106	106	106	0 9 7	10	106	103	100	9	084	100	106	106	108	0	0	TUMORS
INTEGUMENTARY SYSTEM Succutaneous tissue Sarcoma, NOS Fibroma Fibrosarcoma	+	+ x	+	+	+	.+	+	+ X	+	+	+ X	. +	+	+	+ X	+	+ x x	+	+	+	+	+	+ X	+ x	+	*50 2 15 2
RESPIRATORY SYSTEM Lungs and broachi Alveolaritoronchiolar adenoma Pheochromecytoma, metastatic Carcinosarcoma, metastatic Osteosarcoma, metastatic Trachea	+	+	+	+	+	+	++	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+ x +	+	+	++	50 · 2 1 1 50
HEMATOPOIETIC SYSTEM Bone marrow Spleen Lymph nodes Thymus	+++-	++++	++++	++++	++++	++ -+	++++	++++	+++-	++++	++++	++++	+++	++++	++++	++++	+++-	+++++	++++	++++	++++	+ - + +	++++	++++	++++	50 49 49 42
CIRCULATORY SYSTEM Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
DIGESTIVE SYSTEM Selivery gland Liver Neoplastic nodule Pheochromocytome, metastatic	++	++	+ + x	+++	+++	+++	+++	++x	+++	+++	÷ x	+++	++	+	+++	+++	++	+	+++	+++	+++	+++	++	+++	++	50 50 4
Bile duct Gallbladder & common bile duct Pancreas Esophagus Stomach Small intestine Large intestine	+2+++++	+2+++++	+2+++++	+2+++++	+2+++++	+2+++++	+2+++++	+2+++++	+2+++++	+2+++++	+z++++	+2+++++	+2+++++	+2 i++++	+z++++	+2 +++++	+2+++++	+2+++++	+2+++++	+2+++++	+2+++++	+2 ++++ 1	+2+++++	+2+++++	+2+++++	50 *50 47 50 49 50 48
URINARY SYSTEM Kidney	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Tubular cell adenoma Urinary bladder Transitional cell carcinoma	*	+	+	+	+	+	+	+	+	+	+	+	+	+	+	÷	+	+	+	+	+	+	+	÷	+	50 1
ENDOCRINE SYSTEM Pituitary Carcinoma, NOS Adenoma, NOS Adrenai Cortical adenoma Cortical carcinoma	+	+ X +	+ x + x	+	+	+	+ x +	+	+	+ + X	+	+	+	+	+ x +	+ x +	+ x ;	+	+ x +	+ X +	* *	+	* * +	+	+ +	48 2 20 50 1
Pheochromocytoma Pheochromocytoma, malignant Thyroid Follicular cell carcinoma C-cell adenoma	+	+	+	X +	+	X +	+	+	+	+	+.	+	+ X	+ X	+	+	*	+	+	+	+	-	+	+ x	-	1 2 48 2 3 2
C-cell carcinoma Parathyroid	-	-	-	-	-		-	-	-	X -	+	-	-	+	+ ··	+	-	÷	-	+	+	-	-	-	+	13 ·
REPRODUCTIVE SYSTEM Mammary giand Adenoma, NOS	+	N	+	+	+	+	+	N	N	+	*	+	N	+	+	+	+	N	+	+	+	+	+	+	+	*50 3 2
Adenocarcinoma, NOS Fibroadenoma Preputia/citoral giand Carcinoma, NOS Uterus Carcinoma, NOS Endometrial stromal polyp	X N . +	N +	X N +	XN +XX	XN +	XNX+	+	N + X	N +	ท +	+	X N + X	N +	N +	X N +	X N :	N- +	N +	X N +	X N +	+	N + X	+	X N +	XN +	31 •50 1
Endometrial stromal sarcoma Carcinosercoma Ovary Granulosa cell tumor	X +	+	+	+	+	÷	+	+	+	+	+	÷	+	x +	+	+	+	+	÷	+		<u>x</u>	÷	+	+	50 2 14 5 1 49 2
NERVOUS SYSTEM Brain	+	+	+	+	+	÷	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49

*Animals Necropsied

TABLE A4. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE RATS IN THE
TWO-YEAR FEED STUDY OF C. L BASIC RED 9 MONOHYDROCHLORIDE:
LOW DOSE (Continued)

ANIMAL NUMBER	0	002	800	004	005	006	007	008	000	010	0	012	013	014	015	0	0 1 7	010	019	040	0 2 1	022	DNB	024	025
WEEKS ON STUDY	105	105	000	105	105	105	105	1 0 5	104	105	05	1 0 1	084	105	105	0 80 24	0 9 1	100	106	105	10	106	100	106	1 0 5
SPECIAL SENSE ORGANS Zymbal gland Carcinoma, NOS	N	N	Ń	N	N	N	N	N	N	N	N	N	ż	N	N	*	N	N	N	N	N	N	N	N	И
BODY CAVITIES Measurary Fibroma	N	N	N	N	N	N X	N	Ň	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
ALL OTHER SYSTEMS Multiple organs, NOS Pibrous histicoytoms, malignant Carcinosercoms, invasive Malignant (ymphoma, NOS Leukemia, mononuclear cell Diaphragm, NOS Carcinosercoms, metastatic	N	N	N	N	N	N	N X	N	N	N X	N	N	N	N	N	N	N	N	N	N	N	N	N	N	м
Leg, NOS Osteosarcoma																	x								

 + : Tissue Examined Microscopically

 - : Required Tissue Not Examined Microscopically

 X : Tumor Incidence

 N : Necroper, No Autolysis, No Microscopic Examination

 S : Animal Missered

TABLE A4.	INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE RA	rs: low dose
	(Continued)	

ANIMAL NUMBER	040	021	048	0 2 2	080	0 3 1	032	088	034	989	036	240	000	043	040	041	042	043	044	0 4 5	040	041	048	040	050	TOTAL:
weeks on Study	004	103	100	108	100	1 0 1	106	103	10	106	106	100	997	106	10	103	100	0.60	0.4	100	100	106	100	106	0	TISSUES
CIAL SENSE ORGA Zymbal gland Carcinoma, NOS	N	N	N	N	N.	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	*50 2
BODY CAVITIES Memotery Fibroms	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	*50
ALL OTHER SYSTEMS Multiple organs, NOS Fibrons histicrytoma, malignant Carcinosercoma, invesive Malignant lymphoma, NOS Leukemia, mononuclear cell Diaphragm, NOS Carcinosercoma, metastatic	N	N	N	N	N	N	N	N	N X	X		N X		N	N	N	N		N X		N X	N X X	N	N X	N	*50 1 1 1 1 1 1
Leg, NOS Osteosarcoma																									_	1

* Animals Necropsied

ANIMAL NUMBER	0 0 1	0	g	000	000	8	0	008	600	0	01	2	1	0	9	0	0	0	0	02	02	0	02	02	02
	L i	2	3	4	5	6	0 7	8	9	Ö	ī	2	3	4	5	ei ei	7	8	9	0	ī	2	3	4	5
weeks on Study	0 8 3	104	104	104	104	098	6 3	083	104	083	102	0 8 7	1 0 5	0	03	0 3 N	105	104	1 0 5	087	000	0 8 7	0 6 6	000	1 0 5
INTEGUMENTARY SYSTEM	+	+	÷	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	-
Squamous cell carcinoma Basal cell carcinoma Subcutaneous tissue	+	+	+	+	+	+	+	+	+	+	+	+	+	+	±	+	+	+	+	+	+	+	+	+	+
Sarcoma, NOS Fibroma Carcinesercoma				X		x		X			X		X		¥						X				
RESPIRATORY SYSTEM Lungs and bronchi Adenocarcinoms, NOS, metastatic	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Sarcoma, NOS, metastatic Trachea	+	+	÷	+	+	+	+	÷	+	+	+	+	+	+	* *	+	+	÷	+	+	+	+	+	+	+
HEMATOPOIETIC SYSTEM Bone marrow Spleen	‡	++	++	++	+ +	+++	+ +	++	+++	+++	+++	++	+	+++	++;	+++	+++	+++	+++	++	÷	+	+	+	+
Lipoma Lymph nodes Thymus	Å	+ +	+ +	+ +	++	++	+ +	+	++	+ +	+ +	-	++	+ +	A + +	+ +	+ +	+	+ +	+ +	+++	++	+ +	+ +	+
CIRCULATORY SYSTEM Heart	+	+	+	+	+	+	÷	+	+	÷	+	+	+	+	+	+	+	+	+	÷	+	+	+	+	-
DIGESTIVE SYSTEM Selivary gland Liver	+	++	++	++	+	++	++	+	+	++	++	Ŧ	+++	++	++	++	++	++	+++	++	++	++	++	++	+
Neopiastic nodule Hepatocellular carcinoma Endometrial stromal sarcoma, metasta																x x									
Bile duct Gallbledder & common bile duct Pancreas	N A	+N +	+ N +	+N+	+ N +	+ N +	+ N +	+ N +	+ N +	+ N +	+ N +	+ N +	+ N +	+ N +	+ N +	+ N +	+ N +	+ 2 +	* *	++++	+N+	+ N +	+ x +	+ N +	N + +
Esophagus Stomach	+++	Ŧ	Ŧ	++	++	+ +	+	‡	+++	+++	+	++	++	+ +	+++	+	++	+++	++	+	++	‡	+++	‡	+
Small intestine Adenocarcinoma, NOS Large intestine	A	++	++	+++	+ +	+ +	++	+ +	**	+ +	+ +	++	+ +	+ +	+ +	++	+ +	+ +	++	++	++	++	++	+ +	+++++
URINARY SYSTEM Kidney Urinary bladder	t.	+ +	+ +	++	++	++	++	++++	+++	+++	+++	+ +	+++	++	+++	++	++++	+++	++++	++	++	+++	+++	+++	+
ENDOCRINE SYSTEM Pituitary Carcinoma, NOS	+	+	+	·+	+	+	÷	+	+	÷	÷	+	÷	+	+	+	÷	*	÷	+	+	+	+	+	+
Adenoma, NOS Adrenal Cortical adenoma	•	+	X +	+	+	¥ +	+	+	÷	¥ +	¥ +	+	¥ +	+ x	+	+	+	+	X +	¥ +	+	÷	¥ +	+	X + X
Pheochromocytoma Thyroid Foilicular ceil adenoma Foilicular ceil carrinoma C-ceil adenoma	+	+	+	+	+	+	+	+	+	+	*	÷	+	+	+	+	+	+	+ x	+	+	+	+	+	+
C-cell carcinoma Parathyroid		-	-	-	-	-	-	÷	-	÷	-	÷	X -	-	-	-	-	-	-	-	-	-	-	-	-
REPRODUCTIVE SYSTEM Mammary giand Adenoma, NOS	N	+	N	+	+	*	N	+	+	N	÷	+	+	N	÷	+	+	+	+	+	+	N	+	+	+
Adenocarcinoma, NOS Fibroadenoma Preputia/clitoral gland Carcinoma, NOS	N	X N	N	X N	X N	N	N X	N	X N	N	X N	X N	X N	N	N	X N	X N	Â N	X N	X N	X N	N	X N	X N	X N
Adenoma, NOS Uterus Carcinoma, NOS	A	+	+	+	+	+	+	+	+	+	+	+	+	*	+	+	+	÷	* *	+	+	+	÷	+	+
Adenocarcinoma, NOS Endometriai stromal polyp Endometriai stromal sarcoma		X	X		X	X			X					X		X				x					x
Fibroadenoma Ovary	A	+	+	+	+	+	-	+	+	+	+	-	+	+	+	+	+	+	+	+	+	+	+	+	+
NERVOUSSYSTEM Brain Astrocytoma	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	ż	+	+
	L			_				_	_	_										-					_

TABLE A4. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE RATS IN THE TWO-YEAR FEED STUDY OF C. I. BASIC RED 9 MONOHYDROCHLORIDE: HIGH DOSE

 + : Tissue Examined Microscopically

 - : Required Tissue Not Examined Microscopically

 X : Tumor Incidence

 N : Necropsy, No Autolysis, No Microscopic Examination

 S : Animal Missexed

: No Tissue information Submitted C : Necropsy, No Histology Due To Protocol A : Autolynis M : Animal Missing B : No Necropsy Performed

.

TABLE A4.	INDIVIDUAL ANIMAL	TUMOR PATHOLOGY	OF	FEMALE RAT	S: HIGH	DOSE
		(Continued)				

ANIMAL NUMBER	0 2 6	0 2 7	028	029	030	0 3 1	032	0 3 3	0 3 4	035	0 3 6	0 3 7	0 3 8	0 3 9	040	0 4 1	0 4 2	0 4 3	044	0 4 5	04	0 4 7	048	049	0 5 0	
WEEKS ON STUDY	0 9 4	0 3 0	0 7 8	1 0 5	0 7 0	0 8 9	0 9 8	1 0 5	094	0 9 3	0 8 7	0 6 0	0 9 3	0 9 7	0 6 3	0 9 5	0 6 9	1 0 5	1 0 5	0 9 5	0 6 7	0 8 5	0 99	1 0 1	1 0 1	TOTAL: TISSUES TUMORS
INTEGUMENTARY SYSTEM		+					+	 	NT.				Ŀ											+		+50
Squamous cell carcinoma	–	T	Ť	T	Ξ.	. –	T	Ŧ	14	T	ž	T	T	Ŧ	-	Ť	Ť	T	Ŧ	Ŧ	Ť	T	T		Ŧ	1
Basal cell carcinoma Subcutaneous tissue	+	+	÷	+	+	+	+	+	N	+	+	+	+	+	+	+	+	÷	+	+	+	+	+	¥	+	+50
Sarcoma, NOS Fibroma							x				x					x		х						X		10
Carcinosarcoma																••	X									ī
RESPIRATORY SYSTEM	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Adenocarcinoma, NOS, metastatic Sarcoma, NOS, metastatic																						X				
Trachea	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
HEMATOPOIETIC SYSTEM																									_	
Bone marrow Spleen	‡	+++++++++++++++++++++++++++++++++++++++	++	++	++	+++++++++++++++++++++++++++++++++++++++	++	++	+++	++	++	+	+++	+	+	+++	+++	++	+++	++	+	+	++	++	++	49 50
Lipoma Lymph nodes		1	+	+		+	+	+		1	1	1		1	+	1	+	+	+	1	+	+	+	1	+	49
Thymus	÷	÷	-	÷	-	-	÷	÷	-	-	÷	÷	-	÷	-	-	-	÷	÷	-	-	÷	-	÷	÷	33
CIRCULATORY SYSTEM Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
DIGESTIVE SYSTEM																									_	
Salivary gland Liver	+	++	++	+++	+++	+++	++	+++	+++	++	+++	++	+++	+++	+++	++	++	+	+	+++++++++++++++++++++++++++++++++++++++	+++	+	+	+++	++	49 50
Neoplastic nodule						X													x			X				3
Hepatocellular carcinoma Endometrial stromal sarcoma, metasta																			•			•				1
Bile duct Gallbladder & common bile duct		+ N	+ N	, N	++	+ N	+ N	+ N	+ N	* N	+ N	+ N	+ N	+ N	, N	+ N	++	+ N	+ N	+ N	+ N	+ N	* N	+ N	+ N	50 *50
Pancreas	+	+	÷	÷	+	+	+	+	+	+	÷	+	÷	+	÷	+	+	+	+	+	+	+	+	٠	+	49 47
Esophagus Stomach	++	+++	+	++	+++	Ŧ	+++	+++	++	+++	+++	++	++	++	++	++	++	++	++	++	+ +	+	++	+++	+++	50
Small intestine Adenocarcinoma, NOS	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49 1
Large intestine	+	+	+	+	+	+	÷	+	+	+	+	+	+	+	+	÷	+	+	+	+	+	+	+	+	+	49
URINARY SYSTEM			_																							
Kidney Urinary bladder	+	++	+	++	++	++	++	+++	+	+++	++	++	+ +	+++	+++	++	+++	++	++	‡	++	++	++	+++	+++	50 49
ENDOCRINE SYSTEM					-																					
Pituitary	+	÷	+	+	+	+	+	+	+	+	+	-	+	+	+	+	÷	+	+	+	+	+	+	+	+	49 1
Carcinoma, NOS Adenoma, NOS						X	X						X	X					x			X	X	X	x	21
Adrenai Cortical adenoma	+	+	+	+	÷	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Pheochromocytoma											X															1
Thyroid Follicular cell adenoma	+	+	+	+	*	+	+	+	x	۳	+	+	+	*	+	*	+	x	+	T	+	+	-	x.	•	50 4
Follicular cell carcinoma C-cell adenoma														x						X						2
C-cell carcinoma																										1 9
Parathyroid		-	-	-	-	-	<u> </u>	-	-	-	_	-	-	-	-	<u> </u>	-	-		_	-	-	_	-	_	
REPRODUCTIVE SYSTEM Mammary gland	N	N	+	+	N	+	+	+	+	+	N	+	+	N	N	+	+	+	+	+	N	+	+	+	+	*50
Adenoma, NOS Adenocarcinoma, NOS						v													v			v		v		15
Fibroadenoma			X	X			x	X	X	X			X N			X		X	â	X		<u>.</u>		Â.	X	29
Preputial/clitoral gland Carcinoma, NOS	N	N	N	N	N	N	N	N	N	N	N	X	N	N	N	N	N	N	N	N	N	N	N	N	N	*50 2
Adenoma, NOS	L 1		4	Ŧ	+		4	*	+	+		÷			-			Ť	1	+	+	-	4	ž	_	3 49
Carcinoma, NOS	- T	-	Ŧ	-	7	٣	*	7	7	7	7	*	7	7	7	7	7	7	7	٣	*	7	٣	٣	-	1
Adenocarcinoma, NOS Endometrial stromal polyp						x						x					x									2 10
Endometrial stromal sarcoma	x				X	••												X		X				X	•	6
Fibroadenoma Ovary	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	÷	+	+	+	÷	+	X -	1 47
-																				_		_	_		-	
MalaWald(SiSY/Shirt)/																										1
NERVOUS SYSTEM Brain Astrocytoma	+	+	+	+	÷	+	÷	÷	+	+	+	+	+	+	+	÷	+	+	+	+	+	+	+	+	+	50 1

*Animals, Necropsied

TABLE A4. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE RATS IN THE TWO-YEAR FEED STUDY OF C. L BASIC RED 9 MONOHYDROCHLORIDE: HIGH DOSE (Continued)

ANIMAL NUMBER	0 0 1	000	003	004	005	900	007	008	009	010	0	012	13	0	015	010	0 1 7	0	019	020	221	DNN	ONS	024	025
WEEKS ON STUDY	083	104	104	104	104	000	000	083	104	083	102	087	105	1 0 1	103	OGN	105	104	105	087	0.00	087	000	000	1 0 5
SPECIAL SENSE ORGANS Zymbai giand Carcinoma, NOS	N	N	·N	N	N	N	N	N	N	N	N	ż	N	ż	N	N	N	N	N	N	Ň	ż	N	N	N
BODY CAVITIES Peritoneune Endometrial stromai seroome, invasive	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	NX	N	N	N	N	N	N	N	N	N
ALL OTHER SYSTEMS Multiple organa, NOS Sarcoma, NOS, use prim or metastatie Malig. lymphoma, histocytic type Leutemia, mononuciear cell	N	N	N	N	Ņ	N	N X	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N

- + : Tissue Examined Microscopically : Required Tissue Not Examined Microscopically X : Tumer Incidence N : Necropsy, No Autolysis, No Microscopic Examination S : Animal Missezed

- Ne Tinue Information Submitted
 C: Necropsy, Ne Histology Due To Protocol
 A: Autolysis
 M: Animal Missing
 B: No Necropsy Performed

TABLE A4. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE RATS: HIGH DOSE (Continued)

ANIMAL NUMBER	0 N G	027	028	020	080	0 3 1	0 3 2	033	034	0 7 7 0	036	037	038	000	040	04	042	043	044	045	046	047	048	049	0 5 0	TOTAL
Weekson Study	094	030	078	1010	070	8	098	105	094	093	0 8 7	080	093	0 9 7	003	09.6	000	105	105	095	067	085	999	101	101	TISSUES
SPECIAL SENSE ORGANS Zymbel gland Carcinoma, NOS	N	N	*	N	N	N	N	N	N	N	N	N	N	N	*	N	N	N	‡	N	N	N	ż	N	N	*50 7
BODY CAVITIES Peritoneum Endometrial stromal sarcoma, invasive	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	*50 2
ALL OTHER SYSTEMS Multiple organs, NOS Sercoma, NOS, use prim or metastatic Malig. lymphoma, histiocytic type Leukemia, mononuclear cell	N X	N	N	N X	N	N X	N	N	N	N	N	N X		N	N	N X	N	N X	N	N	N	N	N	N	N	*50 1 1 6

*Animals Necropsied

C.I. Basic Red 9 Monohydrochloride, NTP TR 285

APPENDIX B

SUMMARY OF THE INCIDENCE OF NEOPLASMS IN MICE IN THE TWO-YEAR FEED STUDIES OF C. I. BASIC RED 9 MONOHYDROCHLORIDE

TABLE B1.	SUMMARY OF THE INCIDENCE OF NEOPLASMS IN MALE MICE IN THE TWO-YEAR
	FEED STUDY OF C.I. BASIC RED 9 MONOHYDROCHLORIDE

С	ONTR	OL (UNTR)	LOW	DOSE	HIGH DOSE			
ANIMALS INITIALLY IN STUDY	50	······································	50		50			
ANIMALS NECROPSIED	50		50		50			
ANIMALS EXAMINED HISTOPATHOLOGICALLY	50		50		50			
NTEGUMENTARY SYSTEM								
*SKIN	(50)		(50)		(50)			
SQUAMOUS CELL CARCINOMA					1	(2%)		
RESPIRATORY SYSTEM								
#LUNG/BRONCHUS	(50)		(50)		(50)			
ADENOMATOUS POLYP, NOS		(2%)						
#LUNG	(50)		(50)	(10~)	(50)			
HEPATOCELLULAR CARCINOMA, METAST		(1.10)		(10%)		(24%)		
ALVEOLAR/BRONCHIOLAR ADENOMA		(14%)		(6%)		(12%)		
ALVEOLAR/BRONCHIOLAR CARCINOMA	4	(8%)	4	(8%)	2	(4%)		
HEMATOPOIETIC SYSTEM								
*MULTIPLE ORGANS	(50)		(50)		(50)			
MALIG. LYMPHOMA, UNDIFFER-TYPE	-	(2%)						
MALIG. LYMPHOMA, LYMPHOCYTIC TYPE		(6%)		(2%)		(8%)		
MALIG. LYMPHOMA, HISTIOCYTIC TYPE	2	(4%)		(10%)	-	(6%)		
MALIGNANT LYMPHOMA, MIXED TYPE				(2%)	-	(6%)		
#BONE MARROW	(49)		(47)		(47)	(99)		
MAST-CELL TUMOR	(40)		(50)			(2%)		
#SPLEEN MALIG. LYMPHOMA, UNDIFFER-TYPE	(49)	(2%)	(50)		(50)			
MALIGI, LI MFHOMA, CNDIFFERTIFE MALIGNANT LYMPHOMA, MIXED TYPE	1	(270)	1	(2%)				
#LYMPH NODE	(48)		(45)	(470)	(47)			
SARCOMA, NOS, METASTATIC	(40)		(40)			(2%)		
MALIGNANT LYMPHOMA, MIXED TYPE			1	(2%)	1	(270)		
#MESENTERIC L. NODE	(48)		(45)	(270)	(47)			
#MESENTERIC L. NODE MALIGNANT LYMPHOMA, MIXED TYPE	(40)		(40)			(2%)		
						(270)		
CIRCULATORY SYSTEM	(40)		(50)		(50)			
#SPLEEN HEMANGIOMA	(49)		(50)	(2%)	(50)			
ANGIOSARCOMA	1	(2%)		(2%)				
#LIVER	(50)	(270)	(50)	(2,0)	(50)			
ANGIOSARCOMA		(2%)	(00)		(00)			
DIGESTIVE SYSTEM								
#LIVER	(50)		(50)		(50)			
HEPATOCELLULAR ADENOMA		(44%)		(42%)		(34%)		
HEPATOCELLULAR CARCINOMA		(20%)		(40%)		(54%)		
SARCOMA, NOS, METASTATIC						(2%)		
MIXED MESENCHYMAL TUMOR, MALIG			1	(2%)				
#STOMACH	(50)		(50)		(50)			
SQUAMOUS CELL PAPILLOMA				(2%)				
#DUODENUM	(50)		(48)		(47)			
ADENOCARCINOMA, NOS				(2%)		(4%)		
#COLON	(49)	_	(47)		(47)			
CARCINOID TUMOR, NOS	1	(2%)						

	CONTROL (UNTR)	LOW DOSE	HIGH DOSE
URINARY SYSTEM			<u> </u>
#KIDNEY	(50)	(50)	(50)
HEPATOCELLULAR CARCINOMA, M	IETAST		1 (2%)
ENDOCRINE SYSTEM	**************************************		
#PITUITARY	(46)	(47)	(48)
ADENOMA, NOS	1 (2%)	2 (4%)	2 (4%)
#ADRENAL	(50)	(50)	(50)
CORTICAL ADENOMA	1 (2%)		1 (2%)
PHEOCHROMOCYTOMA		2 (4%)	2 (4%)
#ADRENAL/CAPSULE	(50)	(50)	(50)
ADENOMA, NOS	2 (4%)		
#THYROID	(50)	(48)	(49)
FOLLICULAR-CELL ADENOMA	1 (2%)	1 (2%)	3 (6%)
REPRODUCTIVE SYSTEM			
#TESTIS	(49)	(48)	(49)
SERTOLI-CELL TUMOR	1 (2%)		
INTERSTITIAL-CELL TUMOR	1 (2%)	1 (2%)	1 (2%)
NERVOUS SYSTEM NONE			
SPECIAL SENSE ORGANS	<u>, , , , , , , , , , , , , , , , , , , </u>		
*HARDERIAN GLAND	(50)	(50)	(50)
ADENOMA, NOS	3 (6%)	5 (10%)	3 (6%)
CYSTADENOMA, NOS	1 (2%)	1 (2%)	1 (2%)
*ZYMBAL GLAND	(50)	(50)	(50)
CARCINOMA, NOS	1 (2%)		
MUSCULOSKELETAL SYSTEM NONE			
BODY CAVITIES			
*ABDOMINAL CAVITY	(50)	(50)	(50)
SARCOMA, NOS			1 (2%)
ALL OTHER SYSTEMS NONE			
ANIMAL DISPOSITION SUMMARY			
ANIMALS INITIALLY IN STUDY	50	50	50
NATURAL DEATH	6	13	7
MORIBUND SACRIFICE	2	6	8
SCHEDULED SACRIFICE			
TERMINAL SACRIFICE	42	31	35
DOSING ACCIDENT			
ACCIDENTALLY KILLED, NDA			
ACCIDENTALLY KILLED, NOS ANIMAL MISSING			
ANIMAL MISSING ANIMAL MISSEXED			
OTHER CASES			
C THEN ONOLD			

TABLE B1. SUMMARY OF THE INCIDENCE OF NEOPLASMS IN MALE MICE IN THE TWO-YEAR FEED STUDY OF C. I. BASIC RED 9 MONOHYDROCHLORIDE (Continued)

5

TABLE B1. SUMMARY OF THE INCIDENCE OF NEOPLASMS IN MALE MICE IN THE TWO-YEAR FEED STUDY OF C.I. BASIC RED 9 MONOHYDROCHLORIDE (Continued)

CO	ONTROL (UNTR)	LOW DOSE	HIGH DOSE
TUMOR SUMMARY			
TOTAL ANIMALS WITH PRIMARY TUMORS**	44	43	46
TOTAL PRIMARY TUMORS	66	74	81
TOTAL ANIMALS WITH BENIGN TUMORS	32	30	27
TOTAL BENIGN TUMORS	41	38	36
TOTAL ANIMALS WITH MALIGNANT TUMORS	22	32	37
TOTAL MALIGNANT TUMORS	24	36	44
TOTAL ANIMALS WITH SECONDARY TUMORS	##	5	12
TOTAL SECONDARY TUMORS		5	15
TOTAL ANIMALS WITH TUMORS UNCERTAIN-	•		
BENIGN OR MALIGNANT	1		1
TOTAL UNCERTAIN TUMORS	1		1
TOTAL ANIMALS WITH TUMORS UNCERTAIN-	-		
PRIMARY OR METASTATIC			
TOTAL UNCERTAIN TUMORS			

* NUMBER OF ANIMALS NECROPSIED ** PRIMARY TUMORS: ALL TUMORS EXCEPT SECONDARY TUMORS # NUMBER OF ANIMALS WITH TISSUE EXAMINED MICROSCOPICALLY ## SECONDARY TUMORS: METASTATIC TUMORS OR TUMORS INVASIVE INTO AN ADJACENT ORGAN

TABLE B2. SUMMARY OF THE INCIDENCE OF NEOPLASMS IN FEMALE MICE IN THE TWO-YEARFEED STUDY OF C. I. BASIC RED 9 MONOHYDROCHLORIDE

		OL (UNTR)	LOW	DOSE	HIGH DOSE		
ANIMALS INITIALLY IN STUDY	50		50	···· ··· ··· ···	50		
ANIMALS NECROPSIED	50		50		50		
ANIMALS EXAMINED HISTOPATHOLOGICALI	LY 50		50		50		
NTEGUMENTARY SYSTEM				<u></u>			
*SKIN	(50)		(50)		(50)		
BASAL-CELL CARCINOMA			1	(2%)	1	(2%)	
*SUBCUT TISSUE	(50)		(50)		(50)		
SARCOMA, NOS FIBROMA	3	(6%)		(4%) (2%)			
RESPIRATORY SYSTEM							
#LUNG	(50)		(49)		(47)		
CARCINOMA, NOS, METASTATIC		(4%)			-		
BASAL-CELL CARCINOMA, METASTATIC			-	(0.21)	1	(2%)	
ADENOCARCINOMA, NOS, METASTATIC				(2%)		(000	
HEPATOCELLULAR CARCINOMA, META	S T		-	(6%)		(28%)	
ALVEOLAR/BRONCHIOLAR ADENOMA			2	(4%)	-	(9%) (9%)	
ALVEOLAR/BRONCHIOLAR CARCINOM	4			(90)		(2%)	
SARCOMA, NOS, METASTATIC				(2%)	1 	(2%)	
HEMATOPOIETIC SYSTEM			(FA)				
*MULTIPLE ORGANS MALIGNANT LYMPHOMA, NOS	(50)	(12%)	(50)	(28%)	(50)	(22%)	
MALIGNANT LIMPHOMA, NOS MALIG. LYMPHOMA, UNDIFFER-TYPE		(12%)		(26%)		(22%)	
MALIG. LYMPHOMA, UNDIFFER-TIFE MALIG. LYMPHOMA, LYMPHOCYTIC TY		(1270)		(10%)		(2%)	
MALIG. LYMPHOMA, HISTIOCYTIC TYPE		(2%)		(6%)		(16%)	
MALIGNANT LYMPHOMA, MIXED TYPE		(4%)	•		•		
#SPLEEN	(49)		(47)		(46)		
MALIGNANT LYMPHOMA, NOS			1	(2%)	1	(2%)	
#LYMPH NODE	(46)		(46)		(40)		
HEPATOCELLULAR CARCINOMA, META	ST				1	(3%)	
SARCOMA, NOS, METASTATIC		(2%)					
MALIGNANT LYMPHOMA, MIXED TYPE						(3%)	
#LIVER	(49)		(50)		(49)		
MALIGNANT LYMPHOMA, NOS		(2%)	(00)			(2%)	
#PEYER'S PATCH	(46)	(96)	(38)		(43)		
MALIGNANT LYMPHOMA, NOS #KIDNEY	(50)	(2%)	(50)		(48)		
MALIGNANT LYMPHOMA, NOS	(00)		(00)			(2%)	
CIRCULATORY SYSTEM			<u></u>	<u> </u>			
#SPLEEN	(49)		(47)		(46)		
HEMANGIOMA		(2%)	1	(2%)			
ANGIOSARCOMA		(4%)					
#LYMPH NODE	(46)		(46)		(40)		
HEMANGIOMA					1	(3%)	
DIGESTIVE SYSTEM							
#LIVER NEOPLASM, NOS	(49)		(50)	(90)	(49)		
				(2%)			
	9	(196)	19	136961	A	(14 4 5 1	
HEPATOCELLULAR ADENOMA HEPATOCELLULAR CARCINOMA		(4%) (6%)		(36%) (38%)		(8%) (76%)	

C.I. Basic Red 9 Monohydrochloride, NTP TR 285

	CONTR	OL (UNTR)	LOW	DOSE	HIG	h dose
DIGESTIVE SYSTEM (Continued)		·		,		
#PANCREATIC DUCT	(46)		(45)		(38)	
CARCINOMA, NOS	1	(2%)				
#STOMACH	(48)		(46)		(46)	
SQUAMOUS CELL CARCINOMA			1	(2%)		
SARCOMA, NOS, INVASIVE	1	(2%)				
#COLON	(45)		(40)		(37)	
LEIOMYOSARCOMA	1	(2%)				
URINARY SYSTEM NONE						
ENDOCRINE SYSTEM						
#PITUITARY	(38)		(36)		(29)	
ADENOMA, NOS		(26%)		(19%)		(7%)
#ADRENAL	(48)		(47)		(45)	
NEOPLASM, NOS	1	(2%)				
PHEOCHROMOCYTOMA	1	(2%)	7	(15%)	7	(16%)
PHEOCHROMOCYTOMA, MALIGNANT			1	(2%)	1	(2%)
#ADRENAL/CAPSULE	(48)		(47)		(45)	
ADENOMA, NOS			_	(4%)		
#THYROID	(45)		(41)		(35)	
FOLLICULAR-CELL ADENOMA			-		2	(6%)
FOLLICULAR-CELL CARCINOMA			2	(5%)		
REPRODUCTIVE SYSTE M		-				
*MAMMARY GLAND	(50)		(50)		(50)	
ADENOCARCINOMA, NOS				(2%)		(2%)
#UTERUS	(50)		(50)	,	(43)	•
ADENOCARCINOMA, NOS	,		(1-1)			(2%)
SARCOMA, NOS			1	(2%)	2	(5%)
FIBROMA						(2%)
ENDOMETRIAL STROMAL POLYP			1	(2%)		
ENDOMETRIAL STROMAL SARCOMA	1	(2%)				
#OVARY	(48)		(46)		(41)	
PAPILLARY CYSTADENOMA, NOS	1	(2%)				
GRANULOSA-CELL TUMOR				(2%)		
TUBULAR ADENOMA			1	(2%)		
SARCOMA, NOS, INVASIVE	1	(2%)				
TERATOMA, NOS					1	(2%)
NERVOUS SYSTEM NONE						<u></u>
SPECIAL SENSE ORGANS				<u></u>	. <u> </u>	
*HARDERIAN GLAND	(50)		(50)		(50)	
CARCINOMA, NOS		(2%)	(00)		(00)	
ADENOMA, NOS	1				3	(6%)
						(4%)

TABLE B2.SUMMARY OF THE INCIDENCE OF NEOPLASMS IN FEMALE MICE IN THE TWO-YEAR
FEED STUDY OF C. I. BASIC RED 9 MONOHYDROCHLORIDE (Continued)

TABLE B2. SUMMARY OF THE INCIDENCE OF NEOPLASMS IN FEMALE MICE IN THE TWO-YEAR FEED STUDY OF C. I. BASIC RED 9, MONOHYDRCCHLORIDE (Continued)

	CONTROL (UNTR)	LOW DOSE	HIGH DOSE
MUSCULOSKELETAL SYSTEM NONE		an a	
30DY CAVITIES NONE			
ALL OTHER SYSTEMS			
*MULTIPLE ORGANS	(50)	(50)	(50)
CARCINOMA, NOS, INVASIVE	1 (2%)		
SQUAMOUS CELL CARCINOMA, INVASIV SQUAMOUS CELL CARCINOMA, METAST	/ E	1 (2%) 1 (2%)	
ADENOCARCINOMA, NOS, METASTATIC	n	1 (270)	1 (2%)
			· · · · · · ·
NIMAL DISPOSITION SUMMARY	50	50	50
ANIMALS INITIALLY IN STUDY NATURAL DEATH@	50 19	50 29	50 37
MORIBUND SACRIFICE	19	9	7
SCHEDULED SACRIFICE		5	1
TERMINAL SACRIFICE	31	12	6
DOSING ACCIDENT			
ACCIDENTALLY KILLED, NDA			
ACCIDENTALLY KILLED, NOS			
ANIMAL MISSING			
ANIMAL MISSEXED			
OTHER CASES			
@ INCLUDES AUTOLYZED ANIMALS			
TUMOR SUMMARY			
TOTAL ANIMALS WITH PRIMARY TUMORS*	* 31	50	49
TOTAL PRIMARY TUMORS	45	94	96
TOTAL ANIMALS WITH BENIGN TUMORS	12	27	17
TOTAL BENIGN TUMORS	15	40	26
TOTAL ANIMALS WITH MALIGNANT TUMO		38	47
TOTAL MALIGNANT TUMORS	29	52	69
TOTAL ANIMALS WITH SECONDARY TUMO		6	15 17
TOTAL SECONDARY TUMORS TOTAL ANIMALS WITH TUMORS UNCERTA	6 IN	7	17
BENIGN OR MALIGNANT	1	2	1
TOTAL UNCERTAIN TUMORS	1	2	1
TOTAL ANIMALS WITH TUMORS UNCERTA	-	-	-
PRIMARY OR METASTATIC			
TOTAL UNCERTAIN TUMORS			

* NUMBER OF ANIMALS NECROPSIED ** PRIMARY TUMORS: ALL TUMORS EXCEPT SECONDARY TUMORS # NUMBER OF ANIMALS WITH TISSUE EXAMINED MICROSCOPICALLY ## SECONDARY TUMORS: METASTATIC TUMORS OR TUMORS INVASIVE INTO AN ADJACENT ORGAN

TABLE B3. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE MICE IN THE TWO-YEAR FEED STUDY OF C. I. BASIC RED 9 MONOHYDROCHLORIDE: UNTREATED CONTROL

ANIMAL NUMBER	5 0 1	502	503 3	504	505	506	5 0 7	508	5 0 9	5 1 0	5 1 1	5 1 2	5 1 3	5 1 4	5 1 5	5	5 1 7	5 1 8	5 1 9	520	5 2 1	5 2 2	5 N 3	5 2 4	5 2 5
WEEKSON Study	1 0 5	1 0 5	105	1 0 5	105	105	1 0 5	092	1 0 5	105	1 0 5	1 0 5	1 0 5	0 9 1	105	105	1 0 5	105	105	105	1 0 5	1 0 5	105	1 0 5	1 0 5
RESPIRATORY SYSTEM Lungs and bronchi Adenoematous polyp, NOS Alveelar/bronchiolar adenoma Alveelar/bronchiolar carcinoma Trachea	+	+ X	.+ X	+	+	+	+	+	+	+	+	+	+ x +	+	+ x +	+	+	+	+	+	+ X +	+	+	+ X +	+++++++++++++++++++++++++++++++++++++++
HEMATOPOIETIC SYSTEM Bone marrow Spieen Angiosarcoma	++	+++	+	++	++	+++	+++	++	++	++	++	++	++	++	++	+++	++	++	++	++	++	+++	 + +	+++	- + +
Malig. lymphoma, undiffer type Lymph nodes Thymus	+	+ +	++	+ -	++	+ +	+ +	+ -	+	++	++	+ -	+	+-	++	+ -	+~	+	++	+	++	+ +	+ +	+ +	+ +
CIRCULATORY SYSTEM Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
DIGESTIVE SYSTEM Salivary gland Liver Hepatocellular adenoma Hepatocellular carcinoma	+ * x	+ + * X	++	++++	+ * X	++++	+ + X X	++	+	+ * x	+ * X	+ * x	+ + x	++	+ + x	++	+++	+ + x	++ * X	+ + x x	+ + X	+++	+++	+ + x	++ *
Angiossroms Bile duct Geilblader & common bile duct Pancreas Esophagus	+++=	++++	+ 2 + +	++++	++++	++++	++++	++++	++++	++++	++++	++++	+ z + +	++++	++++	X+N++	++++	++++	++++	++++	++++	++++	++++	++++	+++++++++++++++++++++++++++++++++++++++
Stomach Small intestine Large intestine Carcinoid tumor, NOS	+ + +	+++	+++	+++	+++	+++	++++	+ + +	+++X	+++	+++	+++	++++	++++	++++	++++	+++	+++	+++	++++	+++	+++	+++	+++	+++++
URINARY SYSTEM Kidney Urinary bladder	+++	+++	+++	+++	+	+++	+++	++	+++	++	+	++	++	+++	+++	++	+++	++	+++	+++	++	+++	++	‡	+
ENDOCRINE SYSTEM Pituitary Adesoma, NOS Adresai	+	+	++	++++	+++	+++	+	+	+	-+	-+	+++	++	-+	+++	-+	+	++	+++	+++	+++	+++	++	+++	+
Adenoma, NOS Cortical adenoma Thyroid Follicular cell adenoma	+	+	х +	. +	+	+	+	+	*	÷	+	+	X +	+	+	+	+	+	+	+	+	+	+	÷	+
Parathyroid REPRODUCTIVE SYSTEM Mammary gland		- N	- N	+ N	+ N	+ N	- N	+ N	- N	+ N	* N	- N	N	+ 	+ N	- N	N	- N	+ N	+ N	+ 	+ N	+ 	- N	- N
Testis Sertoli cell tumor Interstitisi cell tumor Prostate	+	+	+	+	+	+	+	+	+	+	*	+	+	+	+	+	+	+	+	+	+	+	+	+	+
NERVOUS SYSTEM Brain	+	+	- +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	-+
SPECIAL SENSE ORGANS Harderian giand Adenoma, NOS	N	N	N X	N	N	N	N	N	N	N	N	N	N	N	N	N X	N	N	N	N	N	N	N X	N	N
Cystadenoma, NOS Zymbal gland Carcinoma, NOS	N	N	N	N	N	N	N	*	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
ALL OTHER SYSTEMS Multiple organs, NOS Malig. lymphoma, undiffer type Malig. lymphoma, lymphocytic type Malig. lymphoma, histiocytic type	N	N	N	N X	N	N	N	N	N	N	N X	N	Ń	N	N	N	N	N	N	N	N	N	N	N	N

 + : Tissue Examined Microscopically

 - : Required Tissue Not Examined Microscopically

 X : Tumor Incidence

 N : Necropsy, No Autolysis, No Microscopic Examination

 S : Animal Missexed

- : No Tissue Information Submitted

 C : Necropsy, No Histology Due To Protocol

 A : Autolysis

 M : Animal Missing

 B : No Necropsy Performed

TABLE B3. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE MICE: UNTREATED CONTROL (Continued)

ANTMAL NUMBER	526	5 2 7	523	529	530	5 3	532	533	5 3	535	536	5 3 7	538	533	540	5	542	542	5	54	544	54	548	549	5 5 0	1
WEEKS ON STUDY	1 0 5	105	105	105	105	105	103	09	105	105	105	7	0 84	105	105	076	105	105	105	105	105	105	5 0 0 0 0	105		TOTAL: TISSUES TUMORS
RESPIRATORY SYSTEM Lungs and bronchi Adenomatous polyp, NOS Alveolar/bronchiolar adenoma Alveolar/bronchiolar carcinoma	+	+	+ x	+	+ X	+ X	+ x x	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+ x	50 1 7 4
RESPIRATORY SYSTEM Lungs and broachi Adenomatous polyp, NOS Alveolarbronchiolar adenoma Alveolarbronchiolar carcinoma Traches	+	+	+ x +	+	+ x +	+ X +	+ x x +	++	+	++	++	+	+	++	+	+	+	++	++	+	+	++	++	+	+ x+	50 1 7 4 50
HEMATOPOIETIC SYSTEM Bose marrow Spisen Angiosarcoma Malig. lymphoma, undiffer type Lymph nodes Thymus	+++++	++ x++	++ ++	++ ++	++	++ +1	++x +-	1+ +1	++ ++	++ + -	++++-	++ ++	++ ++	++ +1	++ ++	++ 1+	+++++	++ ++	+++++++++++++++++++++++++++++++++++++++	++ +1	++ + + + + + + + + + + + + + + + + + + +	++ ++	++ + + + + + + + + + + + + + + + + + + +	++ ++	++ +1	49 49 1 1 48 24
CIRCULATORY SYSTEM Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
DIGESTIVE SYSTEM Selivary gland Liver Hepatocellular adenoma Hepatocellular carcinoma Angiosarroma Bile duct Gelibladder & common bile duct Pancress Esophagus Stomach Stomach Small intestine Large intestine Carcinoid tumor, NOS	++x +++++++	++ X +++++++	++ ++++++	++x ++++++++	++X ++++++++	++ +++++++	++x +z+++++	++ ++++++++++++++++++++++++++++++++++++	++X +++++++	++XX +++++++	++X +++++++	++X ++++++	++ +Z+++++	++ +++++ +++	++ X ++++++	++X +N+++++	++ +++++++	++ ++++++++++++++++++++++++++++++++++++	++ ++++++++++++++++++++++++++++++++++++	++ ++++++++++++++++++++++++++++++++++++	++ +++++ + + + + + + + + + + + + + + + +	++X +++++++	++ x +z+++++	++ +++++++	++ X +++++++	50 50 22 10 50 •50 50 48 50 50 49 1
URINARY SYSTEM Kidney Urinary bladder	+ +	+ +	++	+ +	+ +	+ +	+ +	++	++	+++	++	++	+ +	+ +	++	+ +	+ +	+++	+ +	+ +	+ +	+ +	++	+	++	50 50
ENDOCRINE SYSTEM Pituitary Adenoma, NOS Adrenai Adenoma, NOS Cortical sidenoma Thyroid Follicular ceil adenoma Parathyroid	+ + +	+ + + -	+++-	+++-	++++-	+++++	+ + + -	+ + + +	+ + + -	++++-	+ + +	++++-	+ + + +	+x+ + -	+ + +	+ + + +	+ + + + + + + + -	+ + + +	+ + + + +	+ + + + +	++++	+ + + +	+++++	+ + + +	+ + + +	46 1 50 2 1 50 1 27
REPRODUCTIVE SYSTEM Mammary gland Testia Sertoli cell tumor Interstitia cell tumor Prostate	N + +	N + +	N + +	N +	N + +	м + -	N + +	N - +	N + +	N + +	×+	N + +	N + +	N + +	N + +	N + +	N + +	N + X X +	N + +	N + K	א + +	N + +	N + +	N + +	- × + ×	*50 49 1 1 46
NERVOUS SYSTEM Brain	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
SPECIAL SENSE ORGANS Harderian gland Adenoma, NOS Cystadenoma, NOS Zymbal gland Carcinoma, NOS																N :										*50 3 1 *50 1
ALL OTHER SYSTEMS Multiple organs, NOS Malig. lymphoma, undiffer type Malig. lymphoma, lymphocytic type Malig. lymphoma, histiocytic type	N	N	N	N	N	N	N	N X	N	N	N		N X	N	N I	N	N		N X		N	N	N	N	N	*50 1 3 2

* Animals Necropsied

11 21 <td< th=""><th>ANIMAL</th><th>5 0</th><th>502</th><th>5</th><th>5</th><th>5</th><th>5</th><th>5</th><th>5</th><th>5</th><th>5</th><th>5</th><th>5</th><th>5</th><th>5</th><th>5</th><th>5</th><th>5</th><th>5</th><th>5</th><th>5</th><th>5</th><th>5</th><th>5</th><th>5</th><th>5</th></td<>	ANIMAL	5 0	502	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5
STUDY 0 1 0 <td></td> <td>ů.</td> <td>2</td> <td>3</td> <td>4</td> <td>5</td> <td>6</td> <td>7</td> <td>8</td> <td>9</td> <td>Ö</td> <td>i</td> <td>2</td> <td>3</td> <td>4</td> <td>5</td> <td>6</td> <td>7</td> <td>8</td> <td>9</td> <td>Ő</td> <td>ĩ</td> <td>2</td> <td>3</td> <td>4</td> <td>5</td>		ů.	2	3	4	5	6	7	8	9	Ö	i	2	3	4	5	6	7	8	9	Ő	ĩ	2	3	4	5
Lungs and bronchi Arweistar/bronchilds carcinoma, metastatic Arweistar/bronchilds carcinoma Trackes		105	87	105	105	0.000	105	105	000	105	000	105	105	037	073	994	- 65	105	076	105	573	0	000	105	1 0 5	1 0 5
REMATOPOLETIC SYSTEM Bone marrow Spleet Hemanziona Malipnasi traphona, mized type Uraph nodes Walipnasi traphona, mized type Thymua CIRCULATORY SYSTEM Heart Heart DICESTIVE SYSTEM Heart Maintansi traphona, mized type Thymua CIRCULATORY SYSTEM Heart Misodas carcinoma Hopatocellular carcinoma Hopatocellular carcinoma Hopatocellular carcinoma Suman y data Adeencortinar carcinoma Sumanou cell papilloma Somach Somal intestine Adeencarcinoma Hidary Urinary Usadder Urinary Usadder Urinary Usadder Urinary Usadder Urinary Usadder Hidary Urinary Usadder Urinary Usadder Hopatocarinoma, NOS Adeencin Hidary Heart Urinary Usadder <	Lungs and bronchi Hepatocellular carcinoma, metastatic Alveolar/bronchiolar adenoma Alveolar/bronchiolar carcinoma.	+	+	+ X	+	+	+ X	+	+	+	ż	+	+	+	+	+	+	+	+	+	*	+	+	+	+	- + x
Bone marrow Spiese Hemangiona Angiosatroma Donga, mixed type+ + + + + + + + + + + + + + + + + + +		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	_
Lympin dolas Maiggans Lymphoma, mized type Thymus CIRCULATORY SYSTEM Heart CIRCULATORY SYSTEM Heart DIGESTIVE SYSTEM Salivary gland Heart DIGESTIVE SYSTEM Salivary gland Heart DIGESTIVE SYSTEM Salivary gland Heart DIGESTIVE SYSTEM Salivary gland Heart DIGESTIVE SYSTEM Salivary gland Heart DIGESTIVE SYSTEM Heart DIGESTIVE SYSTEM Salivary gland Heart Heart DIGESTIVE SYSTEM Heart DIGESTIVE SYSTEM Heart DIGESTIVE SYSTEM Salivary gland Heart He	Bone marrow Spieen Hemangioma Angiosarcoma	÷	++	+	++	++	++	++	++	++	+ +	++	++	++	+	++	++	++	Ŧ	++	Ŧ	++	++	++	++	++
Heart+ + + + + + + + + + + + + + + + + + +	Lymph nodes Malignant lymphoma, mixed type	+++	+ -	+ +	+ +	+	+ -	+ +	+ -	-	-	* +	+	+ +	+ -	+ +	+ -	+ +	+ -	л + +	+ -	-	+ -	+ 	+ +	+
Salivary gland Liver Hepsacocellular actenoma Hisedence Mised mesenchymal tumor, malignant Bile duct Galibladder & common bile duct Pancreas Stomach		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	7
Bile duct Galbladder & common bile duct+ + + + + + + + + + + + + + + + + + +	Salivary gland Liver Hepatoceilular adenoma Hepatoceilular carcinoma	++	‡ x	‡ x	+++	+ + X X	+ * X	•	+ * X	‡ x	+ * x	+ + x	++	++	+ + X	+			+	‡ x	÷ x	+		++ *		- + * X
Squamous cell papilloma Small intestine Adeocarcinoma, NOS Large intestine URINARY SYSTEM Kidney Kidney URINARY SYSTEM Kidney H ENDOCRINE SYSTEM Pituitary Adrenai Pituitary Adrenai Preschromocytoma Thyreid Parathyroid REPRODUCTIVE SYSTEM Mammary giand Testia Interstitial cell tumor Prostate N N N N N N N N N N N N N N N N N N N	Bile duct Galibladder & common bile duct Pancreas Esophagus	++++	÷	++++	++++	+z+++	++++	++++	+		+	++++	+	+	۰	++++	÷	•	+++ +++	++++				++++	++++	+
Kidney + + + + + + + + + + + + + + + + + + +	Squamous ceil papilloma Small intestine Adenocarcinoma, NOS	+ +	++	+	++	+ +	+ +	+ +	+ +	+ +	- +	+ +	+	++	+	+	+	++	+ x +	++	++	-	+	+ +	+ +	+ +
Pituitary Adecoma, NOS - + + + + + + + + + + + + + + + + + + +	Kidney	++	+++	+++	+	+++	++	++	++	++	+++	++	+++	+++	+++	++	+++	+++	+++	+++	++	+++	+++	+++	++	- +
Adrenai + + + + + + + + + + + + + + + + + + +	Pituitary	-	+	+	+	+	+	+	+	÷ x	-	+	+	+	+	+	;	+	+	+	+	+	+	+	+	+
Follicular cell adenoma X Parathyroid + + + - + + + + + + + + + + + + + +	Adrenai Pheochromocytoma	+	+	+	+	+	+	+	+	+	+	¥,	+	+	*	*	+	+	+	+	+	+	+	+	*	+
Mammary gland N N N N N N N N N N N N N N N N N N N	Foilicular cell adenoma	+	+	+	-	+	-	-	-	-	+	+	+	-	+	-	-	+	-	× +	-	+	+	-	+	-
Prostate - + + + + + + + + + + + + + + + + + + +	Mammary gland Testis	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +		.+	N •+	N +	N +	N +	N +	N +	N +	N +	N +	N	N +	N	- N +
Brain + + + + + + + + + + + + + + + + + + +		-	+	+	+	÷	+	+	-	+	-	+	+	÷	+	+	÷	÷	-	+	+	+	+	÷	-	+
Harderian giand Adeooma, NOS NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN		+	+	+	+	+	.+	+	+	+	-	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Multiple organs, NOS NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN	Harderian gland Adenoma, NOS	N	N	N	N	N	N	N	N	N	N	N	N X	N	N X	N	N	N	N		N	N	N	N	N	N
	Multiple organs, NOS Malig. lymphoma, lymphocytic type Malig. lymphoma, histiocytic type	N	N	N	N	N	N	N	N	N	N	N	-	N	N	N	N	N	N	N	N	N		N	N	- И

TABLE B3. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE MICE IN THE TWO-YEAR FEED STUDY OF C. I. BASIC RED 9 MONOHYDROCHLORIDE: LOW DOSE

+ : Tissue Examined Microscopically - : Required Tissue Not Examined Microscopically X : Tumor Incidence N : Necropsy, No Autolysis, No Microscopic Examination S : Animal Missexed

No Tissue Information Submitted
 Solution State of Protocol
 A : Autolysis
 M : Animal Missing
 B : No Necropsy Performed

TABLE BS.	INDIVIDUAL	ANIMAL	TUMOR	PATHOLOGY	OF	MALE	MICE:	LO₩	DOSE
			(C	ontinued)					

ANIMAL	5	5	5	5	5	5	5	5	ञ्च	5	3	5	5	5	5	5	5	5	5	9	5	5	5	5	5	T
	20	27	8	29	ð	3 1	32	3	3	5	36	3	3	3	9	ĨĮ.	2	3	4	3	8	7	8	9	5 0	TOTAL:
weeks on Study	1 0 5	05	105	105	105	105	105	105	1015	103	105	105	105	094	0 0 0	105	800	105	105	105	105	085	072	076	104	TISSUES
RESPIRATORY SYSTEM Lungs and bronchi Hepatocellular carcinoma, metastatic Alveolar/bronchiolar adenoma	+	+	+	+	+	. +	+	+	ż	+	+	+	+	+ x	*	÷x	+	+	+	+	+	+	+	+	+	50 5 3
Alveolar/bronchiolar carcinoma Traches	X +	+	+	+	+	+	+	+	+	+	X +	+	+	+	÷	+	+	+	+	+	X +	+	+	+	÷	4 50
HEMATOPOIETIC SYSTEM Bone marrow Spieen Hemangioma Angiosarcoma	‡	++	+++	+++	++	+	+	++	++	++	+ * x	++	+	++	+++	+ *	++	+++	+++	++	+++	+++	-+	+++	++	47 50 1 1
Malignant lymphoma, mixed type Lymph nodes Malignant lymphoma, mixed type Thymus	+++	+	+	+	++	++	++	+×+	+ +	+ -	+ -	+ +	-	+	+ -	- +	+	+ +	+ +	+ +	++	+ -	++	++	+ -	1 45 1 25
CIRCULATORY SYSTEM Heast	+	+	+	+	+	+	÷	+	+	+	+	+	+	+	+	+	+	÷	+	+	+	+	+	+	+	50
DIGESTIVE SYSTEM Salivary gland Liver Hepatocellular adenoma Hepatocellular carcinoma Mixed mesenchymal tumor, malignant	:	++x	‡ x	+ + x X	++x	+ + x	+ + x	‡	‡ x	++	++x	** *	++	++ *	+ + x	+ + x x	+++	++XX	+ + X	+ + x	+ + x	‡ x	+ x	+ + x	+ + x	50 50 21 20 1
Bile duct Gallbladder & common bile duct Pancreas Esophagus Stomach	++++	+++++	+++++	+++++	++++	++++	+++++	++++	++++	+ z + + +	++++	++++	+++++	+++++	+++++	+++++	+z+++	+++++	+++++	++++	+++++	+z+++	+ z + + +	+++++	+++++	50 *50 50 48 50
Squamous cell papilloma Small intestine Adesocarcinoma, NOS Large intestine	+	+ +	X + +	++	+ +	+ +	++	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ -	+ +	+ +	+ +	+ +	+ +	+ +	++	+ +	1 48 1 47
URINARY SYSTEM Kidney Urinary bladder	‡	+++	+++	++	+++	+ +	++	+++	+ +	+ +	+ +	+ +	‡	÷	+ +	+ +	+ +	+ +	+++	+ +	+ +	+++	++	+	+	50 50
ENDOCRINE SYSTEM Pituitary Adenome, NOS	+	+	+	+	+	+	+	*	+	+	+	+	+	+	-	+	+	+	+	+	+	+	+	+	+	47
Adrenai Pheochromocytoma Thyroid Follicular ceil adenoma Parathyroid	+++++	+ + -	++++	+ + +	+ + +	+ +. +	+ + +	+ + ~	++-	+ + -	+ + -	+ + +	+ + -	+ + +	+ + +	+ + -	+ + -	+ + +	+ + +	+ + +	+ + +	+ + +	+ + +	++	+ + +	50 2 48 1 29
REPRODUCTIVE SYSTEM Mammary gland Testis Interstitial cell tumor Prostate	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	н + +	*50 48 1 45
NERVOUS SYSTEM Brain	+	+	+	+	+	+	+	+	+	+	+	+	+	+ +	+	+	+	+	+	- +	+	+	+	+	- +	49
SPECIAL SENSE ORGANS Harderian gland Adenoma, NOS Cystadenoma, NOS	N	N	N	N	N	N	N	N X	N X	N	N	N	N	N	N	N	N	N	N	N	NX	N	N	N	N	*50 5 1
ALL OTHER SYSTEMS Multiple organs, NOS Malig. lymphoma, lymphocytic type Malig. lymphoma, histiocytic type Malignant lymphoma, mized type	N	N	N	N	N	N	N	N		N X	N	N	N	x	N X	N	N	N	N	И	N	И		N X		*50 1 5 1

* Animals Necropsied

									_						_								_		
ANIMAL NUMBER	5 0 1	502	503	504	505	5 0 6	507	508	503	510	5 1 1	512	513	514	515	516	5 1 7	5 1 8	519	200	521	522	522	284	525
WEEKS ON STUDY	1 0 4	040	104	104	104	104	104	104	0 7 5	104	1 0 4	104	104	1 0 5	0 7 9	105	1 0 5	083	104	1 0 5	1 0 5	1 0 5	105	1 0 5	1 0 5
INTEGUMENTARY SYSTEM Skin Squamous ceil carcinoma	+	+	+	+	+	+	+	+	+	+	+	*	+	+	+	+	+	+	+	+	+	+	+	+	+
RESPIRATORY SYSTEM Lungs and bronchi Hepatocellular carcinoma, metastatic Alveolar/bronchiolar sdenoma Alveolar/bronchiolar carcinoma Traches	+	++	+ x x+	++	++	+	+++	* *	+	+	+ x +	+	+	+	+ x +	* *	+ x x +	+	*x +	+	+	* *	++	+	
HEMATOPOIETIC SYSTEM Bone marrow Mast ceil tumor Spieen Lymph nodes Sarcoma, NOS, metastatic Malignant lymphoma, mixed type	+ + +	+ + + +	+ ++	+++	+ ++	* + + + +	+ ++	+ +++	- ++	+ ++	+ ++	++++	+ +++	+ +++	++-	+ ++	+ + + X	+ ++	+ ++	+ ++	+ + +	+ ++	+ ++	+ ++ .	+ + + + +
Thymus CIRCULATORY SYSTEM Heart		_ _						-	-	-				-				_ _						-	+ -
DIGESTIVE SYSTEM Salivary giand Liver Hepatocellular adenoma Hepatocellular carcinoma Sarcoma, NOS, metastatic	+ + X	+++	+ + X	+ + X X	+ + X	++ XX	+ + x	+ + x	++X	++	+ + x	+ + X	++	+ + X											
Bile duct Gallbladder & common bile duct Pancreas Esophagus Stomach Smail intestine Adenocarcinoma, NOS Large intestine	+++++ +	+ ++ + + + + Z+	++++++ +	++++++ +	++++++ +	++++++ +	+ ++++ +	++++++ +	+z + + + 1	+z+++ +	+z+++ +	+z++++ +	+z++++ +	++++++ +	+z+++1 1	+++++++	++++++ +	+z++++ +	++++++ +	+2++++ +	++++++ +	++++++ +	++++++ +	++++++ +	+++++++++++++++++++++++++++++++++++++++
URINARY SYSTEM Kidney Hepatocellular carcinoma, metastatic Urinary bladder	+++	+	+++	+++	+++	+++	+++	+++	+++	+++	+	+	+	+++	+++	+++	+	+++	+ x +	+++	+++	++	++	+++	
ENDOCRINE SYSTEM Pituitary Adenoma, NOS	+	+	+	+	+	+	+	+	+	÷	+	+	+	+	+	+	+	+	+	+	+	+	+	+	-+
Adrenai Cortical adenoma Pheochromocytoma Thyroid Follicular cell adenoma Parathyroid	+	+ + -	+ x + x -	+ + -	++++	++++	+ + -	+ + +	+ +x+	+ + +	+ + +	+ + +	+ + -	+	+ + -	++	++-	++	+ + +	+ + -	+ + +	+ + -	+++	+ + -	+++-
REPRODUCTIVE SYSTEM Mammary glaod Testis Interstitial cell tumor Prostate	N + +	N + -	א + +	N + +	N + +	N + +	N + +	N + +	N + +	N + +	N + +	N + +	N + +	N + +	N + +	N + +	N - +	N + +		N + +	N + +	N + +		N + -	- N + +
NERVOUS SYSTEM Brain	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	- +
SPECIAL SENSE ORGANS Harderian gland Adenoma, NOS Cystadenoma, NOS	N	N	N	N	N	N	N	N	N	N		N X	N	N	N	N	N	N	N	N	N	N	N	N	- N
BODY CAVITIES Peritoneum Sarcoma, NOS	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N		N X	N	N	N	N	N	N	N	N
ALL OTHER SYSTEMS Multiple organs, NOS Malig, lymphoma, lymphocytic type Malig, lymphoma, histiocytic type Malignant lymphoma, mixed type	N	N	N	N	N	N X	N	N X	N	N	N	N	N	N	N	N	N		N X	N	N		N X	N	- N

TABLE BS. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE MICE IN THE TWO-YEAR FEED STUDY OF C. I. BASIC RED 9 MONOHYDROCHLORIDE: HIGH DOSE

- + :
 Tissue Examined Microscopically

 :
 Required Tissue Not Examined Microscopically

 X :
 Tumor Incidence

 N :
 Necropsy, No Autolysis, No Microscopic Examination

 S :
 Animal Missexed

No Tissue Information Submitted
 C : Necropsy, No Histology Due To Protocol
 A : Autolysis
 M : Animal Missing
 B : No Necropsy Performed

ANIMAL NUMBER	526	527	523	520	530	5 3 1	5 3 2	5 8 8	5	535	536	537	538	535	540	541	542	543	544	2 4 2	546	547	548	543	50	
WEEKS ON STUDY	0 8 6	085	105	105	0 9	105	105	105	0	065	10	105	0 9	105	105	105	105	100	066	105	105	105	105	105	050	INTAL: ISSUE: INTOR
NTEGUMENTARY SYSTEM				-	<u> </u>						-						-		_	-						
kin Squamous cell carcinoma	+	+	+	+	+	. +	+	+	+	+	+	+	+	+	+	+	+	+	+	: +	+	+	+	+	+	*50
ESPIRATORY SYSTEM ungs and broachi Hepatocsilular carcinoma, metastatic Alveolar/bronchiolar adenoma Alveolar/bronchiolar carcinoma rachea	* *	+	+ X +	+	* x +	+	+ *	+ X +	+	+	+	+	+	+	+	+	+ X +	+ x +	+	+	+ X +	+	** *	* *	+ +	50 12 6 2 50
EMATOPOIETIC SYSTEM	-	-																								
one marrow Mast cell tumor pleen	+	+++++++++++++++++++++++++++++++++++++++	+++	++	++	++	++	++	+	· + +	++	++	++	++	++	+ x +	+ +	+++++++++++++++++++++++++++++++++++++++	· +	++	+	++	++	++	-+	47 1 50 47
ymph nodes Sarcoma, NOS, metastatic Malignant lymphoma, mixed type hymus	+	+	+	+++	+	++	++	++	++	+	++	++	+	++	++	++	+	-	+ X	++	++	+	+	-	+	47 1 29
IRCULATORY SYSTEM		+	+	+	+	+	+	+	+	+	+	+	. +	+	+	+	+	•+	+	+	+	+	+	+	+	50
IGESTIVE SYSTEM	+		+	+	•		4			+	+	+	+	+	+	+ -	+	+	+	+		+		•	-	50
ver Hepatoceilular adenoma Hepatoceilular carcinoma Sarcoma, NOS, metastatic	×	÷ x	÷x	+ XX	÷ x	Ť	×	×	· +	÷	¥	÷ x	÷ X	x	÷	×	¥	÷ X	÷	÷ X	×	÷	Ť	÷ XX	÷	50 17 27
ile duct alibiadder & common bile duct ancreas	+++++++++++++++++++++++++++++++++++++++	+ X +	+++	+++	+ N +	+++	+z+	+++	+++	+++	+++	+ N +	+++	+++	+++	+++	+++	+ N +	+++	+++	+++	+++	+++	+++	+++	50 •50 49
sophagus somach	++	+	++	÷	÷	+++	+	÷	++	+	++.	÷	+	+++	Ŧ	++	++	++	++	+++	Ŧ	++	+++	+++	÷	45 50 47
nall intestine Adenocarcinoma, NOS arge intestine	‡	+	+	+	Ť	+	+	+	+	+	+	+	+	+	+	+	+	_	+	+	+	+	+	- +	+	2 47
RINARY SYSTEM idney Hepatoceilular carcinoma, metastatic	+	+	+	+	+	+	+	+	+	+	+	÷	+	+	+	+	+	+	+	÷	+	+	+	+	+	50 1
rinary bladder	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	5Ô
NDOCRINE SYSTEM ituitary Adenoma, NOS	+	+	+	+	+	-	+	+	+	+	-	+	+	+	+	+	+	÷	+	+	+	+	+	+	+	48 2
drenal Cortical adenoma	+	+	+	ż	+	+	+	+	+	+	+	+	+	+	+	+	+	+	.+	+	+	÷	+	+	+	50 1
Pheochromocytoma hyroid	+	+	¥	+	+	÷	+	+	_	+	÷	+	÷	÷	+	+	+	+	÷	+	+	+	+	+	+	2 49
Follicular cell adenoma arathyroid	+	-	-	-	¥ +	÷	-	+	-	-	÷	+	+	÷	-	-	-	-	-	-	-	+	+	÷	+	3 22
EPRODUCTIVE SYSTEM ammary gland stis	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	*50
Interstitiai cell tumor rostate	+	÷	÷	+	+	+	÷	÷	÷	÷	÷	÷	÷	-	-	+	+	+	÷	+	¥	+	+	÷	+	46
ERVOUS SYSTEM	+	+	+	+	+	+	+	+	+	+	+	+	+	+	÷	+	+	+	+	+	÷	+	+	+	+	50
ECIAL SENSE ORGANS arderian gland Adenoma, NOS Systadenoma, NOS	N	N	NX	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N X	N	N	N X	N	N	*50 3 1
DDY CAVITIES ritoneum iarcoma, NOS	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	*50 1
L OTHER SYSTEMS uitiple organs, NOS	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	+50
Malig. lymphoma, lymphocytic type Malig. lymphoma, histiocytic type Malignant lymphoma, mized type										x	x		X									X			X	4 3 3

TABLE B3. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE MICE: HIGH DOSE (Continued)

*Animals Necropsied

TABLE B4. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE MICE IN THE
TWO-YEAR FEED STUDY OF C. I. BASIC RED 9 MONOHYDROCHLORIDE:
UNTREATED CONTROL

ANIMAL NUMBER	0	002	003	004	005	990	007	008	000	010	0 1 1	012	0 13	0	0115	016	0 1 7	0 1 8	019	080	0 2 1	0 2 2	0 2 3	024	0 2 5
weeks on Study	1 0 5	1 0 1	105	1 0 5	094	0 9 5	1 0 5	1 0 5	1 0 5	084	0 7 5	105	0 9	084	072	105	105	105	105	1 0 5	096	085	105	1 0 5	1 0 5
INTEGUMENTARY SYSTEM Subcutaneous Lissue Sercoma, NOS	+	*	+	+	+	N	+	+	+	N	N	+	+	+	+	+	+	+	+	+	+	N	+	+	+
RESPIRATORY SYSTEM Lungs and broochi Carcinoma, NOS, metastatic Traches	+	+++	+++	++	+ x +	++	+++	++	+++	++	+x+	++	+++	++	++	+++	++	++	++	+	+++	+	++	++	+++
HEMATOPOIETIC SYSTEM Bone marrow Spieen Hemangioma Angiosarcoma	+++++++++++++++++++++++++++++++++++++++	+++	+	+++	+++	+++++++++++++++++++++++++++++++++++++++	+++	+++	++++	-	++	++++	++ +	+++++++++++++++++++++++++++++++++++++++	++	-+		++	+++++++++++++++++++++++++++++++++++++++	+++	++++++	-+		+++	++ ×+
Lymph nodes Saccoma, NOS, metastatic Thymus	+	ž	-	+	-	-	+	+	+	-	-	+	-	-	-	+	-	+	-	+	+	-	+	+	+
CIRCULATORY SYSTEM Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
DICESTIVE SYSTEM Salivary gland Liver Hepatocellular adenoma Hepatocellular carcinoma Malignant lymphoma, NOS	++	++	++	+ + X	++	++	++	++	++		++	++	++	+	++	++	++	++	++	++	++	++	++	++	•
Bile duct Gallbiadder & common bile duct Pancreas	+++++++++++++++++++++++++++++++++++++++	+++	++++	+ N +	+ N +	+++	++++	+ z +	+ N +	Ñ	+++	++++	++++	+ N -	+++	+++	+++	4+++	+++	+++	+++	+ N +	+++	+++	
Carcinoma, NOS Esophagua Stomach Sarroma, NOS, invasive	+++	+++	+ +	+ +	+ +	+ +	+ +	++	+ +	-	X + +	+	++	+ +	+ +	++	++	+ +	++	++	++	-	+ +	+ +	;
Small intestine Malignant iymphoma, NOS Large intestine Letomytoarcoma	+	4 +	+ -	+ +	+ +	+ +	+ +	+ +	+ +	-	+ -	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+	- +	+ +	+ *	+ +	+ +
Kidney	+	+	+	+	+	+	+	+	÷	+	+	+	+	+	+	+	+	+	++	+	+	+	+	+	+
Urinary bladder ENDOCRINE SYSTEM	+	+	+	+	+	+	+	+	+	-	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Pituitary Adenoma, NOS Adrenai Neoplasm, NOS Pheochromocytoma	+	+x +	- +	`+ +	- +	+ +	- +	+	+ +	- *	+ +	+ +	+x +	-	++	- +	++	+ +	+	- +	+ • +	+	+x +	++	+
Thyroid Parathyroid	++	+ -	+ +	+	+ -	+ +	+-	-	+	-	+	++	+ +	-	++	+ +	+ -	++	+ +	+ +	+ +	2	+ -	+ -	++
REPRODUCTIVE SYSTEM Mammary gland Uterus Endometrial stromal sarroma	N +	N +	N +	N +	N +	N +	N +	N +	N + X	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	+++	N +	н т т
Ovary Papillary cystadenoma, NOS Sarcoma, NOS, invasive	+	+ X	+	+	+	+	+	+	Ŧ	+	-	+	+	+	+	+	+	+	+	+	+	+	+	+	+
NERVOUS SYSTEM Brain	+	+	÷	+	+	+	+	+	÷	+	+	+	+	+	+	+	÷	+	+	+	+	+	+	+	+
SPECIAL SENSE ORGANS Harderian gland Carcinoma, NOS	N	N	N	N	N X	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	Ń	N	N	N	N
ALL OTHER SYSTEMS Multiple organs, NOS Carcinoma, NOS, invasive	N	N	N	N	N	N	N	N	N	N	N X	N	N	N	N	N	N	N	N			N	N	N	N
Malignant lymphoma, NOS Malig. lymphoma, undiffer type Malig. lymphoma, histiocytic type Malignant lymphoma, mized type								X					X	x							x		X		

 + : Tissue Examined Microscopically

 - : Required Tissue Not Examined Microscopically

 X : Tumor Incidence

 N : Necropsy, No Autolysis, No Microscopic Examination

 S : Animal Missexed

No Tissue Information Submitted
 C : Necropsy, No Histology Due To Protocol
 A : Autolysis
 M : Animal Missing
 B : No Necropsy Performed

TABLE B4 .	INDIVIDUAL AN	PATHOLOGY OF ROL (Continued)	F FEMALE MICE: UNT	REATED
ANIMAL			0 0 0 0 0 0 0 0 0 0 0	Į

ANIMAL NUMBER	0 2 6	027	0218	029	080	0 3 1	032	33	034	035	030	0 3 7	038	039	040	041	042	043	044	045	046	0 4 7	048	049	0 5 0	
WEEKS ON STUDY	105	105	045	1 0 5	88	105	105	0 9 7	0 8 8	1 0 1	1 0 5	105	105	1 0 5	105	1 0 5	1 0 5	0 9	105	1 0 1	095	1 0 5	105	0 8 3	1 0 5	OTAL: ISSUES UMORS
INTEGUMENTARY SYSTEM Subcutaneous tissue Sarcoma, NOS	÷	+	+	*	+	. +	+	+	+	+	+	+	+	+	+	+	+	*	+	+	+	+	+	+	+	*50 3
RESPIRATORY SYSTEM Lungs and bronchi Carcinoma, NOS, metastatic Trachea	+	++	+++	+	+++	+	+++	++	+++	+ +	+++	++	++	+++	+++	++	+	+ ÷	+++	+++	+++	+++	++	+++	+ +	50 2 50
HEMATOPOIETIC SYSTEM Bone marrow Spieen Hemangioma Angiosarcoma Lymph codes Sarcoma, NOS, metastatic Thymus	- + +		++	++ + +	++ + =	+ + X + +	++ ++	++ + + +	-+ + -	++ + +	++ x+ +		++ + +			++ + +	++ + +	++++	++ ++ . + +	++ + +	++ + -	++ + +	++++	++ + -	- + + + + + + + + + + + + + + + + + + +	38 49 1 2 46 1 31
CIRCULATORY SYSTEM	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
DIGESTIVE SYSTEM Salivary gland Liver Hepatocellular adenoma Hepatocellular carcinoma Malignant lymphoma, NOS	++	+ + x	++	++	-+	++	++	+++	++	+ + x	+ +	+++	+ +	+ + x	+ + X	+ +	++	++	++	+++	++	+++	++	++	++	48 49 2 3 1
Bile duct Ballbladder & common bile duct Pancreas Carcinoms, NOS Saophagus Stomach	+z+ +z+	+++ ++	+2 ++	+++ ++	+2+ ++	+++ ++	+++ ++	+++ ++	+N+ ++	+++ ++	+2+ +2+	+++ ++	+2+ +4+	+++ ++	+++ ++	+2.+ ++	+++ ++	+z+ ++	+++ ++	+++ ++	+++ ++	+++ ++	+++ ++	+21 ++	+++ ++	49 •50 46 1 47 48
Sarcoma, NOS, invasive Small intestine Malignant lymphoma, NOS arge intestine Leiomyoearcoma	+ +	+ +	-	+ +	- +	+ +	+ +	+ +	+ +	+ +	+ +	++	+ +	+ +	+ +	+ +	+ X +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	1 46 1 45 1
JRINARY SYSTEM Kidney Jrinary bladder	+++	+++	+++	++	+++	++	+	+	++	+ +	+++	+++	+++	+	+ +	+ +	+ +	+++	+++++	+++	+ +	++	++	++	- ++	50 48
NDOCRINE SYSTEM Pituitary Aderonal Neoplasm, NOS Pheochromocytoma Phyroid Parathyroid	+ + ++	+ + ++	+ + + +	+ + ++	+ + ++	+x+ + =	+ + +	+ + ++	+ + +	+ +	+x+ +	+ + X + +	+ + + -	- + +		+x+ ++	+x+++	+ + + -	+x+ ++	+ + ++	+ + ++	+ + + -	+ + ++	- + -	+x+ ++	38 10 48 1 1 45 28
EEPRODUCTIVE SYSTEM Mammary gland Jerus Endometrial stromal sarcoma Ovary Papillary cystadenoma, NOS Sarcoma, NOS, invasive	N + +	N + +	N + +	++++	N + +	N + +	N + +	N + +	N + +	N++	N + + X	N + +	++ +	N++	++++	N : + +	× +	N + +	N + +	N + +	N + +	N + +	N + +	N + -	- × + ×	*50 50 1 48 1 1
VERVOUS SYSTEM	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
PECIAL SENSE ORGANS Iarderian gland Carcinoma, NOS	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	*50 1
ALL OTHER SYSTEMS Multiple organs, NOS Carcinoms, NOS, invasive Malignant lymphoms, NOS Malig, lymphoms, undiffer type Malig, lymphoms, histiocytic type Malignant lymphoms, mixed type	N X	N	N	N	N X	N X	N	N	N	N		N X		N X	N	N		N X	x	N X		N X	N	N X	N	*50 1 6 1 1 2

* Animals Nerropsied

ANIMAL NUMBER	0 0 1	002	003	004	005	000	007	008	009	010	0 1 1	0 1 2	0 1 3	011	01	016	0 1 7	0 1 8	0 1 9	0 1 0	0 2 1	022	ON S	0 N 4	0 2 5
WEEKS ON STUDY	1 0 5	1 0 5	079	1 0 5	0 6 1	1 0 3	104	082	105	0 8 1	0 8 1	055	034	104	057	1 0 1	099	0 6	1 0	048	0 7 3	105	085	0 8 1	0 9 3
INTEGUMENTARY SYSTEM	+	+	+	+	•	N	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	N	N	-
Basal cell carcinoma Subcutaneoua tissue Sarcoma, NOS Fibroma	+	+	•	+	+	N	÷	+	+	+	+	+	+	+	+	+	X +	+	+	+	+	+	N	N	+
RESPIRATORY SYSTEM Lungs and bronchi Adenocarcinoma, NOS, metastatic Hepatoceilular carcinoma, metastatic Alveolar/bronchiolar adenoma Sarcoma, NOS, metastatic	+	+	+	+ x	+	-	+	+ X	+	* x	+	+	+	+	+	+	+ X	+	+	+	+	+	+	+	+
Traches	+	+	+	+	+	-	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
HEMATOPOIETIC SYSTEM Bone marrow Spieen Hemangioma Malignant lymphoma, NOS	+ + X	+ +	++	++	++	-	+ -	+++	+++	++	-+	++	+ +	+++	+++	++	+ +	 +	+	+ +	+ +	+ +	+ +	+ +	+ +
Lymph nodes Thymus	+++	+	+	++	+	-	-	+-	++	+	+ +	+++	++	+	-	+ +	+++	+	+	+	+ -	+ +	+	+ -	+
CIRCULATORY SYSTEM Heart	+	+	+	+	+	-	+	+	+	+	+	+	+	+.	+	+	+	+	+	+	+	+	+	÷	+
DIGESTIVE SYSTEM Selivary gland	+	+	+	+	+		-	-	+	+	-	+	+	+	+	+	+	+	+	+	+	+	+	-	+
Liver Neopiasm, NOS Hepstocellular adenoma Hepstocellular carcinoma	+ x	+	+ X	+ X	+ X	+ x			+ X	+ x	+ X	+	+	+ x	+	+ X	+ x	+ x	+ X	+	+	+ X	+ x	+ x	+ x
Bile duct Gallbladder & common bile duct Pancreas	++	++	+ N	+++	+ N +		n N	+ N +	+ N +	* N	+++	+ N +	+ N +		+ N +	+ N +	+ N +	* N	ň,	+ N	+ N	+++	+ N	++++	#
Fankreas Esophagus Stomach Squamous cell carcínoma	++++	+++	+++	+++	+ + +	-	-	+	+ + +	+++	+ + +	+ + +	+++	+ - +	+ + +	+ + +		-++	+++	- +	+++	++++	+++	+ + +	+++
Small intestine Large intestine	+++	++	++	+ +	+ +	Ŧ	-	+ +	+ +	+ +	+ +	- +	-	++	+ -	++	+ +	-	++	+ +	=	+	+ +	-	+
URINARY SYSTEM Kidney Urinary bladder	++++	+++	+++	+ +	++	+++	+	+ +	++	+ +	++	++	+ +	+++	+++	++++	+++	+++	++	++	+++	++	++	+ +	- + +
ENDOCRINE SYSTEM Pituitary Adenome, NOS	+	+	-	+	+	-		+	+	_	+	-	+	+	-	 ÷	+	+	+	+	÷	+	+	÷	-
Adrenai Adenoma, NOS	*	+	-	+	+	÷	+	+	+	+	+	+	+	+	+	÷	+	-	+	+	+	+	+	+	+
Pheochromocytoma Pheochromocytoma, malignant Thyroid	× +	+	+	+	+	_	x _	-	+	+	+	·+	_	+	+	+	+	+	+	+	х +	+	+	+	+
Follicular cell carcinoma Parathyroid	x	-	-	+	+	-	-	-	-	-	+	-	-	-	+	-	-	+	-	+	+	-	+	+	+
REPRODUCTIVE SYSTEM	N	N	N	N	N	N	N	N	N	÷	N	N	N	N	N	N	N	N	N	N	N	+	N	N	N
Adenocarcinoma, NOS Uterus Sarcoma, NOS	+	+	+	+	+	+	+	+	ż	¥ +	+	+	+	+	+	+	+	+	+	+	÷	+	+	+	+
Endometrial stromal polyp Ovary Granulosa cell tumor Tubular adenoma	+	+ x	+	+	+	+	-	*	+	+	+	X +	+	+	-	+	+	÷	+	+	+	+	+	+	+
NERVOUS SYSTEM Brain	+	+	+	+	+	-		+	+	-	+	-	+	+	+	+	+	+	+	+	+	+	+	+	- +
ALL OTHER SYSTEMS Multiple organs, NOS Squamous cell carcinoma, invasive	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	- N
Squamous cell carcinoma, metastatic Malignant lymphoma, NOS Malig. lymphoma, undiffer type		x	X						x			x	X	x			X		x	x					
Malig. lymphoma, lymphocytic type Malig. lymphoma, histiocytic type											X					X					X				

TABLE B4. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE MICE IN THE TWO-YEAR FEED STUDY OF C. I BASIC RED 9 MONOHYDROCHLORIDE: LOW DOSE

+ :

X N S

Tissue Examined Microscopically Required Tissue Not Examined Microscopically Tumor Incidence Necropsy, No Autolysis, No Microscopic Examination Animal Missexed

No Tissue Information Submitted Necropsy, No Histology Due To Protocol Autolysis Animal Missing No Necropsy Performed

C : A : M : B :

:

TABLE B4.	INDIVIDUAL ANIMAL	TUMOR PATHOLOGY	OF FEMALE MICE:	LOW DOSE
		(Continued)		

ANIMAL NUMBER	02	027	028	040	030	0 3 1	032	033	034	0 4 5	036	037	038	0 3 9	040	04	042	043	044	045	040	047	048	040	0 5 0	
WEEKSON STUDY	104	1 0 5	092	1 0 5	089	000	105	105	064	9	032	0 8 4	105	088	062	1 0 5	050	8	0 8 2	090	0 9 1	0 8 9	1 0 5	0 9	0 8 0	TOTAL: TISSUE TUMOR
INTEGUMENTARY SYSTEM	<u> </u>										<u>.</u>						<u> </u>				<u> </u>					
Skin Basel cell carcinome Sabcutaneous tissue Sarcoma, NOS Fibroma	+	+	+	+	+ + X	+	++	+	+	+	+.	+	+	+	+	+	+	+	N N	+	+ + X	+	+	+	+ + X	*50 1 *50 2 1
RESPIRATORY SYSTEM Lungs and bronchi Adenocarcinoma, NOS, metastatic Hepatocellular carcinoma, metastatic Alveolar/bronchiolar adenoma Sarcoma, NOS, metastatic Trachea	+	+	+	+	+	+	+	+	+	+	+	+	+	+ x +	+	+	+	+	+	+	++	+ x +	+	+	-+ x+	49 1 3 2 1 48
HEMATOPOIETIC SYSTEM	<u> </u>																	_								
Bone marrow Spieen Hemangioma Malignant lymphoma, NOS Lymph nodes	+++++++++++++++++++++++++++++++++++++++	++++	++ +	++++	++	++ +	++ +	++ +	+++	++ +	++ +	++ +	++ +	+++++	+++++	++ +.	++ +	-++	+ + +	++++	++x +	++++	++ +	++ +	++ +	44 47 1 1 46 20
CIRCULATORY SYSTEM	<u> </u>	_	_	+	_	+	+	+	+	+	-	-	+	_	_	+	+	_	_	_		_	+	+	_	
Heart DIGESTIVE SYSTEM	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	•	+	+	+	+	+	+	+	+	49
Salivary gland Liver Neoplasm, NOS Hepatocellular adenoma Hepatocellular carcinoma	+	++ *	∓ x	+ * X	∓ x	++	+ + x	++ XX	++	+ * X	++	++ X	+ + X	+ + X	-	++ + X X	+ +	+ + X	+ + X	++	+ + x	++ *	++ *	++ *	+++	42 50 1 18 19
Bile duct Gallbladder & common bile duct Pancreas Esophagus	+ N + +	++++	+ 2 + +	++++	+ N	+ z + 1	++++	++++	+++ -	++++	++++	+ N + +	++++	+ 1 2+	+++ -		+ N + +	++++	+ X + +	+2++	++++	+ N + +	+2++	++++	++++	50 •50 45 39
Stomach Squamous cell carcinoma Small intestine Large intestine	(+ 	+ ++	+ ++	+ ++	+ 11	+ +	+ ++	+ ++	- ++	+ ++	+ + +	+ -	+ + +	- + -	+ ++	+ ++	+ -+	+ + +	+ + +	+ + +	+ x + +	+ ++	+ ++	+++	+ ++	46 1 38 40
URINARY SYSTEM Kidney Urinary bladder	+	++	++	+++	++	+++	++	+++	+ +	+++	++	<u>+</u>	+ +	+ +	+ +	++	+ +	+ +	÷	+	+++	++	+	+	_ ++	50 47
ENDOCRINE SYSTEM Pituitary Adenoma, NOS	+	+	+	-	*		+	* *	+	÷	+	-	÷ x	-	-	÷		-	+	+	+	+	÷	+	+	36 7
Adrenai Adenoma, NOS	+	+	+	*	+	+	+	+	+	X +	+	÷	+	+	+	÷ X	+	+	+	÷	+	÷	÷	-	+	47 2 7
Pheochromocytoma Pheochromocytoma, malignant Thyroid Follicular cell carcinoma Parathyroid	x + -	+ +	+	+ +	-	x - -	+ +	+ +	-	× + -	* *	+ +	X + +		+	+	+ +	+	-	+ +	+	+ +	++	+ +	+ -	1 41 2 24
REPRODUCTIVE SYSTEM Mammary gland Adenocarcinoma, NOS Uterus	N +	N +	N +	N +	N +	N +	+++	N +	N +	N +	א +	N +	+ + +	N +	N :	N :	N : +	 N +	N +	++	N +	N +	N +	N +	+++	•50 1 50
Sarcoma, NOS Endometriai stromai polyp Ovary Granulosa cell tumor Tubular adenoma	-	+	+	÷	+	÷	+	+	+	+	+	+	+	+	+	÷	+	-	+	+	+	+	+	+	÷	1 1 46 1 1
NERVOUS SYSTEM Brain	 +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	46
ALL OTHER SYSTEMS Multiple organs, NOS Squamous cell carcinoma, invasive Squamous cell carcinoma, metastatic	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N				N		N X X	N	N	N	N	*50 1 1
Malignant lymphoma, NOS Malig. lymphoma, undiffer type Malig. lymphoma, lymphocytic type Malig. lymphoma, histiocytic type	x				X			x	x					:	x	x	X	ĸ		x			x			14 1 5 3

* Animals Necropsied

ANIMAL NUMBER	0	0	003	004	005	006	007	008	009	010	0 1 1	0 1 2	0 1 3	14	115	016	0 1 7	018	0 1 9	020	0 2 1	0 2 2	0 2 3	024	225
weeks on	1 0 2	0 6 1	077	0 7 7	065	087	0 8 7	093	095	086	105	105	082	065	094	100	0 7 1	0 6	095	084	096	068	0219	053	0 6 5
INTEGUMENTARY SYSTEM Skin Basai cell carcinoma	+	+	+	+	+	N	+	+	+	+	+	+	+	+	+	+	+	+	+	N	+	+	+	+	+
RESPIRATORY SYSTEM Lungs and bronchi Bassi cell carcinoma, metastatic Hepatocellular carcinoma, metastatic Alveolar/bronchiolar adenoma Alveolar/bronchiolar carcinoma Sarcoma, NOS, metastatic Traches	+ x +	+ x +	+	+ x +	+	+ x +	-	+	+	+	+ x +	+ x +	+	+	+ x +	+	+	+	+	-	+	+	+	+	+++++++++++++++++++++++++++++++++++++++
HEMATOPOIETIC SYSTEM Bone marrow Spieen Malignant lymphoma, NOS Lymph nodes Hepatocellular carcinoma, metastatic Hemangioma Malignant lymphoma, mixed type Thymus	+++++++++++++++++++++++++++++++++++++++	+ +	++	+++	++ +	-+ +xx	+ + +	++	+++++	-+x+	+++++++++++++++++++++++++++++++++++++++	+++++	+++++	* + +	+++++	+++++	+++++	++	+++++	++ +	+++++	+	++++++	++++	++++
CIRCULATORY SYSTEM Heart	+	+	+	+	+	+		+	+	+	+		+	+`	- +	+	+	+	+		+	+	+	- +	-
DIGESTIVE SYSTEM Salivary gland Liver Hepatocellular adenoma Hepatocellular carcinoma	+ + x	+++	++	‡ x	++	÷ x	∓ x	Ŧ	‡ x	‡ x	‡ x	+ + x	+ + x	++ *	+ + x	+ + x	+ + x	++	‡ x	Ŧ	+ + x	; ; x	+ +	÷	- + x
Malignant lymphoma, NOS Bile duct Gallbladder & common bile duct Pancreas Esophagua Stomach Small intestine	+z++4	++ Z+	+ + + + Z + + + +	+++++4	* + + + + 4	+ + + + Z + + +	+211++	++++2+	+ + + + Z +	+ + + + Z +	* + + + + +	+z+++	+ + + + z +	++++++	+z+++	+z+++	++++	++++	+ + + + z +	+ z + +	+z+++	++1 Z+	+z+++	+z++4	+++++
Large intestine URINARY SYSTEM Kidney	+	+	+	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+	+	+	+	+++++++++++++++++++++++++++++++++++++++	+	+	- +	+	+	+	++	+	+	+++++++++++++++++++++++++++++++++++++++	+	+	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+
Malignant lymphoma, NOS Urinary bladder ENDOCRINE SYSTEM	+	-	+	+	+	+	+	+	+	+	*	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Pituitary Adenoma, NOS Adrenai Phoochromocytoma	+ +	- +	- +	- +	+ +	+ +	+ -	- +	- +	+ +	+ + X	+ + X	+ +	+ +	+ +	- +	+ +	-	+ + X	- +	+ x + x	+ +	+ +	- +	+ +
Pheochromocytoma, nualignant Thyroid Follicular cell adenoma Parathyroid	+ -	-	+ -	+ -	-	+	-	+	+ +	+	* *	+	+ +	+ +	+	+	+	-	+ +	-	-	+ +	++	+ +	+ +
REPRODUCTIVE SYSTEM Mammary gland Adenocarcinoma, NOS Uterus Adenocarcinoma, NOS Sarcoma, NOS Fibroma Ovary Taratoma, NOS	N + +	N -	พ + +	N + X +	N + +	N + +	N + +	+x + +	N + +	N + +	+ + +	N + +	N + +	N + +	N + +	N + +	N - +	N + +	N +	N + +	м + +	א + -	พ + +	א + ל	N - +
Teratoma, NOS NERVOUS SYSTEM Brain	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	* +	-
SPECIAL SENSE ORGANS Harderian gland Adenoma, NOS Cystadenoma, NOS	N	N	N	N	N	N X	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	- к
ALL OTHER SYSTEMS Multiple organs, NOS Adenocarcinoma, NOS, metastatic Malignant lymphoma, NOS Malig. lymphoma, lymphocytic type Malig. lymphoma, lymphocytic type	N	N X				N	N	N	N	N	N	N								X		N X		N	
Malig. lymphoma, lymphocytic type Malig. lymphoma, histicoytic type			x		x									X	x	x		x			x				x

TABLE 84. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE MICE IN THE TWO-YEAR FEED STUDY OF C. I. BASIC RED 9 MONOHYDROCHLORIDE: HIGH DOSE

Tissue Examined Microscopically Required Tissue Not Examined Microscopically Tumor Incidence Necropsy, No Autolysis, No Microscopic Examination Animaj Missexed • :

XNS

No Tissue Information Submitted :

No Fissue information Submitted Necropsy, No Histology Due To Protocol Auto/ysis Animal Missing No Necropsy Performed

C: A: M: B:

ANIMAL NUMBER	5 N 6	541	223	240	080	3 1	32	5 8 8	534	595	0.99	37	38	39	940	4	42	43	44	45	46	547	548	49	50	
WEEKS ON STUDY	9	099	105	088	105	07 7	0 9 1	072	0 8 5	096	0 8 1	0 9 1	0 9 1	004	8	003	105	105	997	100	067	0 8 7	032	092	-0 8 5	TOTAL. TISSUE TUMOR
kin Basal cell carcinoma	+	+	+	+	+	+	+	÷	÷	+	+	÷	÷	+	+	+	.+	+	N	+	*	+	+	+	+	*50 1
ESPIRATORY SYSTEM ungs and broachi Basai ceil careinoma, metastatic Hopatoceilular carcinoma, metastatic Alveolar/bronchiolar adenoma Alveolar/bronchiolar carcinoma Sarcoma, NOS, metastatic rachea	+	+	+ x +	+ x +	+	+	+	+	+	+	+	+ +	+	+	+	+ x +	+	+ x +	A	+	** +	+ X +	+ * * +	+ x +	-+ x +	47 13 4 1 47
EMATOPOIETIC SYSTEM one marrow pleen Malignant lymphoma, NOS ymph nodea Hepatocelluler carcinoma, metastatic Hemangioma Malignant lymphoma, mixed type hymua	+++++++++++++++++++++++++++++++++++++++	++ +	++++	++++	++ + ×-	* * *		-	++ +	++++++	<u> </u>	+	+++++-	+++++++++++++++++++++++++++++++++++++++	-	++	+++++++++++++++++++++++++++++++++++++++	++ + -	× × ×	+	++ + -	++ + -		++ + -		41 46 1 40 1 1 1 5
IRCULATORY SYSTEM	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	.+	+	A	+	+	+	+	+	+	47
NGESTIVE SYSTEM alivary gland iver Hepatocellular sdenoma Hepatocellular carcinoma Malignant lymphoma, NOS ille duct allbladder & common bile duct alcreas sophagus tomach mail intestine arge intestine	*+ x ++++++	++ x +++++++	++ × +z+++++	++ + + + Z + + + + + +	++X +++++++	++ ++++++	++ × +Z+++++	++ +Z ++ 1 1	++ X +N+ ++++	++ x +N+++++	++ X ++++++	+	++ w +x++++	+	++X +N+++++	++ x +x+++++	++ × +N+++++	++ x +z+++++	+A ANAAAAA	++ x +x !!!!!	++X +++++++++	++ x +z +++++	++ ******++++	++ x +z+ +++ -	++ x ++11++1	45 49 4 37 1 49 *50 38 42 45 37
RINARY SYSTEM idney Malignant lymphoma, NOS rinary bladder	+++	++	++	++	++	+++	++	+	+++	++	+ +	+	++	+ +	+	+ +	+ +	++	A A	- +	+	++	+	++	+ +	48 1 45
NDOCRINE SYSTEM ituitary Adenoma, NOS drenai Pheochromocytoma Pheochromocytoma, malignant hyroid Folikcular ceil adenoma arathyroid	+ + + -	- + + +	+ + + + + -	+ + + -	++++	- + + -	- + + +		+ +	- + -	- + + + + + + + + + + + + + + + + + + +	+ + + -	- + + + +	+ + + -	+ + + + + + + + + + + + + + + + + +	++	+ + + -	+ + x + x -	A A A A	+	+ + + -	- + + + + + + + + + + + + + + + + + + +	+x+x	- +	×+	29 2 45 7 1 35 2 18
EPRODUCTIVE SYSTEM fammary gland Adenocarcinoma, NOS fuerus Adenocarcinoma, NOS Sarroma, NOS Fibroma Yary Teratoma, NOS	N + +	N + X +	N + +	N + +	N + +	N + +	N + +	N + X -	N + +	N + +	א + +	N - -	N + +	N + +	N - -	N + X +	N + +	N + +	N A A	N +	N + +	N - +	พ +	N + +	+ + 2	*50 1 43 1 2 1 41 1
ERVOUS SYSTEM	+	+	+	+	+	÷	-	+	+	+	+	÷	-	+	+	+	+	+	+	+	+	+	+	+	-	48
PECIAL SENSE ORGANS arderian gland Adenoma, NOS Cystadenoma, NOS	N	N X	N X		N	N	N	N	N	N	N	N	N	N	N	N	N	N X	N	N	N	N	N	N	N	*50 3 2
LL OTHER SYSTEMS ultiple organs, NOS Adenocarcinoma, NOS, metastatic Malignant Jymphoma, NOS Malig, Jymphoma, undiffer type Malig, Jymphoma, hymphocytic type Malig, Jymphoma, hymphocytic type	N X	N	N	N X		N X		N			N X			N X	N	N X	N	N		N X	N	N	N	N	N	*50 1 11 1 1 8

TABLE B4. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE MICE: HIGH DOSE (Continued)

C.I. Basic Red 9 Monohydrochloride, NTP TR 285

120

APPENDIX C

SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN RATS IN THE TWO-YEAR FEED STUDIES OF C. I. BASIC RED 9 MONOHYDROCHLORIDE

	CONTR	OL (UNTR)	LOW	DOSE	HIG	h dose
ANIMALS INITIALLY IN STUDY	50		50		50	
ANIMALS NECROPSIED	50		50		50	
ANIMALS EXAMINED HISTOPATHOLOGICALI			50		50	
NTEGUMENTARY SYSTEM						
*SKIN	(50)		(50)		(50)	
EPIDERMAL INCLUSION CYST	1	(2%)		(2%)		(6%)
INFLAMMATION, NOS	1	(2%)	1	(2%)		(14%)
INFLAMMATION, ACUTE	1	(2%)			1	(2%)
NECROSIS, NOS					6	(12%)
HYPERPLASIA, EPITHELIAL	1	(2%)				
HYPERPLASIA, BASAL CELL					5	(10%)
HYPERKERATÓSIS	2	(4%)	2	(4%)		(20%)
ACANTHOSIS				-		(2%)
*SUBCUT TISSUE	(50)		(50)		(50)	
MINERALIZATION				(2%)		
INFLAMMATION, NOS	1	(2%)		(2%)		
REACTION, FOREIGN BODY			1	(2%)		
NECROSIS, NOS	1	(2%)	1	(2%)	1	(2%)
RESPIRATORY SYSTEM						
#TRACHEA	(50)		(50)		(50)	
INFLAMMATION, NOS	(00)			(4%)		(6%)
			4	(4270)		
INFLAMMATION, ACUTE			•	(00)	1	(2%)
INFLAMMATION, ACUTE/CHRONIC			3	(6%)		(00)
NECROSIS, FIBRINOID	(50)		(20)			(2%)
#LUNG/BRONCHUS	(50)		(50)	.0	(50)	(0~)
INFLAMMATION, NOS			1	(2%)		(2%)
INFLAMMATION, FOCAL	(50)		(50)			(4%)
#LUNG/BRONCHIOLE	(50)		(50)	(10)	(50)	
INFLAMMATION, NOS	(EO)			(4%)		
#LUNG	(50)		(50)		(50)	(4.00)
MINERALIZATION					z	(4%)
HEMORRHAGE			4	(8%)		
BRONCHOPNEUMONIA, NOS	_	(1 -)		(0.21)		(6%)
INFLAMMATION, NOS		(12%)		(8%)	18	(36%)
INFLAMMATION, FOCAL	2	(4%)		(8%)	-	
INFLAMMATION, ACUTE				(6%)	9	(18%)
INFLAMMATION, ACUTE/CHRONIC		(2%)	1	(2%)		
INFLAMMATION, FOCAL GRANULOMAT	OUS					(2%)
REACTION, FOREIGN BODY			1	(2%)		(2%)
FIBROSIS						(2%)
HYPERPLASIA, EPITHELIAL	1	(2%)	3	(6%)	2	(4%)
HEMATOPOIETIC SYSTEM						
#SPLEEN	(49)		(49)		(49)	
DEGENERATION, LIPOID				(2%)		
NECROSIS, FOCAL				(2%)	1	(2%)
LYMPHOID DEPLETION	2	(4%)		(6%)		(18%)
HEMATOPOIESIS		(45%)		(76%)		(57%)
		· - · · - /	÷ •			
#SPLENIC FOLLICLES	(49)		(49)		(49)	

TABLE C1. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE RATS IN THE
TWO-YEAR FEED STUDY OF C. I. BASIC RED 9 MONOHYDROCHLORIDE

HEMATOPOIETIC SYSTEM (Continued) #LYMPH NODE ATROPHY, NOS LYMPHOID DEPLETION ANGIECTASIS	(49)			<u></u>		
#LYMPH NODE ATROPHY, NOS LYMPHOID DEPLETION			(10)			
ATROPHY, NOS LYMPHOID DEPLETION			(49)		(48)	
LYMPHOID DEPLETION		(2%)	(10)		(10)	
	-	(270)			9	(4%) .
	1	(90)		(10)		
		(2%)	2	(4%)		(8%)
PLASMACYTOSIS	2	(4%)				(2%)
HYPERPLASIA, RETICULUM CELL					1	(2%)
HYPERPLASIA, LYMPHOID	1	(2%)	1	(2%)	2	(4%)
HEMATOPOIESIS					1	(2%)
#LIVER	(50)		(50)		(50)	
HEMATOPOIESIS				(2%)		(8%)
IRCULATORY SYSTEM					••••••••••••••••••••••••••••••••••••••	
#HEART	(50)		(50)		(50)	
MINERALIZATION	(00)		(00)			(4%)
THROMBOSIS, NOS	•	(2%)			2	(10)
						(00)
INFLAMMATION, FOCAL	-	(2%)			1	(2%)
INFLAMMATION, ACUTE/CHRONIC		(2%)				(0.7)
FIBROSIS		(2%)				(2%)
#MYOCARDIUM	(50)		(50)		(50)	
DEGENERATION, NOS	46	(92%)	44	(88%)	28	(56%)
*ARTERY	(50)		(50)		(50)	
PERIVASCULITIS			1	(2%)		
#PANCREAS	(47)		(50)		(46)	
PERIVASCULITIS				(2%)	,	
#STOMACH	(48)		(50)	(=,-,	(48)	
PERIARTERITIS	(10)		(00)			(2%)
*MOUTH NECROSIS, NOS HYPERKERATOSIS	(50)		(50)		1	(2%) (2%)
ACANTHOSIS					1	(2%)
*ORAL MUCOUS MEMBRANE	(50)		(50)		(50)	
INFLAMMATION, ACUTE	1	(2%)				
ACANTHOSIS		(2%)				
#SALIVARY GLAND	(48)	·	(47)		(40)	
HYPERPLASIA, FOCAL	(40)			(2%)	(-0)	
#LIVER	(50)		(50)	(= /• /	(50)	
CONGENITAL MALFORMATION, NOS		(2%)	(00)		(00)	
INFLAMMATION, NOS	1	(2.70)			1	(2%)
DEGENERATION, NOS	0	(ΛO_{h})	1	(2%)	1	
	2	(4%)		(6%)	٥	(16%)
NECROSIS, FOCAL	4	(90)				
NECROSIS, ISCHEMIC		(2%)		(2%)		(20%)
METAMORPHOSIS FATTY	20	(40%)	33	(66%)		(46%)
CYTOPLASMIC CHANGE, NOS						(2%)
BASOPHILIC CYTO CHANGE		(12%)				(4%)
FOCAL CELLULAR CHANGE		(60%)	41	(82%)	29	(58%)
CLEAR-CELL CHANGE	2	(4%)				
REGENERATION, NOS	1	(2%)				
#PORTAL TRACT	(50)		(50)		(50)	
FIBROSIS			(20)			(2%)
	(50)		(50)		(50)	
#LIVBRAUNTRILUBULAR		(2%)	(00)			(4%)
#LIVER/CENTRILOBULAR NECROSIS NOS	1				4	
NECROSIS, NOS			(50)		(50)	
NECROSIS, NOS #BILE DUCT	(50)		(50) 13	(26%)	(50)	(6%)
NECROSIS, NOS	(50)	(66%)		(26%)		(6%)

TABLE C1. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE RATS IN THE
TWO-YEAR FEED STUDY OF C.I. BASIC RED 9 MONOHYDROCHLORIDE (Continued)

1 (45) 2 (48) 1 1 2 1 1 1 1 1 1 4 (48) 1	 (2%) (2%) (4%) (2%) 	2 1 (41) 3 (50) 1 1 2 1 3 3 3 5 (50)	 (6%) (4%) (2%) (2%) (2%) (2%) (4%) (6%) 	1 (44) 1 2 (48) 1 1 2 2 10 2 10	 (4%) (2%) (5%) (2%) (2%) (4%) (21%) (4%) (21%) (4%) (21%)
$ \begin{array}{c} 1\\ (45)\\ 2\\ (48)\\ 1\\ 1\\ 1\\ 1\\ 1\\ 4\\ (48)\\ 1\\ 1 \end{array} $	 (2%) (2%) (4%) (2%) (2%) (2%) (2%) (2%) (2%) (2%) (8%) (2%) 	3 2 1 (41) 1 (50) 1 2 1 3 3 5 (50)	 (4%) (2%) (2%) (2%) (4%) (2%) (6%) (6%) (6%) (10%) 	2 1 (44) 1 2 (48) 1 1 2 10 2 10 2 10 2	 (4%) (2%) (5%) (2%) (2%) (4%) (21%) (4%) (21%) (21%)
$ \begin{array}{c} 1\\ (45)\\ 2\\ (48)\\ 1\\ 1\\ 1\\ 1\\ 1\\ 4\\ (48)\\ 1\\ 1\\ 1 \end{array} $	 (2%) (2%) (4%) (2%) (2%) (2%) (2%) (2%) (2%) (2%) (8%) (2%) 	3 2 1 (41) 1 (50) 1 2 1 3 3 5 (50)	 (4%) (2%) (2%) (2%) (4%) (2%) (6%) (6%) (6%) (10%) 	2 1 (44) 1 2 (48) 1 1 2 10 2 10 2 10 2	 (4%) (2%) (5%) (2%) (2%) (4%) (21%) (4%) (21%) (21%)
1 (45) 2 (48) 1 1 2 1 1 1 1 1 4 (48) 1 1	 (2%) (4%) (2%) 	2 1 (41) 3 (50) 1 1 2 1 3 3 3 5 (50)	 (4%) (2%) (2%) (2%) (4%) (2%) (6%) (6%) (6%) (10%) 	1 (44) 1 2 (48) 1 1 2 2 10 2 10 2 10 2	(2%) (2%) (5%) (2%) (2%) (4%) (21%) (4%) (21%)
(45) 2 (48) 1 1 2 1 1 1 1 1 4 (48) 1 1 1	 (4%) (2%) (4%) (2%) (2%) (2%) (2%) (2%) (8%) (2%) 	1 (41) (50) 1 1 2 1 3 3 3 5 (50)	 (2%) (2%) (2%) (4%) (2%) (6%) (6%) (6%) (6%) (6%) (10%) 	1 (44) 1 2 (48) 1 1 2 2 10 2 10 2 10 2	(2%) (2%) (5%) (2%) (2%) (4%) (21%) (4%) (21%)
(45) 2 (48) 1 1 2 1 1 1 1 1 4 (48) 1 1 1	 (4%) (2%) (4%) (2%) (2%) (2%) (2%) (2%) (8%) (2%) 	(41) (50- 1 1 2 1 3 3 3 5 (50)	 (2%) (2%) (4%) (2%) (6%) (6%) (6%) (6%) (10%) 	1 (44) 1 2 (48) 1 1 2 2 10 2 10 2 10 2	(2%) (2%) (5%) (2%) (2%) (4%) (21%) (4%) (21%)
(45) 2 (48) 1 1 2 1 1 1 1 1 4 (48) 1 1 1	 (4%) (2%) (4%) (2%) (2%) (2%) (2%) (2%) (8%) (2%) 	(41) (50- 1 1 2 1 3 3 3 5 (50)	 (2%) (2%) (4%) (2%) (6%) (6%) (6%) (6%) (10%) 	(44) 1 2 (48) 1 1 2 10 2 10 2 10 2	(2%) (5%) (2%) (2%) (4%) (21%) (21%) (21%)
(45) 2 (48) 1 1 2 1 1 1 1 1 4 (48) 1 1 1	 (4%) (2%) (4%) (2%) (2%) (2%) (2%) (2%) (8%) (2%) 	(56) 1 1 2 1 3 3 3 5 (50)	 (2%) (2%) (4%) (2%) (6%) (6%) (6%) (10%) 	(44) 1 2 (48) 1 1 2 10 2 10 2 10 2	(2%) (5%) (2%) (2%) (4%) (21%) (21%) (21%)
2 (48) 1 1 2 1 1 1 1 1 4 (48) 1 1	 (2%) (2%) (4%) (2%) (2%) (2%) (2%) (8%) (2%) 	(56) 1 1 2 1 3 3 3 5 (50)	 (2%) (2%) (4%) (2%) (6%) (6%) (6%) (10%) 	1 2 (48) 1 1 2 10 2 10 2 10 2	 (5%) (2%) (4%) (21%) (4%) (21%) (21%)
(48) 1 1 2 1 1 1 1 4 (48) 1 1	 (2%) (2%) (4%) (2%) (2%) (2%) (2%) (8%) (2%) 	(50) 1 1 2 1 3 3 3 5 (50)	 (2%) (2%) (4%) (2%) (6%) (6%) (6%) (10%) 	2 (48) 1 1 2 10 2 10 2 10 2	 (5%) (2%) (4%) (21%) (4%) (21%) (21%)
(48) 1 1 2 1 1 1 1 4 (48) 1 1	 (2%) (2%) (4%) (2%) (2%) (2%) (2%) (8%) (2%) 	(50) 1 1 2 1 3 3 3 5 (50)	 (2%) (2%) (4%) (2%) (6%) (6%) (6%) (10%) 	2 (48) 1 1 2 10 2 10 2 10 2	 (5%) (2%) (4%) (21%) (4%) (21%) (21%)
(48) 1 1 2 1 1 1 1 4 (48) 1 1	 (2%) (2%) (4%) (2%) (2%) (2%) (2%) (8%) (2%) 	(50) 1 1 2 1 3 3 3 5 (50)	 (2%) (2%) (4%) (2%) (6%) (6%) (6%) (10%) 	(48) 1 2 10 2 10 2 10 2	(2%) (2%) (4%) (4%) (21%) (4%) (21%)
1 1 1 1 1 1 1 4 (48) 1 1	(2%) (4%) (2%) (2%) (2%) (2%) (2%) (8%)	1 1 2 1 3 3 3 5 (50)	(2%) (4%) (2%) (6%) (6%) (6%) (10%)	1 1 2 10 2 10 2 10 2	(2%) (4%) (4%) (21%) (4%) (21%)
1 2 1 1 1 1 4 (48) 1 1	(2%) (4%) (2%) (2%) (2%) (2%) (2%) (8%)	1 2 1 3 3 3 5 (50)	(2%) (4%) (2%) (6%) (6%) (6%) (10%)	1 2 10 2 10 2 10 2	(2%) (4%) (4%) (21%) (4%) (21%)
1 2 1 1 1 1 4 (48) 1 1	(2%) (4%) (2%) (2%) (2%) (2%) (2%) (8%)	2 1 3 3 3 5 (50)	(4%) (2%) (6%) (6%) (6%) (10%)	2 10 2 10 2 10 2	(4%) (4%) (21%) (4%) (21%)
2 1 1 1 1 1 4 (48) 1 1	(4%) (2%) (2%) (2%) (2%) (2%) (8%) (2%)	2 1 3 3 3 5 (50)	(4%) (2%) (6%) (6%) (6%) (10%)	2 10 2 10 2 10 2	(4%) (4%) (21%) (4%) (21%)
2 1 1 1 1 1 4 (48) 1 1	(4%) (2%) (2%) (2%) (2%) (2%) (8%) (2%)	2 1 3 3 3 5 (50)	(4%) (2%) (6%) (6%) (6%) (10%)	2 10 2 10 2	(4%) (21%) (4%) (21%)
1 1 1 1 4 (48) 1 1	(2%) (2%) (2%) (2%) (2%) (8%) (2%)	2 1 3 3 3 5 (50)	(4%) (2%) (6%) (6%) (6%) (10%)	10 2 10 2	(21%) (4%) (21%)
1 1 1 4 (48) 1 1	(2%) (2%) (2%) (2%) (8%) (2%)	2 1 3 3 3 5 (50)	(4%) (2%) (6%) (6%) (6%) (10%)	10 2 10 2	(21%) (4%) (21%)
1 1 1 4 (48) 1 1	(2%) (2%) (2%) (2%) (8%) (2%)	1 3 3 5 (50)	(2%) (6%) (6%) (6%) (10%)	10 2 10 2	(21%) (4%) (21%)
1 1 1 4 (48) 1 1	(2%) (2%) (2%) (2%) (8%) (2%)	1 3 3 5 (50)	(2%) (6%) (6%) (6%) (10%)	10 2 10 2	(21%) (4%) (21%)
1 1 4 (48) 1 1	(2%) (2%) (2%) (8%) (2%)	1 3 3 5 (50)	(2%) (6%) (6%) (6%) (10%)	10 2 10 2	(21%) (4%) (21%)
1 1 (48) 1 1	(2%) (2%) (8%) (2%)	3 3 3 5 (50)	(6%) (6%) (6%) (10%)	10 2 10 2	(21%) (4%) (21%)
1 (48) 1 1	(2%) (8%) (2%)	3 3 3 5 (50)	(6%) (6%) (6%) (10%)	10 2 10 2	(21%) (4%) (21%)
4 (48) 1 1	(8%)	3 3 5 (50)	(6%) (6%) (10%)	10 2 10 2	(21%) (4%) (21%)
4 (48) 1 1	(8%)	3 5 (50)	(6%) (10%)	2 10 2	(4%) (21%)
(4 8) 1 1	(2%)	5 (50)	(10%)	10 2	(21%)
(4 8) 1 1	(2%)	(50)		2	
1 1					(4%)
1 1				(48)	
1		1			
	(2%)		(2%)		
(10)		(50)		(48)	
		(00)			(2%)
(44)		(48)		(42)	(2,0)
	(9%)		(13%)		(12%)
	(9%)		(10%)		(12%)
(44)		(48)		(42)	(00)
					(2%)
					(2%)
(44)		(48)		(42)	
1	(2%)				
1	(2%)				
(45)		(45)		(42)	
				1	(2%)
6	(13%)	9	(4%)		(2%)
U		4	. 2/0/		(2%)
1423		(45)			(210)
(40)			(90)	(42)	
		1	(2%)		
(49)		(50)		(49)	
			(4%)		(12%)
		4	· - · · · /		(2%)
		0	(19)	I	(210)
				^	(100)
13	(27%)	26	(52%)		(12%)
				2	(4%)
1	(2%)				
		19	(38%)	11	(22%)
					(90%)
-10					
	1 (45) 6 (45) (49) 13 1 8	1 (2%) (45) 6 (13%) (45)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

TABLE C1. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE RATS IN THE
TWO-YEAR FEED STUDY OF C.I. BASIC RED 9 MONOHYDROCHLORIDE (Continued)

C.I. Basic Red 9 Monohydrochloride, NTP TR 285

	CONTR	ROL (UNTR)	LOW	DOSE	HIG	h dose
URINARY SYSTEM (Continued)	<u>-</u>					
#RENAL PAPILLA	(49)		(50)		(49)	
MINERALIZATION	,			(2%)	(10)	
NECROSIS, NOS			-	(=)	1	(2%)
#KIDNEY/TUBULE	(49)		(50)		(49)	
MINERALIZATION			(1	(2%)
NECROSIS, NOS						(2%)
NECROSIS, FOCAL	1	(2%)	1	(2%)		
#URINARY BLADDER	(47)		(49)		(47)	
INFLAMMATION, NOS	1	(2%)				
HYPERPLASIA, EPITHELIAL	1	(2%)				
#U.BLADDER/SUBMUCOSA	(47)		(49)		(47)	
HEMORRHAGE					2	(4%)
NECROSIS, NOS					2	(4%)
ENDOCRINE SYSTEM						
#PITUITARY	(48)		(47)		(46)	
DILATATION, NOS		(8%)		(4%)		(2%)
HYPERPLASIA, NOS		(2%)		(6%)	•	
HYPERPLASIA, FOCAL		(4%)		(2%)	1	(2%)
#ADRENAL	(49)		(49)		(48)	(=,
MINERALIZATION		(2%)	(
DILATATION, NOS	-	(=,	1	(2%)	3	(6%)
INFLAMMATION, NOS	1	(2%)	-	(=)	•	(0,0)
NECROSIS, NOS		(6%)				
METAMORPHOSIS FATTY	-	(6%)	2	(4%)	3	(6%)
#ADRENAL CORTEX	(49)	(0,0)	(49)	(= / • /	(48)	(• .•)
HYPERTROPHY, FOCAL		(6%)		(2%)		(4%)
#ADRENAL MEDULLA	(49)		(49)	(2,0)	(48)	(4/0)
HYPERPLASIA, NOS		(16%)		(10%)		(13%)
HYPERPLASIA, FOCAL		(4%)	-	(10%)		(4%)
#THYROID	(49)	(4-70)	(46)	(270)	(44)	(470)
MINERALIZATION	(49)		(40)			(2%)
FOLLICULAR CYST, NOS			2	(7%)		(2%)
INFLAMMATION, NOS			3	(170)		(2%)
FIBROSIS						(2%)
NECROSIS, NOS						(2%)
HYPERPLASIA, C-CELL	9	(4%)	9	(4%)	1	(270)
HYPERPLASIA, FOLLICULAR-CELL	2	(4.0)	4	(470)	16	(36%)
METAPLASIA, SQUAMOUS						(2%)
#PANCREATIC ISLETS	(47)		(50)		(46)	(2,70)
HYPERPLASIA, NOS	(41)			(2%)		(2%)
EPRODUCTIVE SYSTEM				<u></u>		
*MAMMARY GLAND	(50)		(50)		(50)	
GALACTOCELE	(007			(2%)	(00)	
HYPERPLASIA, NOS				(2%)		
*PREPUTIAL GLAND	(50)		(50)	((50)	
INFLAMMATION, NOS		(4%)		(2%)	(00)	
NECROSIS, NOS		(6%)		(2%)		
HYPERPLASIA, NOS		(4%)	•	(
#PROSTATE	(48)	~ - / • /	(48)		(48)	
INFLAMMATION, NOS		(35%)		(40%)		(21%)
INFLAMMATION, ACUTE FOCAL	I f		10			(2%)
· · · · · · · · · · · · · · · · · · ·						(2%)
					1	14/01
HYPERPLASIA, EPITHELIAL HYPERPLASIA, FOCAL	•	(2%)	0	(4%)		(2%)

TABLE C1. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE RATS IN THE
TWO-YEAR FEED STUDY OF C.I. BASIC RED 9 MONOHYDROCHLORIDE (Continued)

	CONTR	OL (UNTR)	LOW	DOSE	HIGI	H DOSE
REPRODUCIVE SYSTEM (Continued)						
#TESTIS	(48)		(48)		(50)	
MINERALIZATION	5	(10%)	10	(21%)	11	(22%)
ATROPHY, NOS	32	(67%)	34	(71%)	23	(46%)
HYPERPLASIA, INTERSTITIAL CELL	4	(8%)	2	(4%)	8	(16%)
#TESTIS/TUBULE	(48)		(48)		(50)	
ATROPHY, FOCAL					4	(8%)
NERVOUS SYSTEM						
#BRAIN	(49)		(50)		(50)	
HYDROCEPHALUS, NOS	1	(2%)			1	
HEMORRHAGE	-	(=)	1	(2%)		
SPECIAL SENSE ORGANS						
*EYE	(50)		(50)		(50)	
CATARACT	(00)					(2%)
*EXTERNAL EAR	(50)		(50)		(50)	(=,
HYPERKERATOSIS	(00)		(,			(2%)
*ZYMBAL GLAND	(50)		(50)		(50)	(2,0)
INFLAMMATION, NOS	(00)			(2%)		(2%)
NECROSIS, NOS				(2%)		(12%)
HYPERKERATOSIS				(2%)		(16%)
				(270)		(10,0)
MUSCULOSKELETAL SYSTEM	(70)				(50)	
*PHALANGES	(50)		(50)		(50)	
INFLAMMATION, ACUTE/CHRONIC		(2%)				
FIBROSIS		(2%)				
OSTEOARTHRITIS	1	(2%)				
BODY CAVITIES						
*ABDOMINAL CAVITY	(50)		(50)		(50)	
METAPLASIA, OSSEOUS					1	(2%)
ALL OTHER SYSTEMS						
*MULTIPLE ORGANS	(50)		(50)		(50)	
HEMORRHAGE						(2%)
INFLAMMATION, NOS						(6%)
DEGENERATION, NOS						(2%)
NECROSIS, NOS						(4%)
ATROPHY, NOS					1	(2%)
OMENTUM						
INFLAMMATION, ACUTE/CHRONIC	1					
	1		1		1	

TABLE C1. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE RATS IN THE TWO-YEAR FEED STUDY OF C. I. BASIC RED 9, MONOHYDROCHLORIDE (Continued)

NONE

NUMBER OF ANIMALS WITH TISSUE EXAMINED MICROSCOPICALLY * NUMBER OF ANIMALS NECROPSIED

	CONTR	OL (UNTR)	LOW	DOSE	HIG	H DOSE
ANIMALS INITIALLY IN STUDY	50		50		50	
ANIMALS NECROPSIED	50		50		50	
ANIMALS EXAMINED HISTOPATHOLOGICALL	Y 50		50		50	
NTEGUMENTARY SYSTEM						
*SKIN	(50)		(50)		(50)	
EPIDERMAL INCLUSION CYST		(2%)	1	(2%)		
INFLAMMATION, NOS		(2%)				
*SUBCUT TISSUE	(50)		(50)		(50)	
MINERALIZATION				(2%)		
INFLAMMATION, NOS			1	(2%)	1	(901)
INFLAMMATION, NECROTIZING						(2%)
INFLAMMATION, ACUTE FIBROSIS						(2%) (2%)
NECROSIS, NOS			9	(4%)		(2%)
METAPLASIA, OSSEOUS			-	(4,0)		(2%)
RESPIRATORY SYSTEM						
#LUNG/BRONCHUS	(50)		(50)		(50)	
INFLAMMATION, NOS	(00)			(2%)		(2%)
#LUNG	(50)		(50)	(2,2)	(50)	(2,0)
MINERALIZATION	1	(2%)	(,		(00)	
HEMORRHAGE	-		3	(6%)		
INFLAMMATION, NOS	1	(2%)	10	(20%)	6	(12%)
INFLAMMATION, FOCAL	7	(14%)	1	(2%)		
INFLAMMATION, ACUTE			4	(8%)	5	(10%)
INFLAMMATION, ACUTE/CHRONIC	1	(2%)				
INFLAMMATION, GRANULOMATOUS						(2%)
HYPERPLASIA, EPITHELIAL	3	(6%)	3	(6%)	3	(6%)
IEMATOPOIETIC SYSTEM						
#SPLEEN	(49)		(49)		(50)	
FIBROSIS				(2%)		
LYMPHOID DEPLETION			3	(6%)		(10%)
HEMATOPOIESIS		(73%)		(80%)		(70%)
#SPLENIC FOLLICLES	(49)		(49)		(50)	
ATROPHY, NOS				(16%)		(8%)
#LYMPH NODE	(50)		(49)	(90)	(49)	
INFLAMMATION, NOS ABSCESS, NOS				(2%) (2%)		
NECROSIS, NOS				(2%)		
ANGIECTASIS				(2%)	1	(2%)
PLASMACYTOSIS				(8%)		(2%)
HYPERPLASIA, LYMPHOID	1	(2%)				(4%)
HEMATOPOIESIS		(2%)				
#LIVER	(50)		(50)		(50)	
HEMATOPOIESIS				(2%)		(4%)
#ADRENAL	(50)		(50)		(49)	(A A)
HEMATOPOIESIS					1	(2%)
CIRCULATORY SYSTEM						
#HEART	(50)		(50)		(50)	
MINERALIZATION	1	(2%)	-	(0.0.)	2	(4%)
THROMBUS, MURAL		(90)		(2%)		
INFLAMMATION, CHRONIC FOCAL		(2%)	1 (50)	(2%)	(50)	
					ເວບ	
#MYOCARDIUM DEGENERATION, NOS	(50)	(76%)		(68%)		(60%)

TABLE C2.SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN FEMALE RATS IN
THE TWO-YEAR FEED STUDY OF C. I. BASIC RED 9 MONOHYDROCHLORIDE

C.I. Basic Red 9 Monohydrochloride, NTP TR 285

	CONTR	OL (UNTR)	LOW	DOSE	HIG	h dose
DIGESTIVE SYSTEM			<u>.</u>			
#LIVER	(50)		(50)		(50)	
CONGENITAL MALFORMATION, NOS		(2%)	(00)		(00)	
DILATATION, NOS	-	(270)	1	(2%)		
CONGESTION, NOS				(2%)		
DEGENERATION, NOS				(6%)	2	(4%)
NECROSIS, FOCAL	4	(8%)		(10%)		(8%)
NECROSIS, ISCHEMIC		(2%)		(6%)		(6%)
METAMORPHOSIS FATTY		(30%)		(48%)	-	(32%)
						(16%)
BASOPHILIC CYTO CHANGE		(36%)		(22%)		
FOCAL CELLULAR CHANGE	28	(56%)		(66%)	31	(62%)
REGENERATION, NOS				(2%)		
#BILE DUCT	(50)		(50)		(50)	
INFLAMMATION, NOS					1	(2%)
FIBROSIS				(2%)		
SCLEROSIS				(2%)		(2%)
HYPERPLASIA, NOS	23	(46%)	15	(30%)	8	(16%)
#PANCREATIC ACINUS	(49)		(47)		(49)	
ATROPHY, NOS			2	(4%)		
#ESOPHAGUS	(49)		(50)		(47)	
HYPERKERATOSIS			1	(2%)	1	(2%)
#STOMACH	(48)		(49)		(50)	
HEMORRHAGE			1	(2%)		
INFLAMMATION, NOS					1	(2%)
ULCER, NOS			1	(2%)	-	(=)
INFLAMMATION, ACUTE			•	(2/0/	1	(2%)
INFLAMMATION, ACUTE/CHRONIC			1	(2%)		(2%)
NECROSIS, NOS				(4%)		(2%)
				(6%)		(12%)
NECROSIS, FOCAL				(4%)		(12%) (14%)
HYPERPLASIA, EPITHELIAL				(2%)		(14%) (2%)
HYPERPLASIA, BASAL CELL	0	(10)				
HYPERKERATOSIS	z	(4%)		(12%)	1	(14%)
ACANTHOSIS	(10)			(2%)	(10)	
#PEYER'S PATCH	(49)	(100)	(50)	(10%)	(49)	(100)
HYPERPLASIA, NOS		(18%)		(10%)		(10%)
#COLON	(47)		(48)		(49)	
PARASITISM	1	(2%)	2	(4%)	2	(4%)
IRINARY SYSTEM	(50)		(50)		(50)	
#KIDNEY	(50)	(1 401)	(50)	(190)	(50)	(0.01.)
MINERALIZATION		(14%)		(12%) (10%)		(8%) (19~)
INFLAMMATION, NOS	1	(14%)		(10%) (2%)	Z	(4%)
INFLAMMATION, FOCAL			1	(270)		(90)
INFLAMMATION, ACUTE/CHRONIC		(90)	~	(401)		(2%)
FIBROSIS, DIFFUSE		(8%)		(4%)		(6%)
NEPHROPATHY		(84%)		(82%)	36	(72%)
NECROSIS, FOCAL		(2%)		(2%)		
#RENAL PAPILLA	(50)		(50)	(0~)	(50)	(10)
MINERALIZATION		.		(2%)	2	(4%)
NECROSIS, NOS		(2%)		(2%)		
#KIDNEY/TUBULE	(50)		(50)		(50)	
NECROSIS, FOCAL					1	(2%)
#KIDNEY/PELVIS	(50)		(50)		(50)	
HYPERPLASIA, EPITHELIAL		(4%)				
#URINARY BLADDER	(48)		(50)		(49)	
HEMORRHAGE		(2%)				(2%)
INFLAMMATION, ACUTE		(2%)			_	
INFLAMMATION, ACUTE/CHRONIC	•	4	1	(2%)		
·	-	(2%)		(2%)		

TABLE C2. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN FEMALE RATS IN
THE TWO-YEAR FEED STUDY OF C.I. BASIC RED 9 MONOHYDROCHLORIDE (Continued)

C.I. Basic Red 9 Monohydrochloride, NTP TR 285

	CONTR	OL (UNTR)	LOW	DOSE	HIG	h dose
ENDOCRINE SYSTEM					<u> </u>	
#PITUITARY	(50)		(48)		(49)	
DILATATION, NOS		(8%)		(8%)		(14%)
HEMORRHAGE		(2%)		(2%)		(2%)
HYPERPLASIA, NOS	-	(2%)		(15%)		(2%)
			'	(10%)	0	(10%)
HYPERPLASIA, FOCAL		(6%)	(50)		(40)	
#ADRENAL	(50)		(50)		(49)	
DILATATION, NOS		(00)		(0~)	3	(6%)
HEMORRHAGE	1	(2%)	1	(2%)		
INFLAMMATION, NOS						(2%)
DEGENERATION, NOS	1	(2%)				(6%)
NECROSIS, NOS			1	(2%)	1	(2%)
NECROSIS, FOCAL		(4%)				
INFARCT, NOS	1	(2%)			1	(2%)
METAMORPHOSIS FATTY	4	(8%)	7	(14%)	11	(22%)
#ADRENAL CORTEX	(50)		(50)		(49)	
NECROSIS, NOS			1	(2%)		
INFARCT, NOS				(2%)		
METAMORPHOSIS FATTY			-	(= ///	1	(2%)
HYPERTROPHY, FOCAL	8	(16%)	3	(6%)		(10%)
HYPERPLASIA, NOS		(2%)	0	(0,0)		(10%)
#ADRENAL MEDULLA		(270)	(50)			
	(50)	(00)	(50)	(100)	(49)	
HYPERPLASIA, NOS		(8%)		(12%)		(4%)
HYPERPLASIA, FOCAL		(4%)		(4%)		(2%)
#THYROID	(47)		(48)		(50)	
FOLLICULAR CYST, NOS				(6%)	2	(4%)
NECROSIS, NOS				(2%)		
HYPERPLASIA, C-CELL	7	(15%)	4	(8%)		
HYPERPLASIA, FOLLICULAR-CELL			2	(4%)		
#PANCREATIC ISLETS	(49)		(47)		(49)	
HYPERPLASIA, NOS			1	(2%)		
REPRODUCTIVE SYSTEM						
*MAMMARY GLAND	(50)		(50)		(50)	
GALACTOCELE		(22%)		(26%)		(24%)
INFLAMMATION, NOS	**	(2270)	10	(20%)		(6%)
NECROSIS, NOS						(6%)
	0	(40)			3	(0%)
HYPERPLASIA, NOS		(4%)				
HYPERPLASIA, EPITHELIAL		(2%)	(50)		(50)	
*CLITORAL GLAND	(50)		(50)	((50)	
INFLAMMATION, NOS		(4%)		(4%)		
NECROSIS, NOS		(8%)	3	(6%)	3	(6%)
HYPERKERATOSIS		(2%)				
ACANTHOSIS	1	(2%)				
#UTERUS	(50)		(50)		(49)	
MINERALIZATION			1	(2%)		
HYDROMETRA	1	(2%)	6	(12%)	3	(6%)
HEMORRHAGE		(4%)		(6%)		(2%)
INFLAMMATION, NOS		(2%)		(10%)		(4%)
INFLAMMATION, ACUTE		(2%)		(2%)	-	/
NECROSIS, NOS		(2%)		(4%)	1	(2%)
HYPERPLASIA, ADENOMATOUS	1	(20)		(2%)		(2%)
DECIDUAL ALTERATION, NOS	1	(2%)	1		1	(210)
		(470)	(50)		(40)	
#UTERUS/ENDOMETRIUM	(50)		(50)	(19)	(49)	(900.)
HYPERPLASIA, NOS	-	(90)	2	(4%)		(2%)
HYPERPLASIA, FOCAL	1	(2%)		(22)	2	(4%)
HYPERPLASIA, CYSTIC			1	(2%)		

TABLE C2. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN FEMALE RATS IN
THE TWO-YEAR FEED STUDY OF C. I. BASIC RED 9 MONOHYDROCHLORIDE (Continued)

	CONTROL (UNTR)	LOW DOSE	HIGH DOSE
NERVOUS SYSTEM			
#BRAIN	(50)	(49)	(50)
HYDROCEPHALUS, NOS			1 (2%)
GLIOSIS			1 (2%)
SPECIAL SENSE ORGANS			
*EYE ANTERIOR CHAMBER	(50)	(50)	(50)
HEMORRHAGE	(50)	(50)	1 (2%)
*EYE/CORNEA HEMORRHAGE	(50)	(50)	(50) 1 (2%)
INFLAMMATION, ACUTE/CHRONIC			1 (2%)
*EAR	(50)	(50)	(50)
NECROSIS, NOS	(00)	(00)	1 (2%)
HYPERKERATOSIS			1 (2%)
*ZYMBAL GLAND	(50)	(50)	(50)
EPIDERMAL INCLUSION CYST			1 (2%)
INFLAMMATION, NOS			3 (6%)
NECROSIS, NOS		1 (2%)	5 (10%)
HYPERKERATOSIS		2 (4%)	3 (6%)
ACANTHOSIS			1 (2%)
BODY CAVITIES	(50)	(50)	(50)
*ABDOMINAL CAVITY	(50)	(50)	(50) 1 (2%)
*ABDOMINAL CAVITY NECROSIS, NOS		·	1 (2%)
*ABDOMINAL CAVITY	(50) (50)	(50) (50) 1 (2%)	(
*ABDOMINAL CAVITY NECROSIS, NOS *PERICARDIUM INFLAMMATION, NOS		(50)	1 (2%)
*ABDOMINAL CAVITY NECROSIS, NOS *PERICARDIUM INFLAMMATION, NOS		(50)	1 (2%)
*ABDOMINAL CAVITY NECROSIS, NOS *PERICARDIUM INFLAMMATION, NOS	(50)	(50) 1 (2%)	1 (2%) (50)
*ABDOMINAL CAVITY NECROSIS, NOS *PERICARDIUM INFLAMMATION, NOS ALL OTHER SYSTEMS *MULTIPLE ORGANS	(50)	(50) 1 (2%) (50) 2 (4%)	(50) (50) (50) (2%)
*ABDOMINAL CAVITY NECROSIS, NOS *PERICARDIUM INFLAMMATION, NOS ALL OTHER SYSTEMS *MULTIPLE ORGANS MINERALIZATION INFLAMMATION, NOS NECROSIS, NOS	(50)	(50) 1 (2%) (50)	(50) (50) (2%) (2%) (2%)
*ABDOMINAL CAVITY NECROSIS, NOS *PERICARDIUM INFLAMMATION, NOS ALL OTHER SYSTEMS *MULTIPLE ORGANS MINERALIZATION INFLAMMATION, NOS NECROSIS, NOS HYPERKERATOSIS	(50)	(50) 1 (2%) (50) 2 (4%)	(50) (50) (50) (2%)
*ABDOMINAL CAVITY NECROSIS, NOS *PERICARDIUM INFLAMMATION, NOS ALL OTHER SYSTEMS *MULTIPLE ORGANS MINERALIZATION INFLAMMATION, NOS NECROSIS, NOS HYPERKERATOSIS OMENTUM	(50)	(50) 1 (2%) (50) 2 (4%)	(50) (50) (2%) (2%) (2%)
*ABDOMINAL CAVITY NECROSIS, NOS *PERICARDIUM INFLAMMATION, NOS ALL OTHER SYSTEMS *MULTIPLE ORGANS MINERALIZATION INFLAMMATION, NOS NECROSIS, NOS HYPERKERATOSIS OMENTUM STEATITIS	(50) (50)	(50) 1 (2%) (50) 2 (4%)	(50) (50) (50) (2%) (2%) (2%) (2%)
*ABDOMINAL CAVITY NECROSIS, NOS *PERICARDIUM INFLAMMATION, NOS ALL OTHER SYSTEMS *MULTIPLE ORGANS MINERALIZATION INFLAMMATION, NOS NECROSIS, NOS HYPERKERATOSIS OMENTUM	(50)	(50) 1 (2%) (50) 2 (4%)	(50) (50) (2%) (2%) (2%)
*ABDOMINAL CAVITY NECROSIS, NOS *PERICARDIUM INFLAMMATION, NOS ALL OTHER SYSTEMS *MULTIPLE ORGANS MINERALIZATION INFLAMMATION, NOS NECROSIS, NOS HYPERKERATOSIS OMENTUM STEATITIS NECROSIS, FAT SPECIAL MORPHOLOGY SUMMARY	(50) (50)	(50) 1 (2%) (50) 2 (4%)	(50) (50) (50) (2%) (2%) (2%) (2%) (2%)
*ABDOMINAL CAVITY NECROSIS, NOS *PERICARDIUM INFLAMMATION, NOS ALL OTHER SYSTEMS *MULTIPLE ORGANS MINERALIZATION INFLAMMATION, NOS NECROSIS, NOS HYPERKERATOSIS OMENTUM STEATITIS NECROSIS, FAT	(50) (50)	(50) 1 (2%) (50) 2 (4%)	(50) (50) (2%) (2%) (2%) (2%) (2%)

TABLE C2. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN FEMALE RATS IN
THE TWO-YEAR FEED STUDY OF C. I. BASIC RED 9 MONOHYDROCHLORIDE (Continued)

NUMBER OF ANIMALS WITH TISSUE EXAMINED MICROSCOPICALLY * NUMBER OF ANIMALS NECROPSIED

APPENDIX D

SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MICE IN THE TWO-YEAR FEED STUDIES OF C. I. BASIC RED 9 MONOHYDROCHLORIDE

С	ONTR	OL (UNTR)	LOW	DOSE	HIG	H DOSE
ANIMALS INITIALLY IN STUDY	50		50	······	50	
ANIMALS NECROPSIED	50		50		50	
ANIMALS EXAMINED HISTOPATHOLOGICALLY	50		50		50	
NTEGUMENTARY SYSTEM						
*SKIN	(50)		(50)		(50)	
EPIDERMAL INCLUSION CYST			1	(2%)		
INFLAMMATION, NECROTIZING						(2%)
*SUBCUT TISSUE	(50)		(50)		(50)	
HEMORRHAGE			1	(2%)		
ABSCESS, NOS	<u></u>				1	(2%)
RESPIRATORY SYSTEM						
#LUNG	(50)		(50)		(50)	
CONGESTION, NOS		(2%)	-	(100)		(2%)
HEMORRHAGE		(2%)	5	(10%)		(6%)
INFLAMMATION, NOS		(6%)			2	(4%)
INFLAMMATION, MULTIFOCAL		(2%)	0	(40)		(90)
INFLAMMATION, ACUTE		(2%)	Z	(4%)	1	(2%)
INFLAMMATION, ACUTE DIFFUSE INFLAMMATION, CHRONIC	1	(2%)			1	(2%)
ALVEOLAR MACROPHAGES	77	(14%)	4	(8%)		(2%) (6%)
HYPERPLASIA, EPITHELIAL		(4%)		(4%)		(8%)
HISTIOCYTOSIS		(2%)	-		•	(0,0)
HEMATOPOIETIC SYSTEM						
*MULTIPLE ORGANS	(50)		(50)		(50)	
MASTOCYTOSIS			1	(2%)		
HEMATOPOIESIS		(4%)			5	(10%)
MYELOID METAPLASIA		(2%)				
#BONE MARROW	(49)		(47)		(47)	
OSTEOSCLEROSIS	-	(0.01)		(2%)		(0.01)
HEMATOPOIESIS		(2%)		(4%)		(2%)
#SPLEEN	(49)		(50)	(00)	(50)	
MINERALIZATION		(10)	1	(2%)		
FIBROSIS		(4%) (2%)				
ANGIECTASIS HYPERPLASIA, LYMPHOID		(2%)	1	(2%)	9	(4%)
HEMATOPOIESIS		(33%)		(56%)		(48%)
#LYMPH NODE	(48)		(45)		(47)	(10,0)
INFLAMMATION, ACUTE					1	(2%)
GRANULOMA, NOS					1	(2%)
NECROSIS, NOS	1	(2%)			1	(2%)
NECROSIS, FOCAL						(2%)
ANGIECTASIS		(15%)		(13%)		(21%)
PLASMACYTOSIS		(2%)		(2%)	1	(2%)
HYPERPLASIA, LYMPHOID	5	(10%)	2	(4%)		
MASTOCYTOSIS	-					(2%)
HEMATOPOIESIS	-	(19%)		(9%)		(23%)
#PANCREATIC LYMPH NODE	(48)	(0~)	(45)		(47)	
MINERALIZATION		(2%)				
FIBROSIS #MESENTERIC LYMPH NODE		(2%)	(45)		(17)	
	(48)		(45)		(47)	
		(90)				
FIBROSIS #LIVER		(2%)	(50)		(50)	

TABLE D1. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE MICE IN THE
TWO-YEAR FEED STUDY OF C.I. BASIC RED 9 MONOHYDROCHLORIDE

•

	CONTR	ROL (UNTR)	LOW	DOSE	HIG	h dose
HEMATOPOIETIC SYSTEM (Continued)			<u> </u>			
#STOMACH	(50)		(50)		(50)	
MASTOCYTOSIS	(00)		(00)			(2%)
#PEYER'S PATCH	(50)		(48)		(47)	
HYPERPLASIA, LYMPHOID		(10%)	. – .	(4%)		(2%)
#RENAL PAPILLA	(50)		(50)	(1/0)	(50)	
MASTOCYTOSIS	(00)		(00)		,	(2%)
CIRCULATORY SYSTEM				·····		
#HEART	(50)		(50)		(50)	
MINERALIZATION	(00)			(2%)		(2%)
INFLAMMATION, NOS			•	(2,2)		(4%)
INFLAMMATION, ACUTE/CHRONIC			1	(2%)	4	(=,0)
#MYOCARDIUM	(50)		(50)		(50)	
DEGENERATION, NOS		(6%)		(4%)	(00)	
#ENDOCARDIUM	(50)		(50)		(50)	
INFLAMMATION, NOS	(00)		(00)			(2%)
*PANCREATIC ARTERY	(50)		(50)		(50)	(20,00)
PERIVASCULITIS	(00)			(2%)	(00)	
#LIVER	(50)		(50)	(210)	(50)	
THROMBOSIS, NOS	(50)		(00)			(2%)
			<u>-</u>	····		(270)
DIGESTIVE SYSTEM	(50)		(50)		(50)	
#SALIVARY GLAND	(50)	(90)	(50)		(50)	
INFLAMMATION, CHRONIC FOCAL		(2%)	(50)		(50)	
#LIVER	(50)	(10)	(50)	(1907)	(50)	(1001)
MINERALIZATION		(4%)		(12%)	9	(18%)
HEMORRHAGE	1	(2%)		(4%)		
INFLAMMATION, ACUTE		(0~)		(2%)		
FIBROSIS	1	(2%)	2	(4%)		(a ~)
CHOLANGIOFIBROSIS						(2%)
DEGENERATION, NOS	_	(10~)				(2%)
NECROSIS, NOS	-	(10%)		(22%)		(22%)
NECROSIS, FOCAL	19	(38%)		(10%)		(14%)
NECROSIS, ISCHEMIC				(6%)		(6%)
INFARCT, NOS		(6%)		(16%)		(26%)
METAMORPHOSIS FATTY		(38%)		(32%)	12	(24%)
CYTOPLASMIC CHANGE, NOS	5	(10%)		(12%)		
FOCAL CELLULAR CHANGE			1	(2%)		
EOSINOPHILIC CYTO CHANGE	1	(2%)			1	(2%)
CLEAR-CELL CHANGE				(2%)		
*GALLBLADDER	(50)		(50)		(50)	
INFLAMMATION, NOS		(2%)				
#PANCREATIC ACINUS	(50)		(50)		(49)	
HYPERPLASIA, NOS				(2%)		
#STOMACH	(50)		(50)		(50)	
MINERALIZATION		(2%)		(2%)		
INFLAMMATION, NOS	1	(2%)	4	(8%)		(4%)
INFLAMMATION, ACUTE						(2%)
NECROSIS, NOS			1	(2%)	1	(2%)
NECROSIS, FOCAL			1	(2%)		
HYPERPLASIA, NOS					1	(2%)
HYPERPLASIA, EPITHELIAL	1	(2%)				
HYPERKERATOSIS	1	(2%)	6	(12%)	4	(8%)
#GASTRIC MUCOSA	(50)		(50)		(50)	
HYPERPLASIA, NOS	2	(4%)				
#CASEDIC CLIDIALICOCA	(50)		(50)		(50)	
#GASTRIC SUBMUCOSA	(007		(00)		(00)	

TABLE D1. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE MICE IN THE
TWO-YEAR FEED STUDY OF C. I. BASIC RED 9 MONOHYDROCHLORIDE (Continued)

	CONTR	ROL (UNTR)	LOW	DOSE	HIG	h dose
DIGESTIVE SYSTEM (Continued)	· ····		<u> </u>			
#SMALL INTESTINE	(50)		(48)		(47)	
NECROSIS, NOS	(00)		(10)		,	(2%)
#JEJUNUM	(50)		(48)		(47)	(2,0)
NECROSIS, NOS		(2%)	(10)		(1)	
#COLONIC MUCOSA	(49)	(2.07)	(47)		(47)	
INFLAMMATION, NECROTIZING		(2%)				
#CECUM	(49)		(47)		(47)	
NECROSIS, NOS	1	(2%)				
JRINARY SYSTEM		<u></u>				
#KIDNEY	(50)		(50)		(50)	
MINERALIZATION		(68%)		(64%)		(48%)
INFLAMMATION, NOS	04		02	(- /)		(2%)
INFLAMMATION, ACUTE			1	(2%)		(2%)
FIBROSIS	2	(4%)	•		-	
NEPHROPATHY		(30%)	11	(22%)	7	(14%)
CYTOPLASMIC VACUOLIZATION						(6%)
#RENAL PAPILLA	(50)		(50)		(50)	
NECROSIS, NOS						(4%)
#KIDNEY/TUBULE	(50)		(50)		(50)	
INFLAMMATION, ACUTE		(2%)			<	
FIBROSIS		(2%)				
DEGENERATION, NOS		(2%)	1	(2%)		
NECROSIS, FOCAL		(2%)				
#URINARY BLADDER	(50)		(50)		(50)	
CALCULUS, MICROSCOPIC EXAM	1	(2%)			4	(8%)
ENDOCRINE SYSTEM					·····	
#PITUITARY	(46)		(47)		(48)	
HYPERPLASIA, NOS	3	(7%)	1	(2%)	2	(4%)
ANGIECTASIS					1	(2%)
#ADRENAL	(50)		(50)		(50)	
· NECROSIS, NOS			1	(2%)		
ANGIECTASIS					1	(2%)
#ADRENAL/CAPSULE	(50)		(50)		(50)	
HYPERPLASIA, NOS	17	(34%)	15	(30%)	8	(16%)
HYPERPLASIA, FOCAL	1	(2%)				
#ADRENAL CORTEX	(50)		(50)		(50)	
HYPERTROPHY, NOS	3	(6%)		(6%)		
HYPERTROPHY, FOCAL		(6%)		(2%)	4	(8%)
HYPERPLASIA, NOS		(4%)		(6%)		
#ADRENAL MEDULLA	(50)		(50)		(50)	
HYPERPLASIA, NOS				(4%)		(6%)
#THYROID	(50)		(48)	(1~)	(49)	
FOLLICULAR CYST, NOS	-	(00)	2	(4%)		
INFLAMMATION, NOS		(2%)	~	(40)	^	(00)
HYPERPLASIA, FOLLICULAR-CELL		(4%)		(4%)		(6%)
#PANCREATIC ISLETS	(50)	(90)	(50)		(49)	
HYPERPLASIA, NOS	۱ 	(2%)				
REPRODUCTIVE SYSTEM						
*PREPUTIAL GLAND	(50)	(0~)	(50)	(400)	(50)	(0 %)
INFLAMMATION, NOS	1	(2%)	2	(4%)		(8%)
NECROSIS, NOS						(4%)
HYPERPLASIA, NOS HYPERKERATOSIS				(2%)		(2%) (4 %)
				1 7 10 1		1 (1 7/6)

TABLE D1. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE MICE IN THE
TWO-YEAR FEED STUDY OF C.I. BASIC RED 9 MONOHYDROCHLORIDE (Continued)

C.I. Basic Red 9 Monohydrochloride, NTP TR 285

REPRODUCTIVE SYSTEM (Continued) (46) (45) (46) INFLAMMATION, NOS 1 (2%) 1 (2%) 1 (2%) INFLAMMATION, NECROTIZING 1 (2%) 1 (2%) 1 (2%) *SEMINAL VESICLE (50) (50) (50) (50) INFLAMMATION, NECROTIZING 1 (2%) (48) (49) #TESTIS (49) (48) (49) MINERALIZATION 2 (4%) 1 (2%) 1 (2%) INFLAMMATION, NECROTIZING 1 (2%) 1 (2%) 1 (2%) MURERALIZATION 2 (4%) 1 (2%) 1 (2%) MULTINUCLEATE GIANT-CELL 1 (2%) 1 (2%) 1 (2%) MULTINUCLEATE GIANT-CELL 1 (2%) 1 (2%) 1 (2%) MULTINUCLEATE GIANT-CELL 1 (2%) 1 (2%) 1 (2%) MERVOUS SYSTEM 1 (2%) 1 (2%) 1 (2%) MERVOUS SYSTEM 1 (2%) 3 (6%) 1 (2%) MALACIA 1 (2%) 1 (2%) 1 (2%) MUSCULOSKELETAL SYSTEM 500 (50) (50)		CONTR	OL (UNTR)	LOW	DOSE	HIG	h dose
#PROSTATE (46) (45) (46) INFLAMMATION, NOS 1 (2%) 1 (2%) 1 (2%) "SEMINAL VESICLE (50) (50) (50) INFLAMMATION, NECROTIZING 1 (2%) (48) (49) #TESTIS (49) (48) (49) #TESTIS (49) (48) (49) MULTINUCLEATE GIANT-CELL 1 (2%) 1 (2%) 1 (2%) MULTINUCLEATE GIANT-CELL 1 (2%) 1 (2%) (49) #TESTISTUBULE (49) (44) (49) #TESTISTUBULE (49) (49) (49) MINERALIZATION 1 (2%) 1 (2%) 1 (2%) SPERMATOCELE 1 (2%) 1 (2%) 1 (2%) NERVOUS SYSTEM #BRAIN (50) (49) (50) 1 (2%) SPECIAL SENSE ORGANS 1 (2%) 3 (6%) 1 (2%) 1 (2%) MUSCULOSKELETAL SYSTEM *MADDIBLE (50) (50) (50) 1 (2%) MUSCULOSKELETAL SYSTEM *MANDIBLE (50) (50) 1 (2%) 1 (2%) MUSCULOSKELETAL SYSTEM	REPRODUCTIVE SYSTEM (Continued)	<u> </u>					
INFLAMMATION, NOS 1		(46)		(45)		(46)	
INFLAMMATION, NECROTIZING 1 (2%) *SEMINAL VESICLE (50) (50) INFLAMMATION, NECROTIZING 1 (2%) (48) (49) #TESTIS (49) (48) (49) MINERALIZATION 2 (4%) 1 (2%) (48) (49) MINERALIZATION 2 (4%) 1 (2%) 1 (2%) 1 (2%) MULTINUCLEATE GIANT-CELL 1 (2%) 1 (2%) 1 (2%) 1 (2%) #TESTISTUBULE (49) (48) (49) (49) (49) #DEGENERATION, NOS 1 (2%) 1 (2%) 1 (2%) 1 (2%) 1 (2%) DEGENERATION, NOS 1 (2%) 1 (2%) 1 (2%) 1 (2%) 1 (2%) NERVOUS SYSTEM (50) (49) (50) 1 (2%) 1 (2%) NERVOUS SYSTEM (50) (49) (50) 1 (2%) SPECIAL SENSE ORGANS 1 (2%) 1 (2%) 1 (2%) MULTIALISENSE ORGANS 1 (2%) 1 (2%) 1 (2%) MUSCULOSKELETAL SYSTEM *MADDIBLE (50)			(2%)	(40)		(10)	
*SEMINAL VESICLE (50) (50) (50) INFLAMMATION, NECROTIZING (49) (48) (49) MINERALIZATION 2 (4%) 1 (2%) INFLAMMATION, NOS 1 (2%) MULTINUCLEATE GIANT-CELL (49) (48) (48) (49) MINERALIZATION (49) (48) (48) (49) MINERALIZATION (49) (48) (49) (49) MINERALIZATION (49) (49) (50) SPERMATOCELE (49) (49) (50) DEGENERATION, NOS 1 (2%) NERVOUS SYSTEM #BRAIN (50) (49) (50) HEMORRHAGE (50) (50) (50) INFLAMMATION, NOS 1 (2%) MALACIA (49) (50) (50) (50) INFLAMMATION, NOS 1 (2%) MALACIA (50) (50) (50) (50) INFLAMMATION, NOS 1 (2%) MUSCULOSKELETAL SYSTEM *MANDIBLE (50) (50) (50) (50) INFLAMMATION, NOS 1 (2%) MUSCULOSKELETAL SYSTEM *MANDIBLE (50) (50) (50) (50) INFLAMMATION, SUPPURATIVE (50) (50) (50) (50) NECROSIS, NOS (1 (2%)) MUSCULOSKELETAL SYSTEM *ABDOMINAL CAVITY (50) (50) (50) (50) NECROSIS, NOS (1 (2%)) MUSCULOSKELETAL SYSTEM *ABDOMINAL CAVITY (50) (50) (50) (50) NECROSIS, NOS (1 (2%)) MUSCULOSKELETAL SYSTEM *ABDOMINAL CAVITY (50) (50) (50) (50) NECROSIS, NOS (1 (2%)) ALLOTHER SYSTEMS *MULTIPLE ORGANS (50) (50) (50) (50) NECROSIS, NOS (50) (50) (50) (50) ALLOTHER SYSTEMS *MULTIPLE ORGANS (50) (50) (50) (50) NECROSIS, NOS (50) (50) (50) (50) ALLOTHER SYSTEMS *MULTIPLE ORGANS (50) (50) (50) (50) NECROSIS, NOS (50) (50) (50) MINTLAMMATION, NOS 1 (2%) ALLOTHER SYSTEMS *MULTIPLE ORGANS (50) (50) (50) (50) NECROSIS, NOS (50) (50) (50) NECROSIS, NOS (50) (50) (50) MUSCULTES (50) (50) (50) (50) NECROSIS, NOS (50) (50) (50) (50) ALLOTHER SYSTEMS *MULTIPLE ORGANS (50) (50) (50) (50) NECROSIS, NOS (50) (50) (50) (50) (50) NECROSIS, NOS (50) (50) (50) (50) (50) (50) (50) (50)		•	(2,0)			1	(296)
DEFINITION NECROTIZING 1 2% 1 <		(50)		(50)			(270)
#TESTIS (49) (43) (49) MINERALIZATION 2 (4%) 1 (2%) INFLAMMATION,NOS 1 (2%) 1 (2%) MULTINUCLEATE GIANT-CELL 1 (2%) 1 (2%) ATROPHY,NOS 3 (6%) 2 (4%) 1 (2%) ATROPHY,NOS 3 (6%) 2 (4%) 1 (2%) MULTINUCLEATE GIANT-CELL (49) 1 (2%) 1 (2%) MINERALIZATION 1 (2%) 1 (2%) 1 (2%) SPERMATOCELE 1 (2%) 1 (2%) (50) DEGENERATION,NOS 1 (2%) 1 (2%) 1 (2%) NERVOUS SYSTEM (50) (49) (50) #BRAIN (50) (49) (50) INFLAMMATION,NOS 1 (2%) 1 (2%) MALACIA 1 (2%) (50) *ZYMBAL GLAND (50) (50) (50) INFLAMMATION,NOS 1 (2%) 1 (2%) MUSCULOSKELETAL SYSTEM *MANDIBLE (50) (50) *MENORIHAGE 1 (2%) 1 (2%) 1 (2%) INFLAMMATION,SUPPURATIVE 1 (2%) 1 (2%) 1 (2%)			(0.0)	(50)		(00)	
MINTERALIZATION 2 (4%) 1 (2%) SPERMATOCELE 1 (2%) 1 (2%) INFLAMMATION, NOS 1 (2%) 1 (2%) MULTINUCLEATE GIANT-CELL 1 (2%) 1 (2%) ATROPHY, NOS 3 (6%) 2 (4%) (49) MINERALIZATION 1 (2%) 1 (2%) (49) MINERALIZATION 1 (2%) 1 (2%) (49) MERVOUS SYSTEM (49) (49) (50) (50) (50) NERVOUS SYSTEM (50) (49) (50) (50) MALACIA 1 (2%) 1 (2%) SPECIAL SENSE ORGANS 1 (2%) 1 (2%) MUSCULOSKELETAL SYSTEM (50) (50) (50) (50) WUSCULOSKELETAL SYSTEM *MANDIBLE 1 (2%) 1 (2%) BODY CAVITIES 1 (2%) 1 (2%) 1 (2%)			(2%)	(40)		(40)	
SPERMATOCELE i (2%) INFLAMMATION, NOS 1 (2%) 1 (2%) MULTINUCLEATE GIANT-CELL 1 (2%) 1 (2%) ATROPHY, NOS 3 (6%) 2 (4%) 1 (2%) MINERALIZATION 1 (2%) 1 (2%) 1 (2%) SPEERMATOCELE 1 (2%) 1 (2%) (49) (49) MERVOUS SYSTEM #BRAIN (50) (49) (50) <t< td=""><td></td><td></td><td>(1 - 1)</td><td></td><td>(0.0)</td><td>(49)</td><td></td></t<>			(1 - 1)		(0.0)	(49)	
INFLAMMATION, NOS 1 (2%) 1 (2%) 1 (2%) MULTINUCLEATE GIANT-CELL 3 (6%) 2 (4%) 1 (2%) #TESTISTUBULE (49) (48) (49) MINTERALIZATION 1 (2%) 1 (2%) SPERMATOCELE 1 (2%) 1 (2%) DEGENERATION, NOS 1 (2%) 1 (2%) NERVOUS SYSTEM 1 (2%) 1 (2%) #BRAIN (50) (49) (50) NERVOUS SYSTEM (50) (49) (50) MALACIA 1 (2%) 3 (6%) 1 (2%) NERVOUS SYSTEM (50) (50) (50) MALACIA 1 (2%) 3 (6%) 1 (2%) SPECIAL SENSE ORGANS 1 (2%) (50) (50) WUSCULOSKELETAL SYSTEM (50) (50) (50) *MANDIBLE (50) (50) (50) WUSCULOSKELETAL SYSTEM 1 (2%) 1 (2%) *ABDOMINAL CAVITY (50) (50) (50) HEMORRHAGE 1 (2%) 1 (2%)		2	(4%)				
MULTINUCLEATE GIANT-CELL 1 (2%) 1 (2%) ATROPHY, NOS 3 (6%) 2 (4%) 1 (2%) #TESTISTUBULE (49) (48) (49) MINERALIZATION 1 (2%) (49) (49) SPEERMATOCELE 1 (2%) (49) (49) DEGENERATION, NOS 1 (2%) 1 (2%) (50) NERVOUS SYSTEM #BRAIN (50) (49) (50) HEMORRHAGE 3 (6%) 1 (2%) (50) (50) INFLAMMATION, NOS 1 (2%) (50) (50) (50) SPECIAL SENSE ORGANS 2(2%) (50) (50) (50) VMUSCULOSKELETAL SYSTEM (50) (50) (50) (50) MUSCULOSKELETAL SYSTEM (50) (50) (50) (50) *MANDIBLE (50) (50) (50) (50) (50) NECROSIS, NOS 1 (2%) 1 (2%) 1 (2%) 1 (2%) MUSCULOSKELETAL SYSTEM (50) (50) (50) (50) 1 (2%) *ABDOMINAL CAVITY (50) (50) (50) 1 (2%) <				1	(2%)		
ATROPHY, NOS 3 (6%) 2 (4%) 1 (2%) #TESTISTUBULE (49) (48) (49) MINERALIZATION 1 (2%) 1 (2%) SPERMATOCELE 1 (2%) 1 (2%) DEGENERATION, NOS 1 (2%) 1 (2%) NERVOUS SYSTEM (50) (49) (50) #BRAIN (50) (49) (50) NERVOUS SYSTEM (50) (49) (50) #BRAIN (50) (49) (50) NERVOUS SYSTEM (50) (50) (50) MEMORHACE 1 (2%) 3 (6%) 1 (2%) INFLAMMATION, NOS 1 (2%) (50) (50) SPECIAL SENSE ORGANS (50) (50) (50) *ZYMBAL GLAND (50) (50) (50) (50) INFLAMMATION, NOS 1 (2%) 1 (2%) 1 (2%) MUSCULOSKELETAL SYSTEM *ABDOMINAL CAVITY (50) (50) (50) WOLCONSIS, NOS 1 (2%) 1 (2%) 1 (2%) INFLAMATION, SUPPURATIVE 1 (2%) 1 (2%) NECROSIS, NOS 2 (1	(2%)				
#TESTISTUEULE (49) (49) (49) MINERALIZATION 1 (2%) SPERMATOCELE 1 (2%) DEGENERATION, NOS 1 (2%) NERVOUS SYSTEM (50) (49) #BRAIN (50) (49) MERVOUS SYSTEM (50) (49) #BRAIN (50) (49) INFLAMMATION, NOS 1 (2%) MALACIA 1 (2%) SPECIAL SENSE ORGANS (50) (50) *ZYMBAL GLAND (50) (50) NECROSIS, NOS 1 (2%) MUSCULOSKELETAL SYSTEM (50) (50) *MANDIBLE (50) (50) (50) NECROSIS, NOS 1 (2%) BODY CAVITIES (50) (50) (50) *ABDOMINAL CAVITY (50) (50) (50) NECROSIS, NOS 1 (2%) 1 ABSCESS, NOS 1 (2%) 1 NECROSIS, NOS 2 (4%) 3 (6%) 2 (4%) ALL							
MINERALIZATION 1 (2%) SPERMATOCELE 1 (2%) DEGENERATION, NOS 1 (2%) NERVOUS SYSTEM (50) #BRAIN (50) HEMORRHAGE 3 (6%) INFLAMMATION, NOS 1 (2%) MALACIA 1 (2%) SPECIAL SENSE ORGANS 3 (6%) *ZYMBAL GLAND (50) INFLAMMATION, NOS 1 (2%) MUSCULOSKELETAL SYSTEM (50) *MUSCULOSKELETAL SYSTEM (50) *MUSCULOSKELETAL SYSTEM (50) *MUSCULOSKELETAL SYSTEM (50) *ABDOMINAL CAVITY (50) BODY CAVITIES 1 (2%) *ABDOMINAL CAVITY (50) ABSCESS, NOS 1 (2%) INFLAMMATION, SUPPURATIVE 1 (2%) ABSCESS, NOS 2 (4%) NECROSIS, NOS 2 (4%) ALL OTHER SYSTEMS (50) (50) *MULTIPLE ORGANS (50) (50) CONCESTION, NOS 2 (4%) 3 (6%) 2 (4%) AMYLOIDOSIS 1 (2%) 3 (6%) 2 (4%) OMENTUM <t< td=""><td></td><td></td><td>(6%)</td><td>-</td><td>(4%)</td><td></td><td>(2%)</td></t<>			(6%)	-	(4%)		(2%)
SPERMATOCELE 1 (2%) DEGENERATION, NOS 1 (2%) DEGENERATION, NOS 1 (2%) ** (50) (49) ** (50) (49) ** (50) (49) NERVOUS SYSTEM 3 (6%) 1 (2%) ** (50) (50) NERNORHAGE 1 (2%) 3 (6%) MALACIA 1 (2%) (50) SPECIAL SENSE ORGANS * (50) *ZYMBAL GLAND (50) (50) INFLAMMATION, NOS 1 (2%) (50) MUSCULOSKELETAL SYSTEM * * *MANDIBLE (50) (50) (50) MUSCULOSKELETAL SYSTEM * (50) (50) *MANDIBLE (50) (50) (50) NECROSIS, NOS 1 (2%) 1 (2%) ABSCESS, NOS 1 (2%) 1 (2%) NECROSIS, NOS 2 (4%) 1 (2%) *MULTIPLE ORGANS (50) (50) (50) CONCESTION, NOS <t< td=""><td>#TESTIS/TUBULE</td><td>(49)</td><td></td><td></td><td></td><td>(49)</td><td></td></t<>	#TESTIS/TUBULE	(49)				(49)	
DEGENERATION, NOS 1 (2%) NERVOUS SYSTEM #BRAIN (50) (49) (50) HEMORRHAGE 3 (6%) 1 (2%) INFLAMMATION, NOS 1 (2%) 3 (6%) 1 (2%) MALACIA 1 (2%) 3 (6%) 1 (2%) SPECIAL SENSE ORGANS (50) (50) (50) SPECIAL SENSE ORGANS (50) (50) (50) WUSCULOSKELETAL SYSTEM (50) (50) (50) MUSCULOSKELETAL SYSTEM (50) (50) (50) *MADDMINAL CAVITY (50) (50) (50) NECROSIS, NOS 1 (2%) 1 (2%) NFLAMMATION, SUPPURATIVE 1 (2%) 1 (2%) NECROSIS, NOS 2 (4%) 1 (2%) NECROSIS, NOS 2 (4%) 3 (6%) 2 (4%) ABSCESS, NOS 2 (4%) 3 (6%)	MINERALIZATION						
NERVOUS SYSTEM (50) (49) (50) #BRAIN (50) 3 (6%) 1 (2%) MALACIA 1 (2%) 3 (6%) 1 (2%) MALACIA 1 (2%) 3 (6%) 1 (2%) SPECIAL SENSE ORGANS *ZYMBAL GLAND (50) (50) (50) SPECIAL SENSE ORGANS *ZYMBAL GLAND (50) (50) (50) NECROSIS, NOS 1 (2%) (50) (50) (50) MUSCULOSKELETAL SYSTEM (50) (50) (50) (50) *MANDIBLE (50) (50) (50) (50) BODY CAVITIES (50) (50) (50) (50) *ABDOMINAL CAVITY (50) (50) (50) (50) HEMORRHAGE 1 (2%) 1 (2%) 1 (2%) 1 (2%) NECROSIS, NOS 1 (2%) 1 (2%) 1 (2%) 1 (2%) ABSCESS, NOS 1 (2%) 1 (2%) 1 (2%) 1 (2%) ALL OTHER SYSTEMS (50) (50) (50) 2 (4%) <	SPERMATOCELE			1	(2%)		
#BRAIN (50) (49) (50) HEMORRHAGE 3 (6%) 1 (2%) INFLAMMATION, NOS 1 (2%) 3 (6%) 1 (2%) MALACIA 1 (2%) 3 (6%) 1 (2%) SPECIAL SENSE ORGANS (50) (50) (50) *ZYMBAL GLAND (50) (50) (50) INFLAMMATION, NOS 1 (2%) (50) (50) MUSCULOSKELETAL SYSTEM (50) (50) (50) *MANDIBLE (50) (50) (50) 1 (2%) MUSCULOSKELETAL SYSTEM (50) (50) (50) 1 (2%) BODY CAVITIES (50) (50) (50) (50) BODY CAVITIES 1 (2%) 1 (2%) 1 (2%) ABSCESS, NOS 1 (2%) 1 (2%) 1 (2%) ABSCESS, NOS 1 (2%) 1 (2%) 1 (2%) ALL OTHER SYSTEMS *MULTIPLE ORGANS (50) (50) 2 (4%) *MULTIPLE ORGANS (50) 3 (6%) 2 (4%) AMYLOIDOSIS 1 (2%) 3 (6%) 2 (4%) OMENTUM 1 <td< td=""><td>DEGENERATION, NOS</td><td></td><td></td><td>1</td><td>(2%)</td><td></td><td></td></td<>	DEGENERATION, NOS			1	(2%)		
#BRAIN (50) (49) (50) HEMORRHAGE 3 (6%) 1 (2%) INFLAMMATION, NOS 1 (2%) 3 (6%) 1 (2%) MALACIA 1 (2%) 3 (6%) 1 (2%) SPECIAL SENSE ORGANS (50) (50) (50) *ZYMBAL GLAND (50) (50) (50) INFLAMMATION, NOS 1 (2%) (50) (50) MUSCULOSKELETAL SYSTEM (50) (50) (50) *MANDIBLE (50) (50) (50) 1 (2%) MUSCULOSKELETAL SYSTEM (50) (50) (50) 1 (2%) BODY CAVITIES (50) (50) (50) (50) BODY CAVITIES 1 (2%) 1 (2%) 1 (2%) ABSCESS, NOS 1 (2%) 1 (2%) 1 (2%) ABSCESS, NOS 1 (2%) 1 (2%) 1 (2%) ALL OTHER SYSTEMS *MULTIPLE ORGANS (50) (50) 2 (4%) *MULTIPLE ORGANS (50) 3 (6%) 2 (4%) AMYLOIDOSIS 1 (2%) 3 (6%) 2 (4%) OMENTUM 1 <td< td=""><td>NERVOUS SYSTEM</td><td></td><td></td><td></td><td></td><td>· · · · · · · · · · · · · · · · · · ·</td><td></td></td<>	NERVOUS SYSTEM					· · · · · · · · · · · · · · · · · · ·	
HEMORRHAGE 3 (6%) 1 (2%) INFLAMMATION, NOS 1 (2%) 1 (2%) MALACIA 1 (2%) 1 (2%) SPECIAL SENSE ORGANS (50) (50) *ZYMBAL GLAND (50) (50) INFLAMMATION, NOS 1 (2%) (50) NECROSIS, NOS 1 (2%) (50) MUSCULOSKELETAL SYSTEM (50) (50) *MANDIBLE (50) (50) NECROSIS, NOS 1 (2%) 1 (2%) BODY CAVITIES (50) (50) *ABDOMINAL CAVITY (50) (50) HEMORRHAGE 1 (2%) 1 (2%) INFLAMMATION, SUPPURATIVE 1 (2%) 1 (2%) ABSCESS, NOS 2 (4%) 1 (2%) MULTIPLE ORGANS (50) (50) CONGESTION, NOS 2 (4%) 3 (6%) 2 (4%) AMYLOIDOSIS 1 (2%) 3 (6%) 2 (4%) OMENTUM 1 1 1		(50)		(40)		(50)	
INFLAMMATION, NOS 1 (2%) MALACIA 1 (2%) SPECIAL SENSE ORGANS *ZYMBAL GLAND (50) (50) *ZYMBAL GLAND (50) (50) (50) INFLAMMATION, NOS 1 (2%) (50) (50) MUSCULOSKELETAL SYSTEM *MANDIBLE (50) (50) (50) MUSCULOSKELETAL SYSTEM (50) (50) (50) (50) MUSCULOSKELETAL SYSTEM (50) (50) (50) (50) BODY CAVITIES (50) (50) (50) (50) BODY CAVITIES 1 (2%) (2%) (2%) ABSCESS, NOS 1 (2%) 1 (2%) ABSCESS, NOS 1 (2%) 1 (2%) ABSCESS, NOS 2 (4%) 1 (2%) ALL OTHER SYSTEMS (50) (50) (50) (50) *MULTIPLE ORGANS (50) 3 (6%) 2 (4%) AMYLOIDOSIS 1 (2%) 3 (6%) 2 (4%) OMENTUM <		(50)			(60)		(90)
MALACIA 1 (2%) SPECIAL SENSE ORGANS (50) (50) (50) "ZYMBAL GLAND (50) (50) (50) INFLAMMATION, NOS 1 (2%) 1 (2%) MUSCULOSKELETAL SYSTEM (50) (50) (50) *MANDIBLE (50) (50) (50) BODY CAVITIES (50) (50) (50) *ABDOMINAL CAVITY (50) (50) (50) INFLAMMATION, SUPPURATIVE 1 (2%) 1 (2%) INFLAMMATION, SUPPURATIVE 1 (2%) 1 (2%) ABSCESS, NOS 1 (2%) 1 (2%) ALL OTHER SYSTEMS (50) (50) (50) *MULTIPLE ORGANS (50) (50) 2 (4%) ALL OTHER SYSTEMS 1 (2%) 3 (6%) 2 (4%) MULTIPLE ORGANS (50) (50) (50) 2 (4%) MULTIPLE ORGANS 1 (2%) 3 (6%) 2 (4%) AMYLOIDOSIS 1 (2%) 3 (6%) 2 (4%) OMENTUM 1 1 1		_	(22)	3	(0%)	1	(270)
SPECIAL SENSE ORGANS (50) (50) (50) *ZYMBAL GLAND (50) (50) (50) INFLAMMATION, NOS 1 (2%) MUSCULOSKELETAL SYSTEM (50) (50) (50) *MANDIBLE (50) (50) (50) NECROSIS, NOS 1 (2%) BODY CAVITIES (50) (50) (50) *ABDOMINAL CAVITY (50) (50) (50) INFLAMMATION, SUPPURATIVE 1 (2%) INFLAMMATION, SUPPURATIVE 1 (2%) ABSCESS, NOS 1 (2%) ABSCESS, NOS 2 (4%) ALL OTHER SYSTEMS (50) (50) (50) *MULTIPLE ORGANS (50) (50) (50) CONCESTION, NOS 2 (4%) 3 (6%) 2 (4%) AMYLOIDOSIS 1 (2%) 0MENTUM 1 1							
*ZYMBAL GLAND (50) (50) (50) INFLAMMATION, NOS 1 (2%) (50) (50) MUSCULOSKELETAL SYSTEM *MANDIBLE (50) (50) (50) MUSCULOSKELETAL SYSTEM (50) (50) (50) (50) MUSCULOSKELETAL SYSTEM (50) (50) (50) (50) MUSCULOSKELETAL SYSTEM (50) (50) (50) (2%) BODY CAVITIES (50) (50) (50) (50) BODY CAVITIES 1 (2%) 1 (2%) HEMORRHAGE 1 (2%) 1 (2%) INFLAMMATION, SUPPURATIVE 1 (2%) 1 (2%) ALL OTHER SYSTEMS 1 (2%) 2 (4%) ALL OTHER SYSTEMS (50) (50) (50) 2 (4%) INFLAMMATION, NOS 2 (4%) 3 (6%) 2 (4%) INFLAMMATION, NOS 2 (4%) 3 (6%) 2 (4%) OMENTUM 1 1 1 1 1 1 1	MALACIA	1	(2%)				
INFLAMMATION, NOS 1 (2%) NECROSIS, NOS 1 (2%) MUSCULOSKELETAL SYSTEM (50) (50) *MANDIBLE (50) (50) NECROSIS, NOS 1 (2%) BODY CAVITIES (50) (50) *ABDOMINAL CAVITY (50) (50) HEMORRHAGE 1 (2%) INFLAMMATION, SUPPURATIVE 1 (2%) ABSCESS, NOS 1 (2%) FIBROSIS 1 (2%) NECROSIS, NOS 2 (4%) ALL OTHER SYSTEMS (50) (50) *MULTIPLE ORGANS (50) (50) 2 (4%) ALL OTHER SYSTEMS 3 (6%) 2 (4%) ALL OTHER SYSTEMS (50) (50) 2 (4%) MULTIPLE ORGANS (50) 2 (4%) AMYLOIDOSIS 1 (2%) 3 (6%) 2 (4%) AMYLOIDOSIS 1 (2%) 3 (6%) 2 (4%) OMENTUM 1 1 1	SPECIAL SENSE ORGANS						
NECROSIS, NOS 1 (2%) MUSCULOSKELETAL SYSTEM (50) (50) (50) *MANDIBLE (50) (50) 1 (2%) BODY CAVITIES (50) (50) (50) BODY CAVITIES (50) (50) (50) BODY CAVITIES (50) (50) (50) BODY CAVITIES 1 (2%) (50) (50) INFLAMMATION, SUPPURATIVE 1 (2%) 1 (2%) ABSCESS, NOS 1 (2%) 1 (2%) ABSCESS, NOS 2 (4%) 1 (2%) NECROSIS, NOS 2 (4%) 2 (4%) ALL OTHER SYSTEMS (50) (50) (50) *MULTIPLE ORGANS (50) 3 (6%) 2 (4%) AMYLOIDOSIS 1 (2%) 3 (6%) 2 (4%) AMYLOIDOSIS 1 (2%) 3 (6%) 2 (4%) MINERALIZATION 1 1 1	*ZYMBAL GLAND	(50)		(50)		(50)	
MUSCULOSKELETAL SYSTEM (50) (50) (50) *MANDIBLE (50) (50) 1 (2%) BODY CAVITIES (50) (50) (50) (50) *ABDOMINAL CAVITY (50) (50) (50) (50) HEMORRHAGE 1 (2%) (2%) INFLAMMATION, SUPPURATIVE 1 (2%) 1 (2%) ABSCESS, NOS 1 (2%) 1 (2%) NECROSIS 1 (2%) 1 (2%) ALL OTHER SYSTEMS (50) (50) (50) (50) *MULTIPLE ORGANS (50) (50) (50) 2 (4%) ALL OTHER SYSTEMS 3 (6%) 2 (4%) MULTIPLE ORGANS (50) (50) 2 (4%) AMULTIPLE ORGANS 1 (2%) 3 (6%) 2 (4%) MINERALIZATION 1 1 1 1 1 1	INFLAMMATION, NOS	1	(2%)				
*MANDIBLE (50) (50) (50) NECROSIS, NOS 1 (2%) BODY CAVITIES (50) (50) (50) *ABDOMINAL CAVITY (50) (50) (50) HEMORRHAGE 1 (2%) INFLAMMATION, SUPPURATIVE 1 (2%) ABSCESS, NOS 1 (2%) FIBROSIS 1 (2%) NECROSIS, NOS 2 (4%) ALL OTHER SYSTEMS (50) (50) *MULTIPLE ORGANS (50) (50) CONGESTION, NOS 2 (4%) AMYLOIDOSIS 1 (2%) OMENTUM 1 1	NECROSIS, NOS	1	(2%)				
*MANDIBLE (50) (50) (50) NECROSIS, NOS 1 (2%) BODY CAVITIES (50) (50) (50) *ABDOMINAL CAVITY (50) (50) (50) HEMORRHAGE 1 (2%) INFLAMMATION, SUPPURATIVE 1 (2%) ABSCESS, NOS 1 (2%) FIBROSIS 1 (2%) NECROSIS, NOS 2 (4%) ALL OTHER SYSTEMS (50) (50) *MULTIPLE ORGANS (50) (50) CONGESTION, NOS 2 (4%) AMYLOIDOSIS 1 (2%) OMENTUM 1 1	MISCHIOSKELETAL SYSTEM					·····	
NECROSIS, NOS1 (2%)BODY CAVITIES *ABDOMINAL CAVITY(50)(50)(50)HEMORRHAGE INFLAMMATION, SUPPURATIVE1 (2%)1 (2%)ABSCESS, NOS1 (2%)1 (2%)FIBROSIS NECROSIS, NOS2 (4%)1 (2%)ALL OTHER SYSTEMS *MULTIPLE ORGANS INFLAMMATION, NOS(50)(50)(50)CONGESTION, NOS INFLAMMATION, NOS2 (4%)3 (6%)2 (4%)AMYLOIDOSIS OMENTUM MINERALIZATION111		(50)		(50)		(50)	
*ABDOMINAL CAVITY (50) (50) (50) HEMORRHAGE 1 (2%) INFLAMMATION, SUPPURATIVE 1 (2%) ABSCESS, NOS 2 (4%) NECROSIS, NOS 3 (6%) 2 ALL OTHER SYSTEMS 3 (6%) 2 (4%) ALL OTHER SYSTEMS 3 (6%) 2 (4%) MULTIPLE ORGANS (50) (50) (50) (50) CONGESTION, NOS 2 (4%) 2 (4%) INFLAMMATION, NOS 2 (4%) 2 (4%) OMENTUM 1 1 1 1		(00)		(00)			(2%)
*ABDOMINAL CAVITY (50) (50) (50) HEMORRHAGE 1 (2%) INFLAMMATION, SUPPURATIVE 1 (2%) ABSCESS, NOS 1 (2%) ABSCESS, NOS 1 (2%) FIBROSIS 1 (2%) NECROSIS, NOS 2 (4%) ALL OTHER SYSTEMS 3 (6%) 2 (4%) ALL OTHER SYSTEMS 3 (6%) 2 (4%) ALL OTHER SYSTEMS 3 (6%) 2 (4%) MULTIPLE ORGANS (50) (50) (50) (50) CONGESTION, NOS 2 (4%) 3 (6%) 2 (4%) INFLAMMATION, NOS 1 (2%) 0 2 (4%) 1 1 OMENTUM 1			<u></u>				
HEMORRHAGE1 (2%)INFLAMMATION, SUPPURATIVE1 (2%)ABSCESS, NOS1 (2%)FIBROSIS1 (2%)NECROSIS, NOS2 (4%)ALL OTHER SYSTEMS3 (6%)*MULTIPLE ORGANS3 (6%)CONGESTION, NOS2 (4%)INFLAMMATION, NOS2 (4%)AMYLOIDOSIS1 (2%)OMENTUM1							
INFLAMMATION, SUPPURATIVE1 (2%)ABSCESS, NOS1 (2%)FIBROSIS1 (2%)NECROSIS, NOS2 (4%)ALL OTHER SYSTEMS3 (6%)*MULTIPLE ORGANS(50)CONGESTION, NOS3 (6%)INFLAMMATION, NOS2 (4%)AMYLOIDOSIS1 (2%)OMENTUM1		(50)				(50)	
ABSCESS, NOS 1 (2%) FIBROSIS 1 (2%) NECROSIS, NOS 2 (4%) ALL OTHER SYSTEMS *MULTIPLE ORGANS (50) (50) (50) CONGESTION, NOS 3 (6%) 2 (4%) INFLAMMATION, NOS 2 (4%) AMYLOIDOSIS 1 (2%) OMENTUM MINERALIZATION 1							
FIBROSIS1 (2%)NECROSIS, NOS2 (4%)ALL OTHER SYSTEMS(50)*MULTIPLE ORGANS(50)CONGESTION, NOS3 (6%)INFLAMMATION, NOS2 (4%)AMYLOIDOSIS1 (2%)OMENTUM1				1	(2%)		
NECROSIS, NOS2 (4%)ALL OTHER SYSTEMS(50)(50)*MULTIPLE ORGANS(50)(50)CONGESTION, NOS3 (6%)2 (4%)INFLAMMATION, NOS2 (4%)AMYLOIDOSIS1 (2%)OMENTUM1							
ALL OTHER SYSTEMS *MULTIPLE ORGANS (50) (50) (50) CONGESTION, NOS 3 (6%) 2 (4%) INFLAMMATION, NOS 2 (4%) AMYLOIDOSIS 1 (2%) OMENTUM MINERALIZATION 1							
*MULTIPLE ORGANS (50) (50) (50) CONGESTION, NOS 3 (6%) 2 (4%) INFLAMMATION, NOS 2 (4%) 3 AMYLOIDOSIS 1 (2%) 0 OMENTUM 1 1	NECROSIS, NOS					2	(4%)
*MULTIPLE ORGANS (50) (50) (50) CONGESTION, NOS 3 (6%) 2 (4%) INFLAMMATION, NOS 2 (4%) 3 AMYLOIDOSIS 1 (2%) 0 OMENTUM 1 1	ALL OTHER SYSTEMS						
CONGESTION, NOS3 (6%)2 (4%)INFLAMMATION, NOS2 (4%)AMYLOIDOSIS1 (2%)OMENTUM MINERALIZATION1		(50)		(50)		(50)	
INFLAMMATION, NOS2 (4%)AMYLOIDOSIS1 (2%)OMENTUM1		(00)			(60)		(ACL)
AMYLOIDOSIS 1 (2%) OMENTUM MINERALIZATION 1		•	(40)	3	(070)	Z	(4270)
OMENTUM MINERALIZATION 1	•						
MINERALIZATION 1		1	(2%)				
		-					
NDECIAL MODDUOLOCY SUMMARY		<u> </u>					
SPECIAL MORPHOLOGY SUMMARY NO LESION REPORTED 2				2			

TABLE D1. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE MICE IN THE
TWO-YEAR FEED STUDY OF C. I. BASIC RED 9 MONOHYDROCHLORIDE (Continued)

NUMBER OF ANIMALS WITH TISSUE EXAMINED MICROSCOPICALLY * NUMBER OF ANIMALS NECROPSIED

C.I. Basic Red 9 Monohydrochloride, NTP TR 285

ANIMALS INITIALLY IN STUDY 50 50 50 50 ANIMALS NECROPSIED 50 50 50 ANIMALS NECROPSIED 50 50 50 INTEGUMENTARY SYSTEM 50 1 (2%) 1 (2%) NECROSIS, NOS 1 (2%) 1 (2%) HYPERKEATOSIS 1 (2%) NECROSIS, NOS 2 (4%) NECROSIS, NOS 1 (2%) NECROSIS, NOS 2 (4%) NECROSIS, NOS 2		CONTR	OL (UNTR)	LOW	DOSE	HIG	h dose
ANIMALS NECROPSIED 50 50 50 ANIMALS EXAMINED HISTOPATHOLOGICALLY 50 50 50 INTEGUMENTARY SYSTEM (50) (50) (50) *SKIN (50) (50) (50) NECROSIS, NOS 1 (2%) (50) (50) HYERKERATOSIS 1 (2%) (50) (50) NECROSIS, NOS 1 (2%) (2%) (50) (50) NECROSIS, NOS 1 (2%) 1 (2%) (2%) NECROSIS, NOS 1 (2%) 1 (2%) 1 (2%) MUNERALIZATION 0 (50) (49) (47) (47) (48%) 1 (2%)	ANIMALS INITIALLY IN STUDY	50		50			
ANIMALS EXAMINED HISTOPATHOLOGICALLY 50 50 50 INTEGUMENTARY SYSTEM "SKIN (50) (50) (50) (50) HYPERMERATORY SYSTEM "SUBCUT TISSUE (50) (50) (50) (50) INPLAMMATION, NOS 1 (2%) INFLAMMATION, NOS 1 (2%) NECROSIS, NOS 1 (2%) INFLAMMATION, ACUTE FOCAL (50) (50) (50) INPLAMMATION, NOS 2 (4%) (50) (50) (10) INPLAMMATION, NOS 2 (4%) (49) (47) MINERALIZATION (50) (49) (2 (49) INFLAMMATION, NOS 2 (4%) (2 (49) (40%) INFLAMMATION, NOS 4 (48%) (1 (2%) (4 (49%)) INFLAMMATION, NOS 4 (48%) (1 (2%) (1 (2%)) INFLAMMATION, NOS 1 (2%) INFLAMMATION, ACUTE FOCAL (1 (2%)) INFLAMMATION, NOS 1 (2%) INFLAMMATION, NOS 1 (2%) INFLAMMATION, ACUTE B 3 (6%) 2 (4%) (1 (2%)) INFLAMMATION, ACUTE CHRONIC (1 (2%)) INFLAMMATION, ACUTE (1 (2%)) (50) (50) INFLAMMATION, ACUTE (1 (2%)) (50) (50) INFLAMMATION, ACUTE (1 (2%)) (50) INFLAMMATION, ACUTE (1 (2%)) HEMOTORNAGE (1 (2%)) HEMOTORNAGE (1 (2%)) INFERALIZATION (1 (2%)) INFERALIZATION (1 (2%)) NECROSIS, FOCAL (1 (2%)) HEMOTORNAGE (40) HEMOTORNAGE (40						-	
*SEIN (50) (50) (50) (50) HYPERKERATOSIS (12%) *SUBCUT TISSUE (50) (50) (50) (50) INFLAMMATION, NOS 1 (2%) NECROSIS, NOS (12%) NECROSIS, NOS (12%) NECROSIS, NOS (12%) *SUBCUT TISSUE (50) (50) (50) (50) INFLAMMATION, ACUTE FOCAL (12%) (49) (47) MINERALIZATION (50) (49) (47) MINERALIZATION (50) (49) (47) HEMORRHAGE (12%) (2%) (49) (47) INFLAMMATION, NOS (24%) (2%) (48) (47) HEMORRHAGE (12%) (2%) (48) (2%) (12%) (2%) INFLAMMATION, NOS (24%) (2%) (2%) (12%) (2%) INFLAMMATION, NOS (24%) (2%) (2%) (2%) (2%) (2%) (2%) (2%) (2						• •	
NECROSIS.NOS 1 (2%) HYPERKERATOSIS 1 (2%) *SUBCUTTISSUE (50) INFLAMMATION, NOS 1 (2%) NECROSIS,NOS 1 (2%) *SUBCUTTISSUE (50) INFLAMMATION, NOS 1 (2%) NECROSIS,NOS 1 (2%) *XASAL CAVITY (50) INFLAMMATION, ACUTE FOCAL 1 (2%) #LUNG (50) CONCESTION, NOS 2 (4%) INFLAMMATION, NOS 4 (8%) INFLAMMATION, NOS 4 (8%) INFLAMMATION, NOCAL 1 (2%) INFLAMMATION, NECROTIZING 1 (2%) INFLAMMATION, ACUTE/CHRONIC 1 (2%) INFLAMMATION, ACUTE/CHRONIC 1 (2%) HYPERPLASIA, EPITHELIAL 1 (2%) HEMATOPOIETIC SYSTEM 1 (2%) *MULTPLE ORGANS (50) (50) MYELOID METAPLASIA 1 (2%) HEMATOPOIESIS 4 (8%) 1 (2%) MYELOID METAPLASIA 1 (2%) 1 (2%) MYELOID METAPLASIA 1 (2%) 1 (2%)	NTEGUMENTARY SYSTEM						
HYPERKERATOSIS 1 (2%) *SUBCUT TISSUE (50) (50) INFLAMMATION, NOS 1 (2%) INFLAMMATION, NOS 1 (2%) NECROSIS, NOS 1 (2%) *NASAL CAVITY (50) (50) MINERALIZATION (50) (50) MINERALIZATION, ACUTE FOCAL 1 (2%) 1 (2%) #LUNG (50) (49) (47) MINERALIZATION (50) (49) (47) MINERALIZATION, NOS 2 (4%) 1 (2%) 1 (2%) INFLAMMATION, NOS 4 (8%) 1 (2%) 1 (2%) INFLAMMATION, ACUTE FOCAL 1 (2%) 1 (2%) 1 (2%) INFLAMMATION, NOS 4 (8%) 1 (2%) 1 (2%) INFLAMMATION, ACUTE 1 (2%) 1 (2%) 1 (2%) INFLAMMATION, ACUTE CONTIZING 1 (2%) 1 (2%) 1 (2%) HEMATOPOIESIS 4 (8%) 1 (2%) 1 (2%) HEMATOPOIESIS 4 (8%) 1 (2%) 1 (2%) HEMATOPOIESIS 4 (11%) 2 (4%) 1 (2%) #SUBCUT TISSUE (50) (50)	*SKIN	(50)		(50)		(50)	
*SUBCUT TISSUE (50) (50) (50) (50) HEMORRHAGE 1 (2%) NECROSIS, NOS 1 (2%) RESPIRATORY SYSTEM *NASAL CAVITY (50) (50) (50) (50) INFLAMMATION, ACUTE FOCAL 1 (2%) #UNG (49) (47) MINERALIZATION (50) (49) (47) MINERALIZATION (50) (49) (47) CONGESTION, NOS 2 (4%) HEMORRHAGE 1 (2%) 1 (2%) 4 (6%) INFLAMMATION, NOS 4 (6%) 1 (2%) 1 (2%) INFLAMMATION, NOS 4 (6%) 1 (2%) INFLAMMATION, NOS 4 (6%) 1 (2%) INFLAMMATION, NOC 1 (2%) INFLAMMATION, ACUTE/CHRONIC 1 (2%) HYPERPLASIA, EPITHELIAL 1 (2%) HEMATOPOIETIC SYSTEM *MULTIFLE ORGANS (50) (50) (50) MASTOCYTOSIS 4 (6%) 2 (4%) 1 (2%) HEMATOPOIESIS 4 (6%) 2 (4%) MYELOID METAPLASIA 1 (2%) HEMATOPOIESIS 4 (6%) 1 (2%) MASTOCYTOSIS 1 (2%) MORTAPOOLESIS 4 (6%) 1 (2%) HEMATOPOIESIS 4 (6%) 1 (2%) MORTAPOOLESIS 4 (11%) 2 (5%) HEMATOPOIESIS 4 (11%) 2 (5%) HEMAROV (38) (44) (41) MYELOID METAPLASIA 1 (2%) HEMAROPOIESIS 4 (11%) 2 (5%) HEMAROV (28) (41) (2%) HEMAROV (29) (46) (46) HEMAROV (20) (46) (46)	NECROSIS, NOS			1	(2%)		
HEMORRHACE 1 (2%) INFLAMMATION, NOS 1 (2%) RESPIRATORY SYSTEM (50) *NASAL CAVITY (50) MINERAMINION, ACUTE FOCAL 1 (2%) MINERALIZATION 2 (4%) HEMORRHACE 1 (2%) MINERALIZATION 2 (4%) HEMORRHACE 1 (2%) INFLAMMATION, NOS 2 (4%) HEMORRHACE 1 (2%) INFLAMMATION, NOS 4 (9%) INFLAMMATION, NOS 4 (9%) INFLAMMATION, NOS 4 (9%) INFLAMMATION, ACUTE/CHRONIC 1 (2%) INFLAMMATION, ACUTE/CHRONIC 1 (2%) HEMATOPOLESIS 1 (2%) HEMATOPOLESIS 4 (9%) MYELOPIESIS 4 (9%) MYELOPIESIS 4 (11%) 1 (2%) 1 (2%) HEMATOPOLESIS 4 (11%) 2 (5%) MYELOPIBORSIS 1 (2%) HEMATOPOLESIS 4 (11%) 2 (5%) MYELOPIBONS 1 (2%) 1 (2%) HEMATOPOLESIS 4 (11%) 2 (5%) HEMATOPOLESIS 4 (11%) 2 (5%)	HYPERKERATOSIS			1	(2%)		
INFLAMMATION, NOS 1	*SUBCUT TISSUE	(50)		(50)		(50)	
NECROSIS, NOS 1 (2%) RESPIRATORY SYSTEM **NASAL CAVITY (50) (50) (50) INFLAMMATION, ACUTE FOCAL 1 (2%) 1 (2%) MINERALIZATION (50) (49) (47) MINERALIZATION (50) (49) (47) MINERALIZATION 2 (4%) 1 (2%) HEMORRHAGE 1 (2%) 1 (2%) 1 (2%) INFLAMMATION, NOS 4 (8%) 1 (2%) 1 (2%) INFLAMMATION, ACUTE/CHRONIC 1 (2%) 1 (2%) 1 (2%) HEMATOPOIETIC SYSTEM * 1 (2%) 1 (2%) *MULTIPLE ORGANS (50) (50) (50) (50) (50) MASTOCYTOSIS 4 (3%) 1 (2%) 1 (2%) #EMATOPOIESIS 4 (11%) 2 (56) (50) (50) (50) (50) MASTOCYTOSIS	HEMORRHAGE	1	(2%)				
RESPIRATORY SYSTEM (50) (50) (50) (50) *NASAL CAVITY (50) (50) (12%) #LUNG (50) (49) (47) MINERALIZATION 2 (4%) 2 CONGESTION, NOS 2 (4%) 2 INFLAMMATION, NOS 4 (8%) 1 (2%) INFLAMMATION, NOCAL 1 (2%) 1 (2%) INFLAMMATION, NECROTIZING 1 (2%) 1 (2%) INFLAMMATION, ACUTE 3 (6%) 2 (4%) 1 (2%) INFLAMMATION, ACUTECHRONIC 1 (2%) 1 (2%) 1 (2%) HYBERPLASIA, EPITHELIAL 1 (2%) 1 (2%) 1 (2%) MULTIPLE ORGANS (50) (50) (50) (50) (50) (50) MASTOCYTOSIS 1 1 (2%) 1 (2%) 1 (2%) #BONE MARROW (88) (41) (41)		1	(2%)				
*NASAL CAVITY (50) (50) (50) (50) INFLAMMATION, ACUTE FOCAL 1 (2%) #LUNG (49) (47) MINERALIZATION 2 (4%) 2 (4%) HEMORRHAGE 1 (2%) 1 (2%) 4 (9%) INFLAMMATION, NOS 2 (4%) 1 (2%) 1 (2%) INFLAMMATION, NOS (48%) 1 (2%) 1 (2%) INFLAMMATION, NECROTIZING 1 (2%) INFLAMMATION, ACUTE 3 (6%) 2 (4%) 1 (2%) INFLAMMATION, ACUTE/CHRONIC 1 (2%) HEMATOPOIESIS 1 (2%) HULTIPLE ORGANS (50) (50) (50) MASTOCYTOSIS 1 (2%) HEMATOPOIESIS 4 (8%) 1 (2%) MASTOCYTOSIS 1 (2%) #BONE MARROW (38) (44) (41) MYELORIBARROW (38) (44) (41) MYELORIBARROW (47) (46) #SUBCUT TISSUE 5 (50) (50) (50) MASTOCYTOSIS 1 (2%) #BONE MARROW (38) (44) (41) MYELOFIBROSIS 4 (11%) 2 (5%) HEMATOPOIESIS 2 (4%) 1 (2%) HEMATOPOIESIS 4 (11%) 2 (5%) HEMATOPOIESIS 2 (4%) 1 (2%) HEMATOPOIESIS 4 (11%) 2 (5%) HEMATOPOIESIS 1 (2%) HEMATOPOIESIS 4 (11%) 2 (5%) HEMATOPOIESIS 1 (2%) HEMATOPOIESIS 2 (4%) 1 (2%) HEMATOPOIESIS 1 (2%) HEMATOPOIESIS 1 (2%) HEMATOPOIESIS 2 (4%) 1 (2%) HEMATOPOIESIS 2 (4%) 1 (2%) HEMATOPOIESIS 1 (2%) HEMATOPOIESIS 2 (4%) 1 (2%) HEMATOPOIESIS	NECROSIS, NOS	1	(2%)				
INFLAMMATION, ACUTE FOCAL 1 (2%) #LUNG (50) (49) (47) MINERALIZATION 2 (4%) (47) CONGESTION, NOS 2 (4%) (49%) INFLAMMATION, NOS 4 (8%) 1 (2%) 4 (9%) INFLAMMATION, NOS 4 (8%) 1 (2%) 1 (2%) INFLAMMATION, NECROTIZING 1 (2%) 1 (2%) 1 (2%) INFLAMMATION, ACUTE/CHRONIC 1 (2%) 1 (2%) 1 (2%) FIBROSIS 1 (2%) 1 (2%) 1 (2%) HEMATOPOIETIC SYSTEM 1 (2%) 1 (2%) 1 (2%) *MULTIPLE ORGANS (50) (50) (50) (50) MASTOCYTOSIS 1 (2%) 1 (2%) 1 (2%) #BONE MATOPOIESIS 4 (8%) 1 (2%) 1 (2%) #BONE MAROW (38) (44) (41) MYELOID METAPLASIA 1 (2%) 1 (2%) 1 (2%) #BONE MAROW (38) (44) (41) MYELOTIBROSIS 1 (2%) 1 (2%) 1 (2%) #BONE MAROW (38) (44) (41) MYELOTIBROSIS <td>RESPIRATORY SYSTEM</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	RESPIRATORY SYSTEM						
#LUNG (50) (49) (47) MINERALIZATION 2 (4%) 2 CONGESTION, NOS 2 (4%) 2 HEMORRHAGE 1 (2%) 1 (2%) INFLAMMATION, NOS 4 (8%) 1 (2%) 1 (2%) INFLAMMATION, NOCAL 1 (2%)<		(50)		(50)		(50)	
MINERALIZATION 2 (4%) CONGESTION, NOS 2 (4%) HEMORRHACE 1 (2%) INFLAMMATION, NOS 4 (8%) INFLAMMATION, NOS 4 (8%) INFLAMMATION, NECROTIZING 1 (2%) INFLAMMATION, NECROTIZING 1 (2%) INFLAMMATION, ACUTE 3 (6%) 2 (4%) INFLAMMATION, ACUTE/CHRONIC 1 (2%) FIBROSIS 1 (2%) HYPERPLASIA, EPITHELIAL 1 (2%) *MULTIPLE ORGANS (50) MASTOCYTOSIS 1 (2%) *SUBCUT TISSUE (50) *SUBCUT TISSUE (50) MASTOCYTOSIS 1 (2%) #BONE MARROW (38) MYELOID METAPLASIA 1 (2%) #BONE MARROW (38) MYELOFIBROSIS 1 (2%) #BONE MARROW (38) MINERALIZATION 1 (2%) HEMATOPOIESIS 4 (11%) #SPLEEN (40) MINERALIZATION 1 (2%) PIBROSIS, FOCAL 1 (2%) HEMATOPOIESIS <	INFLAMMATION, ACUTE FOCAL					1	(2%)
CONCESTION, NOS 2 (4%) HEMORRHAGE 1 (2%) 1 (2%) 4 (9%) INFLAMMATION, NOS 4 (8%) 1 (2%) 1 (2%) INFLAMMATION, NOS 4 (8%) 1 (2%) 1 (2%) INFLAMMATION, NECROTIZING 1 (2%) 1 (2%) INFLAMMATION, ACUTE 3 (6%) 2 (4%) 1 (2%) INFLAMMATION, ACUTE/CHRONIC 1 (2%) 1 (2%) 1 (2%) HEMATOPOIETIC SYSTEM 1 (2%) 1 (2%) 1 (2%) HEMATOPOIESIS 4 (8%) 1 (2%) 1 (2%) MASTOCYTOSIS 1 (2%) 1 (2%) 1 (2%) MYELOID METAPLASIA 1 (2%) 1 (2%) 1 (2%) MYELOID METAPLASIA 1 (2%) 1 (2%) 1 (2%) HEMATOPOIESIS 4 (11%) 2 (5%) 2 (4%) MYELOID METAPLASIA 1 (2%) 1 (2%) 1 (2%) HEMATOPOIESIS 4 (11%) 2 (5%) 2 (4%) MYELOID METAPLASIA 1 (2%) 1 (2%) 1 (2%) MEMEAROW (38) (4(4) 1 (2%	#LUNG	(50)		(49)		(47)	
HEMORRHAGE 1 (2%) 1 (2%) 4 (9%) INFLAMMATION, NOS 4 (8%) 1 (2%) 1 (2%) INFLAMMATION, NOCAL 1 (2%) 1 (2%) 1 (2%) INFLAMMATION, NECOTIZING 1 (2%) 1 (2%) 1 (2%) INFLAMMATION, ACUTE 3 (6%) 2 (4%) 1 (2%) INFLAMMATION, ACUTE/CHRONIC 1 (2%) 1 (2%) 1 (2%) FIBROSIS 1 (2%) 1 (2%) 1 (2%) HYPERPLASIA, EPITHELIAL 1 (2%) 1 (2%) 2 (4%) MASTOCYTOSIS 1 (2%) 2 (4%) 1 (2%) MEMATOPOIESIS 4 (8%) 1 (2%) 2 (4%) MYELOID METAPLASIA 1 (2%) 1 (2%) 1 (2%) #BONE MARROW (38) (44) (41) MYELOFIBROSIS 1 (2%) 1 (2%) 1 (2%) #BONE MAROW (38) (44) (41) 1 (2%) #BONE MAROW (38) (44) (41) 1 (2%) #BONE MAROW (38) 1 (2%) 1 (2%) 1 (2%) #BONE MAROW (38) (44) (41) 1 (2%)						2	(4%)
INFLAMMATION, NOS 4 4 1 (2%) 1 (2%) INFLAMMATION, FOCAL 1 (2%) 1 (2%) 1 (2%) INFLAMMATION, NECROTIZING 1 (2%) 1 (2%) 1 (2%) INFLAMMATION, ACUTE 3 (6%) 2 (4%) 1 (2%) INFLAMMATION, ACUTE/CHRONIC 1 (2%) 1 (2%) 1 (2%) HEMATOPOLISIS 1 (2%) 1 (2%) 1 (2%) HEMATOPOLISIS 4 (8%) 2 (4%) (4%) MASTOCYTOSIS 1 (2%) 1 (2%) HEMATOPOLISIS 4 (8%) 1 (2%) MYELOFIBROSIS 1 (2%) 1 (2%) #BONE MARNOW (38) (44) (41) MYELOFIBROSIS 1 (1%) 2 (5%) #EMATOPOLESIS 4 (1%) 1 (2%) INECARDENCH (49) (47) (46) (2%) MINERALIZATION 1	CONGESTION, NOS	2	(4%)				
INFLAMMATION, FOCAL 1 (2%) INFLAMMATION, ACUTE 1 (2%) INFLAMMATION, ACUTE 3 (6%) 2 (4%) 1 (2%) INFLAMMATION, ACUTE 3 (6%) 2 (4%) 1 (2%) INFLAMMATION, ACUTE 1 (2%) 1 (2%) 1 (2%) HYPERPLASIA, EPITHELIAL 1 (2%) 1 (2%) 1 (2%) HEMATOPOIETIC SYSTEM * 1 (2%) 2 (4%) *MULTIPLE ORGANS (50) (50) (50) MASTOCYTOSIS 1 (2%) 2 (4%) HEMATOPOIESIS 4 (8%) 2 (4%) MYELOID METAPLASIA 1 (2%) 1 (2%) *SUBCUT TISSUE (50) (50) (50) MASTOCYTOSIS 1 (2%) 1 (2%) #BONE MARROW (38) (44) (41) MYELOFIBROSIS 1 (1%) 2 (5%) # HEMATOPOIESIS 4 (11%) 2 (5%) 1 (2%) HEMATOPOIESIS 4 (11%) 2 (5%) 1 (2%) MINERALIZATION 1 (2%) 1 (2%) 1 (2%) PIBROSIS, FOCAL 1 (2%) 1 (2%) 1 (2%)							
INFLAMMATION, NECROTIZING 1 (2%) INFLAMMATION, ACUTE 3 (6%) 2 (4%) 1 (2%) INFLAMMATION, ACUTE/CHRONIC 1 (2%) 1 (2%) 1 (2%) FIBROSIS 1 (2%) 1 (2%) 1 (2%) HYPERPLASIA, EPITHELIAL 1 (2%) 1 (2%) 1 (2%) *MULTIPLE ORGANS (50) (50) (50) (50) MASTOCYTOSIS 1 (2%) 2 (4%) 2 (4%) MYELOID METAPLASIA 1 (2%) 1 (2%) 1 (2%) *SUBCUT TISSUE (50) (50) (50) (50) MASTOCYTOSIS 1 (2%) 1 (2%) 1 (2%) #BONE MARROW (38) (44) (41) MYELOFIBROSIS 1 (1%) 2 (5%) 1 (2%) #BONE MARROW (38) (44) (41) MYELOFIBROSIS 4 (11%) 2 (5%) 1 (2%) #BONE MARROW (38) (44) (41) MYELOFIBROSIS 1 (2%) 1 (2%) 1 (2%) #BONE MARROW 2 (4%) 1 (2%) 1 (2%) #BONE MARROW 1 (2%) 1 (2%) <t< td=""><td></td><td></td><td></td><td>1</td><td>(2%)</td><td>1</td><td>(2%)</td></t<>				1	(2%)	1	(2%)
INFLAMMATION, ACUTE 3 (6%) 2 (4%) 1 (2%) INFLAMMATION, ACUTE/CHRONIC 1 (2%) 1 (2%) FIBROSIS 1 (2%) 1 (2%) HYPERPLASIA, EPITHELIAL 1 (2%) 1 (2%) *MULTIPLE ORGANS (50) (50) (50) MASTOCYTOSIS 1 (2%) 2 (4%) HEMATOPOIESIS 4 (8%) 1 (2%) MYELOID METAPLASIA 1 (2%) 2 (4%) MYELOID METAPLASIA 1 (2%) 1 (2%) *SUBCUT TISSUE (50) (50) (50) MASTOCYTOSIS 1 (2%) 1 (2%) #BONE MARROW (38) (44) (41) MYELOFIBROSIS 1 (2%) 1 (2%) #BONE MARROW 1 (2%) 1 (2%) HEMATOPOIESIS 4 (11%) 2 (5%) #SPLEEN (49) (47) (46) MILATATION, NOS 1 (2%) 1 (2%) HEMORRHAGE 1 (2%) 2 (4%) 1 (2%) HEMORRHAGE 2 (4%) 1 (2%) 2 (4%) HEMATOPOIESIS 2 (4%) 1 (2%) 2 (4%) <							
INFLAMMATION, ACUTE/CHRONIC 1 (2%) 1 (2%) FIBROSIS 1 (2%) HYPERPLASIA, EPITHELIAL 1 (2%) *MULTIPLE ORGANS (50) (50) *MULTIPLE ORGANS (50) (50) *MULTIPLE ORGANS 1 (2%) *MULTIPLE ORGANS 2 (4%) MASTOCYTOSIS 1 (2%) *SUBCUT TISSUE (50) (50) MASTOCYTOSIS 1 (2%) *SUBCUT TISSUE (50) (50) MYELOID METAPLASIA 1 (2%) *SUBCUT TISSUE (50) (50) MYELOFIBROSIS 1 (2%) 1 (2%) #BONE MARROW (38) (44) (41) MYELOFIBROSIS 4 (11%) 2 (5%) #BONE MARROW (38) (44) (41) MYELOFIBROSIS 4 (11%) 2 (5%) #BATIONN 1 (2%) 1 (2%) 1 (2%) #EMATOPOLESIS 4 (11%) 2 (5%) #BUREN 1 (2%) 1 (2%) #HEMATION, NOS 1 (2%) 2 (4%) HEMARDOPOLESIS 2 (4%) 1 (2%) HEMARO							(0~)
FIBROSIS 1 (2%) HYPERPLASIA, EPITHELIAL 1 (2%) HEMATOPOIETIC SYSTEM *MULTIPLE ORGANS (50) (50) *MULTIPLE ORGANS (50) (50) (50) MASTOCYTOSIS 1 (2%) 2 (4%) HEMATOPOIESIS 4 (8%) 2 (4%) MYELOID METAPLASIA 1 (2%) 1 (2%) *SUBCUT TISSUE (50) (50) (50) MASTOCYTOSIS 1 (2%) 1 (2%) #BONE MARROW (38) (44) (41) MYELOFIBROSIS 1 (2%) 1 (2%) HEMATOPOIESIS 4 (11%) 2 (5%) #SPLEEN (49) (47) (46) MINERALIZATION 1 (2%) 1 (2%) HEMORRHAGE 1 (2%) 1 (2%) NECROSIS, NOS 2 (4%) 1 (2%) LYMPHOID DEPLETION 2 (4%) 1 (2%) HYPENPLASIA, LYMPHOID 10 (20%) 3 (6%) MASTOCYTOSIS 1 (2%) 2 (4%) HEMORRHAGE (40) 1 (2%) HEMORRHAGE 1 (2%) 2 (4%) HYPERPLASIA, LYMPH				2	(4%)		
HYPERPLASIA, EPITHELIAL 1 (2%) *MULTIPLE ORGANS (50) (50) *MULTIPLE ORGANS (50) (50) MASTOCYTOSIS 1 (2%) #EMATOPOIESIS 4 (8%) 2 (4%) MYELOID METAPLASIA 1 (2%) *SUBCUT TISSUE (50) (50) MASTOCYTOSIS 1 (2%) #BONE MARROW (38) (44) MYELOFIBROSIS 1 (2%) #EMATOPOIESIS 4 (11%) 2 (5%) #SPLEEN (49) (47) (46) MINERALIZATION 1 (2%) 1 (2%) HEMORRHAGE 1 (2%) 1 (2%) FIBROSIS, FOCAL 1 (2%) 1 (2%) NECROSIS, NOS 2 (4%) 1 (2%) MASTOCYTOSIS 1 (2%) 1 (2%) MEMORRHAGE 1 (2%) 1 (2%) NECROSIS, NOS 2 (4%) 1 (2%) MASTOCYTOSIS 1 (2%) 1 (2%) MEMORRHAGE 1 (2%) 1 (2%) MEMORRHAGE 1 (2%) 1 (2%) MASTOCYTOSIS 1 (2%) 1 (2%) MEMORRH	· , · · · · · · ·	1	(2%)				
*MULTIPLE ORGANS (50) (50) (50) MASTOCYTOSIS 1 (2%) HEMATOPOIESIS 4 (8%) 2 (4%) MYELOID METAPLASIA 1 (2%) 1 (2%) *SUBCUT TISSUE (50) (50) (50) 1 (2%) #BONE MARROW (38) (44) (41) 1 (2%) #EMATOPOIESIS 4 (11%) 2 (5%) 1 (2%) #SPLEEN (49) (47) (46) 1 (2%) 1 (2%) 1 (2%) 1 (2%) 1 (2%) 1 (2%) 1 1 (3%) 1 (4%) 1 (2%) 1 (2%) 1 (2%) 1 1 (2%)		1	(2%)			I	(2%)
*MULTIPLE ORGANS (50) (50) (50) MASTOCYTOSIS 1 (2%) HEMATOPOIESIS 4 (8%) 2 (4%) MYELOID METAPLASIA 1 (2%) 1 (2%) *SUBCUT TISSUE (50) (50) (50) 1 (2%) #BONE MARROW (38) (44) (41) 1 (2%) #EMATOPOIESIS 4 (11%) 2 (5%) 1 (2%) #SPLEEN (49) (47) (46) 1 (2%) 1 (2%) 1 (2%) 1 (2%) 1 (2%) 1 (2%) 1 1 (3%) 1 (4%) 1 (2%) 1 (2%) 1 (2%) 1 1 (2%)							
MASTOCYTOSIS 1 (2%) HEMATOPOIESIS 4 (8%) 2 (4%) MYELOID METAPLASIA 1 (2%) *SUBCUT TISSUE (50) (50) (50) MASTOCYTOSIS 1 (2%) 1 (2%) #BONE MARROW (38) (44) (41) MYELOFIBROSIS 1 · (2%) 1 (2%) #BMATOPOIESIS 4 (11%) 2 (5%) #SPLEEN (49) (47) (46) MINERALIZATION 1 (2%) 1 (2%) HEMORRHAGE 1 (2%) 1 (2%) HEMORRHAGE 1 (2%) 1 (2%) NECROSIS, NOS 2 (4%) 1 (2%) LYMPHOID DEPLETION 2 (4%) 1 (2%) HEMATOPOIESIS 27 (55%) 22 (47%) HEMATOPOIESIS 27 (55%) 22 (47%) MASTOCYTOSIS 1 (2%) 1 (2%) HEMATOPOIESIS 27 (55%) 22 (47%) HEMATOPOIESIS 27 (55%) 22 (47%) HEMATOPOIESIS 27 (55%) 22 (47%) #SPLENIC FOLLICLES (49) (47) (46) ATROPHY, NOS 1 (3%)		(50)		(50)		(50)	
HEMATOPOIESIS 4 (8%) 2 (4%) MYELOID METAPLASIA 1 (2%) *SUBCUT TISSUE (50) (50) MASTOCYTOSIS 1 (2%) #BONE MARROW (38) (44) (41) MYELOFIBROSIS 1 · (2%) (41) MYELOFIBROSIS 1 · (2%) 1 · (2%) HEMATOPOLESIS 4 (11%) 2 (5%) #SPLEEN (49) (47) (46) MINERALIZATION 1 (2%) 1 (2%) 1 (2%) HEMORRHAGE 1 (2%) 1 (2%) 1 (2%) HEMORRHAGE 1 (2%) 1 (2%) 2 (4%) NECROSIS, POCAL 1 (2%) 2 (4%) 4 (12%) NECROSIS, NOS 2 (4%) 1 (2%) 2 (4%) MASTOCYTOSIS 1 (2%) 1 (2%) 1 (2%) HEMATOPOLESIS 27 (55%) 22 (47%) 29 (63%) #SPLENIC FOLLICLES (49) (47) (46) ATROPHY, NOS 1 (2%) 1 (2%) 1 (2%) #LYMPH NODE (46) (46) (40) 1 (2%) #LYMPH NODE (46) <t< td=""><td></td><td>(00)</td><td></td><td></td><td>(2%)</td><td>(00)</td><td></td></t<>		(00)			(2%)	(00)	
MYELOID METAPLASIA 1 (2%) *SUBCUT TISSUE (50) (50) MASTOCYTOSIS 1 (2%) #BONE MARROW (38) (44) (41) MYELOFIBROSIS 1 ·(2%) 1 ·(2%) HEMATOPOIESIS 4 (11%) 2 (5%) 2 (5%) #SPLEEN (49) (47) (46) MINERALIZATION 1 (2%) 1 (2%) 1 (2%) DILATATION, NOS 1 (2%) 1 (2%) 1 (2%) MEMORRHACE 1 (2%) 2 (4%) 2 (4%) NECROSIS, NOS 2 (4%) 2 (4%) 2 (4%) HYPHOID DEPLETION 2 (4%) 2 (4%) 4 (12%) HEMATOPOIESIS 2 (4%) 1 (2%) 4 (2%) MASTOCYTOSIS 1 (2%) 1 (2%) 4 (2%) HEMATOPOIESIS 27 (55%) 22 (47%) 29 (63%) #SPLENIC FOLLICLES (49) (47) (46) ATROPHY, NOS 1 (2%) 1 (2%) 1 (2%) #LYMPH NODE (46) (40) 1 (2%) #LYMPH NODE (46) (40) 1 (3%)		4	(896)	1	(2,10)	2	(4%)
*SUBCUT TISSUE (50) (50) (50) MASTOCYTOSIS 1 (2%) #BONE MARROW (38) (44) (41) MYELOFIBROSIS 1 (2%) HEMATOPOIESIS 4 (11%) 2 (5%) #SPLEEN (49) (47) (46) MINERALIZATION 1 (2%) 1 (2%) DILATATION, NOS 1 (2%) 1 (2%) HEMORRHAGE 1 (2%) 1 (2%) FIBROSIS, FOCAL 1 (2%) 1 (2%) LYMPHOID DEPLETION 2 (4%) 1 (2%) HEMATOPOIESIS 27 (55%) 22 (4%) HEMATOPOIESIS 27 (55%) 22 (47%) 29 (63%) #SPLENIC FOLLICLES (49) (47) (46) 1 (2%) #LYMPH NODE (46) (46) (40) 1 (2%) #LYMPH NODE (46) (46) (40) 1 (3%) INFLAMMATION, NOS 3 (7%)		-	(0,0)	1	(2.%)	-	(4,0)
MASTOCYTOSIS 1 (2%) #BONE MARROW (38) (44) (41) MYELOFIBROSIS 1 (2%) 1 (2%) HEMATOPOIESIS 4 (11%) 2 (5%) #SPLEEN (49) (47) (46) MINERALIZATION 1 (2%) 1 (2%) DILATATION, NOS 1 (2%) 1 (2%) HEMORRHAGE 1 (2%) 1 (2%) FIBROSIS, FOCAL 1 (2%) 1 (2%) NECROSIS, NOS 2 (4%) 1 (2%) LYMPHOID DEPLETION 2 (4%) 1 (2%) HEMATOPOIESIS 27 (55%) 22 (47%) 29 (63%) #SPLENIC FOLLICLES (49) (47) (46) ATROPHY, NOS 1 (2%) 1 (2%) 1 (2%) #LYMPH NODE (46) (46) (40) HEMORRHAGE 1 (3%) 1 (3%) 1 (3%) INFLAMMATION, NOS 3 (7%) 1 (3%) 1 (3%)		(50)				(50)	
#BONE MARROW (38) (44) (41) MYELOFIBROSIS 1 (2%) 1 (2%) HEMATOPOIESIS 4 (11%) 2 (5%) #SPLEEN (49) (47) (46) MINERALIZATION 1 (2%) 1 (2%) DILATATION, NOS 1 (2%) 1 (2%) HEMORRHAGE 1 (2%) 1 (2%) FIBROSIS, FOCAL 1 (2%) 2 (4%) NECROSIS, NOS 2 (4%) 1 (2%) LYMPHOID DEPLETION 2 (4%) 1 (2%) HEMATOPOIESIS 27 (55%) 22 (47%) 29 (63%) #SPLENIC FOLLICLES (49) (47) (46) ATROPHY, NOS 1 (2%) 1 (2%) 1 (2%) #LYMPH NODE (46) (46) (40) HEMORRHAGE 1 (3%) 1 (3%) 1 (3%) INFLAMMATION, NOS 3 (7%) 1 (3%) 1 (3%)		(00)		(,			(2%)
HEMATOPOIESIS 4 (11%) 2 (5%) #SPLEEN (49) (47) (46) MINERALIZATION 1 (2%) 1 (2%) DILATATION, NOS 1 (2%) 1 (2%) HEMORRHAGE 1 (2%) 1 (2%) FIBROSIS, FOCAL 1 (2%) 2 (4%) NECROSIS, NOS 2 (4%) 1 (2%) LYMPHOID DEPLETION 2 (4%) 2 (4%) HYPERPLASIA, LYMPHOID 10 (20%) 3 (6%) MASTOCYTOSIS 1 (2%) 1 (2%) HEMATOPOIESIS 27 (55%) 22 (47%) 29 (63%) #SPLENIC FOLLICLES (49) (47) (46) ATROPHY, NOS 1 (2%) 1 (2%) 1 (2%) #LYMPH NODE (46) (40) 1 (2%) #LYMPH NODE (46) (40) 1 (3%) INFLAMMATION, NOS 3 (7%) 1 (3%) 1 (3%)		(38)		(44)			, ,
#SPLEEN (49) (47) (46) MINERALIZATION 1 (2%) 1 (2%) DILATATION, NOS 1 (2%) 1 (2%) HEMORRHAGE 1 (2%) 1 (2%) FIBROSIS, FOCAL 1 (2%) 2 (4%) NECROSIS, NOS 2 (4%) 1 (2%) LYMPHOID DEPLETION 2 (4%) 2 (4%) HYPERPLASIA, LYMPHOID 10 (20%) 3 (6%) MASTOCYTOSIS 1 (2%) 1 (2%) HEMATOPOIESIS 27 (55%) 22 (47%) 29 (63%) #SPLENIC FOLLICLES (49) (47) (46) ATROPHY, NOS 1 (2%) 1 (2%) 1 (2%) #LYMPH NODE (46) (46) 1 (3%) INFLAMMATION, NOS 3 (7%) 1 (3%) 1 (3%) NECROSIS, NOS 1 (3%) 1 (3%) 1 (3%)					(2%)		
MINERALIZATION 1 (2%) 1 (2%) DILATATION, NOS 1 (2%) HEMORRHAGE 1 (2%) FIBROSIS, FOCAL 1 (2%) NECROSIS, NOS 2 (4%) 1 (2%) LYMPHOID DEPLETION 2 (4%) 2 (4%) HYPERPLASIA, LYMPHOID 10 (20%) 3 (6%) MASTOCYTOSIS 1 (2%) 1 (2%) HEMATOPOIESIS 27 (55%) 22 (47%) 29 (63%) #SPLENIC FOLLICLES (49) (47) (46) ATROPHY, NOS 1 (2%) 1 (2%) 1 (2%) #LYMPH NODE (46) (40) 1 (2%) INFLAMMATION, NOS 3 (7%) 1 (3%) 1 (3%) NECROSIS, NOS 1 (3%) 1 (3%) 1 (3%)		4	(11%)				
DILATATION, NOS 1 (2%) HEMORRHAGE 1 (2%) FIBROSIS, FOCAL 1 (2%) NECROSIS, NOS 2 (4%) 1 (2%) LYMPHOID DEPLETION 2 (4%) 2 (4%) HYPERPLASIA, LYMPHOID 10 (20%) 3 (6%) MASTOCYTOSIS 1 (2%) HEMATOPOIESIS 27 (55%) 22 (47%) 29 (63%) #SPLENIC FOLLICLES (49) (47) (46) ATROPHY, NOS 1 (2%) 1 (2%) #LYMPH NODE (46) (40) HEMORRHAGE 1 (3%) 1 (3%) INFLAMMATION, NOS 3 (7%) 1 (3%) NECROSIS, NOS 1 (3%) 1 (3%)	#SPLEEN	(49)		(47)		(46)	
HEMORRHAGE 1 (2%) FIBROSIS, FOCAL 1 (2%) NECROSIS, NOS 2 (4%) 1 (2%) LYMPHOID DEPLETION 2 (4%) 2 (4%) HYPERPLASIA, LYMPHOID 10 (20%) 3 (6%) MASTOCYTOSIS 1 (2%) HEMATOPOIESIS 27 (55%) 22 (47%) 29 (63%) #SPLENIC FOLLICLES (49) (47) (46) ATROPHY, NOS 1 (2%) 1 (2%) 1 (2%) #LYMPH NODE (46) (46) 1 (3%) INFLAMMATION, NOS 3 (7%) 1 (3%) 1 (3%) NECROSIS, NOS 1 (3%) 1 (3%) 1 (3%)	MINERALIZATION	1	(2%)				
FIBROSIS, FOCAL 1 (2%) NECROSIS, NOS 2 (4%) 1 (2%) LYMPHOID DEPLETION 2 (4%) 2 (4%) HYPERPLASIA, LYMPHOID 10 (20%) 3 (6%) MASTOCYTOSIS 1 (2%) HEMATOPOIESIS 27 (55%) 22 (47%) 29 (63%) #SPLENIC FOLLICLES (49) (47) (46) ATROPHY, NOS 1 (2%) 1 (2%) #LYMPH NODE (46) (46) 1 (3%) INFLAMMATION, NOS 3 (7%) 1 (3%) 1 (3%) LYMPHOID DEPLETION 1 (3%) 1 (3%) 1 (3%)	DILATATION, NOS					1	(2%)
NECROSIS, NOS 2 (4%) 1 (2%) LYMPHOID DEPLETION 2 (4%) 2 (4%) HYPERPLASIA, LYMPHOID 10 (20%) 3 (6%) MASTOCYTOSIS 1 (2%) HEMATOPOIESIS 27 (55%) 22 (47%) 29 (63%) #SPLENIC FOLLICLES (49) (47) (46) ATROPHY, NOS 1 (2%) 1 (2%) #LYMPH NODE (46) (40) HEMORRHAGE 1 (3%) 1 (3%) INFLAMMATION, NOS 3 (7%) 1 (3%) LYMPHOID DEPLETION 1 (3%) 1 (3%)							
LYMPHOID DEPLETION 2 (4%) 2 (4%) HYPERPLASIA, LYMPHOID 10 (20%) 3 (6%) MASTOCYTOSIS 1 (2%) HEMATOPOIESIS 27 (55%) 22 (47%) 29 (63%) #SPLENIC FOLLICLES (49) (47) (46) ATROPHY, NOS 1 (2%) 1 (2%) #LYMPH NODE (46) (46) 1 (3%) INFLAMMATION, NOS 3 (7%) 1 (3%) NECROSIS, NOS 1 (3%) 1 (3%)							
HYPERPLASIA, LYMPHOID 10 (20%) 3 (6%) MASTOCYTOSIS 1 (2%) HEMATOPOIESIS 27 (55%) 22 (47%) 29 (63%) #SPLENIC FOLLICLES (49) (47) (46) ATROPHY, NOS 1 (2%) 1 (2%) #LYMPH NODE (46) (46) 1 (3%) INFLAMMATION, NOS 3 (7%) 1 (3%) NECROSIS, NOS 1 (3%) 1 (3%) LYMPHOID DEPLETION 1 (3%) 1 (3%)				1	(2%)		
MASTOCYTOSIS 1 (2%) HEMATOPOIESIS 27 (55%) 22 (47%) 29 (63%) #SPLENIC FOLLICLES (49) (47) (46) ATROPHY, NOS 1 (2%) 1 (2%) #LYMPH NODE (46) (46) 1 (3%) INFLAMMATION, NOS 3 (7%) 1 (3%) NECROSIS, NOS 1 (3%) 1 (3%) LYMPHOID DEPLETION 1 (3%) 1 (3%)						2	(4%)
HEMATOPOIESIS 27 (55%) 22 (47%) 29 (63%) #SPLENIC FOLLICLES (49) (47) (46) ATROPHY, NOS 1 (2%) 1 (2%) #LYMPH NODE (46) (46) (40) HEMORRHAGE 1 (3%) 1 (3%) INFLAMMATION, NOS 3 (7%) 1 (3%) LYMPHOID DEPLETION 1 (3%) 1 (3%)		10	(20%)				
#SPLENIC FOLLICLES (49) (47) (46) ATROPHY, NOS 1 (2%) 1 (2%) #LYMPH NODE (46) (40) HEMORRHAGE 1 (3%) INFLAMMATION, NOS 3 (7%) NECROSIS, NOS 1 (3%) LYMPHOID DEPLETION 1 (3%)			(***				(00~)
ATROPHY, NOS 1 (2%) #LYMPH NODE (46) (40) HEMORRHAGE 1 (3%) INFLAMMATION, NOS 3 (7%) NECROSIS, NOS 1 (3%) LYMPHOID DEPLETION 1 (3%)			(55%)		(4:/%)		(63%)
#LYMPH NODE (46) (40) HEMORRHAGE 1 (3%) INFLAMMATION, NOS 3 (7%) NECROSIS, NOS 1 (3%) LYMPHOID DEPLETION 1 (3%)		(49)		(47)			(904)
HEMORRHAGE1 (3%)INFLAMMATION, NOS3 (7%)NECROSIS, NOS1 (3%)LYMPHOID DEPLETION1 (3%)		(10)		140			(270)
INFLAMMATION, NOS 3 (7%) NECROSIS, NOS 1 (3%) LYMPHOID DEPLETION 1 (3%)		(40)		(40)			(396)
NECROSIS, NOS 1 (3%) LYMPHOID DEPLETION 1 (3%)		•	(796)			1	
LYMPHOID DEPLETION 1 (3%)		ა	11707			1	(3%)
	ANGIECTASIS	5	(11%)	6	(13%)		

TABLE D2.SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN FEMALE MICE IN THE
TWO-YEAR FEED STUDY OF C.I. BASIC RED 9 MONOHYDROCHLORIDE

	CONTR	OL (UNTR)	LOW	DOSE	HIG	H DOSE
HEMATOPOIETIC SYSTEM						<u>_</u>
#LYMPH NODE (Continued)	(46)		(46)		(40)	
PLASMACYTOSIS	• = • >	(7%)		(2%)	(40)	
HYPERPLASIA, RETICULUM CELL	U	(1),07	•	(2,0)	1	(3%)
HYPERPLASIA, LYMPHOID	1	(2%)	1	(2%)		(3%)
HEMATOPOIESIS	-	(9%)		(9%)		(13%)
*COSTOCHONDRAL SYNCHONDROSIS	(50)		(50)	(0,0)	(50)	(10 /0)
MASTOCYTOSIS	(007			(2%)	(00)	
#LIVER	(49)		(50)		(49)	
HEMATOPOIESIS		(8%)		(2%)	x = r	(2%)
MYELOID METAPLASIA		(2%)	•	(2.0)	-	(- /• /
#GASTRIC MUSCULARIS	(48)		(46)		(46)	
MASTOCYTOSIS	(40)			(2%)	(40)	
#KIDNEY	(50)		(50)		(48)	
	(00)			(2%)	(40)	
MASTOCYTOSIS				(2%)		
HEMATOPOIESIS	(40)			(470)	(45)	
#ADRENAL	(48)		(47)		(40)	
HEMATOPOIESIS	1	(2%)				
CIRCULATORY SYSTEM						
*MULTIPLE ORGANS	(50)		(50)		(50)	
PERIVASCULITIS					1	(2%)
*SUBCUT TISSUE	(50)		(50)		(50)	
PERIVASCULITIS	1	(2%)				
#LYMPH NODE	(46)		(46)		(40)	
THROMBOSIS, NOS			1	(2%)		
#HEART	(50)		(49)		(47)	
MINERALIZATION		(2%)		(2%)	• •	(9%)
ENDOCARDITIS, BACTERIAL		(2%)	-	(2,0)	-	
INFLAMMATION, ACUTE	+	(2,0)			1	(2%)
NECROSIS, NOS						(2%)
#MYOCARDIUM	(50)		(49)		(47)	(2 10)
	()	(4%)	(43)			(2%)
DEGENERATION, NOS			(50)		(49)	(270)
#HEPATIC SINUSOID	(49)		(50)			(2%)
DILATATION, NOS	(50)		(50)			(270)
#KIDNEY	(50)		(50)		(48)	
THROMBOSIS, NOS		(2%)				
PERIVASCULITIS		(2%)				
#URINARY BLADDER	(48)	(0.01)	(47)		(45)	
PERIVASCULITIS		(2%)				
#UTERUS	(50)		(50)		(43)	
THROMBOSIS, NOS					1	(2%)
DIGESTIVE SYSTEM						
#SALIVARY GLAND	(48)		(42)		(45)	
INFLAMMATION, NOS					1	(2%)
#LIVER	(49)		(50)		(49)	
MINERALIZATION				(4%)		(10%)
HEMORRHAGE			-			(2%)
INFLAMMATION, ACUTE/CHRONIC						(2%)
FIBROSIS						(2%)
NECROSIS, NOS			7	(14%)		(22%)
	0	(18%)		(4%)		(6%)
NECROSIS, FOCAL						
NECROSIS, ISCHEMIC	1	(2%)	0	(12%)		(24%)
NECROSIS, HEMORRHAGIC		(050)	••	(040)		(2%)
METAMORPHOSIS FATTY	18	(37%)	12	(24%)	13	(27%)

TABLE D2. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN FEMALE MICE IN THE
TWO-YEAR FEED STUDY OF C.I. BASIC RED 9 MONOHYDROCHLORIDE (Continued)

	CONTR	OL (UNTR)	LOW	DOSE	HIG	h dose
DIGESTIVE SYSTEM						
#LIVER (Continued)	(49)		(50)		(49)	
CYTOPLASMIC VACUOLIZATION	(40)		(00)			(2%)
BASOPHILIC CYTO CHANGE			1	(2%)	•	(1,0)
FOCAL CELLULAR CHANGE			•	(2,0)	1	(2%)
			1	(2%)		(270)
EOSINOPHILIC CYTO CHANGE	(40)			(2%)	(49)	
#BILE DUCT	(49)		(50)			(00)
HYPERPLASIA, NOS						(2%)
#PANCREATIC ACINUS	(46)		(45)		(38)	
ATROPHY, NOS		(2%)	_	(2%)		
#STOMACH	(48)		(46)		(46)	
MINERALIZATION		(2%)				
INFLAMMATION, NOS	4	(8%)	1	(2%)	3	(7%)
ULCER, NOS		(2%)				
INFLAMMATION, ACUTE/CHRONIC		(,	1	(2%)	3	(7%)
NECROSIS, NOS				(2%)		(2%)
NECROSIS, FOCAL	2	(4%)		(4%)		(2%)
HYPERPLASIA, EPITHELIAL	L		4	(*/0)		(11%)
HYPERKERATOSIS	10	(21%)	10	(41%)	-	(35%)
ACANTHOSIS		(4%)		(7%)	10	(00%)
		(4870)	-	(170)	(10)	
#PEYER'S PATCH	(46)		(38)		(43)	(
HYPERPLASIA, NOS	ہ	(11%)			Z	(5%)
JRINARY SYSTEM						
#KIDNEY	(50)		(50)		(48)	
MINERALIZATION	1	(2%)	2	(4%)	4	(8%)
GLOMERULONEPHRITIS, NOS			1	(2%)		
INFLAMMATION, NOS	1	(2%)		(2%)	3	(6%)
INFLAMMATION, FOCAL	•	(2,0)		(2%)	Ū	(0,0)
INFLAMMATION, NECROTIZING	1	(2%)	1	(2,0)		
INFLAMMATION, NECROTIZING						
	1	(2%)		(00)		
INFLAMMATION, CHRONIC FOCAL		(0~)	1	(2%)		
FIBROSIS		(2%)		(1.0		(4
NEPHROPATHY		(10%)		(16%)	-	(17%)
GLOMERULOSCLEROSIS, NOS	2	(4%)	1	(2%)	1	(2%)
NECROSIS, NOS					1	(2%)
#RENAL PAPILLA	(50)		(50)		(48)	
MINERALIZATION		(4%)	,			
NECROSIS, NOS		(2%)				
#URINARY BLADDER	(48)		(47)		(45)	
INFLAMMATION, ACUTE		(2%)	(**)		(40)	
		·-···				
NDOCRINE SYSTEM	(38)		(36)		(29)	
#PITUITARY		(80%)	(00)			(306)
DILATATION, NOS		(8%)		(90)	1	(3%)
HEMORRHAGE		(5%)		(3%)		
HYPERPLASIA, NOS		(11%)	3	(8%)		
HYPERPLASIA, FOCAL		(3%)				
#ADRENAL	(48)		(47)		(45)	
METAMORPHOSIS FATTY ANGIECTASIS				(4%) (2%)		
#ADRENAL/CAPSULE	(48)		(47)		(45)	
HYPERPLASIA, NOS		(54%)		(40%)		(20%)
#ADRENAL CORTEX	(48)		(47)	20 /07	(45)	
HYPERTROPHY, NOS		(2%)	(***)		(40)	
•	1	(210)	1	(2%)		
HYPERPLASIA, NOS	(40)		(47)	(470)	(45)	
			(4.7)		(45)	
#ADRENAL MEDULLA HYPERPLASIA, NOS	(48)	(2%)	(-17			(4%)

TABLE D2. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN FEMALE MICE IN THE
TWO-YEAR FEED STUDY OF C.I. BASIC RED 9 MONOHYDROCHLORIDE (Continued)

	CONTR	OL (UNTR)	LOW	DOSE	HIGI	H DOSE
ENDOCRINE SYSTEM (Continued)						
#THYROID	(45)		(41)		(35)	
DEGENERATION, NOS		(2%)	()			
HYPERPLASIA, FOLLICULAR-CELL		(4%)	1	(2%)		
#PANCREATIC ISLETS	(46)		(45)	(=,0)	(38)	
HYPERPLASIA, NOS			1	(2%)		
REPRODUCTIVE SYSTEM						
#UTERUS	(50)		(50)		(43)	
HYDROMETRA		(26%)		(16%)		(7%)
HEMORRHAGE	10	(2010)		(2%)	0	(1,0)
HEMATOMETRA				(2%)		
INFLAMMATION, NOS	6	(12%)	•	(2,0)	9	(5%)
INFLAMMATION, NECROTIZING		(12%)			2	(0.07
ABSCESS, NOS	1	(2,0)	1	(2%)		
NECROSIS, NOS			1	(20)	1	(2%)
ANGIECTASIS	1	(2%)	3	(6%)		(2%)
#UTERUS/ENDOMETRIUM	(50)		(50)		(43)	
HYPERPLASIA, NOS		(4%)		(2%)		(2%)
HYPERPLASIA, CYSTIC		(52%)		(12%)		(2%)
#OVARY	(48)	(02/0)	(46)	(12.0)	(41)	(2 10)
MINERALIZATION	(40)		()	(11%)		(2%)
HEMORRHAGE ABSCESS, NOS	7	(150)		(7%)		(5%)
	1	(15%)	2	(4%)		(2%)
INFLAMMATION, ACUTE/CHRONIC			1	(00)	1	(2%)
REACTION, FOREIGN BODY ANGIECTASIS			1	(2%)	1	(2%)
NERVOUS SYSTEM NONE SPECIAL SENSE ORGANS NONE					· · · · · · · · · · · · · · · · · · ·	
MUSCULOSKELETAL SYSTEM						
NONE		· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·
BODY CAVITIES					/FA-	
*THORACIC CAVITY	(50)	(90)	(50)	(2%)	(50)	
INFLAMMATION, NECROTIZING		(2%)		(470)	(50)	
*PERITONEUM	(50)	(4%)	(50)	(2%)	(50)	(2%)
INFLAMMATION, NOS	Z	(+1270)	1	(270)	I	(270)
ALL OTHER SYSTEMS						
*MULTIPLE ORGANS	(50)		(50)		(50)	
INFLAMMATION, NOS	1	(2%)	1	(2%)		
OMENTUM						
MINERALIZATION	1					
NECROSIS, FAT	6		1		1	
<u> </u>						

TABLE D2. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN FEMALE MICE IN THE
TWO-YEAR FEED STUDY OF C.I. BASIC RED 9 MONOHYDROCHLORIDE (Continued)

NUMBER OF ANIMALS WITH TISSUE EXAMINED MICROSCOPICALLY * NUMBER OF ANIMALS NECROPSIED

C.I. Basic Red 9 Monohydrochloride, NTP TR 285

APPENDIX E

ANALYSES OF PRIMARY TUMORS IN RATS AND MICE IN THE TWO-YEAR FEED STUDIES OF C. I. BASIC RED 9 MONOHYDROCHLORIDE

TABLE E1. ANALYSIS OF PRIMARY TUMORS IN MALE RATS IN THE TWO-YEAR FEED STUDY OFC.I. BASIC RED 9 MONOHYDROCHLORIDE

	Control	1,000 ppm	2,000 ppm
Skin: Basal Cell Carcinoma		· · · · · · · · · · · · · · · · · · ·	
Overall Rates (a)	1/50 (2%)	0/50(0%)	4/50 (6%)
Adjusted Rates (b)	2.8%	0.0%	43.4%
Terminal Rates (c)	1/36 (3%)	0/29(0%)	0/0
Life Table Tests (d)	P<0.001	P = 0.543N	P<0.001
Incidental Tumor Tests (d)	P = 0.100	P = 0.543 N	P = 0.206
Cochran-Armitage Trend Test (d)	P = 0.082		5
Fisher Exact Tests		P = 0.500 N	P = 0.181
skin: Squamous Cell Papilloma			
Overall Rates (a)	2/50 (4%)	1/50 (2%)	4/50 (8%)
Adjusted Rates (b)	5.6%	3.4%	28.8%
Terminal Rates (c)	2/36 (6%)	1/29 (3%)	0/0
Life Table Tests (d)	P = 0.007	P = 0.576N	P = 0.005
Incidental Tumor Tests (d)	P = 0.176	P = 0.576N	P = 0.288
Cochran-Armitage Trend Test (d)	P = 0.238		
Fisher Exact Tests		P = 0.500 N	P = 0.339
kin: Squamous Cell Carcinoma			
Overall Rates (a)	0/50 (0%)	1/50 (2%)	10/50 (20%)
Adjusted Rates (b)	0.0%	3.4%	85.4%
Terminal Rates (c)	0.0%	3,4% 1/29 (3%)	0/0
Life Table Tests (d)	P<0.001	P = 0.457	
			P<0.001
Incidental Tumor Tests (d)	P<0.001	P = 0.457	P = 0.019
Cochran-Armitage Trend Test (d) Fisher Exact Tests	P<0.001	P = 0.500	P<0.001
Skin: Squamous Cell Papilloma or Carc Overall Rates (a) Adjusted Rates (b)	2/50 (4%) 5.6%	2/50 (4%) 6.9%	14/50 (28%) 89.6%
Terminal Rates (c)	2/36(6%)	2/ 29 (7%)	0/0
Life Table Tests (d)	P<0.001	P = 0.615	P<0.001
Incidental Tumor Tests (d)	P<0.001	P = 0.615	P = 0.005
Cochran-Armitage Trend Test (d)	P<0.001		
Fisher Exact Tests		P=0.691	P<0.001
kin: Trichoepithelioma			
Overall Rates (a)	0/50 (0%)	0/50 (0%)	7/50 (14%)
Adjusted Rates (b)	0.0%	0.0%	71.1%
Terminal Rates (c)	0/36 (0%)	0/29 (0%)	0/0
Life Table Tests (d)	P<0.001	(e)	P<0.001
Incidental Tumor Tests (d)	P = 0.001 P = 0.006	(e)	P = 0.061
	P = 0.006 P = 0.001	(8)	r - 0.001
Cochran-Armitage Trend Test (d) Fisher Exact Tests	r = 0.001	(e)	P=0.006
him Cabaaana Adamama			
kin: Sebaceous Adenoma	0/50 (004)	0/50 (00-)	5/50 (10%)
Overall Rates (a)	0/50 (0%)	0/50 (0%)	5/50 (10%)
Adjusted Rates (b)	0.0%	0.0%	27.3%
Terminal Rates (c)	0/36 (0%)	0/29 (0%)	0/0
Life Table Tests (d)	P<0.001	(e)	P = 0.001
Incidental Tumor Tests (d)	P = 0.057	(e)	P = 0.224
Cochran-Armitage Trend Test (d) Fisher Exact Tests	P = 0.006	(e)	P=0.028
ubautonoous Tissues Fibrers			
ubcutaneous Tissue: Fibroma	9/50 (401)	90/E0 (40/2)	16/50 (200)
Overall Rates (a)	2/50 (4%)	20/50 (40%)	16/50 (32%)
Adjusted Rates (b)	5.6%	47.8%	100.0%
Terminal Rates (c)	2/36 (6%)	9/29 (31%)	0/0
Life Table Tests (d)	P<0.001	P<0.001	P<0.001
Incidental Tumor Tests (d)	P = 0.001	P<0.001	P = 0.004
Cochran-Armitage Trend Test (d)	P<0.001		P<0.001

C.I. Basic Red 9 Monohydrochloride, NTP TR 285

TABLE E1. ANALYSIS OF PRIMARY TUMORS IN MALE RATS IN THE TWO-YEAR FEED STUDY OFC. I. BASIC RED 9 MONOHYDROCHLORIDE (Continued)

	Control	1,000 ppm	2,000 ppm
Subcutaneous Tissue: Sarcoma			
Overall Rates (a)	3/50 (6%)	2/50 (4%)	4/50 (8%)
Adjusted Rates (b)	6.7%	5.2%	56.8%
Terminal Rates (c)	1/36(3%)	0/29 (0%)	0/0
Life Table Tests (d)	P = 0.060	P = 0.537 N	P = 0.066
Incidental Tumor Tests (d)	P = 0.288N	P = 0.491 N	P = 0.419N
Cochran-Armitage Trend Test (d)	P = 0.417		
Fisher Exact Tests		P = 0.500 N	P = 0.500
ubcutaneous Tissue: Fibrosarcoma			
Overall Rates (a)	1/50 (2%)	3/50 (6%)	0/50 (0%)
Adjusted Rates (b)	2.4%	10.3%	0.0%
Terminal Rates (c)	0/36 (0%)	3/29 (10%)	0/0
Life Table Tests (d)	P = 0.304	P = 0.243	P = 0.823 N
Incidental Tumor Tests (d)	P = 0.492	P = 0.287	P = 0.410N
Cochran-Armitage Trend Test (d)	P = 0.378N		
Fisher Exact Tests		P = 0.309	P = 0.500 N
ubcutaneous: Sarcoma or Fibrosarcom	a		
Overall Rates (a)	4/50 (8%)	5/50 (10%)	4/50 (8%)
Adjusted Rates (b)	8.9%	15.0%	56.8%
Terminal Rates (c)	1/36 (3%)	3/29 (10%)	0/0
Life Table Tests (d)	P=0.033	P = 0.422	P=0.099
Incidental Tumor Tests (d) Cochran-Armitage Trend Test (d)	P = 0.394N P = 0.571	P = 0.492	P = 0.223 N
Fisher Exact Tests	r = 0.071	P = 0.500	P=0.643
Subcutaneous Tissue: Fibroma or Fibro	sarcoma		
Overall Rates (a)	3/50 (6%)	22/50 (44%)	16/50 (32%)
Adjusted Rates (b)	7.8%	53.0%	100.0%
Terminal Rates (c)	2/36 (6%)	11/29 (38%)	0/0
Life Table Tests (d)	P<0.001	P<0.001	P<0.001
Incidental Tumor Tests (d)	P = 0.001	P<0.001	P = 0.014
Cochran-Armitage Trend Test (d)	P = 0.003	1 40.001	1 -0.014
Fisher Exact Tests	1 0.000	P<0.001	P<0.001
Subcutaneous Tissue: Fibroma, Sarcom	a. or Fibrosarcoma		
Overall Rates (a)	6/50 (12%)	24/50 (48%)	19/50 (38%)
Adjusted Rates (b)	14.1%	55.5%	100.0%
Terminal Rates (c)	3/36 (8%)	11/29 (38%)	0/0
Life Table Tests (d)	P<0.001	P<0.001	P<0.001
Incidental Tumor Tests (d)	P = 0.013	P<0.001	P = 0.086
Cochran-Armitage Trend Test (d)	P = 0.0013 P = 0.004	1 20.001	1 -0.000
Fisher Exact Tests	r - 0.004	P<0.001	P=0.002
ung: Alveolar/Bronchiolar Adenoma			
Overall Rates (a)	0/50 (0%)	3/50 (6%)	3/50 (6%)
Adjusted Rates (b)	0.0%	8.9%	8.4%
Terminal Rates (c)	0/36 (0%)	2/29 (7%)	0/0
Life Table Tests (d)	P = 0.008	P = 0.101	P = 0.076
Incidental Tumor Tests (d)	P=0.223	P = 0.132	P = 0.590
Cochran-Armitage Trend Test (d)	P = 0.101		
Fisher Exact Tests		P = 0.121	P = 0.121
ung: Alveolar/Bronchiolar Adenoma or	Carcinoma		
Overall Rates (a)	1/50 (2%)	3/50 (6%)	4/50 (8%)
Adjusted Rates (b)	2.4%	8.9%	31.3%
Terminal Rates (c)	0/36 (0%)	2/29 (7%)	0/0
Life Table Tests (d)	P = 0.004	P = 0.258	P = 0.017
Incidental Tumor Tests (d)	P = 0.319	P = 0.367	P = 0.656
Cochran-Armitage Trend Test (d)	P = 0.133		

TABLE E1. ANALYSIS OF PRIMARY TUMORS IN MALE RATS IN THE TWO-YEAR FEED STUDY OFC. I. BASIC RED 9 MONOHYDROCHLORIDE (Continued)

	Control	1,000 ppm	2,000 ppm
Hematopoietic System: Mononuclear Co	ell Leukemia		
Overall Rates (a)	5/50 (10%)	1/50 (2%)	1/50 (2%)
Adjusted Rates (b)	13.1%	3.4%	5.6%
Terminal Rates (c)	4/36(11%)	1/29 (3%)	0/0
Life Table Tests (d)	P = 0.459N	P = 0.153 N	P=0.498
Incidental Tumor Tests (d)	P = 0.156N	P = 0.117 N	P = 0.461 N
Cochran-Armitage Trend Test (d)	P = 0.049 N		
Fisher Exact Tests		P = 0.102N	P = 0.102N
Hematopoietic System: Leukemia			
Overall Rates (a)	7/50 (14%)	1/50 (2%)	1/50 (2%)
Adjusted Rates (b)	17.0%	3.4%	5.6%
Terminal Rates (c)	4/36(11%)	1/29 (3%)	0/0
Life Table Tests (d)	P = 0.187 N	P = 0.056 N	P = 0.719
Incidental Tumor Tests (d)	P = 0.013 N	P = 0.023 N	P = 0.042 N
Cochran-Armitage Trend Test (d)	P = 0.010N		
Fisher Exact Tests		P = 0.030 N	P = 0.030 N
iver: Bile Duct Adenoma or Carcinoma			
Overall Rates (a)	0/50 (0%)	0/50 (0%)	3/50 (6%)
Adjusted Rates (b)	0.0%	0.0%	25.5%
Terminal Rates (c)	0/36 (0%)	0/29 (0%)	0/0
Life Table Tests (d)	P = 0.002	(e)	P = 0.005
Incidental Tumor Tests (d)	P = 0.079	(e)	P = 0.263
Cochran-Armitage Trend Test (d)	P = 0.037		5 6 4 6 4
Fisher Exact Tests		(e)	P = 0.121
Liver: Neoplastic Nodule	5/50/1000	14/50 (9901)	C/EO (1901)
Overall Rates (a)	5/50(10%)	14/50 (28%)	6/50 (12%)
Adjusted Rates (b)	13.9%	46.3%	38.9%
Terminal Rates (c)	5/36(14%)	13/29 (45%)	0/0 D < 0.001
Life Table Tests (d)	P<0.001	P = 0.004	P<0.001
Incidental Tumor Tests (d)	P = 0.002	P = 0.005	P = 0.198
Cochran-Armitage Trend Test (d)	P = 0.447	P 0.000	D 0 500
Fisher Exact Tests		P = 0.020	P = 0.500
Liver: Hepatocellular Carcinoma	0(50,000)	0/50 (40)	0/50 (100)
Overall Rates (a)	0/50 (0%)	2/50 (4%)	8/50 (16%)
Adjusted Rates (b)	0.0%	6.9%	57.4%
Terminal Rates (c)	0/36 (0%)	2/29 (7%)	0/0
Life Table Tests (d)	P<0.001	P = 0.192	P<0.001
Incidental Tumor Tests (d)	P<0.001	P = 0.192	P = 0.035
Cochran-Armitage Trend Test (d) Fisher Exact Tests	P = 0.001	P = 0.247	P=0.003
Liver: Neoplastic Nodule or Hepatocellu	lar Carcinoma		
Overall Rates (a)	5/50 (10%)	15/50 (30%)	14/50 (28%)
Adjusted Rates (b)	13.9%	49.6%	74.0%
Terminal Rates (c)	5/36 (14%)	14/29 (48%)	0/0
Life Table Tests (d)	P<0.001	P = 0.002	P<0.001
Incidental Tumor Tests (d)	P<0.001	P = 0.002	P = 0.007
Cochran-Armitage Trend Test (d)	P = 0.021	- 0100#	
Fisher Exact Tests	1 -0.021	P=0.011	P=0.020
Pituitary: Adenoma			
Overall Rates (a)	17/48 (35%)	16/47 (34%)	8/46 (17%)
Adjusted Rates (b)	42.8%	43.1%	54.3%
Terminal Rates (c)	13/35 (37%)	8/27 (30%)	0/0 (0%)
Life Table Tests (d)	P = 0.006	P = 0.408	P<0.001
Incidental Tumor Tests (d)	P = 0.222N	P = 0.438N	P = 0.454N
Cochran-Armitage Trend Test (d)	P = 0.036N		
Fisher Exact Tests		P = 0.530N	P = 0.040N

C.I. Basic Red 9 Monohydrochloride, NTP TR 285

TABLE E1. ANALYSIS OF PRIMARY TUMORS IN MALE RATS IN THE TWO-YEAR FEED STUDY OFC. I. BASIC RED 9 MONOHYDROCHLORIDE (Continued)

	Control	1, 000 ppm	2,000 ppm
Pituitary: Adenoma or Carcinoma			
Overall Rates (a)	17/48 (35%)	17/47 (36%)	8/46 (17%)
Adjusted Rates (b)	42.8%	44.9%	54.3%
Terminal Rates (c)	13/35(37%)	8/27 (30%)	0/0 (0%)
Life Table Tests (d)	P = 0.005	P = 0.331	P<0.001
Incidental Tumor Tests (d)	P = 0.210N	P = 0.499N	P = 0.454 N
Cochran-Armitage Trend Test (d)	P = 0.037N	1 - 0.40011	1 - 0.90411
Fisher Exact Tests		P = 0.554	P = 0.040 N
Adrenal: Pheochromocytoma			
Overall Rates (a)	10/49 (20%)	14/49 (29%)	3/48 (6%)
Adjusted Rates (b)	26.5%	44.5%	16.5%
Terminal Rates (c)	9/36 (25%)	12/29 (41%)	0/0
Life Table Tests (d)	P = 0.015	P = 0.098	P = 0.120
Incidental Tumor Tests (d)	P = 0.235	P = 0.118	P = 0.671 N
Cochran-Armitage Trend Test (d)	P = 0.049 N		
Fisher Exact Tests		P = 0.241	P = 0.039 N
Adrenal: Pheochromocytoma or Pheoc		ant	
Overall Rates (a)	11/49(22%)	14/49 (29%)	3/48 (6%)
Adjusted Rates (b)	29.2%	44.5%	16.5%
Terminal Rates (c)	10/36 (28%)	12/29 (41%)	0/0
Life Table Tests (d)	P = 0.024	P = 0.143	P = 0.120
Incidental Tumor Tests (d)	P = 0.292	P = 0.169	P = 0.671 N
Cochran-Armitage Trend Test (d)	P = 0.030 N		
Fisher Exact Tests		P = 0.322	P = 0.022 N
Fhyroid: Follicular Cell Adenoma			
Overall Rates (a)	0/49 (0%)	0/46(0%)	9/44 (20%)
Adjusted Rates (b)	0.0%	0.0%	78.4%
Terminal Rates (c)	0/36(0%)	0/27 (0%)	0/0
Life Table Tests (d)	P<0.001	(e)	P<0.001
Incidental Tumor Tests (d)	P = 0.004	(e)	P=0.038
Cochran-Armitage Trend Test (d)	P<0.001		
Fisher Exact Tests		(e)	P<0.001
Fhyroid: Follicular Cell Carcinoma			
Overall Rates (a)	0/49(0%)	5/46(11%)	18/44 (41%)
Adjusted Rates (b)	0.0%	15.9%	81.6%
Terminal Rates (c)	0/36(0%)	3/27 (11%)	0/0
Life Table Tests (d)	P<0.001	P = 0.020	P<0.001
Incidental Tumor Tests (d)	P<0.001	P = 0.030	P = 0.010
Cochran-Armitage Trend Test (d)	P<0.001		
Fisher Exact Tests		P = 0.024	P<0.001
Thyroid: Follicular Cell Adenoma or Ca			
Overall Rates (a)	0/49 (0%)	5/46 (11%)	25/44 (57%)
Adjusted Rates (b)	0.0%	15.9%	91.4%
Terminal Rates (c)	0/36(0%)	3/27 (11%)	0/0
Life Table Tests (d)	P<0.001	P = 0.020	P<0.001
Incidental Tumor Tests (d)	P<0.001	P = 0.030	P = 0.001
Cochran-Armitage Trend Test (d)	P<0.001		
Fisher Exact Tests		P = 0.024	P<0.001
hyroid: C-Cell Adenoma	1110.07	0/10/17:	0/11/000
Overall Rates (a)	4/49 (8%)	2/46 (4%)	0/44 (0%)
Adjusted Rates (b)	11.1%	6.5%	0.0%
Terminal Rates (c)	4/36 (11%)	1/27 (4%)	0/0
Life Table Tests (d)	P = 0.451N	P = 0.463N	(f)
Incidental Tumor Tests (d)	P = 0.277 N	P = 0.422N	(f)
Cochran-Armitage Trend Test (d) Fisher Exact Tests	P = 0.047 N	P = 0.369 N	P = 0.073N

TABLE E1.	ANALYSIS OF PRIMARY TUMORS IN MALE RATS IN THE TWO-YEAR FEED STUDY OF	
	C. I. BASIC RED 9 MONOHYDROCHLORIDE (Continued)	

	Control	1,000 ppm	2,000 ppm
Thyroid: C-Cell Adenoma or Carcinoma	· · · · · · · · · · · · · · · · · · ·		
Overall Rates (a)	4/49 (8%)	3/46 (7%)	1/44 (2%)
Adjusted Rates (b)	11.1%	10.1%	14.3%
Terminal Rates (c)	4/36(11%)	2/27 (7%)	0/0
Life Table Tests (d)	P = 0.280	P = 0.643N	P = 0.158
Incidental Tumor Tests (d)	P = 0.588	P = 0.606N	P = 0.590
Cochran-Armitage Trend Test (d)	P = 0.162N	1 0.00011	1 0.000
Fisher Exact Tests		P = 0.536N	P = 0.216N
Pancreatic Islets: Islet Cell Adenoma			
Overall Rates (a)	2/47 (4%)	2/50 (4%)	3/46 (7%)
Adjusted Rates (b)	5.1%	5.6%	32.5%
Terminal Rates (c)	1/36 (3%)	1/29 (3%)	0/0
Life Table Tests (d)	P = 0.014	P = 0.634	P=0.003
Incidental Tumor Tests (d)	P = 0.390	P = 0.604 N	P = 0.579
Cochran-Armitage Trend Test (d)	P=0.396		
Fisher Exact Tests		P = 0.668N	P=0.490
Pancreatic Islets: Islet Cell Carcinoma			
Overall Rates (a)	0/47 (0%)	3/50 (6%)	1/46 (2%)
Adjusted Rates (b)	0.0%	10.3%	10.0%
Terminal Rates (c)	0/36(0%)	3/29 (10%)	0/0
Life Table Tests (d)	P=0.010	P=0.085	P = 0.217
Incidental Tumor Tests (d)	P = 0.040	P = 0.085	P = 0.638
Cochran-Armitage Trend Test (d)	P = 0.370		
Fisher Exact Tests		P=0.133	P=0.495
Pancreatic Islets: Islet Cell Adenoma or	Carcinoma		
Overall Rates (a)	2/47(4%)	5/50 (10%)	4/46 (9%)
Adjusted Rates (b)	5.1%	5.8%	40.0%
Terminal Rates (c)	1/36 (3%)	4/29 (14%)	0/0
Life Table Tests (d)	P<0.001	P = 0.152	P<0.001
Incidental Tumor Tests (d)	P = 0.070	P = 0.234	P = 0.426
Cochran-Armitage Trend Test (d)	P = 0.270		
Fisher Exact Tests		P = 0.244	P=0.328
Mammary Gland: Fibroadenoma			
Overall Rates (a)	4/50 (8%)	6/50 (12%)	2/50 (4%)
Adjusted Rates (b)	10.0%	19.3%	53,3%
Terminal Rates (c)	1/36 (3%)	5/29 (17%)	0/0
Life Table Tests (d)	P = 0.043	P = 0.271	P = 0.101
Incidental Tumor Tests (d)	P = 0.547	P = 0.398	P = 0.230N
Cochran-Armitage Trend Test (d)	P = 0.290N		
Fisher Exact Tests		P = 0.370	P = 0.339 N
Mammary Gland: Adenoma or Fibroade	enoma		
Overall Rates (a)	5/50 (10%)	5/50 (12%)	2/50 (4%)
Adjusted Rates (b)	12.5%	19.3%	53.3%
Terminal Rates (c)	2/36 (6%)	5/29 (17%)	0/0
Life Table Tests (d)	P = 0.075	P = 0.379	P = 0.101
Incidental Tumor Tests (d)	P = 0.556N	P = 0.518	P = 0.230 N
Cochran-Armitage Trend Test (d)	P = 0.187N		
Fisher Exact Tests		P = 0.500	P = 0.218N
Preputial Gland: Adenoma			
Overall Rates (a)	3/50 (6%)	2/50 (4%)	1/50 (2%)
Adjusted Rates (b)	8.3%	4.5%	4.2%
Terminal Rates (c)	3/36 (8%)	0/29 (0%)	0/0
Life Table Tests (d)	P = 0.514	P = 0.562N	P=0.366
Incidental Tumor Tests (d)	P = 0.253 N	P = 0.436N	P = 0.748
	P = 0.253N P = 0.222N	P = 0.436N	P = 0.748

C.I. Basic Red 9 Monohydrochloride, NTP TR 285

	Control	1,000 ppm	2,000 ppm
Preputial Gland: Adenoma or Carcinon	18		
Overall Rates (a)	4/50 (8%)	2/50 (4%)	2/50 (4%)
Adjusted Rates (b)	11.1%	4.5%	9.5%
Terminal Rates (c)	4/36 (11%)	0/29 (0%)	0/0
Life Table Tests (d)	P = 0.332	P = 0.410N	P = 0.090
Incidental Tumor Tests (d)	P = 0.313N	P = 0.297N	P = 0.539
Cochran-Armitage Trend Test (d)	P = 0.252N	1 = 0.2371	r = 0.559
Fisher Exact Tests	1 = 0.2521	P=0.339N	P = 0.339N
Fisher Exact Tests		F=0.3391	P=0.3391
Festis: Interstitial Cell Tumor			
Overall Rates (a)	43/48 (90%)	46/48 (96%)	37/50 (74%)
Adjusted Rates (b)	97.7%	100.0%	100.0%
Terminal Rates (c)	35/36 (97%)	29/29 (100%)	0/0
Life Table Tests (d)	P<0.001	P = 0.026	P<0.001
Incidental Tumor Tests (d)	P=0.033	P = 0.169	P=0.089
Cochran-Armitage Trend Test (d)	P = 0.017N		
Fisher Exact Tests		P = 0.218	P = 0.041 N
Tunica Vaginalis: Mesothelioma			
Overall Rates (a)	1/50 (2%)	3/50 (6%)	1/50 (2%)
Adjusted Rates (b)	2.8%	9.9%	6.7%
Terminal Rates (c)	1/36 (3%)	2/29 (7%)	0/0
Life Table Tests (d)	P = 0.057	P = 0.236	P = 0.282
Incidental Tumor Tests (d)	P = 0.320	P = 0.287	P = 0.748
Cochran-Armitage Trend Test (d)	P = 0.610		
Fisher Exact Tests		P=0.309	P = 0.753
All Sites: Mesothelioma			
Overall Rates (a)	1/50 (2%)	5/50 (10%)	3/50 (6%)
Adjusted Rates (b)	2.8%	15.1%	11.3%
Terminal Rates (c)	1/36 (3%)	3/29 (10%)	0/0
Life Table Tests (d)	P = 0.005	P = 0.072	P = 0.052
Incidental Tumor Tests (d)	P = 0.221	P = 0.112	P = 0.518
Cochran-Armitage Trend Test (d)	P = 0.264	***	- 0.010
Fisher Exact Tests		P = 0.102	P=0.309
Zymbal Gland: Carcinoma			
Overall Rates (a)	1/50 (2%)	1/50 (2%)	13/50 (26%)
Adjusted Rates (b)	2.4%	3.4%	80.5%
Terminal Rates (c)	0/36 (0%)	1/29 (3%)	0/0
Life Table Tests (d)	P<0.001	P = 0.715	P<0.001
Incidental Tumor Tests (d)	P = 0.005	P = 0.738N	P = 0.062
Cochran-Armitage Trend Test (d)	P=0.005 P<0.001	F = 0.7301	r = 0.002
Fisher Exact Tests	1 20.001	P = 0.753	P<0.001

TABLE E1. ANALYSIS OF PRIMARY TUMORS IN MALE RATS IN THE TWO-YEAR FEED STUDY OF C. I. BASIC RED 9 MONOHYDROCHLORIDE (Continued)

(a) Number of tumor-bearing animals/number of animals examined at the site

(b) Kaplan-Meier estimated tumor incidence at the end of the study after adjusting for intercurrent mortality

(c) Observed tumor incidence at terminal kill

(d) Beneath the control incidence are the P values associated with the trend test. Beneath the dosed group incidence are the P values corresponding to pairwise comparisons between that dosed group and the controls. The life table analysis regards tumors in animals dying prior to terminal kill as being (directly or indirectly) the cause of death. The incidental tumor test regards these lesions as nonfatal. The Cochran-Armitage and Fisher exact test compare directly the overall incidence rates. A negative trend or lower incidence in a dosed group is indicated by (N). The results of the incidental tumor test are presented, but the test lacks sensitivity in this case due to the poor overlap in survival for the high dose and control groups. (e) No P value is reported because no tumors were observed in the 1,000-ppm and control groups.

(f) Significance cannot be determined, since all tumors in controls were observed after the death of the last high dose animal and no tumors were observed in the high dose group.

TABLE E2. ANALYSIS OF PRIMARY TUMORS IN FEMALE RATS IN THE TWO-YEAR FEED STUDY OF C. I. BASIC RED 9 MONOHYDROCHLORIDE

	Control	500 ppm	1,000 ppm
Subcutaneous Tissue: Fibroma			
Overall Rates (a)	0/50 (0%)	15/50 (30%)	10/50 (20%)
Adjusted Rates (b)	0.0%	37.8%	40.3%
Terminal Rates (c)	0/37 (0%)	11/35 (31%)	3/14 (21%)
Life Table Tests (d)	P<0.001	P<0.001	P<0.001
Incidental Tumor Tests (d)	P = 0.002	P<0.001	P=0.003
Cochran-Armitage Trend Test (d)	P = 0.005	D <0.001	D <0.001
Fisher Exact Tests		P<0.001	P<0.001
Subcutaneous Tissue: Fibroma or Fibro			
Overall Rates (a)	0/50 (0%)	16/50 (32%)	10/50 (20%)
Adjusted Rates (b)	0.0%	39.5%	40.3%
Terminal Rates (c)	0/37 (0%)	11/35 (31%)	3/14 (21%)
Life Table Tests (d)	P<0.001	P<0.001	P<0.001
Incidental Tumor Tests (d)	P = 0.003	P<0.001	P = 0.003
Cochran-Armitage Trend Test (d)	P = 0.006		
Fisher Exact Tests		P<0.001	P<0.001
Subcutaneous Tissue: Sarcoma or Fibro	osarcoma		
Overall Rates (a)	1/50 (2%)	4/50 (8%)	2/50 (4%)
Adjusted Rates (b)	2.7%	9.6%	11.6%
Terminal Rates (c)	1/37 (3%)	0/35 (0%)	0/14 (0%)
Life Table Tests (d)	P = 0.138	P = 0.189	P = 0.218
Incidental Tumor Tests (d)	P = 0.138 P = 0.486N	P = 0.189 P = 0.389	P = 0.218 P = 0.631
Cochran-Armitage Trend Test (d)		r = 0.369	r = 0.031
Fisher Exact Tests	P = 0.406	P = 0.181	P = 0.500
Net and an and the second s	E ''		
Subcutaneous Tissue: Fibroma, Sarcor		17/50 (0.197)	10/50 (0.400)
Overall Rates (a)	1/50 (2%)	17/50 (34%)	12/50 (24%)
Adjusted Rates (b)	2.7%	40.9%	47.2%
Terminal Rates (c)	1/37 (3%)	11/35 (31%)	3/14 (21%)
Life Table Tests (d)	P<0.001	P<0.001	P<0.001
Incidental Tumor Tests (d)	P = 0.003	P<0.001	P<0.004
Cochran-Armitage Trend Test (d)	P = 0.004		
Fisher Exact Tests		P<0.001	P<0.001
Hematopoietic System: Mononuclear C	ell Leukemia		
Overall Rates (a)	10/50 (20%)	11/50 (22%)	6/50 (12%)
Adjusted Rates (b)	22,7%	27.8%	22.8%
Terminal Rates (c)			22.8% 2/14(14%)
Life Table Tests (d)	4/37 (11%) R=0 420	8/35 (23%) B=0.496	
	P = 0.430 P = 0.102N	P = 0.496 P = 0.576 N	P = 0.567
Incidental Tumor Tests (d)	P = 0.103N P = 0.181N	P = 0.576N	P = 0.060 N
Cochran-Armitage Trend Test (d) Fisher Exact Tests	P = 0.181 N	P-0 500	P-0.907N
risher Exact lesis		P = 0.500	P = 0.207 N
fematopoietic System: Leukemia			
Overall Rates (a)	11/50 (22%)	11/50 (22%)	6/50 (12%)
Adjusted Rates (b)	24.7%	27.8%	22.8%
Terminal Rates (c)	4/37 (11%)	8/35 (23%)	2/14 (14%)
Life Table Tests (d)	P = 0.514	P = 0.585	P = 0.576N
Incidental Tumor Tests (d)	P = 0.053N	P = 0.438N	P = 0.024N
Cochran-Armitage Trend Test (d)	P = 0.124N		
Fisher Exact Tests		P = 0.595	P = 0.143N
iver: Neoplastic Nodule			
Overall Rates (a)	1/50 (2%)	4/50 (8%)	3/50 (6%)
Adjusted Rates (b)	2.7%	11.0%	8.4%
Terminal Rates (c)	1/37 (3%)	3/35 (9%)	0/14 (0%)
Life Table Tests (d)	P = 0.073	P = 0.170	P = 0.174
Incidental Tumor Tests (d)			
	P = 0.250	P = 0.211	P = 0.375
Cochran-Armitage Trend Test (d)	P = 0.252	D 0.101	D 0.000
Fisher Exact Tests		P = 0.181	P = 0.309

C.I. Basic Red 9 Monohydrochloride, NTP TR 285

	Control	500 ppm	1,000 ppm
Liver: Neoplastic Nodule or Hepatocell	ular Carcinoma	<u></u>	
Overall Rates (a)	1/50 (2%)	4/50 (8%)	4/50 (8%)
Adjusted Rates (b)	2.7%	11.0%	14.9%
Terminal Rates (c)	1/37 (3%)	3/35 (9%)	1/14 (7%)
Life Table Tests (d)	P = 0.025	P = 0.170	P = 0.062
Incidental Tumor Tests (d)	P = 0.115	P = 0.211	P = 0.155
Cochran-Armitage Trend Test (d)	P = 0.146		
Fisher Exact Tests		P = 0.181	P = 0.181
Pituitary: Adenoma			
Overall Rates (a)	26/50 (52%)	20/48 (42%)	21/49 (43%)
Adjusted Rates (b)	59.1%	47.0%	68.6%
Terminal Rates (c)	19/37 (51%)	13/35 (37%)	6/14 (43%)
Life Table Tests (d)	P = 0.042	P = 0.213N	P=0.030
Incidental Tumor Tests (d)	P = 0.203 N	P = 0.049N	P = 0.274N
Cochran-Armitage Trend Test (d)	P = 0.207 N		
Fisher Exact Tests		P = 0.206N	P = 0.239N
ituitary: Adenoma or Carcinoma			
Overall Rates (a)	27/50 (54%)	22/48 (46%)	22/49 (45%)
Adjusted Rates (b)	61.3%	51.8%	72.5%
Terminal Rates (c)	20/37 (54%)	15/35 (43%)	7/14 (50%)
Life Table Tests (d)	P = 0.027	P = 0.274N	P = 0.020
Incidental Tumor Tests (d)	P = 0.279N	P = 0.079 N	P = 0.348N
Cochran-Armitage Trend Test (d)	P = 0.210N		
Fisher Exact Tests		P = 0.272N	P = 0.241 N
Adrenal: Pheochromocytoma or Pheoc	hromocytoma, Malignan		
Overall Rates (a)	0/50 (0%)	3/50 (6%)	1/49 (2%)
Adjusted Rates (b)	0.0%	8.1%	2.6%
Terminal Rates (c)	0/37 (0%)	2/35(6%)	0/14 (0%)
Life Table Tests (d)	P = 0.191	P = 0.116	P = 0.466
Incidental Tumor Tests (d)	P = 0.372	P = 0.158	P = 0.602
Cochran-Armitage Trend Test (d)	P = 0.372		
Fisher Exact Tests		P = 0.121	P=0.495
Thyroid: Follicular Cell Adenoma			
Overall Rates (a)	0/47 (0%)	0/48(0%)	4/50 (8%)
Adjusted Rates (b)	0.0%	0.0%	20.4%
Terminal Rates (c)	0/37 (0%)	0/33 (0%)	1/14 (7%)
Life Table Tests (d)	P = 0.002	(e)	P = 0.009
Incidental Tumor Tests (d)	P = 0.025	(e)	P = 0.135
Cochran-Armitage Trend Test (d)	P = 0.017		
Fisher Exact Tests		(e)	P = 0.066
hyroid: Follicular Cell Adenoma or Ca		0/40 / 475	0.000
Overall Rates (a)	0/47 (0%)	2/48 (4%)	6/50 (12%)
Adjusted Rates (b)	0.0%	5.3%	29.2%
Terminal Rates (c)	0/37 (0%)	1/33 (3%)	2/14(14%)
Life Table Tests (d)	P<0.001	P = 0.232	P<0.001
Incidental Tumor Tests (d)	P = 0.009	P = 0.324	P = 0.031
Cochran-Armitage Trend Test (d) Fisher Exact Tests	P=0.009	P = 0.253	P=0.016
hyroid: C-Cell Adenoma		0.00.000	
Overall Rates (a)	1/47 (2%)	3/48 (6%)	1/50 (2%)
Adjusted Rates (b)	2.7%	8.2%	4.2%
	1/37 (3%)	2/33 (6%)	0/14(0%)
Terminal Rates (c)			
Terminal Rates (c) Life Table Tests (d)	P = 0.353	P = 0.285	P = 0.590
Terminal Rates (c) Life Table Tests (d) Incidental Tumor Tests (d)	P = 0.353 P = 0.590		
Terminal Rates (c) Life Table Tests (d)	P = 0.353	P = 0.285	P = 0.590

TABLE E2. ANALYSIS OF PRIMARY TUMORS IN FEMALE RATS IN THE TWO-YEAR FEED STUDY OFC. I. BASIC RED 9 MONOHYDROCHLORIDE (Continued)

TABLE E2. ANALYSIS OF PRIMARY TUMORS IN FEMALE RATS IN THE TWO-YEAR FEED STUDY OFC. I. BASIC RED 9 MONOHYDROCHLORIDE (Continued)

	Control	500 ppm	1,000 ppm
	1	<u></u>	
Overall Rates (a)	2/47 (4%)	5/48 (10%)	2/50(4%)
Adjusted Rates (b)	5.4%	14.1%	11.0%
Terminal Rates (c)	2/37 (5%)	4/33 (12%)	1/14(7%)
Life Table Tests (d)	P = 0.212	P = 0.185	P = 0.369
Incidental Tumor Tests (d)	P = 0.364	P = 0.226	P = 0.544
Cochran-Armitage Trend Test (d)	P = 0.553 N		
Fisher Exact Tests		P = 0.226	P = 0.668 N
Mammary Gland: Adenoma			
Overall Rates (a)	0/50 (0%)	3/50 (6%)	1/50 (2%)
Adjusted Rates (b)	0.0%	7.9%	4.3%
Terminal Rates (c)	0/37 (0%)	2/35 (6%)	0/14(0%)
Life Table Tests (d)	P = 0.178	P = 0.121	P = 0.390
Incidental Tumor Tests (d)	P = 0.385	P = 0.158	P = 0.707
Cochran-Armitage Trend Test (d)	P = 0.378	1 - 0.100	
Fisher Exact Tests	1-0.070	P = 0.121	P = 0.500
		0.121	1 -0.000
Mammary Gland: Adenocarcinoma Overall Rates (a)	2/50 (4%)	2/50 (4%)	5/50 (10%)
Adjusted Rates (b)	5.4%	5.7%	23.2%
	2/37 (5%)	2/35 (6%)	2/14(14%)
Terminal Rates (c) Life Table Tests (d)			P = 0.035
Life Table Tests (d)	P = 0.020	P = 0.675	
Incidental Tumor Tests (d)	P = 0.073	P = 0.675	P = 0.121
Cochran-Armitage Trend Test (d)	P = 0.146	D-0 601	D-0.219
Fisher Exact Tests		P = 0.691	P = 0.218
Mammary Gland: Adenoma or Adenoca		4(50 (97))	C/EQ (1997)
Overall Rates (a)	2/50 (4%)	4/50 (8%)	6/50 (12%)
Adjusted Rates (b)	5.4%	10.7%	26.5%
Terminal Rates (c)	2/37 (5%)	3/35 (9%)	2/14(14%)
Life Table Tests (d)	P = 0.008	P = 0.322	P = 0.015
Incidental Tumor Tests (d)	P = 0.062	P = 0.372	P = 0.095
Cochran-Armitage Trend Test (d)	P = 0.099		
Fisher Exact Tests		P = 0.339	P = 0.134
Mammary Gland: Fibroadenoma			
Overall Rates (a)	22/50(44%)	31/50 (62%)	29/50 (58%)
Adjusted Rates (b)	49.7%	73.4%	96.2%
Terminal Rates (c)	15/37 (41%)	24/35(69%)	13/14 (93%)
Life Table Tests (d)	P<0.001	P = 0.061	P<0.001
Incidental Tumor Tests (d)	P = 0.006	P = 0.091	P = 0.023
Cochran-Armitage Trend Test (d)	P=0.096		
Fisher Exact Tests		P = 0.054	P = 0.115
Mammary Gland: Adenoma, Fibroaden			
Overall Rates (a)	23/50 (46%)	32/50 (64%)	32/50 (64%)
Adjusted Rates (b)	52.0%	75.8%	96.6%
Terminal Rates (c)	16/37 (43%)	25/35(71%)	13/14(93%)
Life Table Tests (d)	P<0.001	P=0.059	P<0.001
Incidental Tumor Tests (d)	P = 0.002	P = 0.088	P = 0.010
Cochran-Armitage Trend Test (d)	P = 0.043		
Fisher Exact Tests		P = 0.054	P = 0.054
Clitoral Gland: Adenoma			
Overall Rates (a)	2/50 (4%)	0/50 (0%)	3/50 (6%)
Adjusted Rates (b)	5.4%	0.0%	18.8%
Terminal Rates (c)	2/37 (5%)	0/35 (0%)	2/14(14%)
Life Table Tests (d)	P = 0.133	P = 0.251N	P = 0.136
	P = 0.133 P = 0.215	P = 0.251 N P = 0.251 N	P = 0.247
Incidental Tumor Tests (d)		1 -0.2011	1 - 0.2-11
Cochran-Armitage Trend Test (d)	P = 0.390		
Fisher Exact Tests		P = 0.247 N	P = 0.500

	Control	500 ppm	1,000 ppm
Clitoral Gland: Adenoma or Carcinoma	- <u></u>		
Overall Rates (a)	4/50 (8%)	1/50 (2%)	5/50 (10%)
Adjusted Rates (b)	10.8%	2.5%	22.1%
Terminal Rates (c)	4/37 (11%)	0/35 (0%)	2/14 (14%)
Life Table Tests (d)	P = 0.137	P = 0.195N	P = 0.126
Incidental Tumor Tests (d)	P = 0.501	P = 0.149N	P = 0.382
Cochran-Armitage Trend Test (d)	P = 0.421		1 0.001
Fisher Exact Tests		P = 0.181N	P=0.500
Uterus: Endometrial Stromal Polyp			
Overall Rates (a)	15/50 (30%)	14/50 (28%)	10/49 (20%)
Adjusted Rates (b)	36.9%	35.3%	41.4%
Terminal Rates (c)	12/37 (32%)	10/35 (29%)	4/14 (29%)
Life Table Tests (d)	P = 0.225	P = 0.541N	P = 0.266
Incidental Tumor Tests (d)	P = 0.303N	P=0.479N	P = 0.426N
Cochran-Armitage Trend Test (d)	P = 0.166N		
Fisher Exact Tests		P = 0.500 N	P=0.193N
Uterus: Endometrial Stromal Sarcoma			
Overall Rates (a)	1/50 (2%)	5/50 (10%)	6/49 (12%)
Adjusted Rates (b)	2.7%	13.3%	22.6%
Terminal Rates (c)	1/37 (3%)	4/35(11%)	1/14 (7%)
Life Table Tests (d)	P = 0.004	P=0.099	P = 0.010
Incidental Tumor Tests (d)	P=0.058	P = 0.120	P = 0.136
Cochran-Armitage Trend Test (d)	P = 0.045		
Fisher Exact Tests		P = 0.102	P = 0.053
Uterus: Endometrial Stromal Polyp or S	Sarcoma		
Overall Rates (a)	16/50 (32%)	18/50 (36%)	16/49 (33%)
Adjusted Rates (b)	39.4%	44.3%	56.2%
Terminal Rates (c)	13/37 (35%)	13/35 (37%)	5/14 (36%)
Life Table Tests (d)	P = 0.014	P = 0.379	P = 0.024
Incidental Tumor Tests (d)	P = 0.403	P=0.456	P = 0.429
Cochran-Armitage Trend Test (d)	P = 0.514		
Fisher Exact Tests		P = 0.416	P = 0.558
Zymbal Gland: Carcinoma			
Overall Rates (a)	0/50 (0%)	2/50 (4%)	7/50 (14%)
Adjusted Rates (b)	0.0%	4.0%	24.1%
Terminal Rates (c)	0/37 (0%)	0/35(0%)	1/14 (7%)
Life Table Tests (d)	P<0.001	P = 0.261	P = 0.002
Incidental Tumor Tests (d)	P = 0.056	P = 0.187	P = 0.059
Cochran-Armitage Trend Test (d)	P = 0.003		
Fisher Exact Tests		P = 0.247	P=0.006

TABLE E2. ANALYSIS OF PRIMARY TUMORS IN FEMALE RATS IN THE TWO-YEAR FEED STUDY OF C. I. BASIC RED 9 MONOHYDROCHLORIDE (Continued)

(a) Number of tumor-bearing animals/number of animals examined at the site

(b) Kaplan-Meier estimated tumor incidence at the end of the study after adjusting for intercurrent mortality

(c) Observed tumor incidence at terminal kill

(d) Beneath the control incidence are the P values associated with the trend test. Beneath the dosed group incidence are the P values corresponding to pairwise comparisons between that dosed group and the controls. The life table analysis regards tumors in animals dying prior to terminal kill as being (directly or indirectly) the cause of death. The incidental tumor test regards these lesions as nonfatal. The Cochran-Armitage and Fisher exact test compare directly the overall incidence rates. A negative trend or lower incidence in a dosed group is indicated by (N).

(e) No P value is reported because no tumors were observed in the 500-ppm and control groups.

TABLE E3. ANALYSIS OF PRIMARY TUMORS IN MALE MICE IN THE TWO-YEAR FEED STUDY OF C.I. BASIC RED 9 MONOHYDROCHLORIDE

	Control	500 ppm	1 ,000 pp m
Lung: Alveolar/Bronchiolar Adenoma		16	
Overall Rates (a)	7/50 (14%)	3/50 (6%)	6/50 (12%)
Adjusted Rates (b)	16.3%	8.8%	16.7%
Terminal Rates (c)	6/42 (14%)	2/32 (6%)	6/36 (17%)
Life Table Tests (d)	P = 0.545N	P = 0.285N	P = 0.616
Incidental Tumor Tests (d)	P = 0.476N	P = 0.125N	P = 0.551N
Cochran-Armitage Trend Test (d)	P = 0.436N	F=0.1251	F=0.35114
Fisher Exact Tests	F = 0.40014	P = 0.159N	P = 0.500 N
ung: Alveolar/Bronchiolar Carcinoma Overall Rates (a)	4/50 (8%)	4/50 (8%)	2/50 (4%)
Adjusted Rates (b)	9.5%	12.5%	5.6%
Terminal Rates (c)	4/42 (10%)	4/32 (13%)	2/36 (6%)
Life Table Tests (d)	P = 0.354N	P = 0.488	P = 0.410N
Incidental Tumor Tests (d)	P = 0.354N	P = 0.488	P = 0.410N
Cochran-Armitage Trend Test (d)	P = 0.274N		
Fisher Exact Tests		P = 0.643N	P=0.339N
ung: Alveolar/Bronchiolar Adenoma o	or Carcinoma		
Overall Rates (a)	11/50 (22%)	7/50 (14%)	8/50 (16%)
Adjusted Rates (b)	25.6%	20.9%	22.2%
Terminal Rates (c)	10/42 (24%)	6/32 (19%)	8/36 (22%)
Life Table Tests (d)	P = 0.388N	P = 0.434N	P = 0.446N
Incidental Tumor Tests (d)	P = 0.331N	P = 0.434N P = 0.276N	P = 0.386N
Cochran-Armitage Trend Test (d)	P = 0.351 N P = 0.254 N	1 - 0.2 (011	1 - 0.00011
Fisher Exact Tests	1 - 0.40411	P=0.218N	P = 0.306 N
Iematopoietic System: Malignant Lymp			
Overall Rates (a)	3/50 (6%)	1/50 (2%)	4/50 (8%)
Adjusted Rates (b)	6.7%	2.7%	9.4%
Terminal Rates (c)	2/42 (5%)	0/32 (0%)	2/36 (6%)
Life Table Tests (d)	P=0.364	P = 0.388N	P = 0.440
Incidental Tumor Tests (d)	P = 0.595N	P = 0.245N	P = 0.556N
Cochran-Armitage Trend Test (d)	P = 0.412		
Fisher Exact Tests		P = 0.309 N	P = 0.500
Iematopoietic System: Malignant Lymp	nhoma. Histiocytic Ty	'ne	
Overall Rates (a)	2/50 (4%)	5/50 (10%)	3/50 (6%)
Adjusted Rates (b)	4.5%	13.2%	7.3%
Terminal Rates (c)	1/42 (2%)	1/32 (3%)	1/36 (3%)
Life Table Tests (d)	P = 0.359	P = 0.146	P = 0.446
Incidental Tumor Tests (d)	P = 0.533	P = 0.387	P = 0.600
		r=0.38/	r = 0.000
Cochran-Armitage Trend Test (d) Fisher Exact Tests	P = 0.421	P=0.218	P = 0.500
			- 3.000
Iematopoietic System: Malignant Lymp		A # A (A+)	A 150 (0 M)
Overall Rates (a)	0/50 (0%)	3/50 (6%)	4/50 (8%)
Adjusted Rates (b)	0.0%	9.4%	10.0%
Terminal Rates (c)	0/42 (0%)	3/32 (9%)	2/36 (6%)
Life Table Tests (d)	P = 0.039	P = 0.078	P=0.051
Incidental Tumor Tests (d)	P = 0.047	P = 0.078	P=0.100
Cochran-Armitage Trend Test (d)	P=0.049		
Fisher Exact Tests		P = 0.121	P=0.059
lematopoietic System: Lymphoma, All	Malignant		
Overall Rates (a)	7/50 (14%)	9/50 (18%)	11/50 (22%)
Adjusted Rates (b)	15.6%	23.7%	24.9%
•			
Terminal Rates (c)	5/42 (12%) R=0 121	4/32(13%)	5/36 (14%)
Life Table Tests (d)	P = 0.131	P = 0.228	P = 0.158
Incidental Tumor Tests (d)	P = 0.301	P = 0.494	P = 0.459
Cochran-Armitage Trend Test (d)	P = 0.181		
Fisher Exact Tests		P=0.393	P=0.218

C.I. Basic Red 9 Monohydrochloride, NTP TR 285

TABLE E3. ANALYSIS OF PRIMARY TUMORS IN MALE MICE IN THE TWO-YEAR FEED STUDY OF C. I. BASIC RED 9 MONOHYDROCHLORIDE (Continued)

	Control	500 ppm	1,000 ppm	
Liver: Hepatocellular Adenoma	<u></u>	<u> </u>	. <u></u>	
Overall Rates (a)	22/50 (44%)	21/50 (42%)	17/50 (34%)	
Adjusted Rates (b)	48.7%	55.9%	44.7%	
Terminal Rates (c)	19/42 (45%)	16/32 (50%)	15/36(42%)	
Life Table Tests (d)	P = 0.395N	P = 0.260	P = 0.413N	
Incidental Tumor Tests (d)	P = 0.264N	P = 0.532	P = 0.239 N	
Cochran-Armitage Trend Test (d)	P = 0.204 N P = 0.179 N	F = 0.032	F = 0.23914	
Fisher Exact Tests	1 = 0.1751	P = 0.500 N	P = 0.206 N	
Liver: Hepatocellular Carcinoma				
Overall Rates (a)	10/50 (20%)	20/50 (40%)	27/50 (54%)	
Adjusted Rates (b)	23.1%	49.0%	62.5%	
Terminal Rates (c)	9/42 (21%)	12/32 (38%)	20/36 (56%)	
Life Table Tests (d)	P<0.001	P = 0.005	P<0.001	
Incidental Tumor Tests (d)	P<0.001	P = 0.000	P<0.001	
Cochran-Armitage Trend Test (d)	P<0.001 P<0.001	1 = 0.017	1 20.001	
Fisher Exact Tests	r < 0.001	P = 0.024	P<0.001	
Liver: Hepatocellular Adenoma or Car	cinoma			
Overall Rates (a)	29/50 (58%)	37/50 (74%)	41/50 (82%)	
Adjusted Rates (b)	62.8%	83.8%	91.1%	
Terminal Rates (c)	25/42 (60%)	25/32(78%)	32/36 (89%)	
Life Table Tests (d)	P = 0.001	P = 0.004	P = 0.001	
Incidental Tumor Tests (d)	P<0.001	P = 0.035	P = 0.002	
Cochran-Armitage Trend Test (d)	P = 0.005	1 = 0.000	1 - 0.001	
Fisher Exact Tests	1 - 0.000	P=0.069	P=0.008	
Thyroid: Follicular Cell Adenoma				
Overall Rates (a)	1/50 (2%)	1/48(2%)	3/49 (6%)	
Adjusted Rates (b)	2.4%	3.2%	7.3%	
Terminal Rates (c)	1/42 (2%)	1/31 (3%)	1/36(3%)	
Life Table Tests (d)	P = 0.175	P = 0.693	P = 0.262	
Incidental Tumor Tests (d)	P = 0.192	P = 0.693	P = 0.315	
Cochran-Armitage Trend Test (d)	P = 0.198			
Fisher Exact Tests		P = 0.742	P = 0.301	
Harderian Gland: Adenoma				
Overall Rates (a)	3/50 (6%)	5/50 (10%)	3/50 (6%)	
Adjusted Rates (b)	7.1%	14.4%	8.3%	
Terminal Rates (c)	3/42 (7%)	4/32 (13%)	3/36 (8%)	
Life Table Tests (d)	P = 0.489	P = 0.231	P = 0.590	
Incidental Tumor Tests (d)	P = 0.507	P = 0.293	P = 0.590	
Cochran-Armitage Trend Test (d)	P = 0.576	1 = 0.230	1 -0.000	
Fisher Exact Tests	1 - 0.070	P = 0.357	P=0.661	
Harderian Gland: Adenoma or Cystade	noma			
Overail Rates (a)	4/50 (8%)	6/50 (12%)	4/50 (8%)	
Adjusted Rates (b)	9.5%	17.5%	11.1%	
Terminal Rates (c)	9.5% 4/42 (10%)	5/32(16%)	4/36 (11%)	
Life Table Tests (d)		P = 0.224	P = 0.557	
	P = 0.468	P = 0.224 P = 0.279	P = 0.557 P = 0.557	
Incidental Tumor Tests (d)	P = 0.484	r=0.2/9	F = 0.00/	
Cochran-Armitage Trend Test (d)	P = 0.568			

(a) Number of tumor-bearing animals/number of animals examined at the site

(b) Kaplan-Meier estimated tumor incidence at the end of the study after adjusting for intercurrent mortality

(c) Observed tumor incidence at terminal kill

⁽d) Beneath the control incidence are the P values associated with the trend test. Beneath the dosed group incidence are the P values corresponding to pairwise comparisons between that dosed group and the controls. The life table analysis regards tumors in animals dying prior to terminal kill as being (directly or indirectly) the cause of death. The incidental tumor test regards these lesions as nonfatal. The Cochran-Armitage and Fisher exact test compare directly the overall incidence rates. A negative trend or lower incidence in a dosed group is indicated by (N).

TABLE E4. ANALYSIS OF PRIMARY TUMORS IN FEMALE MICE IN THE TWO-YEAR FEED STUDY OF C. I. BASIC RED 9 MONOHYDROCHLORIDE

	Control	500 ppm	1,000 ppm
Subcutaneous Tissue: Sarcoma			····
Overall Rates (a)	3/50 (6%)	2/50 (4%)	0/50 (0%)
Adjusted Rates (b)	8.4%	6.1%	0.0%
Terminal Rates (c)	1/31 (3%)	0/12(0%)	0/6 (0%)
Life Table Tests (d)	P = 0.266N	P = 0.626	P = 0.384N
Incidental Tumor Tests (d)	P = 0.042N	P = 0.335N	P = 0.103N
Cochran-Armitage Trend Test (d)	P = 0.042N	F = 0.33514	F=0.10510
Fisher Exact Tests	r = 0.0021	P = 0.500 N	P = 0.121N
		1 = 0.00011	1 0.12110
Lung: Alveolar/Bronchiolar Adenoma	0/50 (0/7)	0/40 (40)	A (ATT (OV))
Overall Rates (a)	0/50 (0%)	2/49 (4%)	4/47 (9%)
Adjusted Rates (b)	0.0%	11.4%	25.2%
Terminal Rates (c)	0/31 (0%)	1/12 (8%)	1/6 (17%)
Life Table Tests (d)	P = 0.004	P = 0.112	P = 0.011
Incidental Tumor Tests (d)	P = 0.020	P = 0.211	P = 0.083
Cochran-Armitage Trend Test (d)	P = 0.032		
Fisher Exact Tests		P = 0.242	P = 0.051
ung: Alveolar/Bronchiolar Adenoma d	or Carcinoma		
Overall Rates (a)	0/50 (0%)	2/49 (4%)	5/47 (11%)
Adjusted Rates (b)	0.0%	11.4%	27.6%
Terminal Rates (c)	0/31 (0%)	1/12 (8%)	1/6(17%)
Life Table Tests (d)	P = 0.002	P = 0.112	P = 0.005
Incidental Tumor Tests (d)	P = 0.002 P = 0.009	P = 0.112 P = 0.211	P = 0.005 P = 0.055
Cochran-Armitage Trend Test (d)	P = 0.009 P = 0.014	P = 0.211	P = 0.055
Fisher Exact Tests	1 - 0.014	P = 0.242	P = 0.024
Iematopoietic System: Malignant Lym Overall Rates (a) Adjusted Rates (b)	phoma, Undifferentia 6/50 (12%) 17.9%	ted Type 1/50 (2%) 8.3%	1/50 (2%) 6.2%
Terminal Rates (c)	4/31 (13%)	1/12 (8%)	0/6 (0%)
Life Table Tests (d)	P = 0.343N	P = 0.303N	P = 0.566N
	F - 0.34314		
In add and all There are The star (d)	D_0110N		D = 0.101 M
Incidental Tumor Tests (d)	P = 0.119N	P = 0.210N	P = 0.181N
Cochran-Armitage Trend Test (d)	P = 0.119N P = 0.023N		
		P = 0.210N P = 0.056N	P = 0.181N P = 0.056N
Cochran-Armitage Trend Test (d) Fisher Exact Tests Iematopoietic System: Malignant Lym	P=0.023N phoma, Lymphocytic '	P=0.056N	P=0.056N
Cochran-Armitage Trend Test (d) Fisher Exact Tests Hematopoietic System: Malignant Lym Overall Rates (a)	P=0.023N phoma, Lymphocytic ' 0/50 (0%)	P=0.056N	P=0.056N 1/50 (2%)
Cochran-Armitage Trend Test (d) Fisher Exact Tests Iematopoietic System: Malignant Lym Overall Rates (a) Adjusted Rates (b)	P=0.023N phoma, Lymphocytic '	P=0.056N Гуре	P=0.056N 1/50 (2%) 7.1%
Cochran-Armitage Trend Test (d) Fisher Exact Tests Iematopoietic System: Malignant Lymp Overall Rates (a) Adjusted Rates (b) Terminal Rates (c)	P=0.023N phoma, Lymphocytic ' 0/50 (0%)	P = 0.056N Fype 5/50 (10%)	P=0.056N 1/50 (2%)
Cochran-Armitage Trend Test (d) Fisher Exact Tests Iematopoietic System: Malignant Lym Overall Rates (a) Adjusted Rates (b)	P=0.023N phoma, Lymphocytic ' 0/50 (0%) 0.0%	P = 0.056N Fype 5/50 (10%) 25.5%	P=0.056N 1/50 (2%) 7.1%
Cochran-Armitage Trend Test (d) Fisher Exact Tests Iematopoietic System: Malignant Lymp Overall Rates (a) Adjusted Rates (b) Terminal Rates (c)	P=0.023N phoma, Lymphocytic ' 0/50 (0%) 0.0% 0/31 (0%)	P = 0.056N Fype 5/50 (10%) 25.5% 2/12 (17%)	P=0.056N 1/50 (2%) 7.1% 0/6 (0%)
Cochran-Armitage Trend Test (d) Fisher Exact Tests Iematopoietic System: Malignant Lymp Overall Rates (a) Adjusted Rates (b) Terminal Rates (c) Life Table Tests (d)	P = 0.023 N phoma, Lymphocytic ' 0/50 (0%) 0.0% 0/31 (0%) P = 0.095	P = 0.056N Fype 5/50 (10%) 25.5% 2/12 (17%) P = 0.005	P = 0.056N 1/50 (2%) 7.1% 0/6 (0%) P = 0.307
Cochran-Armitage Trend Test (d) Fisher Exact Tests Iematopoietic System: Malignant Lymp Overall Rates (a) Adjusted Rates (b) Terminal Rates (c) Life Table Tests (d) Incidental Tumor Tests (d)	P = 0.023 N phoma, Lymphocytic ' 0/50 (0%) 0.0% 0/31 (0%) P = 0.095 P = 0.392	P = 0.056N Fype 5/50 (10%) 25.5% 2/12 (17%) P = 0.005	P = 0.056N 1/50 (2%) 7.1% 0/6 (0%) P = 0.307
Cochran-Armitage Trend Test (d) Fisher Exact Tests Iematopoietic System: Malignant Lym Overall Rates (a) Adjusted Rates (b) Terminal Rates (c) Life Table Tests (d) Incidental Tumor Tests (d) Cochran-Armitage Trend Test (d) Fisher Exact Tests	P = 0.023 N phoma, Lymphocytic ' 0/50 (0%) 0.0% 0/31 (0%) P = 0.095 P = 0.392 P = 0.399	P = 0.056N Fype $5/50 (10%)$ $25.5%$ $2/12 (17%)$ $P = 0.005$ $P = 0.028$ $P = 0.028$	P = 0.056N 1/50 (2%) 7.1% 0/6 (0%) P = 0.307 P = 0.588
Cochran-Armitage Trend Test (d) Fisher Exact Tests Iematopoietic System: Malignant Lymp Overall Rates (a) Adjusted Rates (b) Terminal Rates (c) Life Table Tests (d) Incidental Tumor Tests (d) Cochran-Armitage Trend Test (d) Fisher Exact Tests Iematopoietic System: Malignant Lymp	P=0.023N phoma, Lymphocytic ' 0/50 (0%) 0.0% 0/31 (0%) P=0.095 P=0.392 P=0.399 phoma, Histiocytic Ty	P = 0.056N Fype $5/50 (10%)$ $25.5%$ $2/12 (17%)$ $P = 0.005$ $P = 0.028$ $P = 0.028$ pe	P = 0.056N $1/50 (2%)$ $7.1%$ $0/6 (0%)$ $P = 0.307$ $P = 0.588$ $P = 0.500$
Cochran-Armitage Trend Test (d) Fisher Exact Tests Iematopoietic System: Malignant Lymp Overall Rates (a) Adjusted Rates (b) Terminal Rates (c) Life Table Tests (d) Incidental Tumor Tests (d) Cochran-Armitage Trend Test (d) Fisher Exact Tests Iematopoietic System: Malignant Lymp Overall Rates (a)	P = 0.023 N phoma, Lymphocytic ' 0/50 (0%) 0.0% 0/31 (0%) P = 0.095 P = 0.392 P = 0.399 phoma, Histiocytic Ty 1/50 (2%)	P = 0.056N Fype $5/50 (10%)$ $25.5%$ $2/12 (17%)$ $P = 0.005$ $P = 0.028$ $P = 0.028$ pe $3/50 (6%)$	$P = 0.056N$ $\frac{1}{50} (2\%)$ 7.1% 0/6 (0%) $P = 0.307$ $P = 0.588$ $P = 0.500$ 8/50 (16%)
Cochran-Armitage Trend Test (d) Fisher Exact Tests Iematopoietic System: Malignant Lymp Overall Rates (a) Adjusted Rates (b) Terminal Rates (c) Life Table Tests (d) Incidental Tumor Tests (d) Cochran-Armitage Trend Test (d) Fisher Exact Tests Iematopoietic System: Malignant Lymp Overall Rates (a) Adjusted Rates (b)	P = 0.023 N phoma, Lymphocytic ' 0/50 (0%) 0.0% 0/31 (0%) P = 0.095 P = 0.392 P = 0.399 phoma, Histiocytic Ty 1/50 (2%) 2.2%	P = 0.056N Fype $5/50 (10%)$ $25.5%$ $2/12 (17%)$ $P = 0.005$ $P = 0.028$ $P = 0.028$ pe $3/50 (6%)$ $8.5%$	$P = 0.056N$ $\frac{1}{50} (2\%)$ 7.1% $0/6 (0\%)$ $P = 0.307$ $P = 0.588$ $P = 0.500$ $\frac{8}{50} (16\%)$ 30.5%
Cochran-Armitage Trend Test (d) Fisher Exact Tests Iematopoietic System: Malignant Lymp Overall Rates (a) Adjusted Rates (b) Terminal Rates (c) Life Table Tests (d) Incidental Tumor Tests (d) Cochran-Armitage Trend Test (d) Fisher Exact Tests Iematopoietic System: Malignant Lymp Overall Rates (a) Adjusted Rates (b) Terminal Rates (c)	P = 0.023 N phoma, Lymphocytic ' 0/50 (0%) 0.0% 0/31 (0%) P = 0.095 P = 0.392 P = 0.399 phoma, Histiocytic Ty 1/50 (2%) 2.2% 0/31 (0%)	P = 0.056N Fype $5/50 (10%)$ $25.5%$ $2/12 (17%)$ $P = 0.005$ $P = 0.028$ $P = 0.028$ pe $3/50 (6%)$ $8.5%$ $0/12 (0%)$	$P = 0.056N$ $\frac{1}{50} (2\%)$ 7.1% $0/6 (0\%)$ $P = 0.307$ $P = 0.588$ $P = 0.500$ $\frac{8}{50} (16\%)$ 30.5% $0/6 (0\%)$
Cochran-Armitage Trend Test (d) Fisher Exact Tests Iematopoietic System: Malignant Lymp Overall Rates (a) Adjusted Rates (b) Terminal Rates (c) Life Table Tests (d) Incidental Tumor Tests (d) Cochran-Armitage Trend Test (d) Fisher Exact Tests Iematopoietic System: Malignant Lymp Overall Rates (a) Adjusted Rates (b) Terminal Rates (c) Life Table Tests (d)	P = 0.023 N phoma, Lymphocytic ' 0/50 (0%) 0.0% 0/31 (0%) P = 0.095 P = 0.392 P = 0.399 phoma, Histiocytic Ty 1/50 (2%) 2.2% 0/31 (0%) P = 0.002	P = 0.056N Fype 5/50 (10%) 25.5% 2/12 (17%) P = 0.005 P = 0.028 P = 0.028 pe 3/50 (6%) 8.5% 0/12 (0%) P = 0.213	$P = 0.056N$ $\frac{1}{50} (2\%)$ 7.1% 0/6 (0%) $P = 0.307$ $P = 0.588$ $P = 0.500$ $\frac{8}{50} (16\%)$ 30.5% 0/6 (0%) $P = 0.003$
Cochran-Armitage Trend Test (d) Fisher Exact Tests Iematopoietic System: Malignant Lymp Overall Rates (a) Adjusted Rates (b) Terminal Rates (c) Life Table Tests (d) Incidental Tumor Tests (d) Cochran-Armitage Trend Test (d) Fisher Exact Tests Iematopoietic System: Malignant Lymp Overall Rates (a) Adjusted Rates (b) Terminal Rates (c) Life Table Tests (d) Incidental Tumor Tests (d)	P = 0.023 N phoma, Lymphocytic ' 0/50 (0%) 0.0% 0/31 (0%) P = 0.095 P = 0.392 P = 0.399 phoma, Histiocytic Ty 1/50 (2%) 2.2% 0/31 (0%) P = 0.002 P = 0.176	P = 0.056N Fype $5/50 (10%)$ $25.5%$ $2/12 (17%)$ $P = 0.005$ $P = 0.028$ $P = 0.028$ pe $3/50 (6%)$ $8.5%$ $0/12 (0%)$	$P = 0.056N$ $\frac{1}{50} (2\%)$ 7.1% $0/6 (0\%)$ $P = 0.307$ $P = 0.588$ $P = 0.500$ $\frac{8}{50} (16\%)$ 30.5% $0/6 (0\%)$
Cochran-Armitage Trend Test (d) Fisher Exact Tests Iematopoietic System: Malignant Lym Overall Rates (a) Adjusted Rates (b) Terminal Rates (c) Life Table Tests (d) Incidental Tumor Tests (d) Cochran-Armitage Trend Test (d) Fisher Exact Tests Iematopoietic System: Malignant Lym Overall Rates (a) Adjusted Rates (b) Terminal Rates (c) Life Table Tests (d) Incidental Tumor Tests (d) Cochran-Armitage Trend Test (d)	P = 0.023 N phoma, Lymphocytic ' 0/50 (0%) 0.0% 0/31 (0%) P = 0.095 P = 0.392 P = 0.399 phoma, Histiocytic Ty 1/50 (2%) 2.2% 0/31 (0%) P = 0.002	P = 0.056N Fype 5/50 (10%) 25.5% 2/12 (17%) P = 0.005 P = 0.028 P = 0.028 pe 3/50 (6%) 8.5% 0/12 (0%) P = 0.213 P = 0.714	$P = 0.056N$ $\frac{1}{50} (2\%)$ 7.1% $0/6 (0\%)$ $P = 0.307$ $P = 0.588$ $P = 0.500$ $\frac{8}{50} (16\%)$ 30.5% $0/6 (0\%)$ $P = 0.003$ $P = 0.284$
Cochran-Armitage Trend Test (d) Fisher Exact Tests Iematopoietic System: Malignant Lymp Overall Rates (a) Adjusted Rates (b) Terminal Rates (c) Life Table Tests (d) Incidental Tumor Tests (d) Cochran-Armitage Trend Test (d) Fisher Exact Tests Iematopoietic System: Malignant Lymp Overall Rates (a) Adjusted Rates (b) Terminal Rates (c) Life Table Tests (d) Incidental Tumor Tests (d)	P = 0.023 N phoma, Lymphocytic ' 0/50 (0%) 0.0% 0/31 (0%) P = 0.095 P = 0.392 P = 0.399 phoma, Histiocytic Ty 1/50 (2%) 2.2% 0/31 (0%) P = 0.002 P = 0.176	P = 0.056N Fype 5/50 (10%) 25.5% 2/12 (17%) P = 0.005 P = 0.028 P = 0.028 pe 3/50 (6%) 8.5% 0/12 (0%) P = 0.213	$P = 0.056N$ $\frac{1}{50} (2\%)$ 7.1% 0/6 (0%) $P = 0.307$ $P = 0.588$ $P = 0.500$ $\frac{8}{50} (16\%)$ 30.5% 0/6 (0%) $P = 0.003$
Cochran-Armitage Trend Test (d) Fisher Exact Tests Iematopoietic System: Malignant Lymp Overall Rates (a) Adjusted Rates (b) Terminal Rates (c) Life Table Tests (d) Incidental Tumor Tests (d) Cochran-Armitage Trend Test (d) Fisher Exact Tests Iematopoietic System: Malignant Lymp Overall Rates (a) Adjusted Rates (b) Terminal Rates (c) Life Table Tests (d) Incidental Tumor Tests (d) Cochran-Armitage Trend Test (d) Fisher Exact Tests Iematopoietic System: Lymphoma, All	P = 0.023 N phoma, Lymphocytic ' 0/50 (0%) 0.0% 0/31 (0%) P = 0.095 P = 0.392 P = 0.399 phoma, Histiocytic Ty 1/50 (2%) 2.2% 0/31 (0%) P = 0.002 P = 0.176 P = 0.008	P = 0.056N Fype 5/50 (10%) 25.5% 2/12 (17%) P = 0.005 P = 0.028 P = 0.028 pe 3/50 (6%) 8.5% 0/12 (0%) P = 0.213 P = 0.714	$P = 0.056N$ $\frac{1}{50} (2\%)$ 7.1% $0/6 (0\%)$ $P = 0.307$ $P = 0.588$ $P = 0.500$ $\frac{8}{50} (16\%)$ 30.5% $0/6 (0\%)$ $P = 0.003$ $P = 0.284$
Cochran-Armitage Trend Test (d) Fisher Exact Tests Iematopoietic System: Malignant Lymp Overall Rates (a) Adjusted Rates (b) Terminal Rates (c) Life Table Tests (d) Cochran-Armitage Trend Test (d) Fisher Exact Tests Iematopoietic System: Malignant Lymp Overall Rates (a) Adjusted Rates (b) Terminal Rates (c) Life Table Tests (d) Incidental Tumor Tests (d) Cochran-Armitage Trend Test (d) Fisher Exact Tests	P = 0.023 N phoma, Lymphocytic ' 0/50 (0%) 0.0% 0/31 (0%) P = 0.095 P = 0.392 P = 0.399 phoma, Histiocytic Ty 1/50 (2%) 2.2% 0/31 (0%) P = 0.002 P = 0.176 P = 0.008	P = 0.056N Fype 5/50 (10%) 25.5% 2/12 (17%) P = 0.005 P = 0.028 P = 0.028 pe 3/50 (6%) 8.5% 0/12 (0%) P = 0.213 P = 0.714	$P = 0.056N$ $\frac{1}{50} (2\%)$ 7.1% $0/6 (0\%)$ $P = 0.307$ $P = 0.588$ $P = 0.500$ $\frac{8}{50} (16\%)$ 30.5% $0/6 (0\%)$ $P = 0.003$ $P = 0.284$
Cochran-Armitage Trend Test (d) Fisher Exact Tests Iematopoietic System: Malignant Lymp Overall Rates (a) Adjusted Rates (b) Terminal Rates (c) Life Table Tests (d) Incidental Tumor Tests (d) Cochran-Armitage Trend Test (d) Fisher Exact Tests Iematopoietic System: Malignant Lymp Overall Rates (a) Adjusted Rates (b) Terminal Rates (c) Life Table Tests (d) Incidental Tumor Tests (d) Cochran-Armitage Trend Test (d) Fisher Exact Tests Iematopoietic System: Lymphoma, All	P = 0.023 N phoma, Lymphocytic ' 0/50 (0%) 0.0% 0/31 (0%) P = 0.095 P = 0.392 P = 0.399 phoma, Histiocytic Ty 1/50 (2%) 2.2% 0/31 (0%) P = 0.002 P = 0.176 P = 0.008 Malignant	P = 0.056N Fype $5/50 (10%)$ $25.5%$ $2/12 (17%)$ $P = 0.005$ $P = 0.028$ $P = 0.028$ pe $3/50 (6%)$ $8.5%$ $0/12 (0%)$ $P = 0.213$ $P = 0.714$ $P = 0.309$	P = 0.056N $1/50 (2%)$ $7.1%$ $0/6 (0%)$ $P = 0.307$ $P = 0.588$ $P = 0.500$ $8/50 (16%)$ $30.5%$ $0/6 (0%)$ $P = 0.003$ $P = 0.284$ $P = 0.015$
Cochran-Armitage Trend Test (d) Fisher Exact Tests Jematopoietic System: Malignant Lymp Overall Rates (a) Adjusted Rates (b) Terminal Rates (c) Life Table Tests (d) Incidental Tumor Tests (d) Cochran-Armitage Trend Test (d) Fisher Exact Tests Jematopoietic System: Malignant Lymp Overall Rates (a) Adjusted Rates (b) Terminal Rates (c) Life Table Tests (d) Incidental Tumor Tests (d) Cochran-Armitage Trend Test (d) Fisher Exact Tests Jematopoietic System: Lymphoma, All Overall Rates (a)	P = 0.023 N phoma, Lymphocytic ' 0/50 (0%) 0.0% 0/31 (0%) P = 0.095 P = 0.392 P = 0.399 phoma, Histiocytic Ty 1/50 (2%) 2.2% 0/31 (0%) P = 0.002 P = 0.176 P = 0.008 Malignant 17/50 (34%)	P = 0.056N Fype $5/50 (10%)$ $25.5%$ $2/12 (17%)$ $P = 0.005$ $P = 0.028$ $P = 0.028$ pe $3/50 (6%)$ $8.5%$ $0/12 (0%)$ $P = 0.213$ $P = 0.714$ $P = 0.309$ $24/50 (48%)$	$P = 0.056N$ $\frac{1}{50} (2\%)$ 7.1% 0/6 (0%) $P = 0.307$ $P = 0.588$ $P = 0.500$ $\frac{8}{50} (16\%)$ 30.5% 0/6 (0%) $P = 0.003$ $P = 0.284$ $P = 0.015$ 25/50 (50%)
Cochran-Armitage Trend Test (d) Fisher Exact Tests Iematopoietic System: Malignant Lymp Overall Rates (a) Adjusted Rates (b) Terminal Rates (c) Life Table Tests (d) Cochran-Armitage Trend Test (d) Fisher Exact Tests Iematopoietic System: Malignant Lymp Overall Rates (a) Adjusted Rates (b) Terminal Rates (c) Life Table Tests (d) Incidental Tumor Tests (d) Cochran-Armitage Trend Test (d) Fisher Exact Tests Iematopoietic System: Lymphoma, All Overall Rates (a) Adjusted Rates (b)	P = 0.023 N phoma, Lymphocytic ' 0/50 (0%) 0.0% 0/31 (0%) P = 0.095 P = 0.392 P = 0.399 phoma, Histiocytic Ty 1/50 (2%) 2.2% 0/31 (0%) P = 0.002 P = 0.176 P = 0.008 Malignant 17/50 (34%) 43.3% 10/31 (32%)	P = 0.056N Fype 5/50 (10%) 25.5% 2/12 (17%) P = 0.005 P = 0.028 P = 0.028 pe 3/50 (6%) 8.5% 0/12 (0%) P = 0.213 P = 0.714 P = 0.309 24/50 (48%) 74.1%	$P = 0.056N$ $\frac{1}{50} (2\%)$ 7.1% 0/6 (0%) $P = 0.307$ $P = 0.588$ $P = 0.500$ $\frac{8}{50} (16\%)$ 30.5% 0/6 (0%) $P = 0.003$ $P = 0.284$ $P = 0.015$ $\frac{25}{50} (50\%)$ 77.9%
Cochran-Armitage Trend Test (d) Fisher Exact Tests Jematopoietic System: Malignant Lymp Overall Rates (a) Adjusted Rates (b) Terminal Rates (c) Life Table Tests (d) Incidental Tumor Tests (d) Cochran-Armitage Trend Test (d) Fisher Exact Tests Jematopoietic System: Malignant Lymp Overall Rates (a) Adjusted Rates (b) Terminal Rates (c) Life Table Tests (d) Incidental Tumor Tests (d) Cochran-Armitage Trend Test (d) Fisher Exact Tests Jematopoietic System: Lymphoma, All Overall Rates (a) Adjusted Rates (b) Terminal Rates (c) Life Table Tests (d)	P = 0.023 N phoma, Lymphocytic ' 0/50 (0%) 0.0% 0/31 (0%) P = 0.095 P = 0.392 P = 0.399 phoma, Histiocytic Ty 1/50 (2%) 2.2% 0/31 (0%) P = 0.002 P = 0.176 P = 0.008 Malignant 17/50 (34%) 43.3% 10/31 (32%) P < 0.001	P = 0.056N Fype 5/50 (10%) 25.5% 2/12 (17%) P = 0.005 P = 0.028 P = 0.028 pe 3/50 (6%) 8.5% 0/12 (0%) P = 0.213 P = 0.714 P = 0.309 24/50 (48%) 74.1% 6/12 (50%) P < 0.001	$P = 0.056N$ $\frac{1}{50} (2\%)$ 7.1% 0/6 (0%) $P = 0.307$ $P = 0.588$ $P = 0.500$ $\frac{8}{50} (16\%)$ 30.5% 0/6 (0%) $P = 0.003$ $P = 0.284$ $P = 0.015$ $\frac{25}{50} (50\%)$ 77.9% 2/6 (33%) $P = 0.001$
Cochran-Armitage Trend Test (d) Fisher Exact Tests Jematopoietic System: Malignant Lymp Overall Rates (a) Adjusted Rates (b) Terminal Rates (c) Life Table Tests (d) Incidental Tumor Tests (d) Cochran-Armitage Trend Test (d) Fisher Exact Tests Jematopoietic System: Malignant Lymp Overall Rates (a) Adjusted Rates (b) Terminal Rates (c) Life Table Tests (d) Incidental Tumor Tests (d) Cochran-Armitage Trend Test (d) Fisher Exact Tests Jematopoietic System: Lymphoma, All Overall Rates (a) Adjusted Rates (b) Terminal Rates (c)	P = 0.023 N phoma, Lymphocytic ' 0/50 (0%) 0.0% 0/31 (0%) P = 0.095 P = 0.392 P = 0.399 phoma, Histiocytic Ty 1/50 (2%) 2.2% 0/31 (0%) P = 0.002 P = 0.176 P = 0.008 Malignant 17/50 (34%) 43.3% 10/31 (32%)	P = 0.056N Fype 5/50 (10%) 25.5% 2/12 (17%) P = 0.005 P = 0.028 P = 0.028 pe 3/50 (6%) 8.5% 0/12 (0%) P = 0.213 P = 0.714 P = 0.309 24/50 (48%) 74.1% 6/12 (50%)	$P = 0.056N$ $\frac{1}{50} (2\%)$ 7.1% 0/6 (0%) $P = 0.307$ $P = 0.588$ $P = 0.500$ $\frac{8}{50} (16\%)$ 30.5% 0/6 (0%) $P = 0.003$ $P = 0.284$ $P = 0.015$ $\frac{25}{50} (50\%)$ 77.9% 2/6 (33%)

C.I. Basic Red 9 Monohydrochloride, NTP TR 285

	Control	500 ppm	1,000 ppm
Circulatory System: Hemangioma or A	ngiosarcoma		·····
Overall Rates (a)	3/50 (6%)	1/50 (2%)	1/50 (2%)
Adjusted Rates (b)	9.7%	4.0%	3.4%
Terminal Rates (c)	3/31 (10%)	0/12 (0%)	0/6 (0%)
Life Table Tests (d)	P = 0.581 N	P = 0.624 N	P = 0.689
Incidental Tumor Tests (d)	P = 0.394N	P = 0.479N	P = 0.660N
Cochran-Armitage Trend Test (d)	P = 0.202N	1 - 0.41011	1 -0.00011
Fisher Exact Tests	1 - 0,20211	P = 0.309 N	P = 0.309 N
iver: Hepatocellular Adenoma			
Overall Rates (a)	2/49(4%)	18/50 (36%)	4/49 (8%)
Adjusted Rates (b)	6.5%	73.8%	22.6%
Terminal Rates (c)	2/31 (6%)	7/12(58%)	1/6(17%)
Life Table Tests (d)	P = 0.004	P<0.001	P = 0.063
Incidental Tumor Tests (d)	P = 0.004 P = 0.165	P<0.001 P<0.001	P = 0.268
		P<0.001	P=0.208
Cochran-Armitage Trend Test (d)	P = 0.341	D <0.001	D = 0.000
Fisher Exact Tests		P<0.001	P=0.339
liver: Hepatocellular Carcinoma	0140 (023)	10/50 (007)	0040 (00%)
Overall Rates (a)	3/49 (6%)	19/50 (38%)	37/49 (76%)
Adjusted Rates (b)	9.2%	70.5%	97.1%
Terminal Rates (c)	2/31 (6%)	6/12 (50%)	5/6 (83%)
Life Table Tests (d)	P<0.001	P<0.001	P<0.001
Incidental Tumor Tests (d)	P<0.001	P<0.001	P<0.001
Cochran-Armitage Trend Test (d)	P<0.001		
Fisher Exact Tests		P<0.001	P<0.001
liver: Hepatocellular Adenoma or Card	cinoma		
Overall Rates (a)	5/49 (10%)	35/50 (70%)	41/49 (84%)
Adjusted Rates (b)	15.5%	96.9%	100.0%
Terminal Rates (c)	4/31(13%)	11/12(92%)	6/6 (100%)
Life Table Tests (d)	P<0.001	P<0.001	P<0.001
Incidental Tumor Tests (d)		P<0.001	P<0.001 P<0.001
	P<0.001	F<0.001	F < 0.001
Cochran-Armitage Trend Test (d) Fisher Exact Tests	P<0.001	P<0.001	P<0.001
Fisher Exact Tests		1 <0.001	1 <0.001
Pituitary: Adenoma	10/00 (000)	7/96 (100)	0/00 (7/2)
Overall Rates (a)	10/38 (26%)	7/36(19%)	2/29 (7%)
Adjusted Rates (b)	37.1%	45.0%	12.1%
Terminal Rates (c)	8/24 (33%)	4/11 (36%)	0/6 (0%)
Life Table Tests (d)	P = 0.526 N	P = 0.297	P = 0.470N
Incidental Tumor Tests (d)	P = 0.178N	P = 0.485	P = 0.163N
Cochran-Armitage Trend Test (d)	P = 0.032N		
Fisher Exact Tests		P = 0.336N	P = 0.039N
Adrenal: Pheochromocytoma			
Overall Rates (a)	1/48(2%)	7/47 (15%)	7/45(16%)
Adjusted Rates (b)	3.2%	32.4%	59.8%
Terminal Rates (c)	1/31 (3%)	2/12(17%)	3/6 (50%)
Life Table Tests (d)	P<0.001	P = 0.003	P<0.001
Incidental Tumor Tests (d)	P = 0.006	P = 0.030	P = 0.003
Cochran-Armitage Trend Test (d)	P = 0.025		
Fisher Exact Tests	1 -0.020	P = 0.027	P = 0.024
Adrenal: Pheochromocytoma or Pheoc	hromocytoma Malignan	t	
Overall Rates (a)	1/48 (2%)	8/47 (17%)	8/45 (18%)
	3.2%	37.2%	73.2%
Adjusted Rates (b)			
Terminal Rates (c)	1/31 (3%)	2/12(17%)	4/6(67%)
Life Table Tests (d)	P<0.001	P = 0.001	P<0.001
	P = 0.002	P = 0.016	P<0.001
Incidental Tumor Tests (d)		1 01010	
Cochran-Armitage Trend Test (d)	P = 0.015	P = 0.014	P = 0.012

TABLE E4. ANALYSIS OF PRIMARY TUMORS IN FEMALE MICE IN THE TWO-YEAR FEED STUDY OFC. I. BASIC RED 9 MONOHYDROCHLORIDE (Continued)

	Control	500 ppm	1,000 ppm
Harderian Gland: Adenoma			
Overall Rates (a)	0/50(0%)	0/50 (0%)	3/50 (6%)
Adjusted Rates (b)	0.0%	0.0%	27.6%
Terminal Rates (c)	0/31 (0%)	0/12(0%)	1/6(17%)
Life Table Tests (d)	P = 0.004	(e)	P = 0.011
Incidental Tumor Tests (d)	P = 0.021	(e)	P = 0.088
Cochran-Armitage Trend Test (d)	P = 0.037		
Fisher Exact Tests		(e)	P = 0.121
Harderian Gland: Adenoma or Cystade	noma		
Overall Rates (a)	0/50 (0%)	0/50 (0%)	5/50 (10%)
Adjusted Rates (b)	0.0%	0.0%	44.3%
Terminal Rates (c)	0/31 (0%)	0/12(0%)	2/6 (33%)
Life Table Tests (d)	P<0.001	(e)	P<0.001
Incidental Tumor Tests (d)	P = 0.001	(e)	P = 0.011
Cochran-Armitage Trend Test (d)	P = 0.006		
Fisher Exact Tests		(e)	P = 0.028
Harderian Gland: Adenoma, Cystaden	oma, or Carcinoma		
Overall Rates (a)	1/50 (2%)	0/50 (0%)	5/50 (10%)
Adjusted Rates (b)	2.5%	0.0%	44.3%
Terminal Rates (c)	0/31 (0%)	0/12 (0%)	2/6 (33%)
Life Table Tests (d)	P = 0.002	P = 0.628N	P = 0.004
Incidental Tumor Tests (d)	P = 0.019	P = 0.479 N	P = 0.070
Cochran-Armitage Trend Test (d)	P = 0.037		
Fisher Exact Tests		P = 0.500 N	P = 0.102

TABLE E4. ANALYSIS OF PRIMARY TUMORS IN FEMALE MICE IN THE TWO-YEAR FEED STUDY OF C. I. BASIC RED 9 MONOHYDROCHLORIDE (Continued)

(a) Number of tumor-bearing animals/number of animals examined at the site

(b) Kaplan-Meier estimated tumor incidence at the end of the study after adjusting for intercurrent mortality

(c) Observed tumor incidence at terminal kill

(d) Beneath the control incidence are the P values associated with the trend test. Beneath the dosed group incidence are the P values corresponding to pairwise comparisons between that dosed group and the controls. The life table analysis regards tumors in animals dying prior to terminal kill as being (directly or indirectly) the cause of death. The incidental tumor test regards these lesions as nonfatal. The Cochran-Armitage and Fisher exact test compare directly the overall incidence rates. A negative trend or lower incidence in a dosed group is indicated by (N).

(e) No P value is reported because no tumors were observed in the 500-ppm and control groups.

APPENDIX F

HISTORICAL INCIDENCES OF TUMORS IN F344/N RATS AND B6C3F1 MICE RECEIVING NO TREATMENT

Study	Incidence in Controls			
	Papilloma NOS	Squamous Cell Papilloma	Squamous Cell Carcinoma	Papilloma or Carcinoma
Historical Incidence at Mason	Research Institut	e		
4,4'-Methylenedianiline • 2HCl	0/50	0/50	1/50	1/50
Monuron	0/50	0/50	1/50	1/50
8-Hydroxyquinoline	0/50	0/50	1/50	1/50
Di(2-ethylhexyl)phthalate	0/50	1/50	0/50	1/50
Di(2-ethylhexyl)adipate	0/49	1/49	0/49	1/49
Guar gum	0/50	0/50	0/50	0/50
Locust bean gum	0/50	1/50	0/50	1/50
Gum arabic	0/50	1/50	0/50	1/50
Agar	0/50	1/50	1/50	2/50
Tara gum	0/50	1/50	2/50	3/50
2,6-Toluenediamine · 2HCl	0/50	0/50	1/50	1/50
4,4'-Oxydianiline	0/50	2/50	0/50	2/50
2-Biphenylamine · HCl	0/50	1/50	0/50	1/50
Cinnamyl anthranilate	0/50	0/50	1/50	1/50
TOTAL	0/699 (0.0%)	9/699 (1.3%)	8/699 (1.1%)	17/699 (2.4%)
SD (b)	0.00%	1.27%	1.29%	1.40%
Range (c)				
High	0/50	2/50	2/50	3/50
Low	0/50	0/50	0/50	0/50
Overall Historical Incidence				
TOTAL SD (b)	5/2,372 (0.2%) 0.86%	22/2,372 (0.9%) 1.46%	17/2,372 (0.7%) 1.14%	44/2,372 (1.9%) 1.83%
Range (c)				
High	2/50	2/40	2/50	3/50
Low	0/90	0/52	0/90	0/52

TABLE F1. HISTORICAL INCIDENCE OF INTEGUMENTARY SYSTEM TUMORS IN MALE F344/N RATS
RECEIVING NO TREATMENT (a)

Study	Incidence in Controls (Continued)			
	Basal Cell Tumor	Basal Cell Carcinoma	Tricho- epithelioma	Sebaceous Adenoma
Historical Incidence at Mason	Research Institut	e (Continued)		
,4'-Methylenedianiline 2HCl	0/50	0/50	0/50	0/50
Monuron	0/50	0/50	1/50	0/50
-Hydroxyquinoline	0/50	1/50	0/50	0/50
Di(2-ethylhexyl)phthalate	0/50	0/50	0/50	1/50
Di(2-ethylhexyl)adipate	0/49	0/49	0/49	0/49
Juar gum	0/50	0/50	0/50	0/50
Locust bean gum	0/50	0/50	0/50	0/50
Jum arabic	0/50	0/50	0/50	0/50
Agar	0/50	0/50	0/50	0/50
fara gum	0/50	1/50	0/50	0/50
2,6-Toluenediamine · 2HCl	0/50	0/50	0/50	0/50
I,4'-Oxydianiline	0/50	3/50	0/50	0/50
Biphenylamine HCl	0/50	0/50	0/50	0/50
Cinnamyl anthranilate	0/50	0/50	0/50	0/50
TOTAL	0/699 (0.0%)	5/699 (0.7%)	1/699 (0.1%)	1/699 (0.1%)
SD (b)	0.00%	1.68%	0.53%	0.53%
Range (c)				
High	0/50	3/50	1/50	1/50
Low	0/50	0/50	0/50	0/50
Overall Historical Incidence				
TOTAL SD (b)	7/2,372 (0.3%) 0.8 4%	14/2,372 (0.6%) 1.33%	4/2,372 (0.2%) 0.57%	(d) 3/2,372 (0.1%) 0.43%
Range (c)	0/20	0/50	1/40	1/50
High Low	2/50 0/90	3/50 0/90	1/49 0/90	1/50 0/52

TABLE F1. HISTORICAL INCIDENCE OF INTEGUMENTARY SYSTEM TUMORS IN MALE F344/N RATSRECEIVING NO TREATMENT (a) (Continued)

.

Study	Incidence in Controls (Continued)			
	Fibroma	Fibrosarcoma	Fibroma or Fibrosarcoma	Sarcoma NOS
Historical Incidence at Mason	n Research Institute	(Continued)		
4,4'-Methylenedianiline · 2HCl	5/50	0/50	5/50	0/50
Monuron	1/50	0/50	1/50	0/50
8-Hydroxyquinoline	2/50	0/50	2/50	2/50
Di(2-ethylhexyl)phthalate	1/50	1/50	2/50	0/50
Di(2-ethylhexyl)adipate	4/49	0/49	4/49	0/49
Guar gum	0/50	1/50	1/50	1/50
Locust bean gum	0/50	1/50	1/50	0/50
Jum arabic	2/50	0/50	2/50	0/50
Agar	2/50	1/50	3/50	0/50
lara gum	1/50	0/50	1/50	1/50
6-Toluenediamine 2HCl	0/50	0/50	0/50	0/50
1,4'-Oxydianiline	1/50	0/50	1/50	1/50
2-Biphenylamine HCl	6/50	0/50	6/50	0/50
Cinnamyl anthranilate	0/50	0/50	0/50	0/50
TOTAL	25/699 (3.6%)	4/699 (0.6%)	29/699 (4.1%)	5/699 (0.7%)
SD (b)	3.87%	0.94%	3.65%	1.27%
Range (c)				
High	6/50	1/50	6/50	2/50
Low	0/50	0/50	0/50	0/50
Overall Historical Incidence				
TOTAL	(e) 105/2,372 (4.4%)	20/2,372 (0.8%)	124/2,372 (5.2%)	8/2,372 (0.3%)
SD(b)	3.10%	1.23%	3.30%	0.87%
Range (c)				
High	6/50	2/50	6/49	2/50
Low	0/50	0/52	0/50	0/90

TABLE F1. HISTORICAL INCIDENCE OF INTEGUMENTARY SYSTEM TUMORS IN MALE F344/N RATS RECEIVING NO TREATMENT (a) (Continued)

(a) Data as of March 16, 1983, for studies of at least 104 weeks

(a) Data as of March 16, 1983, for studies of at least 104 weeks
(b) Standard deviation
(c) Range and SD are presented for groups of 35 or more animals.
(d) One sebaceous adenocarcinoma and one adenocarcinoma, NOS, also were observed.
(e) One fibroadenoma was also observed.

	Incidence in Controls			
Study	Neoplastic Nodule	Hepatocellular Carcinoma	Neoplastic Nodule or Hepatocellular Carcinoma	
Historical Incidence at Mason	Research Institute	· · · · · · · · · · · · · · · · · · ·		
4,4'-Methylenedianiline · 2HCl	1/50	0/50	1/50	
Monuron	1/50	0/50	1/50	
8-Hydroxyquinoline	6/49	1/49	7/49	
Di(2-ethylhexyl)phthalate	2/50	1/50	3/50	
Di(2-ethylhexyl)adipate	2/49	0/49	2/49	
Guar gum	2/50	1/50	(b) 3/50	
Locust bean gum	0/50	1/50	1/50	
Gum arabic	3/49	1/49	4/49	
Agar	0/50	0/50	0/50	
Tara gum	1/49	0/49	1/49	
2,6-Toluenediamine · 2 HCl	0/50	0/50	0/50	
4,4'-Oxydianiline	1/50	0/50	1/50	
2-Biphenylamine HCl	0/49	0/49	0/49	
Cinnamyl anthranilate	1/48	0/48	1/48	
TOTAL	20/693 (2.9%)	5/693 (0.7%)	25/693 (3.6%)	
SD (c)	3.27%	1.0%	3.93%	
Range (d)				
High	6/49	1/49	7/49	
Low	0/50	0/50	0/50	
Overall Historical Incidence				
TOTAL SD (c)	(e) 90/2,358 (3.8%) 4.47%	20/2,358 (0.8%) 1.16%	(e) 110/2,358 (4.7%) 5.06%	
Range (d)				
High	(f) 12/52	2/49	(g) 14/52	
Low	0/50	0/90	0/50	

TABLE F2. HISTORICAL INCIDENCE OF LIVER TUMORS IN MALE F344/N RATS RECEIVING NO **TREATMENT** (a)

(a) Data as of March 16, 1983, for studies of at least 104 weeks(b) One bile duct carcinoma was also observed.

(c) Standard deviation

(d) Range and SD are presented for groups of 35 or more animals.
(e) Includes one group of 12/52 diagnosed as hepatocellular adenoma
(f) Diagnosed as hepatocellular adenoma; second highest: two groups of 6/49
(g) Second highest: two groups of 7/49

TABLE F3. HISTORICAL INCIDENCE OF LEUKEMIA IN MALE F344/N RATS RECEIVING NO TREATMENT (a)

Study	Incidence of Leukemia in Controls				
Historical Incidence at Mason Research Institute					
4,4'-Methylenedianiline · 2HCl	12/50				
Monuron	5/50				
8-Hydroxyquinoline	17/50				
Di(2-ethylhexyl)phthalate	13/50				
Di(2-ethylhexyl)adipate	9/49				
Guargum	13/50				
Locust bean gum	21/50				
Gum arabic	10/50				
Agar	9/50				
Tara gum	14/50				
2.6-Toluenediamine 2 HCl	9/50				
4.4'-Oxydianiline	23/50				
2-Biphenylamine HCl	15/50				
Cinnamyl anthranilate	(b) 0/50				
TOTAL	170/699 (24.3%)				
SD (c)	11.96%				
Range (d)					
High	23/50				
Low	(e) 0/50				
Overall Historical Incidence					
TOTAL	650/2,372 (27.4%)				
SD(c)	10.67%				
Range (d)	· · · ·				
High	23/50				
Low	(e) 0/50				

(a) Data as of March 16, 1983, for studies of at least 104 weeks

(b) The incidence of malignant lymphoma in this group was 7/50 and possibly represents a difference in nomenclature. (c) Standard deviation

(d) Range and SD are presented for groups of 35 or more animals.
(e) Second lowest: 5/50

		Incidence in Controls	
Study	Adenoma	Carcinoma	Adenoma or Carcinoma
listorical Incidence at Maso	n Research Institute		
4 -Methylenedianiline 2HCl	1/49	0/49	1/49
Aonuron	0/49	0/49	0/49
-Hydroxyguinoline	0/50	0/50	0/50
Di(2-ethylhexyl)phthalate	0/48	1/48	1/48
Di(2-ethylhexyl)adipate	0/49	0/49	0/49
luar gum	0/50	0/50	0/50
ocust bean gum	0/49	0/49	0/49
lum arabic	0/47	(b) 0/47	(b) 0/47
Agar	0/49	0/49	0/49
ara gum	0/45	0/45	0/45
,6-Toluenediamine 2HCl	0/44	0/44	0/44
4'-Oxydianiline	1/46	0/46	1/46
-Biphenylamine HCl	0/47	0/47	0/47
linnamyl anthranilate	0/42	1/42	1/42
TOTAL	2/664 (0.3%)	2/664 (0.3%)	4/664 (0.6%)
SD(c)	0.77%	0.81%	1.02%
lange(d)			
High	1/46	1/42	1/42
Low	0/50	0/50	0/50
Verall Historical Incidence			
TOTAL	(e) 22/2,282 (1.0%)	(b) 16/2,282 (0.7%)	(e) 38/2,282 (1.7%)
SD(c)	1.32%	1.37%	2.03%
lange(d)			
High	2/44	3/45	4/45
Low	0/50	0/52	0/50

TABLE F4. HISTORICAL INCIDENCE OF THYROID GLAND FOLLICULAR CELL TUMORS IN MALEF344/N RATS RECEIVING NO TREATMENT (a)

(a) Data as of March 16, 1983, for studies of at least 104 weeks(b) One papillary adenocarcinoma of the thyroid follicle was also observed.

(c) Standard deviation

(d) Range and SD are presented for groups of 35 or more animals.
(e) Includes one cystadenoma, NOS of the thyroid gland follicle.

Incidence in Controls				
	Alveolar/Bronchiolar Adenoma	Alveolar/Bronchiolar Carcinoma	Alveolar/Bronchiolar Adenoma or	
Study	·		Carcinoma	
Historical Incidence at Ma	son Research Institute	}	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
4,4'-Methylenedianiline 2HC	2/50	0/50	2/50	
Monuron	1/50	0/50	1/50	
8-Hydroxyquinoline	0/50	0/50	0/50	
Di(2-ethylhexyl)phthalate	1/50	0/50	1/50	
Di(2-ethylhexyl)adipate	0/49	0/49	0/49	
Guar gum	0/50	1/50	1/50	
Locust bean gum	0/50	0/50	0/50	
Gum arabic	0/50	0/50	0/50	
Agar	0/50	0/50	0/50	
Tara gum	2/50	0/50	2/50	
2,6-Toluenediamine 2HCl	3/49	0/49	3/49	
4,4'-Oxydianiline	1/50	0/50	1/50	
2-Biphenylamine HCl	2/50	0/50	2/50	
Cinnamyl anthranilate	0/48	0/48	0/48	
TOTAL	12/696 (1.7%)	1/696 (0.1%)	13/696 (1.9%)	
SD (b)	2.07%	0.53%	2.01%	
Range (c)				
High	3/49	1/50	3/49	
Low	0/50	0/50	0/50	
Overall Historical Incidenc	e			
TOTAL	36/2,357 (1.5%)	23/2,357 (1.0%)	57/2,357 (2.4%)	
SD(b)	2.05%	1.71%	2.35%	
Range (c)				
High	3/47	3/50	4/49	
Low	0/89	0/50	0/50	

TABLE F5. HISTORICAL INCIDENCE OF LUNG TUMORS IN MALE F344/N RATS RECEIVING NO
TREATMENT (a)

(a) Data as of March 16, 1983, for studies of at least 104 weeks (b) Standard deviation

(c) Range and SD are presented for groups of 35 or more animals.

TABLE F6. HISTORICAL INCIDENCE OF ZYMBAL GLAND CARCINOMAS IN MALE F344/N RATSRECEIVING NO TREATMENT (a)

Study	Incidence of Carcinoma in Controls					
Historical Incidence at Mason Research Institute						
4,4'-Methylenedianiline · 2HCl	0/50					
Monuron	0/50					
8-Hydroxyquinoline	1/50					
Di(2-ethylhexyl)phthalate	0/50					
Di(2-ethylhexyl)adipate	0/49					
Guargum	1/50					
Locust bean gum	0/50					
Gum arabic	0/50					
Agar	0/50					
Tara gum	0/50					
2,6-Toluenediamine 2HCl	0/50					
4,4'-Oxydianiline	0/50					
2-Biphenylamine HCl	1/50					
Cinnamyl anthranilate	0/50					
TOTAL	(b) 3/699 (0.4%)					
SD(c)	0.85%					
Range (d)						
High	1/50					
Low	0/50					
Overall Historical Incidence						
TOTAL	(e) 11/2,372 (0.5%)					
SD (c)	1.12%					
Range (d)						
High	3/50					
Low	0/90					

(a) Data as of March 16, 1983, for studies of at least 104 weeks

(b) Includes two squamous cell carcinomas and one ceruminous carcinoma

(c) Standard deviation

(d) Range and SD are presented for groups of 35 or more animals.
(e) Includes nine squamous cell carcinomas, one carcinoma, NOS and one ceruminous carcinoma. The only other Zymbal gland tumor observed was one carcinosarcoma.

	Incidence in Controls		
Study	Fibroma	Fibrosarcoma	Fibroma or Fibrosarcoma
Historical Incidence at Mason	Research Institute		
4,4'-Methylenedianiline · 2HCl	1/50	1/50	2/50
Monuron	0/50	0/50	0/50
3-Hydroxyquinoline	1/50	1/50	2/50
Butyl benzyl phthalate	1/49	0/49	1/49
Di(2-ethylhexyl)phthalate	0/50	0/50	0/50
Di(2-ethylhexyl)adipate	0/50	1/50	1/50
Juar gum	0/50	0/50	0/50
Locust bean gum	1/50	1/50	2/50
Jum Arabic	0/50	0/50	0/50
Agar	2/50	0/50	2/50
fara gum	2/50	0/50	2/50
,6-Toluenediamine 2HCl	1/50	0/50	1/50
1,4'-Oxydianiline	0/50	0/50	0/50
P-Biphenylamine HCl	1/50	0/50	1/50
Cinnamyl anthranilate	1/48	0/48	1/48
TOTAL	11/747 (1.5%)	4/747 (0.5%)	15/747 (2.0%)
SD(b)	1.41%	0.92%	1.69%
Range (c)			
High	2/50	1/50	2/50
Low	0/50	0/50	0/50
Overall Historical Incidence			
TOTAL	30/2,422 (1.2%)	12/2,422 (0.5%)	42/2,422 (1.7%)
SD(b)	1.36%	0.88%	1.70%
Range (c)	、		
High	2/50	1/49	3/50
Low	0/50	0/88	0/50

TABLE F7. HISTORICAL INCIDENCE OF INTEGUMENTARY SYSTEM TUMORS IN FEMALE F344/NRATS RECEIVING NO TREATMENT (a)

(a) Data as of March 16, 1983, for studies of at least 104 weeks

(b) Standard deviation(c) Range and SD are presented for groups of 35 or more animals.

TABLE F8. HISTORICAL INCIDENCE OF LIVER TUMORS IN FEMALE F344/N RATS RECEIVING NO TREATMENT (a)

	Incidence in Controls				
Study	Neoplastic Nodule	Hepatocellular Carcinoma	Neoplastic Nodule or Hepatocellular Carcinoma		
Historical Incidence at Masor	n Research Institute				
4,4'-Methylenedianiline · 2HCl	4/50	0/50	4/50		
Monuron	4/50	0/50	4/50		
8-Hydroxyguinoline	3/50	1/50	4/50		
Butyl benzyl phthalate	1/49	0/49	1/49		
Di(2-ethylhexyl)phthalate	0/50	0/50	0/50		
Di(2-ethylhexyl)adipate	0/49	0/49	0/49		
Guargum	2/49	0/49	2/49		
Locust bean gum	0/50	0/50	0/50		
Gum Arabic	3/49	0/49	3/49		
Agar	0/50	0/50	0/50		
Tara gum	2/49	0/49	2/49		
2.6-Toluenediamine · 2HCl	0/50	0/50	0/50		
4.4'-Oxydianiline	3/50	0/50	3/50		
2-Biphenylamine HCl	1/50	0/50	1/50		
Cinnamyl anthranilate	2/46	0/46	(b) 2/46		
TOTAL	(b) 25/741 (3.4%)	1/741 (0.1%)	(b) 26/741 (3.5%)		
SD (c)	3.01%	0.52%	3.17%		
Range (d)					
High	4/50	1/50	4/50		
Low	0/50	0/50	0/50		
Overall Historical Incidence					
TOTAL SD (c)	(e) 85/2,408 (3.5%) 4.58%	5/2,408 (0.2%) 0.74%	(e) 89/2,408 (3.7%) 4.88%		
Range (d) High Low	(f) 14/52 0/50	2/50 0/88	(g) 15/52 0/50		

(a) Data as of March 16, 1983, for studies of at least 104 weeks

(b) Includes one hepatocellular adenoma

(b) Includes one hepatocellular adenoma
(c) Standard deviation
(d) Range and SD are presented for groups of 35 or more animals.
(e) Includes 16 tumors (14/52 in one group) designated hepatocellular adenoma
(f) Diagnosed as hepatocellular adenoma; second highest: 6/50
(g) Includes 14/52 diagnosed as hepatocellular adenoma; second highest: 6/50

C.I. Basic Red 9 Monohydrochloride, NTP TR 285

TABLE F9.	HISTORICAL INCIDENCE OF THYROID GLAND FOLLICULAR CELL TUMORS IN FEMALE
	F344/N RATS RECEIVING NO TREATMENT (a)

		Incidence in Co	ontrols
Study	Adenoma	Carcinoma	Adenoma or Carcinoma
Historical Incidence at Mason	n Research Institute	·····	
4,4'-Methylenedianiline · 2HCl	0/47	0/47	0/47
Monuron	0/49	0/49	0/49
8-Hydroxyquinoline	0/48	0/48	0/48
Butyl benzyl phthalate	0/47	0/47	0/47
Di(2-ethylhexyl)phthalate	0/48	0/48	0/48
Di(2-ethylhexyl)adipate	0/50	0/50	(b) 0/50
Guar gum	0/48	0/48	0/48
Locust bean gum	0/50	0/50	0/50
Gum Arabic	(c) 0/49	1/49	1/49
Agar	0/49	1/49	1/49
Tara gum	0/46	0/46	0/46
2,6-Toluenediamine 2HCl	0/49	0/49	0/49
4,4'-Oxydianiline	0/49	0/49	0/49
2-Biphenylamine HCl	1/49	0/49	1/49
Cinnamyl anthranilate	0/46	0/46	0/46
TOTAL	1/724 (0.1%)	2/724(0.3%)	3/724 (0.4%)
SD (d)	0.53%	0.72%	0.84%
Range (e)			
High	1/49	1/49	1/49
Low	0/50	0/50	0/50
Overall Historical Incidence			
TOTAL	7/2,317 (0.3%)	8/2,317 (0.3%)	(f) 15/2,317 (0.6%)
SD (d)	0.71%	0.80%	0.97%
Range (e)			
High	1/42	1/39	1/39
Low	0/52	0/86	0/52

(a) Data as of March 16, 1983, for studies of at least 104 weeks
(b) One papillary cystadenocarcinoma was observed.
(c) One papillary cystadenoma was observed.
(d) Standard deviation
(e) Range and SD are presented for groups of 35 or more animals.
(f) One of each of the following tumors was also observed in the thyroid gland follicle: papillary adenoma, cystadenoma, NOS, papillary cystadenoma, and papillary cystadenocarcinoma, NOS. The inclusion of these tumors would increase the high range to 2/42.

		Incidence in Controls	
Study	Fibroadenoma	Adenocarcinoma, NOS	All Adenocarcinoma
listorical Incidence at Mason	Research Institute		
,4'-Methylenedianiline - 2HCl	10/50	4/50	4/50
Ionuron	20/50	1/50	1/50
3-Hydroxyquinoline	19/50	0/50	0/50
Butyl benzyl phthalate	20/49	2/49	2/49
Di(2-ethylhexyl)phthalate	10/50	1/50	2/50
Di(2-ethylhexyl)adipate	13/50	1/50	1/50
Guar gum	20/50	2/50	2/50
Locust bean gum	16/50	1/50	1/50
Jum Arabic	14/50	0/50	0/50
Agar	14/50	3/50	3/50
lara gum	13/50	0/50	0/50
2,6-Toluenediamine 2HCl	11/50	0/50	0/50
4 -Oxydianiline	16/50	0/50	0/50
-Biphenylamine HCl	22/50	1/50	1/50
linnamyl anthranilate	8/48	0/48	0/48
TOTAL	(b) 226/747 (30.3%)	16/747 (2.1%)	17/747 (2.3%)
SD (c)	8.73%	2.45%	2.50%
Range (d)			
High	22/50	4/50	4/50
Low	8/48	0/50	0/50
Dverall Historical Incidence			
TOTAL	(e) 5 49/2,4 22 (22.7%)	42/2,422 (1.7%)	(f) 49/2,422 (2.0%)
SD (c)	10.39%	2.18%	2.34%
Range (d)			
High	22/50	4/50	4/49
Low	0/50	0/50	0/50

TABLE F10. HISTORICAL INCIDENCE OF MAMMARY GLAND TUMORS IN FEMALE F344/N RATS RECEIVING NO TREATMENT (a)

(a) Data as of March 16, 1983, for studies of at least 104 weeks

(b) Four adenomas, NOS, and one papillary cystadenoma also have been observed.

(b) Four adenomas, NOS, and one papillary cystadenoma also have been observed.
(c) Standard deviation
(d) Range and SD are presented for groups of 35 or more animals.
(e) One fibroma, 18 adenomas, NOS, 7 cystadenomas, 2 papillary cystadenomas, 4 cystfibroadenomas, and 1 acinar cell adenoma also have been observed.
(f) Includes one carcinoma, NOS

TABLE F11. HISTORICAL INCIDENCE OF UTERINE GLANDULAR TUMORS IN FEMALE F344/N RATS RECEIVING NO TREATMENT (a)

Study	No. of Animals Examined	No. of Tumors in Controls	Site	Diagnosis
Historical Incidence at Maso	on Research Insti	tute		
4,4´-Methylenedianiline · 2HCl 4,4´-Oxydianiline	48 49	1 2	Uterus, NOS Uterus, NOS	Papillary adenocarcinoma Adenocarcinoma, NOS
All others	636	0		
TOTAL	733	3(0.4%)		
Overall Historical Incidence	(b)			
	2,370	1 6 2 1 4 1	Uterus, NOS Uterus, NOS Uterus, NOS Uterus/endometrium Uterus/endometrium Uterus/endometrium	Carcinoma-in-situ, NOS Adenocarcinoma, NOS Papillary Adenocarcinoma Adenoma, NOS Adenocarcinoma, NOS Papillary Adenocarcinoma
TOTAL		15(0.6%)		

(a) Data as of March 16, 1983, for studies of at least 104 weeks
(b) Greatest incidence observed in any control group: 2/45

	Incidence i	n Controls
	Endometrial Stromal	Endometrial Stromal
Study	Polyp	Sarcoma
istorical Incidence at Mason Re	esearch Institute	
.,4'-Methylenedianiline · 2HCl	11/48	3/48
Ionuron	9/50	1/50
-Hydroxyquinoline	11/49	0/49
utyl benzyl phthalate	12/49	0/49
i(2-ethylhexyl)phthalate	7/49	0/49
)i(2-ethylhexyl)adipate	11/50	1/50
Juar gum	17/49	0/49
ocust bean gum	12/50	0/50
um Arabic	14/49	1/49
gar	17/50	0/50
ara gum	6/47	0/47
6-Toluenediamine · 2HCl	9/48	1/48
4'-Oxydianiline	7/49	0/49
Biphenylamine HCl	9/49	0/49
nnamyl anthranilate	2/47	0/47
TOTAL	154/733 (21.0%)	7/733(1.0%)
SD(b)	8.02%	1.73%
nge(c)		
High	17/49	3/48
Low	2/47	0/50
verall Historical Incidence		
TOTAL	429/2,370 (18.1%)	22/2,370 (0.9%)
SD(b)	8.10%	1.58%
inge(c)		
High	18/49	3/48
Low	2/47	0/87

TABLE F12. HISTORICAL INCIDENCE OF UTERINE ENDOMETRIAL TUMORS IN FEMALE F344/N RATS RECEIVING NO TREATMENT (a)

(a) Data as of March 16, 1983, for studies of at least 104 weeks

(b) Standard deviation

(c) Range and SD are presented for groups of 35 or more animals.

TABLE F13. HISTORICAL INCIDENCE OF ZYMBAL GLAND CARCINOMAS IN FEMALE F344/N RATS RECEIVING NO TREATMENT (a)

Study	Incidence of Carcinoma in Controls (b)			
Historical Incidence at Mason Research Institute				
Monuron	1/50			
2,6-Toluenediamine 2HCl	1/50			
All others	0/647			
TOTAL	2/747 (0.3%)			
SD (c)	0.70%			
Range (d)				
High	1/50			
Low	0/50			
Overall Historical Incidence				
TOTAL	(e) 6/2,422 (0.2%)			
SD (c)	0.67%			
Range (d)				
High	(e) 1/50			
Low	0/88			

(a) Data as of March 16, 1983, for studies of at least 104 weeks

(b) Includes carcinoma, NOS, and squamous cell carcinoma. No ceruminous carcinomas were observed.

(c) Standard deviation

(d) Range and SD are presented for groups of 35 or more animals.

(e) One adenocarcinoma, NOS, and two adenosquamous carcinomas were also observed. The inclusion of these tumors would increase the high range to 2/50.

TABLE F14. HISTORICAL INCIDENCE OF KIDNEY TUMORS IN FEMALE F344/N RATS RECEIVING NO TREATMENT (a)

Study	No. of Animals Examined	No. of Tumors in Controls	Site	Diagnosis
Historical Inciden	ce at Mason Research In	stitute	,	
	742			
No kidney tumors w	ere observed at this laborator	·y.		
Overall Historical	Incidence			
	2,411	1 3	Kidney, NOS Kidney, NOS	Tubular cell adenoma Tubular cell adenocarcinoma
TOTAL		4(<1%)		

(a) Data as of March 16, 1983, for studies of at least 104 weeks

TABLE F15. HISTORICAL INCIDENCE OF URINARY BLADDER TUMORS IN FEMALE F344/N RATS RECEIVING NO TREATMENT (a)

Study	No. of Animals Examined	No. of Tumors in Controls	Diagnosis
Historical Incidence at	Mason Research Inst	itute	
Di(2-ethylhexyl)adipate 2-Biphenylamine · HCl All others	49 49 630	1 1 0	Transitional cell papilloma Transitional cell carcinoma
TOTAL	728	2(<1%)	
Overall Historical Incide	ence		
	2,422	2 2 1	Papilloma, NOS Transitional cell papilloma Transitional cell carcinoma
TOTAL		5(<1%)	

(a) Data as of March 16, 1983, for studies of at least 104 weeks

,

TABLE F16. HISTORICAL INCIDENCE OF LIVER TUMORS IN MALE $B6C3F_1$ MICE RECEIVING NO TREATMENT (a)

		Incidence in Controls	
Study	Hepatocellular Adenoma	Hepatocellular Carcinoma	Hepatocellular Adenoma or Carcinoma
Historical Incidence at Mason	Research Institute		
4,4'-Methylenedianiline 2HCl	7/49	10/49	17/49
Monuron	7/50	6/50	12/50
8-Hydroxyquinoline	9/50	5/50	14/50
Butyl benzyl phthalate	4/50	9/50	13/50
Di(2-ethylhexyl)phthalate	6/50	9/50	14/50
Di(2-ethylhexyl)adipate	6/50	7/50	13/50
Guar gum	1/50	15/50	16/50
Locust bean gum	6/50	15/50	18/50
Gum arabic	4/49	13/49	16/49
Agar	0/49	9/49	9/49
Tara gum	8/50	9/50	17/50
2,6-Toluenediamine 2 HCl	7/50	14/50	21/50
4,4'-Oxydianiline	11/50	18/50	29/50
2-Biphenylamine HCl	5/50	9/50	14/50
Cinnamyl anthranilate	8/48	6/48	14/48
TOTAL	89/745 (11.9%)	154/745 (20.7%)	237/745 (31.8%)
SD(b)	5.77%	7.71%	9.18%
Range (c)			
High	11/50	18/50	29/50
Low	0/49	5/50	9/49
Overall Historical Incidence			
TOTAL	242/2,386 (10.1%)	501/2,386 (21%)	730/2,386 (30.6%)
SD(b)	5%	7.25%	8.01%
Range (c)			
High	11/50	18/50	29/50
Low	0/49	3/52	5/52

(a) Data as of March 16, 1983, for studies of at least 104 weeks

(b) Standard deviation(c) Range and SD are presented for groups of 35 or more animals.

	Incidence i	n Controls
Study –	Malignant Lymphoma	Lymphoma or Leukemia
Historical Incidence at Mason R	esearch Institute (b)	
Cinnamyl anthranilate	4/48	4/48
2,6-Toluenediamine · 2 HCl	2/50	2/50
4,4'-Oxydianiline	9/50	9/50
Di(2-ethylhexyl)adipate	16/50	16/50
Di(2-ethylhexyl)phthalate	8/50	8/50
Butyl benzyl phthalate	13/50	14/50
Locust bean gum	12/50	12/50
Gum arabic	9/49	9/49
Guargum	7/50	7/50
Fara gum	6/50	6/50
Agar	2/49	3/49
2-Biphenylamine HCl	6/50	6/50
4,4'-Methylenedianiline 2 HCl	10/49	10/49
Monuron	3/50	3/50
3-Hydroxyquinoline	12/50	12/50
TOTAL	119/745 (16.0%)	121/745 (16.2%)
SD(c)	8.43%	8.42%
Range (d)		
High	16/50	16/50
Low	2/50	2/50
Overall Historical Incidence		
TOTAL	281/2,395 (11.7%)	298/2,395 (12.4%)
SD (c)	6.81%	7.08%
Range (d)		
High	16/50	16/50
Low	1/52	1/52

TABLE F17. HISTORICAL INCIDENCE OF HEMATOPOIETIC SYSTEM TUMORS IN MALE $\rm B6C3F_1~MICE~RECEIVING~NO~TREATMENT~(a)$

(a) Data as of March 16, 1983, for studies of at least 104 weeks
(b) Test results are listed chronologically by terminal kill date from cinnamyl anthranilate (December 1976) through 8-hydroxyquinoline (December 1981). (c) Standard deviation

(d) Range and SD are presented for groups of 35 or more animals.

		Incidence in Controls			
Study	Alveolar /Bronchiolar Adenoma	Alveolar /Bronchiolar Carcinoma	Alveolar /Bronchiolau Adenoma or Carcinoma		
Historical Incidence at Mason	Research Institute				
4,4'-Methylenedianiline 2HCl	1/50	1/50	2/50		
Monuron	4/50	2/50	6/50		
8-Hydroxyguinoline	1/49	1/49	2/49		
Butyl benzyl phthalate	5/50	3/50	8/50		
Di(2-ethylhexyl)phthalate	0/50	0/50	0/50		
Di(2-ethylhexyl)adipate	5/49	1/49	6/49		
Guar gum	2/50	3/50	5/50		
Locust bean gum	2/50	3/50	5/50		
Gum arabic	2/48	1/48	3/48		
Fara gum	7/50	1/50	8/50		
Agar	5/50	2/50	7/50		
2,6-Toluenediamine · 2HCl	4/50	0/50	4/50		
4,4'-Oxydianiline	5/50	0/50	5/50		
2-Biphenylamine · HCl	6/49	0/49	6/49		
Cinnamyl anthranilate	3/50	3/50	6/50		
TOTAL	52/745 (7.0%)	21/745(2.8%)	73/745 (9.8%)		
SD(b)	4.15%	2.36%	4.59%		
Range (c)					
High	7/50	3/50	8/50		
Low	0/50	0/50	0/50		
Overall Historical Incidence					
TOTAL SD (b)	131/2,439 (5.4%) 3.69%	49/2,439 (2.0%) 2.33%	179/2,439 (7.3%) 4.22%		
Range (c)					
High	7/50	4/48	8/50		
Low	0/51	0/50	0/50		

TABLE F18. HISTORICAL INCIDENCE OF LUNG TUMORS IN FEMALE B6C3F1 MICE RECEIVING
RECEIVING NO TREATMENT (a)

(a) Data as of March 16, 1983, for studies of at least 104 weeks

(a) Bata as of March 10, 1000, for studies of at least 104 weeks(b) Standard deviation(c) Range and SD are presented for groups of 35 or more animals.

TABLE F19. HISTORICAL INCIDENCE OF ADRENAL GLAND TUMORS IN FEMALE B6C3F₁ MICE RECEIVING NO TREATMENT (a)

Study

Incidence of Pheochromocytomas in Controls

4,4'-Methylenedianiline · 2HCl	1/50
8-Hydroxyquinoline	1/49
Guar gum	1/47
Locust bean gum	1/45
Tara gum	1/46
All others	0/467
TOTAL	5/704 (0.7%)
SD (b)	1.03%
Range (c) High Low	1/45 0/50
Overall Historical Incidence	
TOTAL	(d) 15/2,357 (0.6%)
SD (b)	1.16%
Range (c) High Low	2/50 0/51

(a) Data as of March 16, 1983, for studies of at least 104 weeks

(b) Standard deviation
(c) Range and SD are presented for groups of 35 or more animals.

(d) No malignant pheochromocytomas were observed.

TABLE F20.	HISTORICAL INCIDENCE OF HARDERIAN GLAND TUMORS IN FEMALE B6C3F ₁ MICE
	RECEIVING NO TREATMENT (a)

Study	Incidence of Adenoma or Adenocarcinoma in Controls		
Historical Incidence at Mason Research Institute			
1,4´-Methylenedianiline · 2HCl	1/50		
Monuron	1/50		
3-Hydroxyquinoline	1/50		
Butyl benzyl phthalate	1/50		
Di(2-ethylhexyl)phthalate	0/50		
Di(2-ethylhexyl)adipate	1/50		
Guargum	1/50		
Locust bean gum	1/50		
Jum arabic	2/49		
Fara gum	1/50		
Agar	1/50		
2,6-Toluenediamine 2HCl	0/50		
4'-Oxydianiline	2/50		
2-Biphenylamine HCl	0/49		
Cinnamyl anthranilate	1/50		
TOTAL	14/748 (1.9%)		
SD (b)	1.20%		
Range (c)			
High	2/49		
Low	0/50		
Overall Historical Incidence			
TOTAL	(d) 33/2,537 (1.3%)		
SD(b)	1.72%		
Range (c)			
High	3/48		
Low	0/89		

(a) Data as of March 16, 1983, for studies of at least 104 weeks

(a) Data as of March 10, 1980, for studies of at least 104 weeks
(b) Standard deviation
(c) Range and SD are presented for groups of 35 or more animals.
(d) One papillary cystadenocarcinoma, NOS, was observed; all other diagnoses were adenoma, NOS, papillary adenoma, or cystadenoma, NOS.

	Incidence in Controls		
Study	Malignant Lymphoma	Lymphoma or Leukemia	
listorical Incidence at Mason I	Research Institute		
1,4'-Methylenedianiline · 2HCl	13/50	13/50	
Monuron	16/50	16/50	
3-Hydroxyquinoline	13/50	13/50	
Butyl benzyl phthalate	17/50	17/50	
Di(2-ethylhexyl)phthalate	10/50	10/50	
Di(2-ethylhexyl)adipate	23/50	23/50	
luar gum	19/50	19/50	
locust bean gum	31/50	31/50	
um arabic	18/49	19/49	
gar	9/50	9/50	
ara gum	16/50	16/50	
6-Toluenediamine · 2 HCl	4/50	4/50	
4'-Oxydianiline	15/50	15/50	
nnamyl anthranilate	18/50	18/50	
Biphenylamine HCl	10/49	10/49	
TOTAL	232/748 (31%)	233/748 (31.1%)	
SD(b)	12.78%	12.85%	
ange (c)			
High	31/50	31/50	
Low	4/50	4/50	
verall Historical Incidence			
TOTAL	637/2,537 (25.1%)	689/2,537 (27.2%)	
SD (b)	10.03%	9.87%	
ange (c)			
High	31/50	31/50	
Low	4/50	4/50	

TABLE F21. HISTORICAL INCIDENCE OF HEMATOPOIETIC SYSTEM TUMORS IN FEMALE $\rm B6C3F_1$ MICE RECEIVING NO TREATMENT (a)

(a) Data as of March 16, 1983, for studies of at least 104 weeks
(b) Standard deviation
(c) Range and SD are presented for groups of 35 or more animals.

		Incidence in Co	ntrols
Study	Adenoma	Carcinoma	Adenoma or Carcinoma
listorical Incidence at Mason I	Research Institute	**************************************	
4'-Methylenedianiline 2HCl	3/50	1/50	4/50
Ionuron	5/50	2/50	6/50
Hydroxyquinoline	2/49	3/49	5/49
Butyl benzyl phthalate	0/50	2/50	2/50
)i(2-ethylhexyl)phthalate	1/50	0/50	1/50
)i(2-ethylhexyl)adipate	2/50	1/50	3/50
Juar gum	2/50	4/50	5/50
ocust bean gum	1/49	2/49	3/49
Jum arabic	2/49	1/49	3/49
lgar	1/50	3/50	4/50
lara gum	9/49	1/49	10/49
.6-Toluenediamine · 2 HCl	4/50	0/50	4/50
4'-Oxydianiline	4/50	4/50	8/50
-Biphenylamine HCl	3/49	4/49	7/49
linnamyl anthranilate	2/50	1/50	3/50
TOTAL	41/745 (5.5%)	29/745 (3.9%)	68/745 (9.1%)
SD(b)	4.44%	2.79%	4.85%
lange (c)			
High	9/49	4/49	10/49
Low	0/50	0/50	1/50
Overall Historical Incidence at	all Laboratories		
TOTAL SD (b)	102/2,519 (4%) 3.9%	106/2,519 (4.2%) 3.09%	205/2,519 (8.1%) 4.75%
lange (c)			
High	9/49	7/48	10/49
Low	0/50	0/50	0/50

TABLE F22. HISTORICAL INCIDENCE OF LIVER TUMORS IN FEMALE $B6C3F_1$ MICE RECEIVING NO TREATMENT (a)

(a) Data as of March 16, 1983, for studies of at least 104 weeks

(b) Standard deviation(c) Range and SD are presented for groups of 35 or more animals.

.

APPENDIX G

GENETIC TOXICOLOGY OF

C.I. BASIC RED 9 MONOHYDROCHLORIDE

			Revertants/plate (a,b)
Strain	Dose (µg/plate)	- 89	+ S9 (rat)	+ S9 (hamster)
ГА100	0	98 ± 1.8	96 ± 6.4	136 ± 10.7
	1	107 ± 4.5		
	3	95 ± 3.4		
	10	84 ± 2.2	112 ± 7.8	180 ± 16.8
	33	114 ± 5.3	134 ± 4.8	253 ± 13.0
	100	42 ± 14.3	152 ± 10.7	349 ± 44.6
	333		180 ± 7.2	574 ± 24.4
	666			579 ± 5.2
	1,000		143 ± 13.2	
A1535	0	22 ± 2.7	6 ± 0.7	6 ± 0.3
	1	27 ± 4.8		
	3	29 ± 3.7		
	10	32 ± 2.4 25 ± 0.3	10 ± 1.8	$10 \pm 1.7 \\ 6 \pm 1.2$
	33	25 ± 0.3	9 ± 3.4	6 ± 1.2
	100	7 ± 3.5	7 ± 1.0	9 ± 1.8
	333		8 ± 2.1	6 ± 0.9
	1,000		12 ± 2.0	11 ± 1.5
A1537	0	7 ± 0.7	6 ± 0.9	7 ± 0.6
	1	8 ± 3.7	••	
	3	5 ± 0.9		
	10	7 ± 0.7	7 ± 1.0	7 ± 1.9
	33	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	9 ± 2.3	$\begin{array}{rrrr} 7 \pm & 1.9 \\ 9 \pm & 1.5 \\ 12 \pm & 0.3 \end{array}$
	100	5 ± 1.0	$9 \pm 2.3 \\ 7 \pm 1.2$	12 ± 0.3
	333		10 ± 1.3	8 ± 2.5
	1,000		9 ± 2.3	10 ± 2.8
A98	0	16 ± 1.2	20 ± 2.8	19 ± 0.3
1100	1	10 ± 1.2 10 ± 2.0		10 - 0.0
	3	10 ± 2.0 17 ± 1.2		
	10	17 ± 1.2 17 ± 0.9	31 ± 3.1	28 ± 2.3
	33	14 ± 0.9	38 ± 0.7	36 ± 4.5
	100	17 ± 2.1	28 ± 4.6	48 ± 6.2
	333		41 ± 6.1	76 ± 7.0
	666			64 ± 10.9
	1,000		32 ± 0.9	

TABLE G1. MUTAGENICITY OF C.I. BASIC RED 9 MONOHYDROCHLORIDE IN SALMONELLA TYPHIMURIUM

(a) The S9 fractions were prepared from the livers of Aroclor 1254-induced male Sprague-Dawley rats and male Syrian hamsters. Cells and test compound or solvent (DMSO) were incubated for 20 min at 37° C in the presence of either S9 or buffer. After the addition of soft agar, the contents of each tube were poured onto minimal medium, and the plates were incubated at 37° C for 48 h (Haworth et al., 1983). The experiment was performed twice, each in triplicate; because the results were similar, data from only one experiment are shown.

(b) Mean \pm standard error

Compound	Dose (µg/ml)	Total Mutant Clones	Cloning Efficiency (percent)	Relative Total Growth (percent)	Mutation Frequency (mutants/10 ⁶ clonable cells)
DMSO			····	· · · · · · · · · · · · · · · · · · ·	
	(1%)	156	95.0	100	55
		105	87.2	100	40
		93	77.7	100	40
		106	55.5	100	64
3-Methylcholan	threne				
	5	412	38.0	2.3	361
		403	57.3	4.4	234
		338	38.2	3.0	295
C.I. Basic Red 9	monohydrocł	loride			
	33	154	75.3	53.6	68
		99	144.0	95.0	23
	41	253	68.8	41.4	123
		243	87.0	53.7	93
	51	284	52.5	26.2	180
		455	64.2	30.4	236
	64	278	47.2	18.5	196
	51	163	24.0	9.1	226
	80	56	13.5	3.7	138
	00	552	18.2	5.6	1,013
	100	123	1.7	0.3	2,460
	100	41	1.7 1.0	0.3	2,460

TABLE G2. MUTAGENICITY OF C.I. BASIC RED 9 MONOHYDROCHLORIDE IN L5178Y/TK+'- MOUSELYMPHOMA CELLS IN THE PRESENCE OF S9 (a)

(a) Experiments were performed twice; all doses were tested in duplicate, except the solvent control (water), which was tested in triplicate. Because the results were similar, data from only one experiment are shown. The protocol was basically that of Clive et al. (1979). Cells (6×10^{5} /ml) were treated for 4 h at 37° C in medium, washed, resuspended in medium, and incubated for 48 h at 37° C. After expression, 3×10^{6} cells were plated in medium supplemented with trifluorothymidine for selection of cells that were mutant at the thymidine kinase (TK) locus, and 600 cells were plated in nonselective medium to determine the percentage of viable cells. S9 was prepared from the livers of Aroclor 1254-induced male F344 rats.

Compound	Dose (µg/ml)	Total Mutant Clones	Cloning Efficiency (percent)	Relative Total Growth (percent)	Mutation Frequency (mutants/10 ⁶ clonable cells)
DMSO					
	(1%)	48	81.0	100	20
		62	85.2	100	24
Ethylmethane	sulfonate				
	500	444	47.8	5.8	309
		424	52.2	6.3	271
C.I. Basic Red	9 monohydroch	loride			
	0.512	107	103.5	105.2	34
		131	124.2	120.6	35
	1.02	112	98.5	81.0	38
		146	61.3	48.5	79
	2.05	94	82.5	48.8	38
		100	74.3	43.0	45
	4.10	67	20.3	7.4	110
		72	26.7	9.8	90
	5.12	60	11.5	3.3	174
		17	9.8	3.2	58

TABLE G3. MUTAGENICITY OF C.I. BASIC RED 9 MONOHYDROCHLORIDE IN L5178Y/TK+/- MOUSELYMPHOMA CELLS IN THE ABSENCE OF S9(a)

(a) Experiments were performed twice, and all doses were tested in duplicate, except the solvent control (DMSO), which was tested in triplicate. Because the results were similar, data from only one experiment are shown. The protocol was basically that of Clive et al. (1979). Cells (6×10^{5} /ml) were treated for 4 h at 37° C in medium, washed, resuspended in medium, and incubated for 48 h at 37° C. After expression, 3×10^{6} cells were plated in medium supplemented with trifluorothymidine for selection of cells that were mutant at the thymidine kinase (TK) locus, and 600 cells were plated in nonselective medium to determine the percentage of viable cells.

TABLE G4.	INDUCTION OF	SISTER-CHROMATID	EXCHANGES IN CHINESE	HAMSTER OVARY CELLS
		BY C.I. BASIC RED 9	MONOHYDROCHLORIDE	

- S9 (b)		+ S9 (c)		
Dose (µg/ml)	SCE/Cell	Dose (µg/ml)	SCE/Cell	
DMSO (10 µl)	10.6	DMSO (10 µl)	9.6	
C.I. Basic Red 9 monohydrochloride		C.I. Basic Red 9 monohydrochloride		
2.5	10.7	20	11.4	
5.0	11.7	25	12.6	
7.5	12.0	35	13.3	
Mitomycin C		Cyclophosphamide		
0.01	47.5	2.0	47.4	
0.001	13.2	0.4	16.8	

(a) SCE, sister-chromatid exchange; CHO, Cinese hamster ovary

(b) In the absence of S9, CHO cells were incubated with test compound or solvent for 2 h at 37° C. Then BrdU was added, and incubation continued for 24 h. Cells were washed, fresh medium containing BrdU (10 μ M) and colcemid (0.1 μ g/ml) was added, and incubation was continued for 2-3 h. Cells were then collected by mitotic shake-off, treated for 3 min with KCl (75 mM), washed twice with fixative, and dropped onto slides and air dried. Staining was by a modified technique (after Perry and Wolff, 1974; Goto et al., 1978).

(c) In the presence of S9, cells were incubated with test compound or solvent for 2 h at 37° C. Then cells were washed, and medium containing 10 μ M BrdU was added. Cells were incubated for a further 26 h, with colcemid (0.1 μ g/ml) present for the final 2-3 h. S9 was from the livers of Aroclor 1254-induced male Sprague-Dawley rats.

TABLE G5. INDUCTION OF CHROMOSOMAL ABERRATIONS IN CHINESE HAMSTER OVARY CELLS BY C.I. BASIC RED 9 MONOHYDROCHLORIDE

- S9 (b)		+ S9 (c)		
Dose (µg/ml)	Abs/100 Cells (percent cells w/abs)	Dose (µg/ml)	Abs/100 Cells (percent cells w/abs)	
DMSO (10 بال	>4(4)	DMSO (10 µl)	4 (3)	
C.I. Basic Red 9 monohydroch	iloride C.I. H	Basic Red 9 monohydrocl	hloride	
10.0	>6(5)	40	>3(3)	
12.5	>5(6.3)	45	1(1)	
15.0	>5(4)	50	>6(5)	
Mitomycin C		Cyclophosphamide		
0.08	72 (56)	17.5	38 (32)	

(a) Abs, aberration; CHO, Cinese hamster ovary

(b) In the absence of S9, CHO cells were incubated with test compound or solvent for 8-10 h at 37° C. Cells were then washed, and fresh medium containing colcemid (0.1 µg/ml) was added. After a further 2-3 h of incubation, cells were harvested by mitotic shake-off, fixed, and stained in 6% Giemsa.

(c) In the presence of S9, cells were incubated with test compound or solvent for 2 h at 37° C. Cells were then washed, medium was added, and incubation continued for 8-10 h. Colcemid (0.1 μ g/ml) was added for the last 2-3 hours of incubation; then cells were harvested and fixed as described in footnote (a). S9 was from the livers of Aroclor 1254-induced male Sprague-Dawley rats.

Compound (a)	Dose (µg/ml)	Net Grains per Nucleus ± Standard Error
DMSO	1%	-13.9 ± 3.4
2-Acetylaminofluorene	5.63	59.9 ± 5.6
C.I. Basic Red 9 monohydrochloride	0.018 0.088 0.44 2.20	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

TABLE G6. INDUCTION OF UNSCHEDULED DNA SYNTHESIS IN RAT HEPATOCYTES BY C.I. BASIC RED 9 MONOHYDROCHLORIDE

(a) Unscheduled DNA synthesis was determined essentially by the method of Williams (1977). Hepatocytes from male F344 rats were isolated according to the procedure of Williams et al. (1977); inoculated into Williams Medium E supplemented with 2 mM glutamine, 50 µg/ml gentamicin, and 10% fetal bovine serum; and allowed to attach for 2 h. After incubation, the cells were washed, and serum-free medium was added. Three cultures were used per dose of compound (and for controls), and cultures were exposed simulataneously to the test compound and to tritiated thymidine (10 µCi/ml) for 18 h. After exposure, cultures were washed, swelled in a hypotonic solution, fixed, and washed with water. The coverslips were mounted to slides, dipped in Kodak NTB-2 emulsion, and exposed at 20° C for 6 d. Cells were stained with methyl-green Pyronin. The grains over 50 cytoplasmic areas adjacent to the nucleus were subtracted from the nuclear count to obtain the net grains per nucleus.

APPENDIX H

CHEMICAL CHARACTERIZATION OF C.I. BASIC RED 9 MONOHYDROCHLORIDE

APPENDIX H. CHEMICAL CHARACTERIZATION

I. Identity and Purity Determinations Performed by the Analytical Chemistry Laboratory

- A. Lot No. PO1340
 - **1. Physical Properties**
 - a. Appearance: Metallic green microcrystals
 - b. Melting Point: <u>Determined</u> <u>Literatu</u>
 - Begins decomposition I at 220° C with continued n changes in appearance to 320° C where charring begins (visual, sealed capillary). Overlapping exotherms; 224°-231° C and 232°-241° C. Overlapping endotherms; 335°-344° C and 365°-372° C (Dupont 900 DTA)

Literature Values

No literature reference found

2. Spectral Data

a. Infrared	Determined	<u>Literature Values</u>
(1) Instrument:	Beckman IR-12	
(2) Phase:	0.5% Potassium bromide pellet	
(3) Results:	See Figure 5	Consistent with literature spectrum

Consistent with literature spectrum (Sadtler Standard Spectra)

b. Ultraviolet/Visible	<u>Determin</u>	<u>ed</u>	<u>Literatur</u>	<u>e Values</u>
(1) Instrument:	Cary 118			
(2) Solvent:	Methanol		Methanol	
(3) Results:	$\frac{\lambda_{max}(nm)}{max}$	ε × 10-4	$\frac{\lambda_{max}(nm)}{2}$	ε × 10-4
	547	9.37 ± 0.03 (8)	263	1.05

 1.99 ± 0.02 (δ)

 1.34 ± 0.01 (8)

289

239

263 1.05 The ultraviolet spectrum obtained at Midwest Research Institute was not consistent with this literature value (Sadtler Standard Spectra) but was consistent with the structure of C.I. Basic Red 9 monohydrochloride.

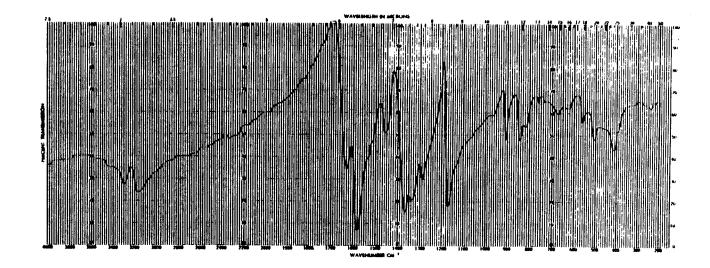
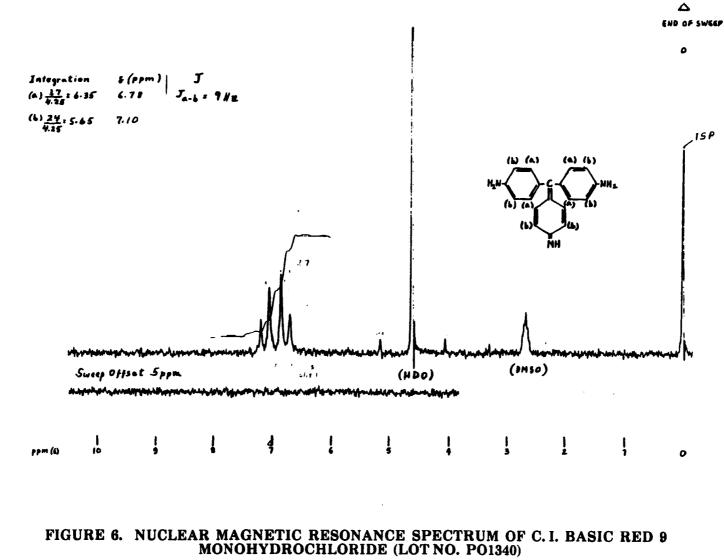


FIGURE 5. INFRARED ABSORPTION SPECTRUM OF C. I. BASIC RED 9 MONOHYDROCHLORIDE (LOT NO. PO1340)

C.I. Basic Red 9 Monohydrochloride, NTP TR 285


c. Nuclear Magnetic Resonance

	Determined	Literature Values
(1) Instrument:	Varian EM-360A	
(2) Solvent:	Dimethyl sulfoxide- $d_6:D_2O(1:1, v:v)$ with internal tetramethyl- silane	
(3) Assignments:	See Figure 6	No literature reference found. Spectrum is consistent with that expected for structure.
(4) Chemical Shift (8):	a d, 6.78 ppm b d, 7.10 ppm	
(5) Coupling Constant:	J _{a-b} 9Hz	
(6) Integration Ratios:	a 6.35 b 5.65	
3. Titration:	Nonaqueous titration of three ar perchloric acid (mercuric acetate chloride ions) 92.8% \pm 1.5 (δ)%	

4. Water Analysis (Karl Fischer): $9.1\% \pm 0.1$ (δ)%

5. Elemental Analysis

Element	С	н	N	Cl
Theory	70.47	5.60	12.98	10.95
Theory calculated for 9.1% water	64.06	6.10	11.80	9.95
Theory calculated for 92.8% purity by titration	65.40	6.00	12.05	10.16
Determined	65.80 65.88	6.14 6.05	12.21 12.29	10.28 10.41

191

C.I. Basic Red 9 Monohydrochloride, NTP TR 285

6. Chromatographic Analysis

a. Thin-Layer Chromatography

(1) Plates: Silica Gel 60 F-254

(2) Reference Standard: p-Aminoacetanilide, 10 µg (10 µg/µl in methanol)

(3) Amount Spotted: 100 and 300 μ g (10 μ g/ μ l in methanol)

(4) Visualization: Visible and ultraviolet light (254 nm and 366 nm) and furfural spray (1 drop/1 ml glacial acetic acid). Furfural darkens visible spots but detects no additional spots.

System 1: *n*-Butanol:ethanol:water (80:15:5)

	R_{f}	R_{st}
Trace	Origin	Origin
Trace	0.03	0.05
Trace	0.29	0.47
Slight trace	0.34	0.55
Slight trace	0.37	0.59
Major	0.63	1.02
Trace	0.66	1.07
Trace	0.70	1.14

System 2: Isopropanol: ammonium hydroxide (95:5) (Programmed multiple development: Solvent was allowed to migrate 1 cm then 2 cm, 4 cm, 8 cm, and 16 cm with plate allowed to dry between each successive development.)

	$\mathbf{R}_{\mathbf{f}}$	R_{st}
 Minor	Origin	Origin
Trace	0.13	0.20
Trace	0.21	0.34
Trace	0.23	0.35
Trace	0.25	0.38
Trace	0.28	0.43
Trace	0.33	0.50
Major	0.46	0.70
Trace	0.62	0.94
Trace	0.64	0.97
Trace	0.68	1.00
Slight trace	0.73	1.10

b. High-Performance Liquid Chromatography

(1) Instrument: Waters ALC-201

(2) Column: μ Bondapak C₁₈, 300 mm × 4 mm ID (3) Detector: Ultraviolet (254 nm)

(4) Solvent: A--5mM 1-Heptane sulfonic acid sodium salt in 1% aqueous acetic acid (v:v);

B--5mM 1-Heptane sulfonic acid sodium salt in 1% methanolic acetic acid (v:v)

(5) Solvent Program: 75 min at 55% B, then 55%-100% B in 15 min (linear program)

(6) Solvent Flow Rate: 1 ml/min

(7) Sample Injected: 25 µl containing 1 mg/ml of C.I. Basic Red 9 monohydrochloride in methanol

(8) Results: Major peak and no impurities. The major peak had a retention time of 10.8 minutes.

(See section B.6.b. of this appendix for additional high-performance liquid chromatography analytical information on lot no. PO1340.)

B. Lot No. A7X

1. Appearance:	Dark crystalline powder with green luster
2. Spectral Data	
a. Infrared	Determined
(1) Instrument:	Beckman IR-12
(2) Phase:	0.2% Potassium bromide pellet
(3) Results:	See Figure 7
b. Ultraviolet/Visible	<u>Determined</u>
(1) Instrument:	Cary 118
(2) Solvent:	Methanol
(3) Results:	$\lambda_{\rm max}(\rm nm)$ $\varepsilon \times 10^{-4}$

$\frac{\lambda_{\max}(nm)}{2}$	ε × 10-4
547	10.05 ± 0.07 (8)
500 (shoulder)	5.64 ± 0.06
289	2.09 ± 0.01
23 9	1.42 ± 0.09

Determined

Varian	EM-360A
--------	---------

Deuterated methanol with internal tetramethylsilane

(3) Assignments: See Figure 8

c. Nuclear Magnetic

(1) Instrument:

Resonance

(2) Solvent:

- (4) Chemical Shift (δ):
 a
 d, 6.83 ppm

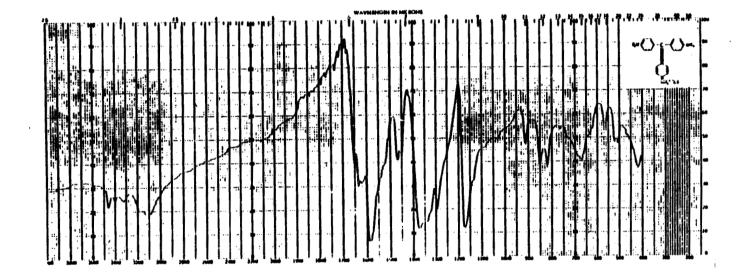
 b
 d, 7.23 ppm

 (5) Coupling Constant:
 J_{a.b} 9Hz
- (6) Integration Ratios: b 5.85

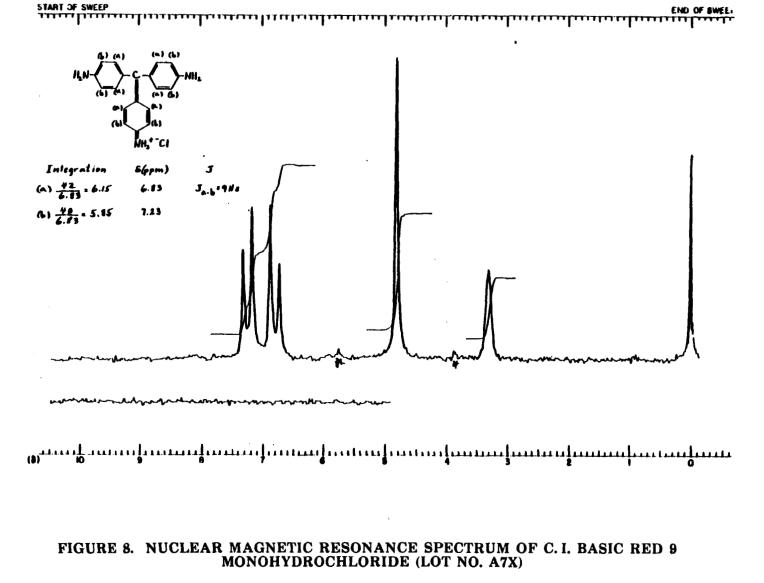
Literature Values

Consistent with literature spectrum (Sadtler Standard Spectra)

Literature Values


Methanol

 $\lambda_{\rm max}(\rm nm)$ $\epsilon \times 10^{-4}$


263 1.05 The ultraviolet spectrum obtained at Midwest Research Institute was not consistent with this literature value (Sadtler Standard Spectra) but was consistent with the structure of C.I.Basic Red 9 monohydrochloride.

Literature Values

Spectrum consistent with structure

FIGURE 7. INFRARED ABSORPTION SPECTRUM OF C. I. BASIC RED 9 MONOHYDROCHLORIDE (LOT NO. A7X)

~

195

3. Titration: Nonaqueous titration of one amine group with perchloric acid. The sample was dissolved in glacial acetic acid:acetonitrile (35:10) and mercuric acetate was added to complex the chloride ions.

 $99.3\% \pm 0.8 (\delta)\%$

4. Water Analysis (Karl Fischer): $0.55\% \pm 0.07$ (δ)%

5. Elemental Analysis

Element	<u> </u>	H	N	Cl	<u>S</u>
Theory	70.47	5.60	12.98	10.95	0.00
Determined	70.34 70.30	5.67 5.79	12.79 12.86	10.62 10.47	0.10 0.11

6. Chromatographic Analysis

a. Thin-Layer Chromatography

- (1) Plates: Silica Gel 60 F-254
- (2) Reference Standard: p-Aminoacetanilide, 10 µg (10 µg/µl in methanol)
- (3) Amount Spotted: 100 and 300 µg (10 µg/µl in methanol)

(4) Visualization: Visible and ultraviolet light (254 nm and 366 nm) and furfural spray (1 drop/1 ml glacial acetic acid). Furfural darkens visible spots but detects no additional spots.

	R _f	\mathbf{R}_{st}
System 1: n-Butan	ol:ethanol (95%):wate	r (80:15:5)
Multiple unre-		
solved traces	Origin	Origin
Trace	0.32	0.50
Slight trace	0.39	0.61
Slight trace	0.41	0.64
Trace	0.43	0.67
Major	0.60	0.92
Trace	0.71	1.10
Slight trace	0.90	1.39
Trace	0.95	1.48
System 2: Isopropa	nol:ammonium hydro	xide (95:5)
Trace	Origin	Origin
Trace	0.11	0.14
Trace	0.28	0.36
Major	0.46	0.61
Trace	0.65	0.85
Trace	0.70	0.92
Slight trace	0.80	1.06
Trace	0.88	1.16
Trace	0.94	1.23

b. High-Performance Liquid Chromatography:

(1) Instrument System:

(a) Pump(s): Waters 6000A

(b) Programmer: Waters 660

(c) Detector: Waters 440

(d) Injector: Waters U6K

(2) Column: μ Bondapak C₁₈, 300 mm \times 3.9 mm ID (3) Detection: Ultraviolet (254 nm)

(4) Guard Column: CO:PELL ODS, 72 mm \times 2.3 mm ID

(5) Solvent System:

A Water with 5mM heptane sulfonic acid sodium salt and 1% (v:v) acetic acid:

B Methanol with 5mM heptane sulfonic acid sodium salt and 1% (v:v) acetic acid

(6) Program:

System 1: 51% A:49% B, isocratic System 2: 33% A:67% B, isocratic

(7) Flow Rate: 1 ml/min

(8) Samples Injected: Solutions (5 µl for System 1, 15 µl for System 2) of 0.2% C.I. Basic Red 9 monohydrochloride, in methanol, filtered

(9) Results: System 1: Major peak and eight impurities, four before and four after the major peak, totaling 0.83% of the major peak;

System 2: Major peak and seven impurities, one before and six after the major peak. totaling 1.4% of the major peak.

Peak No.	Retention <u>Time (min)</u>	Retention Time Relative to <u>Major Peak</u>	Area (percent of <u>major peak)</u>
System 1			
1	5.2	0.27	0.11
2	12.0	0.61	0.04
3	14.8	0.75	0.02
4	17.0	0.86	0.06
5	19.8	1.00	100
6	25.5	1.29	0.02
7	32.0	1.62	0.42
1 2 3 4 5 6 7 8 9	39.5	2.00	0.13
9	44.0	2.23	0.03
System 2			
1	4.2	0.81	0.04
2	5.2	1.00	100
3	8.5	1.62	0.06
4	11.0	2.10	(a) 0.19
5	12.5	2.38	(a) 0.40
1 2 3 4 5 6 7	14.0	2.67	(a) 0.16
7	16.2	3.10	(a) 0.08
8	65.0	12.38	0.46

(a) Peaks 4 through 7 are superimposed on what is probably a number of unresolved impurities rather than tailing of the major peak, judging from the shape of the on-scale major peak.

Lot no. A7X and lot no. PO1340 were compared by using both of the systems above. The two lots were identical by System 1. They were very similar by System 2, the main differences being that in lot no. PO1340 peak number 6 was five times larger (1.3% of major peak) than in lot no. A7X and peak 8 was absent.

II. Test Chemical Stability Study Performed by the Analytical Chemistry Laboratory

Bulk Chemical Heat Stability

1. Storage and Analysis: Samples of the compound were stored at -20° , 5° , 25° , and 60° C for 2 weeks. Samples were then analyzed by high-performance liquid chromatography. The system used was the same as for the analytical system in Section I. A. 6. b., except that the system was run isocratically at 55% B with no solvent program. The sample stored at -20° C was used as a standard against which all other samples were compared.

Samples Injected: Solutions (25 $\mu l)$ were injected containing the samples at a concentration of 1 mg/ml in methanol

2. Results: Retention time of major peak was 10 minutes.

Storage Temperature (degrees centigrade)	Areas (relative to <u>- 20° C standard)</u>		
-20	100% ± 3.5 (8)%		
5	$93.4\% \pm 1.2$ (8)%		
25	$104.2\% \pm 4.8(\delta)\%$		
60	$103.9\% \pm 1.3$ (8)%		

3. Conclusion: The chemical is stable for 2 weeks at temperatures up to 60° C.

III. Test Chemical Stability at the Testing Laboratory

Periodic comparisons were made between the bulk chemical and a reference sample stored at -18° C to verify the integrity of the test material.

A. Analytical Methods

- 1. Identity Determination: Infrared spectroscopy Instrument: Perkin-Elmer Infracord #137 Phase: Potassium bromide pellet
- 2. Purity Determination: Thin-layer chromatography Plates: Silica gel (Quantum LQDF or Whatman LD5DF) Solvent System: n-Butanol:ethanol:water (80:15:5) Amount Spotted: 10 µg in 10 µl methanol

B. Results:

1. Identity: All bulk and reference spectra were essentially identical to each other and to the spectra supplied by the analytical chemistry laboratory.

2. Purity:

Date of		$\mathbf{R}_{\mathbf{f}}$	R_{f}
<u>Analysis</u>	Lot No.	of Major Spot	of Impurities
3/22/78	PO1340	0.52	(a) 0.2 (trace)
7/14/78		0.53	(a) 0.19 (trace)
11/27/78		0.39	0.48 (trace)
3/26/79		0.38	0.48 (trace)
8/06/79		0.68	0.44, 0.53 (trace)
8/06/79	A7X	0.68	0.44, 0.53 (trace)
11/12/79 (b)		0.64	0.41, 0.51 (trace)
4/01/80		0.64	0.41, 0.51 (trace)
7/17/80 (c)		0.65	0.40, 0.44 (trace)
11/13/80		0.68	0.34, 0.45 (trace)
3/20/81		0.67	0.41, 0.44 (trace)
8/01/81		0.64	0.38, 0.45 (trace)

(a) Solvent ratio: 80:15:4.5

(b) 10 μg spotted for this and subsequent analyses; 10 μg in 10 μl methanol spotted for previous analyses

(c) Whatman LD5DF plates were used for this and subsequent analyses. Quantum LQDF was used for previous analyses.

C.I. Basic Red 9 Monohydrochloride, NTP TR 285

APPENDIX I

PREPARATION AND CHARACTERIZATION

OF FORMULATED DIETS

C.I. Basic Red 9 Monohydrochloride, NTP TR 285

I. Two-Week Stability Study on Formulated Diets at a Concentration of 2,000 ppm at Four Different Temperatures Conducted at the Analytical Chemistry Laboratory

A. Sample Preparation and Storage: A stock solution of C.I. Basic Red 9 monohydrochloride was prepared in absolute ethanol at a concentration of 1.010 mg/ml. This solution was used to prepare the spiked feed samples and the analysis standard. Each 5-g feed sample for spiking was mixed with 10 ml of the stock solution, and the solvent ethanol was removed on a rotary evaporator (bath temperature, 35° C). Stability test samples were prepared, in duplicate, in exactly the same way and then stored for 2 weeks at -20° , 5°, 25°, or 45° C. The analysis standard was prepared by tenfold dilution of the stock solution (resulting concentration, 0.1010 mg/ml).

B. Extraction and Analysis: Each 5-g feed sample was transferred to a 200-ml centrifuge bottle with two 25-ml portions of methanol. This mixture was vigorously agitated with a Brinkmann Polytron[®] high-speed blender for 30 seconds and then placed in an ultrasonic vibratory bath for 1 minute. After a 15-minute centrifugation, the supernatant solution was decanted into a 100-ml volumetric flask. The feed residue was reextracted in the same manner with another 50 ml of methanol, and the two supernatant solutions were combined. The final volume was adjusted to 100 ml with methanol. This final solution was filtered through a $0.5-\mu$ Millipore FH filter and analyzed by the high-performance liquid chromatographic system described in Appendix H, section A. 6. b., except that the system was operated isocratically at 55% B.

C. Results

Storage Temperature	Average Percent Chemical Found in <u>Chemical/Vehicle Mixture (a,b)</u>
– 20° C	0.211 ± 0.01
5° C	0.206 ± 0.06
25° C	0.181 ± 0.01
45° C	0.166 ± 0.06

(a) Corrected for a spiked recovery yield of 90% \pm 2%.

(b) Original concentration, $0.2018\% \pm 0.0001\%$. (This corresponds to a C.I. Basic Red 9 monohydrochloride dose of 0.1789%.)

D. Conclusions: C.I. Basic Red 9 monohydrochloride is stable for 2 weeks when mixed with stock rodent feed at the 2,000-ppm concentration and stored at 5° C or below. Samples stored at 25° and 45° C gave determinations that were less than the original concentration. These results might have been due to chemical decomposition or to a physical transformation that rendered the compound less accessible to extraction from the feed.

II. Homogeneity Studies for Mixed Feed Conducted at the Analytical Chemistry Laboratory

A. Mixing Procedure

1. **Premix:** A solution of 3.0029 ± 0.0002 g of C.I. Basic Red 9 monohydrochloride in 225 ml of 95% ethanol was prepared and added to 200 g of Wayne Lab-Blox[®] rodent feed in a 1,000-ml round bottom flask. The ethanol was then removed on a rotary evaporator (water aspirator; heating bath, 30° C).

2. Bulk Mixing: The above premix and 1,297 g additional feed were mixed in a Patterson-Kelly Twin-Shell Blender[®] for a total of 15 minutes. The blender was loaded from the top of the shells as follows: 648 g of feed was poured in and allowed to settle and level at the bottom (vertex of the "V"); the premix was then poured in on top of the feed from each side; this layer was covered with the remaining 649 g of feed poured in from each side. After 10- and 15-minute mixing times, duplicate 5-g samples were removed from the top of each shell and the bottom trap of the blender for subsequent analysis.

B. Extraction and Analysis Procedures

1. Sample Preparation: The chemical/feed samples (5 g) were quantitatively transferred to 200-ml centrifuge bottles with two 25-ml portions of methanol. The feed mixtures were triturated with this solvent with a Brinkmann Polytron[®] high-speed blender, placed in an ultrasonic vibratory bath for 2 minutes, and then centrifuged for 5 minutes. The supernatant solutions were decanted into 100-ml volumetric flasks. The feed residues were each mixed again with a 40-ml portion of methanol and placed in the ultrasonic vibratory bath for 2 minutes. After centrifugation, these methanolic supernatants were combined with the first extracts and brought to volume with additional methanol. An aliquot of each solution (3 ml) was filtered through a 0.5- μ , syringe-mounted, Millipore filter. The filtrates were analyzed by high-performance liquid chromatography.

2. Analysis

a. Quality Control Procedures: A stock standard solution of C.I. Basic Red 9 monohydrochloride was prepared by dissolving 0.2032 ± 0.0001 g of the chemical in 200.0 ± 0.1 ml (volumetric flask) of 95% ethanol, resulting in a concentration of 1.016 ± 0.001 mg/ml. This solution was further diluted with 95% ethanol to provide three standard solutions with concentrations of 0.0305, 0.0610, and 0.1016 mg/ml for the chromatographic analysis and to establish the linearity of the chromatographic system. A least-squares best-fit plot was calculated, which yielded a linear correlation coefficient of 0.9998 for the standard solution data points. Blank feed sample extracts showed that there was no interference to the analysis from the feed matrix.

Duplicate spiked feed mixtures were allowed to stand for 4 hours before being extracted and analyzed. A second duplicate pair of spikes was extracted as soon as they were prepared.

b. Instrumental Parameters

Instrument: Waters Associates Programmable Component Liquid Chromatography System Column: μ Bondapak C₁₈, 300 mm × 4 mm ID Detector: Spectrophotometer, 546 nm Solvent: 5mM heptane sulfonic acid in 1% aqueous acetic acid, 45%; 5mM heptane sulfonic acid in 1% methanolic acetic acid, 55% Solvent Flow Rate: 1 ml/min Retention Time: 6.5 min

c. Results: (Average of two independent homogeneity mixtures)

Sample Position	Sampling Time (minutes)	Average Percent C.I. Basic Red 9 Monohydrochloride <u>Found in Chemical/Vehicle Mixture</u> (a, b)
Right 1	10	0.19 ± 0.01
Right 2	10	0.16 ± 0.01
Left 1	10	0.20 ± 0.01
Left 2	10	0.18 ± 0.01
Bottom 1	10	0.19 ± 0.01
Bottom 2	10	0.19 ± 0.01
Right 1	15	0.18 ± 0.01
Right 2	15	0.18 ± 0.01
Left 1 Left 2	15 15	$\begin{array}{c} 0.17 \pm 0.01 \\ 0.18 \pm 0.01 \end{array}$
Bottom 1 Bottom 2	15 15	$\begin{array}{c} 0.17 \pm 0.01 \\ 0.18 \pm 0.01 \end{array}$

(a) Corrected for a 4-hour spiked recovery yield of 90% ± 3%; zero-time spike recovery yield, 98 ± 3%.
(b) Target concentration of chemical in feed, 0.2002% ± 0.0001% (2,002 ppm)

d. Discussion: The discrepancy between the target percent chemical in feed and the tabulated spike-corrected values has been attributed to a physical absorption process. Just as the zero-time spikes and the 4-hour spikes do not show the same recovery, so the 4-hour spikes and the blender-mixed bulk mixture may show different recoveries due to the latter having been more thoroughly and intimately mixed.

The mean and standard deviation of all uncorrected individual sample determinations in these homogeneity mixing studies (39 values) are $82.8\% \pm 6.0\%$ of target. Total residence time of the chemical in the feed was 6 hours during the premix drying stage and 15 minutes during the bulk mixing, plus 0-2 hours delay time (in freezer) while other samples were being extracted.

3. Conclusion: C.I. Basic Red 9 monohydrochloride mixed with stock rodent feed at the 2,000ppm concentration yields a more homogeneous mixture after being blended for 15 minutes.

III. Preparation of Formulated Diets at the Testing Laboratory

The formulation procedure was essentially the same as that reported by Midwest Research Institute (Section II. A., above) except that ethanol was not used to prepare the premix. The procedure consisted of homogenizing a chemical/feed premix in a mortar and pestle and then layering the premix between the appropriate amount of feed within a Patterson-Kelley[®] V-blender. After being mixed for 20 minutes, the formulated diets were transferred to double plastic bags and stored in covered plastic buckets at $0^{\circ} \pm 5^{\circ}$ C.

APPENDIX J

METHODS OF ANALYSIS OF FORMULATED DIETS

C.I. Basic Red 9 Monohydrochloride, NTP TR 285

I. Testing Laboratory

Procedure: Two-gram samples were extracted with 50 ml of methanol. The supernatants were analyzed by high-performance liquid chromatography under the following conditions:

Instrument: Waters ALC 244 Column: μ Bondapak C₁₈, 300 mm × 4 mm ID Detection: Spectrophotometric, 546 nm Solvent System: 5mM heptane sulfonic acid in 1% aqueous acetic acid (45%); 5mM heptane sulfonic acid in 1% methanolic acetic acid (55%) Solvent Flow Rate: 1 ml/min Retention Time: 6.5 min

II. Midwest Research Institute

A. Preparation of Standard Spiked Feed: Two working standard solutions of C.I. Basic Red 9 monohydrochloride in methanol were prepared independently at concentrations of 2.42 and 1.95 mg/ml. These solutions were further diluted with methanol to concentrations of 1.45, 1.17, 0.97, and 0.49 mg/ml. Aliquots (10 ml) of the six standard solutions were pipetted into individual 200-ml centrifuge bottles containing 5 g of undosed feed to make spiked feed standards bracketing the specified concentration range of the referee sample. One 200-ml centrifuge bottle containing 5 g of undosed feed was treated with 10 ml of methanol for use as a blank. The spiked feeds and the feed blank were sealed and allowed to remain overnight at room temperature before analysis.

B. Preparation of the Referee Sample: Triplicate weights of the dosed referee feed sample (approximately 5 g weighed to the nearest 0.001 g) were transferred to individual 200-ml centrifuge bottles. A 10-ml aliquot of methanol was pipetted on each sample; then the bottles were sealed and allowed to stand overnight at room temperature with the standards and feed blank before analysis.

C. Analysis Procedure: The next day, 90 ml of methanol was pipetted into each blank, standard, and referee sample bottle. The bottles were placed on a Burrell Model 75 Wrist-Action[®] shaker and shaken for 15 minutes. After the extraction mixtures were centrifuged for 10 minutes, a 3-ml aliquot of the supernatant solution from each sample bottle was diluted to 250 ml with methanol. The solutions were thoroughly mixed by manual shaking; then the C.I. Basic Red 9 monohydrochloride content of the samples was determined by reading the absorbance of the solutions versus methanol at 547 nm on a Cary 118 spectrophotometer in 1-cm cells.

D. Quality Assurance Measures: The dosed referee feed sample was analyzed in triplicate, and the undosed feed sample was analyzed once. Individually spiked portions of undosed feed (six levels) prepared from two independently weighed standards were treated like the dosed referee feed samples for obtaining standard curve data.

Results were computed from the linear regression equation obtained by plotting the net absorbance of each spiked feed sample versus the amount of chemical in the respective spike feed sample. The linearity of the standard curve data was evaluated by the regression equation.

III. Raltech Scientific Services

A. Receipt and Mixing: The sample, blank, and standard were received in sealed, glass septum vials and were stored in a refrigerator until they were sampled. The vials were mixed for 2 minutes on a Vortex mixer before aliquots were taken for analysis.

B. Standard Preparation: Stock standards (5 mg/lml) were prepared by dissolving 500 mg of standard in 100 ml of absolute ethanol. Dilutions were made on the stock standard to obtain working standards. The standards were 0.005, 0.025, 0.050, 0.100, and 0.150 mg/ml diluted in methanol.

C. Sample Preparation and Analysis: The 5-g feed sample aliquots were extracted in a 200-ml centrifuge bottle with 50 ml of methanol with a Brinkmann Polytron[®] ultrasonic homogenizer for 30 seconds. The bottle was placed in an ultrasonic bath for 1 minute and centrifuged for 15 minutes. The supernatant was decanted into a 100-ml volumetric flask, and the feed residue reextracted with another 50-ml portion of methanol. The combined supernatants were diluted to volume with methanol. An aliquot of the mixed extract was filtered through a 0.5-µ Millipore FH filter and analyzed by high-performance liquid chromatography.

D. Instrumental Parameters

Instrument: Perkin-Elmer Series 3 liquid chromatograph Column: Waters µ Bondapak C₁₈, 300 mm × 4 mm ID Detection: Ultraviolet, 254 nm Solvent System: 5 mM heptane sulfonic acid in 1% aqueous acetic acid (45%); 5 mM heptane sulfonic acid in 1% methanolic acetic acid (55%) Mode: Isocratic Sample Injection Volume: 20 µl

E. Quality Assurance: The sample was analyzed in triplicate and the standards and blank, in duplicate. Duplicate recovery samples were prepared by adding 1 ml of the 5 mg/ml stock standard to 5 g of blank feed, mixing, and extracting.

C.I. Basic Red 9 Monohydrochloride, NTP TR 285 .

APPENDIX K

RESULTS OF ANALYSIS OF FORMULATED DIETS

Date Mixed	500 ppm	Concentration for Ta 1,000 ppm	2,000 ppm
6/19/79	520	1,060	1,900
8/21/79	460	950	2,000
11/6/79	510	1,080	1,960
11/27/79	505	1,100	2,000
2/12/80	530	980	2,030
4/15/80	530	1,000	2,200
5/6/80	540	1,100	2,130
8/19/80	520	1,050	2,180
9/9/80	480	1,100	2,080
12/30/80	540	1,080	2,070
3/17/81	490	1,000	2,130
5/19/81	530	1,070	- y
Mean (ppm)	513	1,048	2,062
Standard deviation	25.1	51.9	93.8
Coefficient of variation (percent)	4.9	5.0	4.5
Range (ppm)	460-540	950-1,100	1,900-2,200
No. of samples	12	12	11

TABLE K1. RESULTS OF ANALYSIS OF FORMULATED DIETS IN THE TWO-YEAR FEED STUDIES OFC.I. BASIC RED 9 MONOHYDROCHLORIDE (a)

(a) Results of duplicate analysis

TABLE K2. REFEREE SAMPLE DATA IN THE TWO-YEAR FEED STUDIES OF C.I. BASIC RED 9MONOHYDROCHLORIDE

	Target Concentration (ppm)	Determined Concentration	
Date Mixed		Testing Laboratory	Analytical Laboratory
8/21/79	500	460	(a) 4 70
11/27/79	2,000	2,000	1,640
2/12/80	1,000	980	1,000
5/6/80	1,000	1,100	981
12/30/80	1,000	1,080	1,002
5/19/81	500	530	496

(a) This analysis was performed at Raltech Scientific Services; all others were performed at Midwest Research Institute.

APPENDIX L

SENTINEL ANIMAL PROGRAM

I. Methods

Rodents used in the Carcinogenesis Program of the National Toxicology Program are produced in optimally clean facilities to eliminate potential pathogens that may affect test results. The Sentinel Animal Program is part of the periodic monitoring of animal health that occurs during the toxicologic evaluation of chemical compounds. Under this program, the disease state of the rodents is monitored via viral serology on sera from extra (sentinel) animals in the test rooms. These animals are untreated, and these animals and the test animals are both subject to identical environmental conditions. The sentinel animals come from the same production source and weanling groups as the animals used for the studies of chemical compounds.

Fifteen $B6C3F_1$ mice and 15 F344/N rats of each sex are selected at the time of randomization and allocation of the animals to the various study groups. Five animals of each designated sentinel group are killed at 6, 12, and 18 months on study. Data from animals surviving 24 months are collected from 5/50 randomly selected control animals of each sex and species. The blood from each animal is collected and clotted, and the serum is separated. The serum is cooled on ice and shipped to Microbiological Associates' Comprehensive Animal Diagnostic Service for determination of the viral antibody titers. The following tests are performed:

	Hemagglutination <u>Inhibition</u>	Complement <u>Fixation</u>	<u>ELISA</u>
Mice	PVM (pneumonia virus of mice) Reo 3 (reovirus type 3) GDVII (Theiler's encephalomyelitis virus) Poly (polyoma virus) MVM (minute virus of mice) Ectro (infectious ectromelia) Sendai (14 and 24 mo)	M.Ad. (mouse adenovirus) LCM (lymphocytic choriomeningitis virus) Sendai (6 and 12 mo)	MHV (mouse hepatitis virus)
Rats	PVM KRV (Kilham rat virus) H-1 (Toolan's H-1 virus) Sendai (12, 18, and 24 mo)	RCV (rat coronavirus) Sendai (6 mo)	

II. Results

Results are presented in Table L1.

Interv. (month		Positive Serologic Reaction for
RATS		
6	10/10 10/10	RCV Sendai
12	10/10 10/10 9/10	PVM RCV Sendai
18	10/10 10/10 10/10	PVM RCV Sendai
24	10/10 10/10 9/10	PVM RCV Sendai
MICE		
6	9/14	Sendai
12	9/15	Sendai
18		None positive
24	3/10	Sendai

TABLE L1. MURINE VIRUS ANTIBODY DETERMINATIONS FOR RATS AND MICE IN THE
TWO-YEAR FEED STUDIES OF C.I. BASIC RED 9 MONOHYDROCHLORIDE (a)

(a) Blood samples were taken from sentinel animals at 6, 12, and 18 months after the start of dosing and from the control animals just before they were killed; samples were sent to Microbiological Associates, Inc. (Bethesda, MD) for the Animal Disease Screening Program.

216

APPENDIX M

FEED AND COMPOUND CONSUMPTION BY RATS AND MICE IN THE TWO-YEAR FEED STUDIES OF C. I. BASIC RED 9 MONOHYDROCHLORIDE

TABLE M1. FEED AND COMPOUND CONSUMPTION BY MALE RATS IN THE TWO-YEAR FEED STUDYOF C.I. BASIC RED 9 MONOHYDROCHLORIDE

	Co	Control		Low Dose				High Dose			
Week	Grams Feed/ Day (a)	Body Weight (grams)	Grams Feed/ Day (a)	Body Weight (grams)	Low/ Control (b) (grams)	Dose/ Day (c)	Grams Feed/ Day (a)	Body Weight (grams)	High/ Control (b) (grams)	Dose/ Day (c)	
4	19.6	229	18.7	229	1.0	82	17.0	219	0.9	155	
8	20.0	277	18.3	267	0.9	68	19,9	261	1.0	152	
12	18.6	300	17.6	287	0.9	61	16.9	282	0.9	120	
16	19.4	341	17.4	335	0.9	52	15.6	322	0.8	97	
20	19.3	358	18.1	347	0.9	52	17.6	342	0.9	103	
24	19.7	377	18.7	367	0.9	51	18.7	359	0.9	104	
28	18.9	394	18.9	380	1.0	50	17.9	373	0.9	96	
32	18.3	396	18.1	390	1.0	47	18,4	385	1.0	9 6	
36	19.6	415	18.6	401	0.9	46	17.1	392	0.9	87	
40	18.1	426	17.9	412	1.0	43	17.9	400	1.0	89	
44	19.6	434	18.3	422	0.9	43	17,9	407	0.9	88	
48	20.6	441	19.9	430	1.0	46	19.4	414	0.9	94	
52	19. 9	446	18.9	434	0.9	43	18,4	416	0.9	89	
56	20.1	447	18.1	438	0.9	41	19,1	418	1.0	92	
60	19.4	442	19.3	433	1.0	45	17.6	411	0.9	86	
64	19.9	448	17.9	439	0.9	41	17.0	415	0.9	82	
68	21.3	450	20.9	435	1.0	48	18.3	408	0.9	90	
72	19.6	450	18.0	435	0.9	41	18,3	398	0.9	92	
76	18.3	454	19.9	437	1.1	45	17.7	409	1.0	87	
80	18.4	461	18.6	448	1.0	41	19.3	421	1.0	92	
84	18.3	460	18.7	447	1.0	42	29 .7	413	1.6	144	
88	17.7	462	17.4	449	1.0	39	19.3	403	1.1	96	
92	18.0	467	17.6	449	1.0	39	22.9	415	1.3	110	
96	19.7	460	18.9	447	1.0	42	24.1	379	1.2	127	
100	20.0	453	33.6	439	1.7	76	22.0	396	1.1	111	
Mean	19.3	412	19.1	400	1.0	49	19.1	378	1.0	103	
SD (d)	0.9		3.1		0.1	11	2.9		0.2	21	
CV(e)	4.7		16.2		10.0	22.4	15.2		20.0	20.4	

(a) Grams of feed removed from the feeder; not corrected for scatter

(a) Grams of feed per day for the dosed group divided by that for the controls
(c) Milligrams of compound consumed per day per kilogram of body weight
(d) Standard deviation

(e) Coefficient of variation = (standard deviation/mean) \times 100

TABLE M2. FEED AND COMPOUND CONSUMPTION BY FEMALE RATS IN THE TWO-YEAR FEEDSTUDY OF C.I. BASIC RED 9 MONOHYDROCHLORIDE

	Con	Low Dose				High Dose				
Week	Grams Feed/ Day (a)	Body Weight (grams)	Grams Feed/ Day (a)	Body Weight (grams)	Low/ Control (b) (grams)	Dose/ Day (c)	Grams Feed/ Day (a)	Body Weight (grams)	High/ Control (b) (grams)	Dose/ Day (c)
4	14.0	158	13.7	156	1.0	44	13.9	154	1.0	90
8	13.9	185	12.7	182	0.9	35	11.6	177	0.8	65
12	11.7	196	11.4	190	1.0	30	9.6	180	0.8	53
16	12.6	210	11.7	207	0.9	28	11.4	190	0.9	60
20	14.0	215	14.0	212	1.0	33	12.9	202	0.9	64
24	14.3	221	13.1	216	0.9	30	12.1	206	0.8	59
28	14.3	225	14.3	223	1.0	32	14.3	210	1.0	68
32	15.6	230	14.7	225	0.9	33	13.6	213	0.9	64
36	15.1	234	15.1	231	1.0	33	14.6	219	1.0	67
40	14.7	246	14.6	239	1.0	30	13.9	224	0.9	62
44	14.6	252	13.7	242	0.9	28	12.6	22 9	0.9	55
48	14.9	257	13.6	251	0.9	27	12.1	235	0.8	52
52	14.4	265	14.3	257	1.0	28	12.3	240	0. 9	51
56	14.0	275	13.6	267	1.0	25	13.0	249	0.9	52
60	14.3	282	13.9	270	1.0	26	13.4	250	0. 9	54
64	14.6	289	13.6	280	0.9	24	12.9	258	0.9	50
68	15.0	300	14.9	287	1.0	26	13.9	265	0.9	52
72	14.1	306	13.9	295	1.0	23	13.9	271	1.0	51
76	20.3	317	16.1	302	0.8	27	15.4	277	0.8	56
80	15.1	330	15.0	312	1.0	24	15.6	288	1.0	54
84	15.6	336	16.1	320	1.0	25	14.9	294	1.0	51
88	14.6	343	14.3	324	1.0	22	14.1	308	1.0	46
92	14.6	343	14.1	329	1.0	21	13.9	306	1.0	45
96	15.6	348	14.9	332	1.0	22	14.1	314	0.9	45
100	14.6	349	14.9	349	1.0	$\overline{21}$	37.1	315	2.5	118
Mean	14.7	268	14.1	260	1.0	28	14.3	243	1.0	59
SD (d)	1.5		1.1		0.1	5	4.9		0.3	15
CV (e)	10.2		7.8		10.0	17.9	34.3		30.0	25.4

(a) Grams of feed removed from the feeder; not corrected for scatter

(a) Grams of feed removed from the feeder, not corrected for scatter
(b) Grams of feed per day for the dosed group divided by that for the controls
(c) Milligrams of compound consumed per day per kilogram of body weight
(d) Standard deviation
(e) Coefficient of variation =(standard deviation/mean) × 100

TABLE M3. FEED AND COMPOUND CONSUMPTION BY MALE MICE IN THE TWO-YEAR FEEDSTUDY OF C.I. BASIC RED 9 MONOHYDROCHLORIDE

	Co	ntrol	Low Dose				High Dose				
Week	Grams Feed/ Day (a)	Body Weight (grams)	Grams Feed/ Day (a)		Low/ Control (b) (grams)	Dose/ Day (c)	Grams Feed/ Day (a)	Body	High/ Control (b)	Dose/ Day (c	
4	16.6	30	19.9	29	1.2	342	16.3	30	1.0	543	
8	11.9	33	14.0	31	1.2	226	13.1	32	1.1	411	
12	14.1	35	12.6	33	0.9	190	12.1	34	0.9	357	
16	12.7	37	11.1	34	0.9	164	10.9	35	0.9	310	
20	13.6	39	14.0	36	1.0	194	5.3	36	0.4	147	
24	16.6	38	14.0	35	0.8	200	12.6	35	0.8	359	
28	15.4	39	13.1	37	0.9	178	12.4	37	0.8	336	
32	15.4	41	13.4	38	0.9	177	12.9	37	0.8	347	
36	16.6	43	14.6	39	0.9	187	14.1	38	0.9	372	
40	13.9	44	12.9	40	0.9	161	12.4	40	0.9	311	
44	13.1	45	12.6	41	1.0	153	12.1	40	0.9	304	
48	16.7	45	14.6	41	0. 9	178	14.9	41	0.9	362	
52	16.3	46	13.9	42	0.9	165	12.1	41	0.7	296	
64	16.9	47	17.4	43	1.0	203	14.1	42	0.8	337	
68	14.0	49	13. 9	43	1.0	161	13.3	41	0. 9	324	
72	14.6	47	16.3	42	1.1	194	15.3	40	1.0	382	
76	14.7	48	16.4	42	1.1	196	14.6	40	1.0	364	
80	16.0	48	14.1	42	0.9	168	14.1	40	0.9	354	
84	15.1	47	14.4	41	1.0	176	13.9	39	0.9	355	
88	18.1	47	19.4	41	1.1	237	19.4	39	1.1	498	
92	15.1	46	15.3	39	1.0	196	16.9	37	1.1	456	
96	16.6	45	18.7	39	1.1	240	19.9	37	1.2	537	
100	19.4	45	17.6	3 9	0.9	225	24.0	37	1.2	649	
Mean	15.4	43	15.0	39	1.0	196	14.2	38	0.9	379	
SD (d)	1.8		2.3		0.1	40	3.6		0.2	103	
CV (e)	11.7		15.3		10.0	20.4	25.4		22.2	27.2	

(a) Grams of feed removed from the feeder; not corrected for scatter
(b) Grams of feed per day for the dosed group divided by that for the controls
(c) Milligrams of compound consumed per day per kilogram of body weight

(d) Standard deviation (e) Coefficient of variation = (standard deviation/mean) × 100

TABLE M4. FEED AND COMPOUND CONSUMPTION BY FEMALE MICE IN THE TWO-YEAR FEEDSTUDY OF C.I. BASIC RED 9 MONOHYDROCHLORIDE

	Co	ntrol	Low Dose				High Dose				
Week	Grams Feed/ Day (a)	Body Weight (grams)	Grams Feed/ Day (a)		Low/ Control (b) (grams)	Dose/ Day (c)	Grams Feed/ Day (a)		High/ Control (b) (grams)	Dose/ Day (c	
4	7,7	27	7.1	23	0.9	155	6.4	24	0.8	268	
8	6.7	26	6.4	25	1.0	129	6.6	25	1.0	263	
12	7.4	28	7.4	27	1.0	138	6.9	27	0.9	254	
16	9.3	30	8.4	28	0.9	151	7.3	28	0.8	260	
20	8.7	31	10.4	28	1.2	186	10.1	28	1.2	362	
24	9.0	33	9.1	31	1.0	147	7.9	31	0.9	253	
28	8.1	34	8.4	31	1.0	136	7.9	29	1.0	271	
32	7.9	37	7.6	32	1.0	118	6.6	31	0.8	212	
36	7.4	39	7.6	33	1.0	115	7.4	32	1.0	232	
40	8.1	40	9.1	34	1.1	134	8.6	32	1.1	268	
44	6.9	42	7.7	36	1.1	107	7.4	34	1.1	218	
48	8.1	44	8.0	36	1.0	111	9.4	34	1.2	277	
52	8.1	46	7.6	37	0.9	102	8.1	35	1.0	233	
56	8.7	46	8.4	37	1.0	114	8.7	35	1.0	249	
60	7.7	48	7.9	38	1.0	103	8. 9	35	1.1	253	
64	8.0	47	9.4	37	1.2	127	11.1	34	1.4	328	
68	8.7	48	9.1	37	1.0	124	12.3	33	1.4	372	
72	7.7	49	7.6	36	1.0	105	11.6	33	1.5	351	
76	9.4	50	10.6	36	1.1	147	13.4	32	1.4	420	
80	7.7	52	11.4	37	1.5	154	16.3	32	2.1	509	
84	9.3	53	14.3	37	1.5	193	18.4	32	2.0	576	
88	5.0	53	10.6	36	2.1	147	22.7	30	4.5	757	
92	9.1	50	15.1	35	1.7	216	29.1	31	3.2	940	
96	8.9	51	18.3	35	2.1	261	35.1	31	4.0	1,134	
100	10.4	51	20.1	34	1.9	296	28.1	31	2.7	908	
Mean	8.2	42	9.9	33	1.2	149	12.7	31	1.6	407	
SD(d)	1.1		3.5		0.4	49	8.0		1.0	257	
CV (e)	13.4		35.4		33.3	32. 9	63.0		62.5	63.1	

(a) Grams of feed removed from the feeder; not corrected for scatter
(b) Grams of feed per day for the dosed group divided by that for the controls
(c) Milligrams of compound consumed per day per kilogram of body weight

(d) Standard deviation (e) Coefficient of variation = (standard deviation/mean) × 100

.

APPENDIX N

RADIOIMMUNOASSAY OF

SERUM THYROXINE

The SPAC T4 RIA[®] is a radioimmunoassay kit available from Mallinkrodt, Inc., St. Louis, Missouri, to measure total serum thyroxine (T₄). Anti-T₄ antibodies for this kit are produced in animals (horse, rabbit, sheep, or goat) by parenteral introduction of T₄ coupled to a carrier protein. In the SPAC T4 RIA[®] assay, the quantity of ¹²⁵I T₄ bound by a given quantity of antibody is decreased in the presence of unlabeled T₄ and the effect is directly related to the concentration of the unlabeled hormone. Magnesium-8-anilino-1-naphthalene sulfonate is used to inhibit the binding of T₄ to the binding proteins normally present in serum. Standard quantities of T₄ are selected to cover the expected range of T₄ concentrations in the test serum, and a standard curve is prepared by plotting the percent ¹²⁵I T₄ bound to each T₄ standard versus the respective standard T₄ concentration. Total serum T₄ concentration in the test mixture then is determined by a comparison of the percentage of ¹²⁵I T₄ bound in test serum sample to the standard curve. A typical standard curve from the C.I. Basic Red 9 monohydrochloride feed studies is shown in Figure 9.

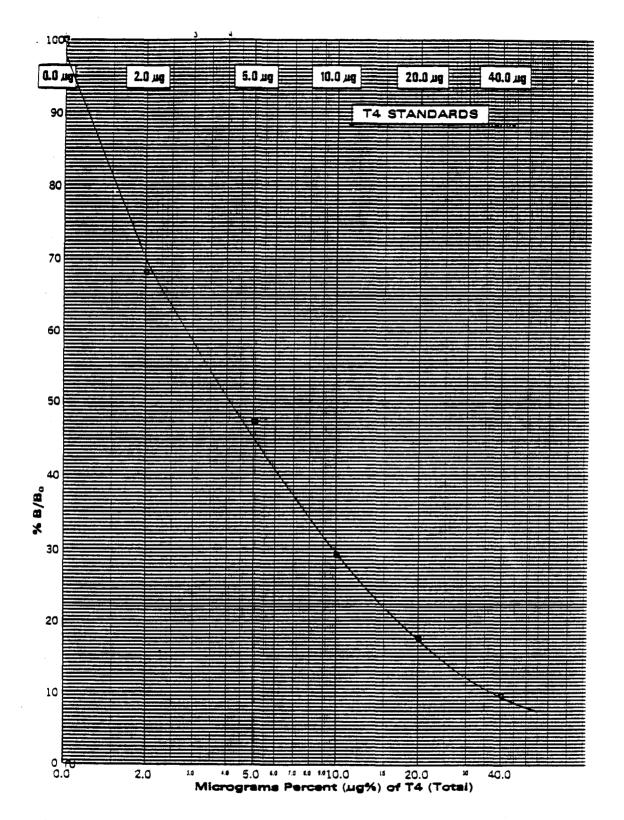


FIGURE 9. TYPICAL STANDARD CURVE FOR RADIOIMMUNOASSAY OF SERUM THYROXINE IN C.I. BASIC RED 9 MONOHYDROCHLORIDE FEED STUDIES

APPENDIX O

DATA AUDIT SUMMARY

The toxicology and carcinogenesis feed studies for C.I. Basic Red 9 monohydrochloride in F344/N rats and $B6C3F_1$ mice with a special study to evaluate the effect of the dye on the thyroid gland in F344/N rats were conducted by EG&G Mason Research Institute, Worcester, Massachusetts, under a subcontract with Tracor Jitco.

The audit was conducted on June 25, 1984, by Dr. Jane E. Goeke, Dr. Elizabeth L. Feussner, Dr. Richard E. Long, Mr. Peter D. Ference, Ms. Carol L. Veigle, and Ms. Shirley Cokrsen for Argus Research Laboratories; Mr. Mark Pielmeier and Ms. Gloria Heuckeroth of Tracor Jitco, Inc.; and Ms. Rosalyn N. Joftes of the National Toxicology Program. The audit report is on file at the National Toxicology Program, Research Triangle Park, North Carolina.

The material reviewed in this audit consisted of the following: For the in-life toxicology, 10% of the animal records for C.I. Basic Red 9 monohydrochloride administration, body weight, and clinical observations were audited. All records on animal receipt, acclimation/quarantine, randomization, animal identification, and environmental factors and data for the sentinel and control animals were reviewed. For the analytical chemistry, all records were audited and a random 10% sample of the chemical/vehicle calculations were verified. For pathology, all wet tissue bags were inventoried, and all slides/blocks were matched for the high dose and untreated animals. All individual animal data records, early deaths, and moribund-kill data and data for the target organs and major tissues were audited. Ten percent of the wet tissues were examined, and 10% of the animal identifications were verified.

No data about observations during the acclimation period were available for review, and the basis for randomization at the initiation of the study could not be ascertained. Animals were identified within dose groups by ear punch/notch numbers 1-50. Saving ears with residual wet tissues was not a requirement of the study protocol, and therefore carcass identification could not be confirmed for all animals. No clinical observations were recorded for a few of the animals that were killed in a moribund condition. Clinical observation records did not show the presence of a number of large masses found at necropsy.

The chemical data provided evidence that the level of purity of the C.I. Basic Red 9 monohydrochloride did not change during the course of the study. The chemistry information presented by EG&G Mason Research Institute was supported by the raw data, except that the only bulk chemical analysis data available for auditing were copies of infrared spectrograms and analysis report summaries.

The audit of the pathology materials substantiates the reported findings and conclusions. The principal discrepancies identified concerned mice with multiple hepatocellular tumors. When multiple hepatocellular tumors were present in some mice, only one or two were sectioned and examined by the study pathologist. These discrepancies have no impact on the data interpretation.

In conclusion, the audit substantiates the reported findings and the conclusion of the Technical Report.