#### NATIONAL TOXICOLOGY PROGRAM Technical Report Series No. 281



# TOXICOLOGY AND CARCINOGENESIS STUDIES OF HC RED NO. 3

[2,-((4-AMINO-2-NITROPHENYL)AMINO)ETHANOL]

(CAS NO. 2871-01-4)

## IN F344/N RATS AND B6C3F1 MICE

(GAVAGE STUDIES)

U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES Public Health Service National Institutes of Health

#### NATIONAL TOXICOLOGY PROGRAM

The National Toxicology Program (NTP), established in 1978, develops and evaluates scientific information about potentially toxic and hazardous chemicals. This knowledge can be used for protecting the health of the American people and for the primary prevention of disease. By bringing together the relevant programs, staff, and resources from the U.S. Public Health Service, DHHS, the National Toxicology Program has centralized and strengthened activities relating to toxicology research, testing and test development/validation efforts, and the dissemination of toxicological information to the public and scientific communities and to the research and regulatory agencies.

The NTP is made up of four charter DHHS agencies: the National Cancer Institute (NCI), National Institutes of Health; the National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health; the National Center for Toxicological Research (NCTR), Food and Drug Administration; and the National Institute for Occupational Safety and Health (NIOSH), Centers for Disease Control. In July 1981, the Carcinogenesis Bioassay Testing Program, NCI, was transferred to the NIEHS.

## NTP TECHNICAL REPORT ON THE

# TOXICOLOGY AND CARCINOGENESIS STUDIES OF HC RED NO. 3

[2,-((4-AMINO-2-NITROPHENYL)AMINO)ETHANOL]

## (CAS NO. 2871-01-4)

## IN F344/N RATS AND B6C3F1 MICE

## (GAVAGE STUDIES)



#### NATIONAL TOXICOLOGY PROGRAM P.O. Box 12233 Research Triangle Park, NC 27709

January 1986

## NTP TR 281

NIH Publication No. 86-2537

U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES Public Health Service National Institutes of Health

#### NOTE TO THE READER

These studies are designed and conducted to characterize and evaluate the toxicologic potential, including carcinogenic activity, of selected chemicals in laboratory animals (usually two species, rats and mice). Chemicals selected for testing in the NTP Carcinogenesis Program are chosen primarily on the bases of human exposure, level of production, and chemical structure. Selection per se is not an indicator of a chemical's carcinogenic potential. Negative results, in which the test animals do not have a greater incidence of cancer than control animals, do not necessarily mean that a test chemical is not a carcinogen, inasmuch as the experiments are conducted under a limited set of conditions. Positive results demonstrate that a test chemical is carcinogenic for animals under the conditions of the test and indicate that exposure to the chemical has the potential for hazard to humans. The determination of the risk to humans from chemicals found to be carcinogenic in animals requires a wider analysis which extends beyond the purview of this study.

Five categories of interpretative conclusions were adopted for use in June 1983 in the Technical Reports series to specifically emphasize consistency and the concept of actual evidence of carcinogenicity. For each definitive study result (male rats, female rats, male mice, female mice), one of the following quintet will be selected to describe the findings. These categories refer to the strength of the experimental evidence and not to either potency or mechanism.

- Clear Evidence of Carcinogenicity is demonstrated by studies that are interpreted as showing a chemically related increased incidence of malignant neoplasms, studies that exhibit a substantially increased incidence of benign neoplasms, or studies that exhibit an increased incidence of a combination of malignant and benign neoplasms where each increases with dose.
- Some Evidence of Carcinogenicity is demonstrated by studies that are interpreted as showing a chemically related increased incidence of benign neoplasms, studies that exhibit marginal increases in neoplasms of several organs/tissues, or studies that exhibit a slight increase in uncommon malignant or benign neoplasms.
- Equivocal Evidence of Carcinogenicity is demonstrated by studies that are interpreted as showing a chemically related marginal increase of neoplasms.
- No Evidence of Carcinogenicity is demonstrated by studies that are interpreted as showing no chemically related increases in malignant or benign neoplasms.
- Inadequate Study of Carcinogenicity demonstrates that because of major qualitative or quantitative limitations, the studies cannot be interpreted as valid for showing either the presence or absence of a carcinogenic effect.

Additionally, the following concepts (as patterned from the International Agency for Research on Cancer Monographs) have been adopted by the NTP to give further clarification of these issues:

The term *chemical carcinogenesis* generally means the induction by chemicals of neoplasms not usually observed, the earlier induction by chemicals of neoplasms that are commonly observed, or the induction by chemicals of more neoplasms than are generally found. Different mechanisms may be involved in these situations. Etymologically, the term *carcinogenesis* means induction of cancer, that is, of malignant neoplasms; however, the commonly accepted meaning is the induction of various types of neoplasms or of a combination of malignant and benign neoplasms. In the Technical Reports, the words *tumor* and *neoplasm* are used interchangeably.

This study was initiated by the National Cancer Institute's Carcinogenesis Bioassay Program, now part of the National Institute of Environmental Health Sciences, National Toxicology Program. The studies described in this Technical Report have been conducted in compliance with NTP chemical health and safety requirements and must meet or exceed all applicable Federal, state, and local health and safety regulations. All NTP toxicology and carcinogenesis studies are subjected to a data audit before being presented for peer review.

Although every effort is made to prepare the Technical Reports as accurately as possible, mistakes may occur. Readers are requested to identify any mistakes so that corrective action may be taken. Further, anyone who is aware of related ongoing or published studies not mentioned in this report is encouraged to make this information known to the NTP. Comments and questions about the National Toxicology Program Technical Reports on Toxicology and Carcinogenesis Studies should be directed to Dr. J.E. Huff, National Toxicology Program, P.O. Box 12233, Research Triangle Park, NC 27709 (919-541-3780).

These NTP Technical Reports are available for sale from the National Technical Information Service, U.S. Department of Commerce, 5285 Port Royal Road, Springfield, VA 22161 (703-487-4650). Single copies of this Technical Report are available without charge (and while supplies last) from the NTP Public Information Office, National Toxicology Program, P.O. Box 12233, Research Triangle Park, NC 27709.

## CONTENTS

\*

|      | PAGE                                              |
|------|---------------------------------------------------|
| ABST | 'RACT                                             |
| CONT | TRIBUTORS                                         |
| PEEF | REVIEW PANEL                                      |
| SUM  | MARY OF PEER REVIEW COMMENTS                      |
| I.   | INTRODUCTION                                      |
| п.   | MATERIALS AND METHODS                             |
|      | PROCUREMENT AND CHARACTERIZATION OF HC RED NO. 3  |
|      | PREPARATION AND CHARACTERIZATION OF DOSE MIXTURES |
|      | SINGLE-ADMINISTRATION STUDIES                     |
|      | FOURTEEN-DAY STUDIES                              |
|      | THIRTEEN-WEEK STUDIES                             |
|      | TWO-YEAR STUDIES                                  |
|      | STUDY DESIGN                                      |
|      | SOURCE AND SPECIFICATIONS OF ANIMALS              |
|      | ANIMAL MAINTENANCE                                |
|      | CLINICAL EXAMINATIONS AND PATHOLOGY               |
|      | STATISTICAL METHODS                               |
| ш.   | RESULTS                                           |
|      | RATS                                              |
|      | SINGLE-ADMINISTRATION STUDIES                     |
|      | FOURTEEN-DAY STUDIES                              |
|      | THIRTEEN-WEEK STUDIES                             |
|      | TWO-YEAR STUDIES                                  |
|      | BODY WEIGHTS AND CLINICAL SIGNS                   |
|      | SURVIVAL                                          |
|      | PATHOLOGY AND STATISTICAL ANALYSES OF RESULTS     |
|      | MICE                                              |
|      | SINGLE-ADMINISTRATION STUDIES                     |
|      | FOURTEEN-DAY STUDIES                              |
|      | THIRTEEN-WEEK STUDIES                             |
|      | TWO-YEAR STUDIES                                  |
|      | BODY WEIGHTS AND CLINICAL SIGNS                   |
|      | SURVIVAL                                          |
|      | PATHOLOGY AND STATISTICAL ANALYSES OF RESULTS     |

### **CONTENTS** (Continued)

| IV    | DISC  | PAGE USSION AND CONCLUSIONS49                                   |
|-------|-------|-----------------------------------------------------------------|
|       |       |                                                                 |
| ۰.    | NEF E | ERENCES                                                         |
|       |       | TABLES                                                          |
| TABLE | 2 1   | IDENTITY AND SOURCE OF LOTS USED IN THE GAVAGE STUDIES OF       |
|       |       | HC RED NO. 3                                                    |
| TABLE | 2     | PREPARATION AND STORAGE OF DOSE MIXTURES IN THE GAVAGE STUDIES  |
|       |       | OF HC RED NO. 3 ,                                               |
| TABLE | 3     | SUMMARY OF RESULTS OF ANALYSIS OF DOSE MIXTURES IN THE TWO-YEAR |
|       |       | GAVAGE STUDIES OF HC RED NO. 3                                  |
| TABLE | 4     | EXPERIMENTAL DESIGN AND MATERIALS AND METHODS IN THE GAVAGE     |
|       |       | STUDIES OF HC RED NO. 3                                         |
| TABLE | 5     | SURVIVAL AND MEAN BODY WEIGHTS OF RATS IN THE SINGLE-           |
|       |       | ADMINISTRATION STUDIES OF HC RED NO. 3                          |
| TABLE | 6     | SURVIVAL AND MEAN BODY WEIGHTS OF RATS IN THE FOURTEEN-DAY      |
|       |       | GAVAGE STUDIES OF HC RED NO. 3                                  |
| TABLE | 7     | SURVIVAL AND MEAN BODY WEIGHTS OF RATS IN THE THIRTEEN-WEEK     |
|       |       | GAVAGE STUDIES OF HC RED NO. 3                                  |
| TABLE | 8     | MEAN BODY WEIGHTS AND SURVIVAL OF RATS IN THE TWO-YEAR          |
|       |       | GAVAGE STUDIES OF HC RED NO. 3                                  |
| TABLE | 9     | SURVIVAL OF RATS IN THE TWO-YEAR GAVAGE STUDIES OF HC RED NO. 3 |
| TABLE | 10    | ANALYSIS OF MAMMARY GLAND TUMORS IN FEMALE RATS IN THE          |
|       |       | TWO-YEAR GAVAGE STUDY OF HC RED NO. 3                           |
| TABLE | 11    | INCIDENCE OF CATARACTS AND RETINOPATHY IN RATS IN THE TWO-YEAR  |
|       |       | GAVAGE STUDIES OF HC RED NO. 3                                  |
| TABLE | 12    | SURVIVAL AND MEAN BODY WEIGHTS OF MICE IN THE SINGLE-           |
|       |       | ADMINISTRATION GAVAGE STUDIES OF HC RED NO. 3                   |
| TABLE | 13    | SURVIVAL AND MEAN BODY WEIGHTS OF MICE IN THE FOURTEEN-DAY      |
|       |       | GAVAGE STUDIES OF HC RED NO. 3                                  |
| TABLE | 14    | SURVIVAL AND MEAN BODY WEIGHTS OF MICE IN THE THIRTEEN-WEEK     |
|       |       | GAVAGE STUDIES OF HC RED NO. 3                                  |

τ

### **TABLES** (Continued)

| TABLE 15 | MEAN BODY WEIGHTS AND SURVIVAL OF MICE IN THE TWO-YEAR GAVAGE<br>STUDIES OF HC RED NO. 3       |
|----------|------------------------------------------------------------------------------------------------|
| TABLE 16 | SURVIVAL OF MICE IN THE TWO-YEAR GAVAGE STUDIES OF HC RED NO. 3 44                             |
| TABLE 17 | ANALYSIS OF LIVER TUMORS IN MICE IN THE TWO-YEAR GAVAGE<br>STUDIES OF HC RED NO. 3             |
| TABLE 18 | ANALYSIS OF FORESTOMACH LESIONS IN FEMALE MICE IN THE TWO-YEAR<br>GAVAGE STUDY OF HC RED NO. 3 |
| TABLE 19 | COMPARISON OF RESULTS IN NTP STUDIES OF HC BLUE NO. 1, HC BLUE                                 |
|          | NO. 2, AND HC RED NO. 3 IN F344/N RATS AND B6C3F1 MICE ,                                       |

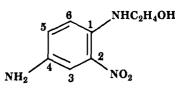
#### FIGURES

| FIGURE | 1 | GROWTH CURVES FOR RATS ADMINISTERED HC RED NO. 3 IN CORN OIL BY   |
|--------|---|-------------------------------------------------------------------|
|        |   | GAVAGE FOR TWO YEARS                                              |
| FIGURE | 2 | KAPLAN-MEIER SURVIVAL CURVES FOR RATS ADMINISTERED HC RED NO. 3   |
|        |   | IN CORN OIL BY GAVAGE FOR TWO YEARS                               |
| FIGURE | 3 | GROWTH CURVES FOR MICE ADMINISTERED HC RED NO. 3 IN CORN OIL BY   |
|        |   | GAVAGE FOR TWO YEARS                                              |
| FIGURE | 4 | KAPLAN-MEIER SURVIVAL CURVES FOR MICE ADMINISTERED HC RED NO. 3   |
|        |   | IN CORN OIL BY GAVAGE FOR TWO YEARS45                             |
| FIGURE | 5 | CHEMICAL STRUCTURES OF HC RED NO. 3, HC BLUE NO. 1, AND           |
|        |   | HC BLUE NO. 2                                                     |
| FIGURE | 6 | INFRARED ABSORPTION SPECTRUM OF HC RED NO. 3 (LOT NO. 5890377)141 |
| FIGURE | 7 | NUCLEAR MAGNETIC RESONANCE SPECTRUM OF HC RED NO. 3               |
|        |   | (LOT NO. 5890377)                                                 |
| FIGURE | 8 | INFRARED ABSORPTION SPECTRUM OF HC RED NO. 3 (LOT NO. C080480)147 |
| FIGURE | 9 | NUCLEAR MAGNETIC RESONANCE SPECTRUM OF HC RED NO. 3               |
|        |   | (LOT NO. C080480)                                                 |

PAGE

## **APPENDIXES**

|            | PAGE                                                          |
|------------|---------------------------------------------------------------|
| APPENDIX A | SUMMARY OF THE INCIDENCE OF NEOPLASMS IN RATS IN THE TWO-YEAR |
|            | GAVAGE STUDIES OF HC RED NO. 3                                |
| TABLE A1   | SUMMARY OF THE INCIDENCE OF NEOPLASMS IN MALE RATS IN THE     |
|            | TWO-YEAR GAVAGE STUDY OF HC RED NO. 3                         |
| TABLE A2   | SUMMARY OF THE INCIDENCE OF NEOPLASMS IN FEMALE RATS IN THE   |
|            | TWO-YEAR GAVAGE STUDY OF HC RED NO. 3                         |
| TABLE A3   | INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE RATS IN THE         |
|            | TWO-YEAR GAVAGE STUDY OF HC RED NO. 3                         |
| TABLE A4   | INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE RATS IN THE       |
|            | TWO-YEAR GAVAGE STUDY OF HC RED NO. 3                         |
| APPENDIX B | SUMMARY OF THE INCIDENCE OF NEOPLASMS IN MICE IN THE TWO-YEAR |
|            | GAVAGE STUDIES OF HC RED NO. 3                                |
| TABLE B1   | SUMMARY OF THE INCIDENCE OF NEOPLASMS IN MALE MICE IN THE     |
|            | TWO-YEAR GAVAGE STUDY OF HC RED NO. 3                         |
| TABLE B2   | SUMMARY OF THE INCIDENCE OF NEOPLASMS IN FEMALE MICE IN THE   |
| IADLE DZ   | TWO-YEAR GAVAGE STUDY OF HC RED NO. 3                         |
| TABLE B3   |                                                               |
| TABLE DJ   | INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE MICE IN THE         |
|            | TWO-YEAR GAVAGE STUDY OF HC RED NO. 3                         |
| TABLE B4   | INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE MICE IN THE       |
|            | TWO-YEAR GAVAGE STUDY OF HC RED NO. 3                         |
| APPENDIX C | SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN RATS IN  |
|            | THE TWO-YEAR GAVAGE STUDIES OF HC RED NO. 3                   |
| TABLE C1   | SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE     |
|            | RATS IN THE TWO-YEAR GAVAGE STUDY OF HC RED NO. 3             |
| TABLE C2   | SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN FEMALE   |
|            | RATS IN THE TWO-YEAR GAVAGE STUDY OF HC RED NO. 3             |
| APPENDIX D | SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MICE IN  |
|            | THE TWO-YEAR GAVAGE STUDIES OF HC RED NO. 3                   |
| TABLE D1   | SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE     |
|            | MICE IN THE TWO-YEAR GAVAGE STUDY OF HC RED NO. 3             |


## **APPENDIXES** (Continued)

| TABLE D2   | SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN FEMALE              |
|------------|--------------------------------------------------------------------------|
|            | MICE IN THE TWO-YEAR GAVAGE STUDY OF HC RED NO. 3                        |
| APPENDIX E | ANALYSES OF PRIMARY TUMORS IN RATS AND MICE IN THE TWO-YEAR              |
|            | GAVAGE STUDIES OF HC RED NO. 3119                                        |
| TABLE E1   | ANALYSIS OF PRIMARY TUMORS IN MALE RATS IN THE TWO-YEAR                  |
|            | GAVAGE STUDY OF HC RED NO. 3120                                          |
| TABLE E2   | ANALYSIS OF PRIMARY TUMORS IN FEMALE RATS IN THE TWO-YEAR                |
|            | GAVAGE STUDY OF HC RED NO. 3124                                          |
| TABLE E3   | ANALYSIS OF PRIMARY TUMORS IN MALE MICE IN THE TWO-YEAR                  |
|            | GAVAGE STUDY OF HC RED NO. 3                                             |
| TABLE E4   | ANALYSIS OF PRIMARY TUMORS IN FEMALE MICE IN THE TWO-YEAR                |
|            | GAVAGE STUDY OF HC RED NO. 3                                             |
| APPENDIX F | HISTORICAL INCIDENCES OF TUMORS IN F344/N RATS AND B6C3F1 MICE           |
|            | RECEIVING CORN OIL BY GAVAGE                                             |
| TABLE F1   | HISTORICAL INCIDENCE OF URINARY BLADDER TRANSITIONAL CELL                |
|            | TUMORS IN F344/N RATS RECEIVING CORN OIL BY GAVAGE                       |
| TABLE F2   | HISTORICAL INCIDENCE OF MAMMARY GLAND TUMORS IN FEMALE                   |
|            | F344/N RATS RECEIVING CORN OIL BY GAVAGE                                 |
| TABLE F3   | HISTORICAL INCIDENCE OF STOMACH TUMORS IN FEMALE B6C3F <sub>1</sub> MICE |
|            | RECEIVING CORN OIL BY GAVAGE136                                          |
| TABLE F4   | HISTORICAL INCIDENCE OF LIVER TUMORS IN MALE B6C3F <sub>1</sub> MICE     |
|            | RECEIVING CORN OIL BY GAVAGE                                             |
| APPENDIX G | CHEMICAL CHARACTERIZATION OF HC RED NO. 3                                |
| APPENDIX H | RECOVERY OF HC RED NO. 3 FROM FORMULATED DIETS                           |
| TABLE H1   | CONSTANT TEMPERATURE/VARIABLE TIME STUDY OF HC RED NO. 3155              |
| TABLE H2   | CONSTANT TIME/VARIABLE TEMPERATURE STUDY OF HC RED NO. 3                 |
| APPENDIX I | STABILITY AND HOMOGENEITY OF HC RED NO. 3 SUSPENDED IN AQUEOUS           |
|            | METHYL CELLULOSE OR CORN OIL                                             |
| APPENDIX J | METHODS OF ANALYSIS OF DOSE MIXTURES                                     |

PAGE

### **APPENDIXES** (Continued)

|            | PAGE                                                              |
|------------|-------------------------------------------------------------------|
| APPENDIX K | RESULTS OF ANALYSIS OF DOSE MIXTURES167                           |
| TABLE K1   | CONCENTRATIONS OF HC RED NO. 3 IN THE THIRTEEN-WEEK GAVAGE        |
|            | STUDIES                                                           |
| TABLE K2   | CONCENTRATIONS OF HC RED NO. 3 IN THE TWO-YEAR GAVAGE STUDIES 169 |
| TABLE K3   | RESULTS OF ANALYSIS OF DOSE PREPARATION ROOM SAMPLES AND          |
|            | ANIMAL ROOM SAMPLES IN THE TWO-YEAR GAVAGE STUDIES OF             |
|            | HC RED NO. 3                                                      |
| TABLE K4   | RESULTS OF REFEREE ANALYSIS OF DOSE MIXTURES OF HC RED NO. 3      |
|            | IN CORN OIL IN THE TWO-YEAR GAVAGE STUDIES                        |
| APPENDIX L | SENTINEL ANIMAL PROGRAM171                                        |
| TABLE L1   | MURINE VIRUS ANTIBODY DETERMINATIONS FOR RATS AND MICE IN         |
|            | THE TWO-YEAR GAVAGE STUDIES OF HC RED NO. 3                       |
| APPENDIX M | GENETIC TOXICOLOGY OF HC RED NO. 3                                |
| TABLE M1   | MUTAGENICITY OF HC RED NO. 3 IN SALMONELLA TYPHIMURIUM            |
| APPENDIX N | INGREDIENTS, NUTRIENT COMPOSITION, AND CONTAMINANT LEVELS IN      |
|            | THE NIH 07 DIET                                                   |
| TABLE N1   | INGREDIENTS OF THE NIH 07 DIET                                    |
| TABLE N2   | VITAMINS AND MINERALS IN THE NIH 07 DIET                          |
| TABLE N3   | NUTRIENT COMPOSITION OF THE NIH 07 DIET                           |
| TABLE N4   | CONTAMINANT LEVELS OF THE NIH 07 DIET                             |
| APPENDIX O | DATA AUDIT SUMMARY                                                |



### HC RED NO. 3

#### 2-((4-AMINO-2-NITROPHENYL)AMINO)ETHANOL

C<sub>8</sub>H<sub>11</sub>N<sub>3</sub>O<sub>3</sub> Molecular weight 197.2

### ABSTRACT

Toxicology and carcinogenesis studies of HC Red No. 3 (97% pure), a semipermanent hair dye, were conducted by administering the chemical in corn oil by gavage for 105 weeks to groups of 50 male and 50 female F344/N rats and for 104 weeks to groups of 50 male and 50 female B6C3F<sub>1</sub> mice. The dosage regimen used for rats was 0, 250, or 500 mg/kg per day and for mice, 0, 125, or 250 mg/kg per day. Doses were administered 5 days per week. In prior 13-week studies, these doses produced no signs of toxicity when administered 5 days per week.

In the 2-year studies, the administration of HC Red No. 3 did not affect body weight gains of male or female rats or mice. Body weight gains by all groups of female mice were reduced because of a reproductive tract infection. Survival of male and female rats and mice was not reduced by administration of HC Red No. 3. The survival of female mice, including vehicle controls, was reduced relative to historical survival rates due to a reproductive tract infection. The infection, accompanied by weight loss, high mortality, and suppurative inflammation of multiple organs, was found in 36/50 vehicle control, 32/50 low dose, and 29/50 high dose female mice. *Klebsiella pneumoniae* was isolated from infected tissues.

Pigmentation of various tissues in both rats and mice was a common observation in both the 13-week and the 2-year studies. The pigment was not identified but was presumed to be a derivative of HC Red No. 3. Very minimal nephropathy was found in dosed female rats, but its relationship to HC Red No. 3 is equivocal. Mild nephrosis was found in dosed female mice, but this effect may have been secondary to the infection of the genital tract.

There was an increase in the incidence of mammary gland fibroadenomas or cystadenomas in low dose female rats. The incidence of this lesion in high dose female rats was not increased (vehicle control, 14/50, 28%; low dose, 25/50, 50%; high dose, 11/50, 22%). Largely because of the lack of a dose response, the increased incidence in the low dose females was not considered to be due to HC Red No. 3. No increased incidences of neoplasms were seen in male rats.

Transitional cell papillomas of the urinary bladder were detected in one high dose male rat, two low dose female rats, and one high dose female rat; none was observed in the vehicle controls. These uncommon neoplasms were found in animals that survived to the termination of the study and were not accompanied by other proliferative lesions.

The incidence of hepatocellular adenomas or carcinomas (combined) was increased in high dose male mice, whereas the incidence of these neoplasms in low dose male mice was significantly lower than that in the vehicle controls (25/50; 15/50; 35/50). Hepatocellular carcinomas in three vehicle control, one low dose, and five high dose male mice metastasized to the lung. The incidences of liver neoplasms in dosed female mice were not significantly different from those in the vehicle control group.

HC Red No. 3 was mutagenic in *Salmonella typhimurium* strains TA97, TA98, and TA100, but not in TA1535, in the presence or absence of Aroclor 1254-induced male Sprague-Dawley rat or male Syrian hamster liver S9 when tested by the preincubation protocol.

An audit of the experimental data was conducted for these 2-year toxicology and carcinogenesis studies on HC Red No. 3. No data discrepancies were found that influenced the final interpretations.

Under the conditions of these 2-year gavage studies of HC Red No.3, there was no evidence of carcinogenicity\* for male or female F344/N rats given 250 or 500 mg/kg per day. There was equivocal evidence of carcinogenicity for male B6C3F<sub>1</sub> mice as indicated by an increased incidence of hepatocellular adenomas or carcinomas (combined) in the 250 mg/kg group. Poor survival coupled with lack of significant findings rendered the study in female B6C3F<sub>1</sub> mice an *inadequate study of carcino*genicity. Both sexes of both species may have been able to tolerate higher doses of HC Red No. 3. Therefore, the sensitivity of these studies for detecting carcinogenesis may have been limited.

<sup>\*</sup>Categories of evidence of carcinogenicity are defined in the Note to the Reader on page 2.

#### CONTRIBUTORS

The NTP Technical Report on the Toxicology and Carcinogenesis Studies of HC Red No. 3 is based on the 13-week studies that began in February 1979 and ended in May 1979 and on the 2-year studies that began in November 1979 and ended in November 1981 at Southern Research Institute.

#### National Toxicology Program (Evaluated Experiment, Interpreted Results, and Reported Findings)

John H. Mennear, Ph.D., Chemical Manager

Gary A. Boorman, D.V.M., Ph.D. Douglas Bristol, Ph.D. David M. DeMarini, Ph.D. Joseph K. Haseman, Ph.D. James Huff, Ph.D. C.W. Jameson, Ph.D. William Kluwe, Ph.D. E.E. McConnell, D.V.M. G.N. Rao, D.V.M., Ph.D. B.A. Schwetz, D.V.M., Ph.D. Raymond W. Tennant, Ph.D.

#### NTP Pathology Working Group (Evaluated Slides and Prepared Pathology Report on 10/20/82)

Gary A. Boorman, D.V.M., Ph.D. (NTP) (Chair)
Scot L. Eustis, D.V.M., Ph.D. (NTP)
D. Longnecker, M.D. (Dartmouth University Medical School) Robert Maronpot, D.V.M. (NTP) Henk Solleveld, D.V.M., Ph.D. (NTP)

#### Principal Contributors at Southern Research Institute (Conducted Studies and Evaluated Tissues)

J. David Prejean, Ph.D. Principal Investigator Roger B. Thompson, D.V.M. Pathologist Daniel Farnell, D.V.M., Ph.D. Pathologist Ruby H. James, B.S. Chemist

Experimental Pathology Laboratory (Provided Pathology Quality Assurance)

Deborah Banas, D.V.M.

#### Principal Contributors at Carltech Associates, Inc. (Contractor for Technical Report Preparation)

William D. Theriault, Ph.D. Project Manager Abigail C. Jacobs, Ph.D. Senior Scientist John Warner, M.S. Chemist/Statistician

#### PEER REVIEW PANEL

The members of the Peer Review Panel who evaluated the draft Technical Report on HC Red No. 3 on March 29, 1985, are listed below. Panel members serve as independent scientists, not as representatives of any institution, company, or governmental agency. In this capacity, Panel members have five major responsibilities: (a) to ascertain that all relevant literature data have been adequately cited and interpreted, (b) to determine if the design and conditions of the NTP studies were appropriate, (c) to ensure that the Technical Report presents the experimental results and conclusions fully and clearly, (d) to judge the significance of the experimental results by scientific criteria, and (e) to assess the evaluation of the evidence of carcinogenicity and other observed toxic responses.

#### National Toxicology Program Board of Scientific Counselors Technical Reports Review Subcommittee

Jerry B. Hook, Ph.D. (Chair) Vice President, Preclinical Research and Development Smith Kline & French Laboratories Philadelphia, Pennsylvania

Curtis Harper, Ph.D. Associate Professor of Pharmacology School of Medicine University of North Carolina Chapel Hill, North Carolina James Swenberg, D.V.M., Ph.D. Head, Department of Biochemical Toxicology and Pathobiology Chemical Industry Institute of Toxicology Research Triangle Park, North Carolina

#### Ad Hoc Subcommittee Panel of Experts

John J. Crowley, Ph.D. Division of Public Health Science The Fred Hutchinson Cancer Research Center Seattle, Washington

Kim Hooper, Ph.D. (Principal Reviewer) Chief, Hazard Evaluation System and Information Department of Health Services State of California Berkeley, California

Thomas C. Jones, D.V.M.\* Professor, Comparative Pathology New England Regional Primate Research Center Harvard Medical School Southborough, Massachusetts

Richard J. Kociba, D.V.M., Ph.D. Dow Chemical USA Midland, Michigan

David Kotelchuck, Ph.D. (Principal Reviewer) Environmental Health Science Program Hunter School of Health Sciences New York, New York

\*Unable to attend

Frederica Perera, Ph.D. Division of Environmental Sciences School of Public Health Columbia University New York, New York

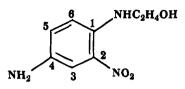
I.F.H. Purchase, Ph.D. Central Toxicology Laboratory Imperial Chemical Industries, PLC Alderley Park, England

Steven R. Tannenbaum, Ph.D. (Principal Reviewer) Professor, Department of Nutrition and Food Science Massachusetts Institute of Technology Cambridge, Massachusetts

Bruce W. Turnbull, Ph.D. Professor and Associate Director College of Engineering Cornell University Ithaca, New York

## SUMMARY OF PEER REVIEW COMMENTS ON THE TOXICOLOGY AND CARCINOGENESIS STUDIES OF HC RED NO. 3

On March 29, 1985, the draft Technical Report on the toxicology and carcinogenesis studies of HC Red No. 3 received peer review by the National Toxicology Program Board of Scientific Counselors' Technical Reports Review Subcommittee and associated Panel of Experts. The review meeting began at 9:00 a.m. in the Conference Center, Building 101, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina.


Dr. Kotelchuck, a principal reviewer, agreed in principle with the conclusions. He stated that the results of the short-term studies indicated that the high dose used in the 2-year studies was well below the dose that could have been easily tolerated in both sexes of both species. Thus, the conclusions should reflect this.

As a second principal reviewer, Dr. Tannenbaum said he agreed with the use of the gavage route over dermal exposure but asked that the discussion indicate that metabolism by the two routes could be quite different; for example, nitrophenylenediamine dyes are metabolized in the gastrointestinal tract. He was pleased to note that nitrosamines were analyzed but said more information was needed on methods of analysis, levels found, and possible biologic effects of these contaminants. Dr. Mennear, NTP, said that the discussion would be expanded on route-specific metabolism and on the nitrosamines [see page 54].

As a third principal reviewer, Dr. Hooper disagreed with the evidence categories in male and female rats and male mice because these animals could have tolerated higher doses as shown by no effects on body weight or survival. Further, in recently completed NTP studies of the structurally related dyes HC Blue No. 1 and HC Blue No. 2, much higher doses in mice were well tolerated. Dr. Hooper proposed that there be two categories: one referring to the strength of evidence, the second referring to the adequacy of the study design. For example, the conclusions in male mice could be that this was an inadequate study of carcinogenicity producing equivocal evidence of a carcinogenic effect. At the least, he suggested that the study design was inadequate because low doses were used for all four sex/species groups. Dr. McConnell, NIEHS/NTP, replied that increasing the number of categories or adding qualifiers to the existing ones is not necessary, and Dr. Huff, NIEHS/NTP, noted there were already qualifiers for the stated conclusions on male rats and mice that higher doses may have been tolerated. Dr. Hooper proposed that the sensitivity of this study for detecting a carcinogenic effect may have been limited by poor survival (female mice) or by administration of less than a maximum tolerated dose (rats and male mice). Dr. Turnbull seconded the motion.

In subsequent discussion, Dr. Kociba and Dr. Purchase questioned the interpretation of equivocal evidence of carcinogenicity based on the data for mammary gland tumors in female rats. Despite the high incidence in the low dose group, this tumor was common and variable, and the incidence in the high dose group was lower than that in the concurrent control group; thus, there was no biologic basis for even a marginal effect of administration. Dr. Haseman, NIEHS, noted that the low-dose rate, however, was well above the historical range for gavage controls. Dr. Hook said he would accept a motion for an amendment to the previous motion having to do with the conclusion in rats. Dr. Kociba moved that the original motion be amended so that the conclusion read: "...there was no evidence of carcinogenicity for male and female rats." Dr. Purchase seconded the motion, and it was approved by six affirmative votes; there were four negative votes (Dr. Harper, Dr. Hooper, Dr. Kotelchuck, and Dr. Perera). Dr. Hook asked for a vote on Dr. Hooper's motion to include Dr. Kociba's amendment with a modifying statement indicating that higher doses might have been tolerated in all four experiments. The motion was approved unanimously.

## I. INTRODUCTION



### HC RED NO. 3

#### 2-((4-AMINO-2-NITROPHENYL)AMINO)ETHANOL

C<sub>8</sub>H<sub>11</sub>N<sub>3</sub>O<sub>3</sub> Molecular weight 197.2

HC Red No. 3 is a nitrophenylenediamine derivative used exclusively as a semipermanent hair dye. Approximately 5,000-10,000 pounds of HC Red No. 3 are used annually.

Semipermanent hair color products are generally shampoo-in preparations that are applied to the hair, lathered, and then allowed to remain in contact with the hair (and scalp) for 30-45 minutes (Frenkel and Brody, 1973). The concentration of HC Red No. 3 used in these preparations ranges from 0.1% to 5%.

Past studies in which HC Red No. 3 was administered to laboratory animals were conducted on complex mixtures of dyes, dye intermediates, and product base chemicals (solvents and detergents). Wernick et al. (1975) administered a composite of 15 semipermanent hair dyes, formulated in product base materials, to dogs, rats, and rabbits. The composite contained 6.95% dye chemicals, including 0.02% HC Red No. 3. The mixture was tested for systemic effects in beagle dogs (dietary administration for 2 years), for teratologic effects in Sprague-Dawley rats (dietary administration on days 6 through 15 of gestation) and New Zealand rabbits (gavage administration on days 6 through 18 of gestation), and for reproductive effects in Sprague-Dawley rats (dietary administration). The largest doses of HC Red No. 3 delivered by the mixture were 0.02 mg/kg per day to dogs and rabbits and 0.16 mg/kg per day (estimated) to rats. No compound-related effects were observed.

No studies on the absorption, distribution, metabolism, excretion, or genetic toxicology of HC Red No. 3 have been published. However, the NTP found that HC Red No. 3 was mutagenic in Salmonella typhimurium strains TA97, TA98, and TA100, but not in TA1535, in the presence or absence of Aroclor 1254-induced male Sprague-Dawley rat or Syrian hamster liver S9 when tested according to the preincubation protocol (Appendix M). The results show that, in Salmonella, HC Red No. 3 is a mutagen whose mutagenic activity is greatly enhanced by liver S9 metabolism.

The International Agency for Research on Cancer published a monograph on aromatic amines, including hair dye preparations (IARC, 1982). The epidemiologic information concerning relationships between various human cancers and either employment as a hairdresser or the personal use of hair dyes was evaluated as inconclusive.

HC Red No. 3 is one of five semipermanent hair dyes selected for toxicologic and carcinogenicity assessment in a chemical class study of hair color materials. The other dyes studied were HC Blue No. 1, HC Blue No. 2, C.I. Disperse Blue No. 1, and C.I. Acid Orange No. 3.

The results of the studies of HC Blue No. 1 (NTP, 1985a) and HC Blue No. 2 (NTP, 1985b) have been reported, and the other studies are currently in progress. The structures for HC Red No. 3, HC Blue No. 1, and HC Blue No. 2 are compared in the Discussion and Conclusions (Chapter IV). HC Blue No. 1 caused hepatocellular carcinomas in mice, liver neoplasms in male rats, alveolar/bronchiolar neoplasms in female rats, and thyroid gland neoplasms in male mice. HC Blue No. 2 did not cause any increased incidences of neoplasms in either rats or mice.

During the planning of this series of studies on

hair dyes, it was felt that, regardless of the degree of dermal absorption of dye, a larger proportion of chemical would be absorbed through the gastrointestinal tract than through the skin. Therefore, the oral route of administration was selected for each chemical to provide a more rigorous test than would be possible through dermal application.

HC Red No. 3, NTP TR 281

## **II. MATERIALS AND METHODS**

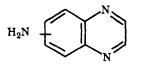
## PROCUREMENT AND CHARACTERIZATION OF HC RED NO. 3 PREPARATION AND CHARACTERIZATION OF DOSE

## **MIXTURES**

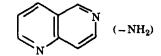
SINGLE-ADMINISTRATION STUDIES

## FOURTEEN-DAY STUDIES

## THIRTEEN-WEEK STUDIES


**TWO-YEAR STUDIES** 

Study Design Source and Specifications of Animals Animal Maintenance Clinical Examinations and Pathology Statistical Methods

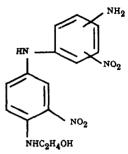

#### PROCUREMENT AND CHARACTERIZATION OF HC RED NO. 3

HC Red No. 3 [2-((4-amino-2-nitrophenyl)amino)ethanol] was obtained from Clairol Research Laboratories (Stamford, Connecticut) in two lots (Table 1) as the unformulated technicalgrade dye. Clairol reported that the dye was 97.3% pure. Purity and identity analyses on both lots were conducted at Midwest Research Institute (Kansas City, Missouri).

The identity of the material was confirmed by infrared, ultraviolet/visible, and nuclear magnetic resonance spectroscopy (Appendix G). All spectroscopic data were consistent with the structure of HC Red No. 3. Purity of the two batches was determined by elemental analysis, water analysis, titration of one amine group, thin-layer chromatography, and high-performance liquid chromatography. Results of these analyses indicated that both batches of test material were greater than 97% pure; these findings were consistent with the manufacturer's specifications. High-performance liquid chromatographic data indicated that there were two impurities in each batch with areas greater than 1% relative to the major peak area. These impurities were isolated by high-performance liquid chromatography and identified by mass spectrometry. One impurity was identified as a heterocyclic fused-ring compound, probably an aminoquinoxaline (I) or an aminonaphthyridine (II).



I. AMINOQUINOXALINE




#### **II. AMINONAPHTHYRIDINE**

| Single-Administration<br>Studies        | Fourteen-Day<br>Studies                    | Thirteen-Week<br>Studies                  | Two-Year<br>Studies                                                |
|-----------------------------------------|--------------------------------------------|-------------------------------------------|--------------------------------------------------------------------|
| Lot Numbers<br>5890377                  | 5890377                                    | 5890377                                   | 5890377; C080480                                                   |
| Date of Initial Use of Each             | Lot                                        |                                           |                                                                    |
| 4/11/78                                 | N/A                                        | N/A                                       | 11/27/79; 10/24/80                                                 |
| Supplier                                |                                            |                                           |                                                                    |
| Clairol Research Labs<br>(Stamford, CT) | Saine as single-<br>administration studies | Same as single-<br>administration studies | S <b>a</b> me <b>as</b> single-<br>a <b>dminis</b> tration studies |

#### TABLE 1. IDENTITY AND SOURCE OF LOTS USED IN THE GAVAGE STUDIES OF HC RED NO. 3

The concentration of this impurity was approximately 1.1% for lot no. 5890377 and approximately 0.3% for lot no. C080480. The second impurity was identified as an analog of HC Red No. 3 (III) and was present at a concentration of approximately 0.8% for lot no. 5890377 and approximately 1.7% for lot no. C080480.



#### III. HC RED NO.3 ANALOG

Samples of both lots of HC Red No. 3 were analyzed by Thermo Electron Corporation for possible nitrosamine impurities. High-performance liquid chromatography-thermal energy analysis of the test samples indicated that lot no. 5890377 contained approximately  $20 \pm 5$  ppm total nitrosamines and lot no. C080480 contained

approximately  $11 \pm 8$  ppm total nitrosamines. The identities of the nitrosamines observed in these two test samples were not determined. The peaks attributed to the polar nitrosamines in each sample exhibited excessive tailing and may have been due to interferences from the nitro group of HC Red No. 3.

The testing laboratory stored the test material at 22° C. Results of periodic reanalysis of the chemical at Southern Research Institute by infrared and ultraviolet visible spectroscopy indicated that no detectable deterioration occurred over the course of the studies.

#### PREPARATION AND CHARACTERIZATION OF DOSE MIXTURES

In the single-administration and 14-day studies, appropriate amounts of HC Red No. 3 were mixed with 1% carboxymethyl-cellulose (CMC). The CMC was dissolved in saline in the singleadministration studies and in water in the 14day studies. In the 13-week and 2-year studies, HC Red No. 3 was mixed with corn oil (Table 2). In all studies, the mixtures were continually stirred with a magnetic stirrer while doses were being administered.

TABLE 2. PREPARATION AND STORAGE OF DOSE MIXTURES IN THE GAVAGE STUDIES OF<br/>HC RED NO. 3

| Single-Administration<br>Studies                                                                                                                                                                                                                                            | Fourteen-Day<br>Studies                                                                                                                   | Thirteen-Week<br>Studies                                                                                                                                            | Two-Year<br>Studies                                                                          |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| Preparation<br>Appropriate amounts of<br>carboxymethylcellulose<br>(CMC) in saline and HC<br>Red No. 3 were stirred in<br>a beaker with a spatula;<br>the mixture was then<br>sonicated for 10 min (rats)<br>or 5 min (mice) until a<br>dark red suspension<br>was obtained | Same as the single-adminis-<br>tration studies except CMC<br>was in water and HC Red<br>No. 3/CMC mixture was<br>sonicated for only 5 min | Appropriate amounts of<br>HC Red No. 3 and corn oil<br>were manually shaken<br>for 1 min, then mixed with<br>a magnetic stirrer until<br>the suspension was uniform | Appropriate amounts of<br>HC Red No. 3 and<br>corn oil were mixed with<br>a magnetic stirrer |
| Maximum Storage Time<br>Animals dosed im-<br>mediately after chemical/<br>vehicle preparation                                                                                                                                                                               | 3- <b>4</b> d                                                                                                                             | 1 wk                                                                                                                                                                | 7 d from 11/27/79 to<br>9/12/80, then 14 d                                                   |
| Storage Conditions<br>None                                                                                                                                                                                                                                                  | Room temp                                                                                                                                 | 22° C                                                                                                                                                               | Room temp                                                                                    |

Studies of potential vehicles for administering HC Red No. 3 indicated that the recovery of HC Red No. 3 from feed decreased with time and increasing temperature (Appendix H). The amount of the test chemical recovered decreased as storage temperatures increased, with a 21% decrease being observed after 3 hours at 25° C. HC Red No. 3 feed blends were found to be unstable at storage temperatures of 5° C and above. The underlying reason for this loss was not pursued.

HC Red No. 3 was found to be stable in either 1% aqueous methyl cellulose or corn oil (Appendix I). Preliminary studies with corn oil suspensions of HC Red No. 3 established that homogeneous suspensions could be prepared and that the suspended HC Red No. 3 was stable in corn oil for 7 days at room temperature. The testing laboratory later expanded the stability study and confirmed a 14-day stability of the HC Red No. 3 corn oil suspensions.

The dose preparation method that was employed in these studies consisted of suspending the HC Red No. 3 in corn oil on a weight/volume basis with a magnetic stirrer. The dose mixtures were prepared weekly by the testing laboratory and stored at 22° C until used for dosing. Biweekly mixing was performed after September 12, 1980.

Dose mixtures of HC Red No. 3 in corn oil were analyzed periodically by the testing and referee laboratories to confirm chemical content. The analytical method included a methanolic extraction and a spectrophotometric quantitation step (Appendix J). Because 7/49 mixtures sampled were not within 10% of the target concentration, it is estimated that doses were formulated within specifications 86% of the time during the 2-year studies (Table 3; Appendix K, Table K2).

#### SINGLE-ADMINISTRATION STUDIES

Male and female F344/N rats and  $B6C3F_1$  mice were obtained from Harlan Industries and held for 14 days before the test began.

Groups of five rats of each sex were administered a single dose of 62, 125, 250, 500, or 1,000 mg/kg HC Red No. 3 in 1% carboxymethyl cellulose in saline by gavage. Groups of five mice of each sex were administered a single dose of 31, 62, 125, 250, or 500 mg/kg HC Red No. 3 in 1% carboxymethyl cellulose by gavage. Details of animal maintenance are given in Table 4.

#### FOURTEEN-DAY STUDIES

Male and female F344/N rats and  $B6C3F_1$  mice were obtained from Harlan Industries and held for 14 days before the studies began. Animals were approximately 7-8 weeks old when placed on study.

Groups of five rats of each sex were administered HC Red No. 3 (0, 62, 125, 250, 500, or 1,000 mg/kg) in 1% aqueous carboxymethyl cellulose for 14 consecutive days. Groups of five mice of each sex were administered 0, 31, 62, 125, 250, or 500 mg/kg for 14 consecutive days.

Animals were housed five per cage and received water and feed ad libitum. Details of animal maintenance are presented in Table 4.

#### THIRTEEN-WEEK STUDIES

Thirteen-week studies were conducted to evaluate the cumulative toxicity of HC Red No. 3 and to determine the doses to be used in the 2-year studies. Five- to 6-week-old male and female F344/N rats and B6C3F<sub>1</sub> mice were obtained from Charles River Breeding Laboratories,

## **TABLE 3. SUMMARY OF RESULTS OF ANALYSIS OF DOSE MIXTURES IN THE TWO-YEAR GAVAGE**STUDIES OF HC RED NO. 3

| ,                                  | <b>Determined Concentration for Target Concentration of</b> |             |             |              |
|------------------------------------|-------------------------------------------------------------|-------------|-------------|--------------|
|                                    | 1.25% (w/v)                                                 | 2.50% (w/v) | 5.00% (w/v) | 10.00% (w/v) |
| Mean (percent, w/v)                | 1.22                                                        | 2.48        | 4.93        | 10.10        |
| Standard deviation                 | 0.109                                                       | 0.174       | 0.332       | 0.935        |
| Coefficient of variation (percent) | 8.9                                                         | 7.0         | 6.7         | 9.3          |
| Range (percent, w/v)               | 0.97-1.39                                                   | 2.22-2.82   | 4.27-5.50   | 9.33-12.7    |
| Number of samples                  | 12                                                          | 12          | 13          | 12           |

| Single-Administration<br>Studies                                                                                                                                                                                                                                                                 | Fourteen-Day<br>Studies                                                                                                          | Thirteen-Week<br>Studies                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Two-Year<br>Studies                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| EXPERIMENTAL DESIGN                                                                                                                                                                                                                                                                              |                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Size of Test Groups<br>5 males and 5 females of<br>each species                                                                                                                                                                                                                                  | 5 males and 5 females of each species                                                                                            | 10 males and 10 females of each species                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 50 males and 50 females<br>of each species                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Doses<br>Rats62, 125, 250, 500, or<br>1,000 mg/kg HC Red No. 3<br>in 1% carboxymethyl<br>cellulose (CMC) in<br>saline by gavage; dose<br>vol: 5 ml/kg; mice31, 62,<br>125, 250, or 500 mg/kg;<br>dose vol: 10 ml/kg, except<br>500 mg/kg20 ml/kg.<br>Rats13-gauge needle;<br>mice23-gauge needle | in 1% aqueous CMC by<br>gavage; mice0, 31, 62, 125,<br>250, or 500 mg/kg; dose vol:<br>same as single-<br>administration studies | Rats0, 62, 125, 250, 500,<br>or 1,000 mg/kg HC Red<br>No. 3 in corn oil by<br>gavage; dose vol: 5 ml/kg;<br>mice0, 15, 31, 62, 125,<br>or 250 mg/kg; dose vol:<br>10 ml/kg. Rats13-gauge<br>needle; mice23-gauge<br>needle                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Rats0, 250, or 500 mg/kg<br>HC Red No. 3 in corn oil by<br>gavage; mice0, 125, or 250<br>mg/kg; dose vol: same<br>as 13-wk studies.<br>Rats13-gauge needle;<br>mice18-gauge needle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Date of First Dose<br>4/11/78                                                                                                                                                                                                                                                                    | 9/20/78                                                                                                                          | 1/31/79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 11/27/79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Date of Last Dose<br>N/A                                                                                                                                                                                                                                                                         | 10/3/78                                                                                                                          | 4/30/7 <del>9</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Rats11/27/81;<br>mice11/20/81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| <b>Duration of Dosing</b><br>One time only                                                                                                                                                                                                                                                       | 14 d                                                                                                                             | 13 wk                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Rats5 d/wk for 105 wk;<br>mice5 d/wk for 104 wk                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <b>Type and Frequency of Obse</b><br>Observed 2 × d for 15 d;<br>weighed on d 0 and d 15                                                                                                                                                                                                         | rvation<br>Observed 2 × d for 15 d;<br>weighed on d 1 and d 15                                                                   | Observed 2 $\times$ d; weighed<br>1 $\times$ wk; clinical exam<br>1 $\times$ wk                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Observed $2 \times d$ ;<br>weighed on d 0, $1 \times$ wk for 1<br>wk, then once every 4 wk;<br>palpated $1 \times$ wk                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| <b>Necropsy and Histologic Exa</b><br>Not performed                                                                                                                                                                                                                                              | mination<br>Necropsies performed on all                                                                                          | Necropsies and histopath                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Necropsies and histopath                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                  | animals; histopath exam was<br>not performed                                                                                     | exam performed on all<br>vehicle control, 1,000<br>mg/kg rats, and 250 mg/kg<br>mice; the following tissues<br>were examined: skin,<br>mandibular lymph node,<br>mammary gland, salivary<br>gland, thigh muscle,<br>femur including marrow,<br>thymus, trachea, lungs and<br>bronchi, heart, thyroid<br>gland, stomach, parathy-<br>roids, esophagus, small<br>intestine, colon, mesenteric<br>lymph node, liver, pancreas,<br>spleen, kidneys, adrenal<br>glands, urinary bladder,<br>vesicular gland/prostate/<br>testis or ovary/uterus,<br>brain, pituitary gland;<br>kidneys and thyroid gland<br>of rats administered 250 or<br>500 mg/kg were also<br>examined microscopically | exam performed. The<br>following tissues of all<br>animals were examined:<br>gross lesions, skin,<br>mandibular lymph node,<br>mammary gland, salivary<br>gland, thigh muscle, sciatic<br>nerve, femur including<br>marrow, thymus, costo-<br>chondral junction, larynx,<br>lungs and bronchi, trachea,<br>heart, thyroid gland, para-<br>thyroids, esophagus,<br>stomach, duodenum,<br>jejunum, eyes, tissue masses<br>with regional lymph node,<br>ileum, colon, cecum, rectum,<br>liver, mesenteric lymph<br>node, inguinal lymph node,<br>pancreas, spleen, kidneys,<br>adrenal glands, urinary<br>bladder, testis/epididymis/<br>seminal vesicles/prostate<br>or ovaries/uterus/fallopian |

## TABLE 4. EXPERIMENTAL DESIGN AND MATERIALS AND METHODS IN THE GAVAGE STUDIES OF HC RED NO. 3 $\,$

| Single-Administration<br>Studies                                                                                                         | Fourteen-Day<br>Studies                                                                                                                      | Thirteen-Week<br>Studies                                                      | Two-Year<br>Studies                                                                                                                         |
|------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| Necropsy and Histologic Ex                                                                                                               | amination (Continued)                                                                                                                        |                                                                               | tube/vagina, nasal cavity,<br>brain, preputial gland,<br>pituitary gland, spinal<br>cord, gallbladder (mice),<br>and external and middle ea |
| NIMALS AND ANIMAL MA                                                                                                                     | INTENANCE                                                                                                                                    |                                                                               |                                                                                                                                             |
| <b>Testing Laboratory</b><br>Southern Research<br>Institute                                                                              | Southern Research<br>Institute                                                                                                               | Southern Research<br>Institute                                                | Southern Research<br>Institute                                                                                                              |
| Species<br>F344/N rats;<br>B6C3F <sub>1</sub> mice                                                                                       | F344/N rats;<br>B6C3F1 mice                                                                                                                  | F344/N rats;<br>B6C3F1 mice                                                   | F344/N rats;<br>B6C3F1 mice                                                                                                                 |
| Animal Source<br>Harlan Industries<br>(Indianapolis, IN)                                                                                 | Harlan Industries<br>(Indianapolis, IN)                                                                                                      | Charles River Breeding<br>Laboratories                                        | Charles River Breeding<br>Laboratories (Portage, MI)                                                                                        |
| Time Held Before Start of T                                                                                                              | est<br>14 d                                                                                                                                  | 21 d                                                                          | 20 d                                                                                                                                        |
| Age When Placed on Study<br>7-8 wk                                                                                                       | 7-8 wk                                                                                                                                       | 7-8 wk                                                                        | Rats7-8 wk; mice8 wk                                                                                                                        |
| Age When Killed<br>9-10 wk                                                                                                               | 9-10 wk                                                                                                                                      | 10-11 wk                                                                      | Rats113-114 wk;<br>mice113 wk                                                                                                               |
| Necropsy or Terminal-Kill D<br>4/26/78                                                                                                   | ates<br>10/5/78-10/7/78                                                                                                                      | Rats5/1/79-5/6/79;<br>mice5/1/79-5/4/79                                       | Rats12/4/81-12/11/81;<br>mice11/30/81-12/4/81                                                                                               |
| Method of Animal Distributi<br>According to tables of<br>random numbers                                                                  | on<br>Assigned to cages according<br>to one table of random<br>numbers and then to groups<br>according to another<br>table of random numbers | Same as 14-d studies                                                          | Same as 14-d studies                                                                                                                        |
| Method of Animal Identifica<br>Ear punch                                                                                                 | tion<br>Ear punch                                                                                                                            | Ear punch                                                                     | Ear punch                                                                                                                                   |
| Feed<br>Available ad libitum;<br>Wayne Lab Blox <sup>⊕</sup> pellets<br>(Allied Mills, Inc.,<br>Chicago, IL)                             | Same as single-administration studies                                                                                                        | Same as single-administra-<br>tion studies                                    | Available ad libitum; NIH<br>Open Formula (Zeigler Bro<br>Gardners, PA)                                                                     |
| Bedding<br>Heat-treated hardwood<br>chips (Northeastern<br>Products Corp.,Warrens-<br>burg, NY) and sawdust<br>(PWI, Inc., Lowville, NY) | Heat-treated hardwood chips<br>(PWI, Inc., Lowville, NY)                                                                                     | Heat-treated hardwood<br>chips (Northeastern<br>Products, Warrensburg,<br>NY) | Same as 13-wk studies                                                                                                                       |
| Water<br>Available ad libitum;<br>automatic watering<br>system (Edstrom Indus-<br>tries, Waterford, WI)                                  | Same as single-<br>administration studies                                                                                                    | Same as single-<br>administration studies                                     | Same as single-<br>administration studies                                                                                                   |

## TABLE 4. EXPERIMENTAL DESIGN AND MATERIALS AND METHODS IN THE GAVAGE STUDIES OF<br/>HC RED NO. 3 (Continued)

| Single-Administration<br>Studies                                                           | Fourteen-Day<br>Studies                                                                  | Thirteen-Week<br>Studies                  | Two-Year<br>Studies                                                                                                    |  |
|--------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|-------------------------------------------|------------------------------------------------------------------------------------------------------------------------|--|
| ANIMALS AND ANIMAL MA                                                                      | INTENANCE (Continued)                                                                    |                                           |                                                                                                                        |  |
| Cages                                                                                      |                                                                                          |                                           |                                                                                                                        |  |
| Polycarbonate (Lab<br>Products, Inc.,<br>Garfield, NJ)                                     | Same as single-<br>administration studies                                                | Same as single-<br>administration studies | Same as single-<br>administration studies                                                                              |  |
| Cage Filters                                                                               |                                                                                          |                                           |                                                                                                                        |  |
| Reemay spun-bonded<br>polyester (Snow Filtra-<br>tion, Cincinnati, OH)                     | Same as single-<br>administration studies                                                | Same as single-<br>administration studies | Same as single-<br>administration studies                                                                              |  |
| Animals per Cage                                                                           |                                                                                          |                                           |                                                                                                                        |  |
| 5                                                                                          | 5                                                                                        | 5                                         | 5                                                                                                                      |  |
| Animal Room Environment                                                                    |                                                                                          |                                           |                                                                                                                        |  |
| Fluorescent light 12 h/d;<br>15 room air changes/h;<br>rel hum40%-60%;<br>av temp21°-23° C | Fluorescent light 12 h/d; 15<br>room air changes/h; rel hum<br>30%-50%; av temp21°-23° C | Same as 14-d studies                      | Fluorescent light 12 h/d;<br>rel hum30%-50%, except<br>12/7940%-60%; 15 room<br>air changes/h; av temp<br>21°-23°C (a) |  |
| Other Chemicals on Test in                                                                 | Same Room                                                                                |                                           |                                                                                                                        |  |
| None                                                                                       | None                                                                                     | None                                      | None                                                                                                                   |  |

## TABLE 4. EXPERIMENTAL DESIGN AND MATERIALS AND METHODS IN THE GAVAGE STUDIES OF<br/>HC RED NO. 3 (Continued)

(a) Ninety-seven percent of the temperature readings and 82% of the humidity readings were within the stated range.

observed for 3 weeks, and then assigned to cages according to a table of random numbers. The cages were then assigned to vehicle control and dosed groups according to another table of random numbers. Rats and mice were housed five per cage in polycarbonate cages. Wayne Lab Blox<sup>®</sup> pellets and water via an automatic watering system were available ad libitum. Further experimental details are summarized in Table 4.

Groups of 10 rats of each sex were administered HC Red No. 3 (0, 62, 125, 250, 500, or 1,000 mg/kg) in corn oil by gavage (13-gauge needle), 5 days per week for 13 weeks. Groups of 10 mice of each sex were administered 0, 15, 31, 62, 125, or 250 mg/kg on the same schedule (23-gauge needle). Animals were checked twice daily; moribund animals were killed. Individual animal weights were recorded weekly. At the end of the 13-week studies, survivors were killed. A necropsy was performed on all animals. Tissues and groups examined are listed in Table 4.

#### **TWO-YEAR STUDIES**

#### **Study Design**

Groups of 50 rats of each sex were administered 0, 250, or 500 mg/kg HC Red No. 3 in corn oil by gavage, 5 days per week for 105 weeks. Groups of 50 mice of each sex were administered 0, 125, or 250 mg/kg HC Red No. 3, 5 days per week for 104 weeks. Ten mice that were killed (gavage accidents) during the first month of the studies were replaced. The replacement animals were from pools of extra animals in each dose group that were specified for this purpose. Replacement animals were dosed during the first month of the studies.

#### Source and Specifications of Animals

The male and female F344/N rats and B6C3F<sub>1</sub> (C57BL/6N, female,  $\times$  C3H/HeN MTV<sup>-</sup>, male) mice used in these studies were produced under

strict barrier conditions at Charles River Breeding Laboratories under a contract to the Carcinogenesis Program. Breeding stocks for the foundation colony at the production facility originated at the National Institutes of Health Repository. Animals shipped for testing were progeny of defined microflora-associated parents that were transferred from isolators to barriermaintained rooms. Animals were shipped to the testing laboratory at 4-5 weeks of age. The animals were quarantined at the testing facility for 20 days. Thereafter, a complete necropsy was performed on five animals of each sex and species to assess their health status. The rats were placed on study at 7-8 weeks of age and the mice at 8 weeks. The health of the animals was monitored during the course of the studies according to the protocols of the NTP Sentinel Animal Program (Appendix L).

A quality control skin grafting program has been in effect since early 1978 to monitor the genetic integrity of the inbred mice used to produce the hybrid  $B6C3F_1$  test animal. In mid-1981, data were obtained that showed incompatibility between the NIH C3H reference colony and the C3H colony from a Program supplier. In August 1981, inbred parental lines of mice were further tested for genetic integrity via isozyme and protein electrophoretograms that demonstrate phenotype expressions of known genetic loci.

The C57BL/6 mice were homogeneous at all loci tested. Eighty-five percent of the C3H mice monitored were variant at one to three loci, indicating some heterogeneity in the C3H line from this supplier. Nevertheless, the genome of this line is more homogeneous than that of randomly bred stocks.

Male mice from the C3H colony and female mice from the C57BL/6 colony were used as parents for the hybrid  $B6C3F_1$  mice used in these studies. The influence of the potential genetic nonuniformity in the hybrid mice on these results is not known, but results of the studies are not affected because concurrent controls were included in each study.

#### Animal Maintenance

Food and water were available ad libitum. Details of animal maintenance are summarized in Table 4.

### **Clinical Examinations and Pathology**

All animals were observed twice daily, and clinical signs were recorded once per week. Body weights by cage were recorded once per week for the first 12 weeks of the studies and once per month thereafter. Mean body weights were calculated for each group. Moribund animals were killed, as were animals that survived to the end of the studies. A necropsy was performed on all animals, including those found dead unless they were excessively autolyzed or cannibalized. Thus, the number of animals from which particular organs or tissues were examined microscopically varies and is not necessarily equal to the number of animals that were placed on study in each group.

Examinations for grossly visible lesions were performed on major tissues or organs. Tissues were preserved in 10% neutral buffered formalin, embedded in paraffin, sectioned, and stained with hematoxylin and eosin. Tissues examined microscopically are listed in Table 4.

When the pathology examination was completed, the slides, individual animal data records, and summary tables were sent to an independent quality assurance laboratory. Individual animal records and tables were compared for accuracy, slides and tissue counts were verified, and histotechnique was evaluated. All tumor diagnoses, all target tissues, and all tissues from a randomly selected 10% of the animals were evaluated by a quality assurance pathologist. Slides of all target tissues and those about which the original and quality assurance pathologists disagreed were submitted to the Chairperson of the Pathology Working Group (PWG) for evaluation. Representative coded slides selected by the PWG Chairperson were reviewed by the PWG's pathologists, who reached a consensus and compared their findings with the

original and quality assurance diagnoses. When diagnostic differences were found, the PWG sent the appropriate slides and comments to the original pathologist for review. This procedure has been described, in part, by Maronpot and Boorman (1982) and Boorman et al. (1985). The final diagnosis represents a consensus of contractor pathologists and the NTP Pathology Working Group.

Nonneoplastic lesions are not examined routinely by the quality assurance pathologist or PWG. Certain nonneoplastic findings are reviewed by the quality assurance pathologist and PWG if they are considered part of the toxic response to a chemical or if they are deemed of special interest.

#### **Statistical Methods**

Data Recording: Data on this experiment were recorded in the Carcinogenesis Bioassay Data System (Linhart et al., 1974). The data elements include descriptive information on the chemicals, animals, experimental design, survival, body weight, and individual pathologic results, as recommended by the International Union Against Cancer (Berenblum, 1969).

Survival Analyses: The probability of survival was estimated by the product-limit procedure of Kaplan and Meier (1958) and is presented in the form of graphs. Animals were censored from the survival analyses at the time they were found dead of other than natural causes or were found to be missing; animals dying from natural causes were not censored. Statistical analyses for a possible dose-related effect on survival used the method of Cox (1972) for testing two groups for equality and Tarone's (1975) life table test for a dose-related trend. All reported P values for the survival analysis are two-sided.

Calculation of Incidence: The incidence of neoplastic or nonneoplastic lesions is given as the ratio of the number of animals bearing such lesions at a specific anatomic site to the number of animals in which that site was examined. In most instances, the denominators include only those animals for which the site was examined histologically. However, when macroscopic examination was required to detect lesions (e.g., skin or mammary tumors) prior to histologic sampling, or when lesions could have appeared at multiple sites (e.g., lymphomas), the denominators consist of the number of animals on which a necropsy was performed.

Analysis of Tumor Incidence: Three statistical methods are used to analyze tumor incidence data. The two that adjust for intercurrent mortality employ the classical method for combining contingency tables developed by Mantel and Haenszel (1959). Tests of significance included pairwise comparisons of high dose and low dose groups with vehicle controls and tests for overall dose-response trends.

For studies in which compound administration has little effect on survival, the results of the three alternative analyses will generally be similar. When differing results are obtained by the three methods, the final interpretation of the data will depend on the extent to which the tumor under consideration is regarded as being the cause of death. All reported P values for tumor analyses are one-sided.

Life Table Analyses--The first method of analysis assumed that all tumors of a given type observed in animals dying before the end of the studies were "fatal"; i.e., they either directly or indirectly caused the death of the animal. According to this approach, the proportions of tumor-bearing animals in the dosed and vehicle control groups were compared at each point in time at which an animal died with a tumor of interest. The denominators of these proportions were the total number of animals at risk in each group. These results, including the data from animals killed at the end of the studies, were then combined by the Mantel-Haenszel method to obtain an overall P value. This method of adjusting for intercurrent mortality is the life table method of Cox (1972) and of Tarone (1975).

Incidental Tumor Analyses--The second method of analysis assumed that all tumors of a given type observed in animals that died before the end of the studies were "incidental"; i.e., they were merely observed at necropsy in animals dying of an unrelated cause. According to this approach, the proportions of tumor-bearing animals in dosed and vehicle control groups were compared in each of five time intervals: weeks 0-52, weeks 53-78, weeks 79-92, week 93 to the week before the terminal-kill period, and the terminal-kill period. The denominators of these proportions were the number of animals on which a necropsy was actually performed during the time interval. The individual time interval comparisons were then combined by the previously described method to obtain a single overall result. (See Haseman, 1984, for the computational details of both methods.)

Unadjusted Analyses--Primarily, survival-adjusted methods are used to evaluate tumor incidence. In addition, the results of the Fisher exact test for pairwise comparisons and the Cochran-Armitage linear trend test (Armitage, 1971; Gart et al., 1979) are given in the appendix containing the analyses of primary tumor incidence. These two tests are based on the overall proportion of tumor-bearing animals and do not adjust for survival differences.

Historical Control Data: Although the concurrent vehicle control group is always the first and most appropriate vehicle control group used for making decisions, there are certain instances in which historical control data can be helpful in the overall evaluation of tumor incidence. Consequently, control tumor incidences from the NTP historical control data base (Haseman et al., 1984) are included for those tumors in these studies appearing to show compound-related effects.

## **III. RESULTS**

## RATS

SINGLE-ADMINISTRATION STUDIES

## FOURTEEN-DAY STUDIES

## THIRTEEN-WEEK STUDIES

## **TWO-YEAR STUDIES**

Body Weights and Clinical Signs Survival Pathology and Statistical Analyses of Results

#### MICE

### SINGLE-ADMINISTRATION STUDIES

## FOURTEEN-DAY STUDIES

### THIRTEEN-WEEK STUDIES

#### **TWO-YEAR STUDIES**

Body Weights and Clinical Signs Survival Pathology and Statistical Analyses of Results

#### SINGLE-ADMINISTRATION STUDIES

None of the rats died before the end of the studies (Table 5). Differences in mean body weight gains were not dose related. The urine of

all dosed rats was orange to red for 1 day after the animals were dosed.

## TABLE 5. SURVIVAL AND MEAN BODY WEIGHTS OF RATS IN THE SINGLE-<br/>ADMINISTRATION GAVAGE STUDIES OF HC RED NO. 3

|                 |                                       | Mean Body Weights (grams) |             |              |  |  |
|-----------------|---------------------------------------|---------------------------|-------------|--------------|--|--|
| Dose<br>(mg/kg) | Survival (a)                          | Initial                   | Final       | Change (b)   |  |  |
| ALE             | · · · · · · · · · · · · · · · · · · · |                           |             |              |  |  |
| 62              | 5/5                                   | $114 \pm 2$               | $180 \pm 3$ | + 66 ± 3     |  |  |
| 125             | 5/5                                   | $110 \pm 5$               | $176 \pm 8$ | + 66 ± 4     |  |  |
| 250             | 5/5                                   | $111 \pm 3$               | $183 \pm 5$ | + 72 ± 3     |  |  |
| 500             | 5/5                                   | $111 \pm 3$               | $180 \pm 5$ | $+69 \pm 3$  |  |  |
| 1,000           | 5/5                                   | 99 ± 4                    | $168 \pm 8$ | + 69 ± 4     |  |  |
| EMALE           |                                       |                           |             |              |  |  |
| 62              | 5/5                                   | 88 ± 3                    | $123 \pm 5$ | + 35 ± 3     |  |  |
| 125             | 5/5                                   | $82 \pm 5$                | $118 \pm 5$ | $+36 \pm 2$  |  |  |
| 250             | 5/5                                   | $93 \pm 3$                | $132 \pm 5$ | + 39 ± 2     |  |  |
| 500             | 5/5                                   | 85 ± 3                    | $119 \pm 6$ | $+ 34 \pm 4$ |  |  |
| 1,000           | 5/5                                   | $83 \pm 2$                | $116 \pm 2$ | $+ 33 \pm 1$ |  |  |

(a) Number surviving/number initially in group

(b) Mean body weight change of the group  $\pm$  standard error of the mean

#### FOURTEEN-DAY STUDIES

None of the rats died before the end of the studies (Table 6). The urine of all dosed animals was maroon to orange throughout the studies. Differences in mean body weight gains were not dose related. Dark thyroid glands were observed in 5/5 male rats that received 1,000 mg/kg, 2/5 males that received 500 mg/kg, and 2/5 males that received 250 mg/kg.

TABLE 6. SURVIVAL AND MEAN BODY WEIGHTS OF RATS IN THE FOURTEEN-DAY GAVAGE STUDIES OF HC RED NO. 3

| Dose<br>(mg/kg) | Survival (a) | Mea         | <b>Final Weight Relative</b> |              |                                  |
|-----------------|--------------|-------------|------------------------------|--------------|----------------------------------|
|                 |              | Initial     | Final                        | Change (b)   | to Vehicle Controls<br>(percent) |
| MALE            |              |             |                              | - nation     |                                  |
| 0               | 5/5          | $102 \pm 3$ | $167 \pm 6$                  | $+65 \pm 4$  |                                  |
| 62              | 5/5          | $100 \pm 6$ | $151 \pm 11$                 | $+51 \pm 5$  | 91.4                             |
| 125             | 5/5          | $108 \pm 4$ | $182 \pm 7$                  | + 74 ± 5     | 109.0                            |
| 250             | 5/5          | 96 ± 3      | $148 \pm 5$                  | $+ 52 \pm 2$ | 88.6                             |
| 500             | 5/5          | $100 \pm 2$ | $165 \pm 2$                  | $+65 \pm 4$  | 98.8                             |
| 1,000           | 5/5          | $100 \pm 4$ | $159 \pm 4$                  | + 59 ± 3     | 95.2                             |
| FEMALE          |              |             |                              |              |                                  |
| 0               | 5/5          | 87 ± 3      | $114 \pm 5$                  | + 27 ± 2     |                                  |
| 62              | 5/5          | 96 ± 3      | $125 \pm 4$                  | $+29 \pm 0$  | 109.6                            |
| 125             | 5/5          | $94 \pm 4$  | $124 \pm 4$                  | $+30 \pm 2$  | 108.8                            |
| 250             | 5/5          | 89 ± 4      | $119 \pm 2$                  | $+30 \pm 2$  | 104.4                            |
| 500             | 5/5          | $93 \pm 3$  | $123 \pm 3$                  | $+30 \pm 2$  | 107.9                            |
| 1,000           | 5/5          | $90 \pm 3$  | $118 \pm 3$                  | $+28 \pm 1$  | 103.5                            |

(a) Number surviving/number in group

(b) Mean body weight change of the group  $\pm$  standard error of the mean

#### THIRTEEN-WEEK STUDIES

None of the rats died before the end of the studies (Table 7). Final mean body weights relative to vehicle controls were 7% lower for male rats that received 1,000 mg/kg and 5% lower for the male rat group that received 500 mg/kg. Final mean body weights of dosed female rats were greater than those of the vehicle controls. The urine of dosed animals was orange to purple throughout the studies. Granules of a brown to golden-brown pigment were found in the cytoplasm of the thyroid gland follicular epithelial cells in 10/10 males and 10/10 females that received 1,000 mg/kg and 10/10 males and 7/10 females that received 500 mg/kg but not in any of the rats that received 250 mg/kg. Similar pigment was found in the cytoplasm of convoluted tubular epithelial cells in the kidneys of all rats that received 1,000 mg/kg, in 7/10 males

and 10/10 females that received 500 mg/kg, and in 6/10 males and 7/10 females that received 250 mg/kg. No other microscopic observations attributable to HC Red No. 3 administration were noted.

Dose Selection Rationale: The doses selected for rats for the 2-year studies were 250 and 500 mg/kg HC Red No. 3. These doses were selected because of the intense pigmentation in the thyroid gland and kidneys at the 1,000 mg/kg dose. Although documented functional changes that can be related to the presence of pigment as seen in these studies have not been found, there was concern that potentially life-threatening functional changes might eventually be produced in the 1,000 mg/kg dose groups during the 2-year studies.

| Dose<br>(mg/kg) | Survival (a) | Mean                                         | Final Weight Relative |               |                                                                              |
|-----------------|--------------|----------------------------------------------|-----------------------|---------------|------------------------------------------------------------------------------|
|                 |              | Initial                                      | Final                 | Change (b)    | to Vehicle Controls<br>(percent)                                             |
| MALE            |              | <u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u> |                       | <u></u>       | an dah dan basar dan sa kabula di kabular bar ang sa na sa di sa di sa di sa |
| 0               | 10/10        | $164 \pm 2$                                  | $357 \pm 5$           | + 193 ± 5     |                                                                              |
| 62              | 10/10        | $159 \pm 4$                                  | $352 \pm 4$           | $+ 193 \pm 4$ | 98.5                                                                         |
| 125             | 10/10        | $161 \pm 4$                                  | $350 \pm 6$           | $+ 189 \pm 4$ | 98.0                                                                         |
| 250             | 10/10        | $160 \pm 3$                                  | 356 ± 6               | $+ 196 \pm 5$ | 99.6                                                                         |
| 500             | 10/10        | $154 \pm 5$                                  | $338 \pm 6$           | $+ 184 \pm 4$ | 94.7                                                                         |
| 1,000           | 10/10        | $157 \pm 4$                                  | 333 ± 6               | $+ 176 \pm 3$ | 93.3                                                                         |
| FEMALE          |              |                                              |                       |               |                                                                              |
| 0               | 10/10        | $121 \pm 2$                                  | 196 ± 2               | + $75 \pm 2$  |                                                                              |
| 62              | 10/10        | $118 \pm 3$                                  | 199 ± 3               | $+ 81 \pm 2$  | 101.6                                                                        |
| 125             | 10/10        | $119 \pm 2$                                  | $202 \pm 2$           | $+ 83 \pm 3$  | 102.9                                                                        |
| 250             | 10/10        | $122 \pm 2$                                  | $205 \pm 3$           | $+ 83 \pm 1$  | 104.8                                                                        |
| 500             | 10/10        | $123 \pm 2$                                  | $202 \pm 4$           | $+ 79 \pm 2$  | 102.9                                                                        |
| 1,000           | 10/10        | $117 \pm 3$                                  | $198 \pm 3$           | $+ 81 \pm 2$  | 101.0                                                                        |

TABLE 7. SURVIVAL AND MEAN BODY WEIGHTS OF RATS IN THE THIRTEEN-WEEK GAVAGESTUDIES OF HC RED NO. 3

(a) Number surviving/number in group

(b) Mean body weight change of the group  $\pm$  standard error of the mean

#### **TWO-YEAR STUDIES**

## **Body Weights and Clinical Signs**

Throughout most of the study, there was little or no difference in the mean body weights of dosed rats of either sex as compared with those of vehicle controls (Table 8 and Figure 1). No compound-related clinical signs were observed.

TABLE 8. MEAN BODY WEIGHTS AND SURVIVAL OF RATS IN THE TWO-YEAR GAVAGE STUDIES OF HC RED NO.3

| Weeks<br>on Study                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Vehicle<br>Av. WL<br>(grams)                                                                                                                                                                                              | e Control<br>No. of<br>Survivors                                                | Av. WL<br>(grams)                                                                                                                                                                    | 250 mg/kg<br>Wt. (percent<br>of veh control                                         | No. of<br>s) Survivors                                            | Av. WL<br>(grams)                                                                                                                                                                                                                                                | 500 mg/kg<br>WL (percen<br>of veh contro                                                                                                                                                                                                                                   | t No. of<br>ls) Survivors                                                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| MALE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                           |                                                                                 |                                                                                                                                                                                      |                                                                                     |                                                                   |                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                            |                                                                                 |
| 0<br>12<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>5<br>9<br>3<br>3<br>8<br>2<br>8<br>3<br>3<br>8<br>2<br>6<br>5<br>4<br>6<br>7<br>2<br>7<br>11<br>12<br>5<br>9<br>3<br>3<br>8<br>2<br>8<br>3<br>3<br>8<br>2<br>6<br>5<br>6<br>7<br>7<br>8<br>9<br>0<br>11<br>12<br>5<br>9<br>0<br>11<br>12<br>5<br>6<br>7<br>8<br>9<br>0<br>11<br>12<br>5<br>9<br>0<br>11<br>12<br>5<br>9<br>0<br>11<br>12<br>5<br>9<br>0<br>11<br>12<br>5<br>9<br>0<br>11<br>12<br>5<br>9<br>0<br>11<br>12<br>5<br>9<br>0<br>11<br>12<br>5<br>9<br>0<br>11<br>12<br>5<br>9<br>0<br>11<br>12<br>5<br>9<br>0<br>10<br>11<br>12<br>5<br>9<br>0<br>10<br>11<br>12<br>5<br>9<br>0<br>10<br>11<br>12<br>5<br>9<br>0<br>10<br>11<br>12<br>5<br>9<br>0<br>10<br>11<br>12<br>5<br>9<br>0<br>10<br>11<br>12<br>5<br>9<br>3<br>8<br>8<br>2<br>8<br>3<br>8<br>8<br>2<br>8<br>5<br>6<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>8<br>9<br>9<br>0<br>11<br>12<br>5<br>9<br>3<br>8<br>8<br>2<br>8<br>3<br>8<br>8<br>2<br>8<br>5<br>6<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>8<br>9<br>9<br>0<br>4<br>9<br>9<br>0<br>11<br>12<br>5<br>9<br>3<br>8<br>8<br>2<br>8<br>3<br>8<br>8<br>2<br>8<br>5<br>5<br>6<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8                                                                                                     | $\begin{array}{c} 153\\ 205\\ 232\\ 254\\ 270\\ 285\\ 299\\ 312\\ 3209\\ 337\\ 375\\ 375\\ 375\\ 413\\ 433\\ 451\\ 481\\ 481\\ 481\\ 502\\ 501\\ 511\\ 508\\ 504\\ 502\\ 501\\ 481\\ 502\\ 504\\ 481\\ 473\\ \end{array}$ | 50<br>500<br>500<br>500<br>500<br>500<br>500<br>500<br>500<br>500               | $\begin{array}{c} 152\\ 202\\ 229\\ 249\\ 284\\ 299\\ 331\\ 339\\ 345\\ 355\\ 375\\ 418\\ 436\\ 455\\ 503\\ 500\\ 500\\ 500\\ 500\\ 507\\ 500\\ 507\\ 509\\ 498\\ 491\\ \end{array}$ | 99<br>99<br>98<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>10 | 505000<br>5555555555555555555555555555555                         | $\begin{array}{c} 150\\ 200\\ 226\\ 246\\ 265\\ 279\\ 300\\ 313\\ 323\\ 331\\ 348\\ 369\\ 407\\ 429\\ 445\\ 459\\ 477\\ 477\\ 485\\ 493\\ 496\\ 495\\ 496\\ 485\\ 477\\ 1\end{array}$                                                                            | 98<br>997<br>997<br>998<br>998<br>998<br>998<br>998<br>998<br>998<br>9                                                                                                                                                                                                     | 50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>5 |
| FEMALE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                           |                                                                                 |                                                                                                                                                                                      |                                                                                     |                                                                   |                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                            | *0                                                                              |
| 0<br>1<br>2<br>3<br>4<br>5<br>6<br>6<br>7<br>8<br>9<br>10<br>11<br>2<br>3<br>8<br>5<br>6<br>6<br>7<br>7<br>7<br>8<br>9<br>0<br>11<br>2<br>3<br>8<br>2<br>3<br>3<br>8<br>2<br>6<br>3<br>7<br>8<br>9<br>10<br>11<br>2<br>3<br>8<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>2<br>3<br>8<br>2<br>8<br>3<br>8<br>2<br>6<br>3<br>8<br>2<br>8<br>3<br>8<br>2<br>6<br>7<br>8<br>9<br>10<br>11<br>2<br>3<br>8<br>5<br>6<br>7<br>7<br>8<br>9<br>10<br>11<br>2<br>3<br>8<br>5<br>6<br>7<br>7<br>8<br>9<br>10<br>11<br>2<br>3<br>8<br>2<br>8<br>3<br>8<br>2<br>8<br>3<br>8<br>2<br>8<br>5<br>6<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>8<br>9<br>10<br>11<br>2<br>3<br>8<br>2<br>8<br>3<br>8<br>2<br>8<br>3<br>8<br>2<br>8<br>3<br>8<br>2<br>8<br>3<br>8<br>2<br>8<br>3<br>8<br>2<br>8<br>5<br>5<br>4<br>9<br>1<br>1<br>1<br>2<br>3<br>8<br>8<br>2<br>8<br>3<br>8<br>2<br>8<br>3<br>8<br>2<br>8<br>5<br>4<br>9<br>1<br>1<br>1<br>1<br>2<br>3<br>8<br>8<br>2<br>8<br>3<br>8<br>2<br>8<br>3<br>8<br>2<br>8<br>5<br>4<br>9<br>1<br>1<br>1<br>1<br>2<br>3<br>8<br>2<br>8<br>3<br>8<br>2<br>8<br>5<br>4<br>9<br>5<br>9<br>1<br>1<br>1<br>1<br>2<br>3<br>8<br>2<br>8<br>3<br>8<br>2<br>8<br>3<br>8<br>2<br>8<br>5<br>5<br>4<br>9<br>5<br>7<br>7<br>7<br>7<br>1<br>8<br>5<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9 | $114\\141\\152\\161\\168\\174\\179\\184\\192\\194\\196\\204\\211\\218\\224\\228\\249\\260\\271\\278\\2254\\260\\271\\278\\285\\249\\309\\308\\313\\321\\320\\322\\320\\317$                                               | 50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>5 | $116\\142\\153\\161\\186\\176\\180\\187\\191\\192\\203\\211\\218\\223\\2244\\252\\254\\2554\\2554\\2554\\2554\\25$                                                                   | 102<br>101<br>101<br>100<br>100<br>100<br>100<br>100<br>100<br>100                  | 50<br>550<br>550<br>550<br>550<br>550<br>550<br>550<br>550<br>550 | $\begin{array}{c} 113\\ 137\\ 149\\ 155\\ 164\\ 170\\ 174\\ 179\\ 182\\ 186\\ 189\\ 194\\ 199\\ 204\\ 213\\ 217\\ 220\\ 224\\ 224\\ 224\\ 224\\ 241\\ 244\\ 258\\ 267\\ 279\\ 288\\ 267\\ 279\\ 288\\ 303\\ 302\\ 303\\ 302\\ 303\\ 302\\ 313\\ 314 \end{array}$ | 99<br>98<br>98<br>98<br>98<br>97<br>97<br>98<br>98<br>99<br>97<br>98<br>99<br>98<br>99<br>98<br>99<br>98<br>99<br>98<br>99<br>96<br>96<br>96<br>96<br>96<br>96<br>96<br>96<br>96<br>96<br>98<br>99<br>99<br>99<br>99<br>99<br>99<br>99<br>99<br>99<br>99<br>90<br>90<br>90 | 50<br>500<br>500<br>500<br>500<br>500<br>500<br>500<br>500<br>500               |

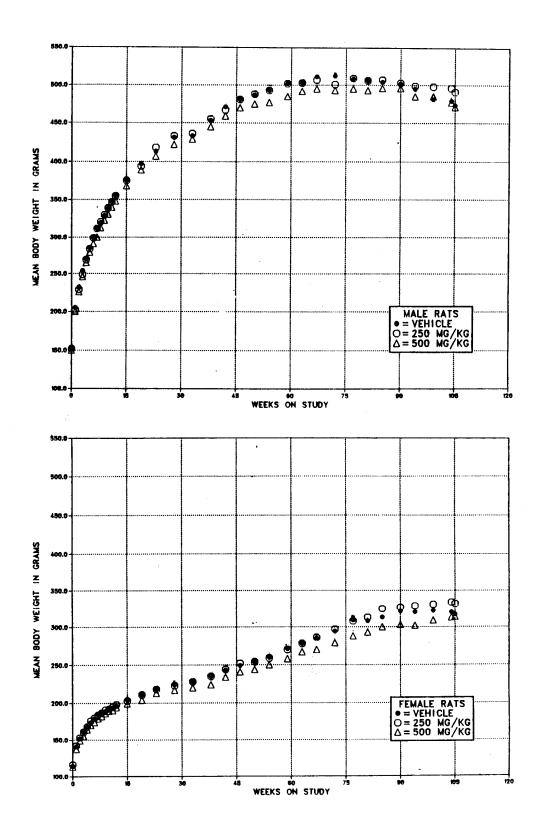



FIGURE 1. GROWTH CURVES FOR RATS ADMINISTERED HC RED NO. 3 IN CORN OIL BY GAVAGE FOR TWO YEARS

### Survival

Estimates of the probabilities of the survival of male and female rats administered HC Red No. 3 by gavage at the doses used in these studies and those of the vehicle controls are shown in the Kaplan and Meier curves in Figure 2. No significant differences in survival were observed between any groups of either sex (Table 9).

# Pathology and Statistical Analyses of Results

This section describes significant or noteworthy changes in the incidence of rats with neoplastic or nonneoplastic lesions of the urinary bladder, kidney, mammary gland, multiple organs, seminal vesicles, adrenal gland, thyroid gland, uterus, hematopoietic system, and eyes. Histopathologic findings on neoplasms in rats are summarized in Appendix A (Tables A1 and A2); Appendix A (Tables A3 and A4) also gives the survival and tumor status for individual male and female rats. Findings on nonneoplastic lesions are summarized in Appendix C (Tables C1 and C2). Appendix E (Tables E1 and E2) contains the statistical analyses of those primary tumors that occurred with an incidence of at least 5% in one of the three groups. The statistical analyses used are discussed in Chapter II (Statistical Methods) and Appendix E (footnotes). Historical incidences of tumors in corn oil vehicle control animals are listed in Appendix F.

|                                             | Vehicle Control | 250 mg/kg | 500 mg/kg |
|---------------------------------------------|-----------------|-----------|-----------|
| MALE (a)                                    |                 |           |           |
| Animals initially in study                  | 50              | 50        | 50        |
| Nonaccidental deaths before termination (b) | 15              | 14        | 14        |
| Accidental deaths                           | 1 -             | 2         | 4         |
| Killed at termination                       | 33              | 33        | 32        |
| Died during termination period              | 1               | 1         | 0         |
| Survival P values (c)                       | 0.924           | 0.875     | 0.987     |
| FEMALE (a)                                  |                 |           |           |
| Animals initially in study                  | 50              | 50        | 50        |
| Nonaccidental deaths before termination (b) | 11              | 11        | 16        |
| Accidental deaths                           | ō               | 1         | 0         |
| Killed at termination                       | 39              | 38        | 34        |
| Survival P values (c)                       | 0.266           | 0.954     | 0.314     |

#### TABLE 9. SURVIVAL OF RATS IN THE TWO-YEAR GAVAGE STUDIES OF HC RED NO. 3

(a) Terminal kill period: male--weeks 105-106; female--weeks 106-107

(b) Includes animals killed in a moribund condition

(c) The result of the life table trend test is in the vehicle control column, and the results of the life table pairwise comparisons with the vehicle controls are in the dosed columns.

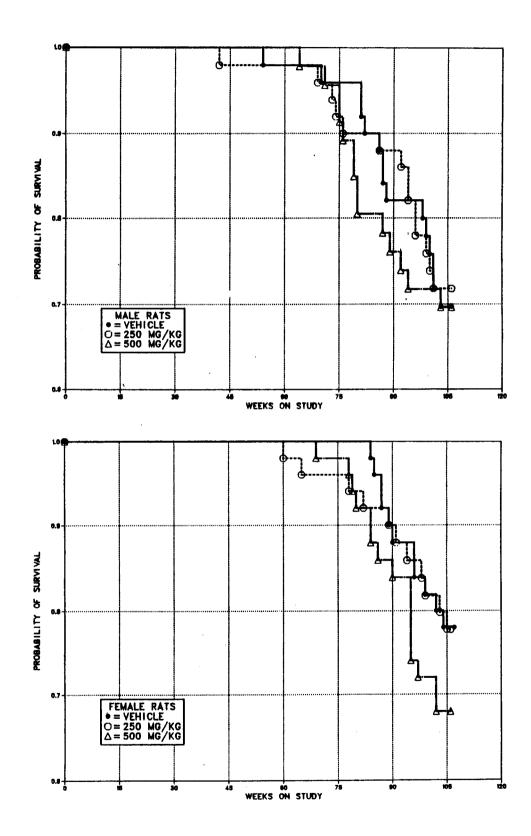



FIGURE 2. KAPLAN-MEIER SURVIVAL CURVES FOR RATS ADMINISTERED HC RED NO. 3 IN CORN OIL BY GAVAGE FOR TWO YEARS

### Urinary System

Urinary Bladder--Transitional cell papillomas were observed in one high dose male rat, two low dose female rats, and one high dose female rat (Appendix A, Tables A3 and A4, and Appendix F, Table F1). These tumors were generally characterized as papillary projections into the bladder lumen and consisted of a fibrocapsular core covered by multilayers of well-differentiated transitional cell epithelium. The lesion in one rat tended to be more solid and flat and consisted of transitional cell epithelium.

Kidney--Nephropathy was observed at increased incidences in dosed female rats (vehicle control, 7/50; low dose, 12/50; high dose, 20/50). The kidneys of the female rats were reviewed in a blind fashion and graded for severity of nephropathy. The increased incidence was confirmed but was due to very minimal lesions. The average degree of severity actually decreased with dose.

Mammary Gland: The incidences of fibroadenomas and of fibroadenomas or cystadenomas (combined) in low dose (but not high dose) female rats were significantly greater than those in the vehicle controls (Table 10).

Multiple Organs: Pigmentation of the kidney tubules, thyroid gland, or multiple organs was observed in 0/50 vehicle control males, 49/50 low dose males, 49/50 high dose males, 0/50 vehicle control females, 50/50 low dose females, and 48/50 high dose females.

Seminal Vesicle: Atrophy of the seminal vesicles was observed at increased incidence in dosed male rats (vehicle control, 1/50, 2%; low dose, 12/50, 24%; high dose, 13/50, 26%). The lesions diagnosed as atrophy were very minimal, often involving a few flattened cells. The seminal vesicles in the male rats were reexamined. The reevaluation of the tissues confirmed that the changes were minimal and subtle. Further, the reviewing pathologist found greater incidences of the change in all groups than did the original pathologist and no difference in the incidences between vehicle control and dosed groups. It was concluded that this is a normal change in aging F344/N male rats and was not a compound-related effect.

|                             | Vehicle Control | 250 mg/kg   | 500 mg/kg   |
|-----------------------------|-----------------|-------------|-------------|
| Fibroadenoma (b)            |                 |             |             |
| Overall Rates               | 14/50 (28%)     | 24/50 (48%) | 11/50 (22%) |
| Adjusted Rates              | 34.8%           | 55.5%       | 30.1%       |
| Terminal Rates              | 13/39 (33%)     | 19/38 (50%) | 9/34 (26%)  |
| Life Table Tests            | P = 0.469N      | P = 0.029   | P = 0.465N  |
| Incidental Tumor Tests      | P = 0.389N      | P = 0.019   | P = 0.433N  |
| Cystadenoma                 |                 |             |             |
| Overall Rates               | 0/50 (0%)       | 1/50 (2%)   | 0/50 (0%)   |
| denocarcinoma               |                 |             |             |
| Overall Rates               | 0/50 (0%)       | 1/50 (2%)   | 2/50 (4%)   |
| Cystadenoma or Fibroadenoma |                 |             |             |
| Overall Rates               | 14/50 (28%)     | 25/50 (50%) | 11/50 (22%) |
| Adjusted Rates              | 34.8%           | 56.6%       | 30.1%       |
| Terminal Rates              | 13/39 (33%)     | 19/38 (50%) | 9/34 (26%)  |
| Life Table Tests            | P = 0.470N      | P = 0.020   | P = 0.465N  |
| Incidental Tumor Tests      | P = 0.376N      | P = 0.012   | P = 0.433N  |

TABLE 10. ANALYSIS OF MAMMARY GLAND TUMORS IN FEMALE RATS IN THE TWO-YEARGAVAGE STUDY OF HC RED NO. 3 (a)

(a) The statistical analyses used are discussed in Chapter II (Statistical Methods) and Appendix E (footnotes). (b) Historical incidence at testing laboratory (mean  $\pm$  SD): 80/300, 27%  $\pm$  6%; historical incidence in NTP studies: 269/1,147, 23%  $\pm$  9% Negative Trends: The following statistically significant (P < 0.05) negative trends and/or decreasing incidences of tumors were detected in dosed rats:

- Adrenal gland pheochromocytoma or pheochromocytoma, malignant (combined) in male rats (vehicle control, 20/49, 40%; low dose, 13/50, 26%; high dose, 11/50, 22%)
- Thyroid gland C-cell carcinoma and adenoma or carcinoma (combined) in male rats (vehicle control, 12/49, 24%; low dose, 5/49, 10%; high dose, 4/50, 8%)
- Uterine endometrial stromal sarcoma in female rats (vehicle control, 3/50, 6%; low dose, 0/50; high dose, 0/50)
- Mononuclear cell leukemia in both sexes (male: vehicle control, 9/50, 18%; low dose, 3/50, 6%; high dose, 3/50, 6%; female: vehicle control, 10/50, 20%; low dose, 6/50, 12%; high dose, 3/50, 6%)

• Mammary gland fibroadenomas in male rats (vehicle control, 8/50, 16%; low dose, 2/50, 4%; high dose, 2/50, 4%)

Eyes: Retinopathy and cataracts were observed at increased incidences in high dose male and low dose female rats (Table 11). These lesions have been reported in rats housed in the top row of cages in earlier studies at this laboratory (HC Blue No. 1 and HC Blue No. 2) and are believed to be related to cage placement relative to the light source rather than to test compound administration. These studies were conducted before cages were routinely rotated during 2-year studies. Therefore, the rats remained in their initially assigned cage positions for the full length of the studies. High dose males and low dose females (the groups affected) were housed in the uppermost rows (closest to the light source) of their respective cage racks. The remaining groups, which were much less affected, were housed farther from the light source (Table 11).

# TABLE 11. INCIDENCE OF CATARACTS AND RETINOPATHY IN RATS IN THE TWO-YEAR GAVAGESTUDIES OF HC RED NO. 3

|                         |                    | Male      |           | Female             |           |           |  |
|-------------------------|--------------------|-----------|-----------|--------------------|-----------|-----------|--|
|                         | Vehicle<br>Control | 250 mg/kg | 500 mg/kg | Vehicle<br>Control | 250 mg/kg | 500 mg/kg |  |
| Number of rats examined | 50                 | 50        | 50        | 50                 | 50        | 50        |  |
| Cataracts               | 2                  | 0         | 19        | 1                  | 19        | 0         |  |
| Retinopathy             | 2                  | 0         | 20        | 1                  | 19        | 0         |  |

### SINGLE-ADMINISTRATION STUDIES

None of the mice died before the end of the studies (Table 12). Changes in mean body weight gain were not dose related. The urine of

all dosed animals was orange to red for 1 day after the animals were dosed.

# TABLE 12. SURVIVAL AND MEAN BODY WEIGHTS OF MICE IN THE SINGLE-<br/>ADMINISTRATION GAVAGE STUDIES OF HC RED NO. 3

|                 |              | Mea            | Mean Body Weights (grams) |                 |  |  |  |  |
|-----------------|--------------|----------------|---------------------------|-----------------|--|--|--|--|
| Dose<br>(mg/kg) | Survival (a) | Initial        | Final                     | Change (b)      |  |  |  |  |
| MALE            |              |                |                           |                 |  |  |  |  |
| 31              | 5/5          | $23.2 \pm 0.2$ | $26.6 \pm 0.7$            | $+ 3.4 \pm 0.7$ |  |  |  |  |
| 62              | 5/5          | $22.8 \pm 1.0$ | $26.6 \pm 1.0$            | $+ 3.8 \pm 0.4$ |  |  |  |  |
| 125             | 5/5          | $23.0 \pm 0.5$ | $26.2 \pm 0.6$            | $+ 3.2 \pm 0.8$ |  |  |  |  |
| 250             | 5/5          | $23.0 \pm 0.7$ | $26.4 \pm 0.7$            | $+ 3.4 \pm 0.7$ |  |  |  |  |
| 500             | 5/5          | $23.0 \pm 0.5$ | $25.6 \pm 0.7$            | $+ 2.6 \pm 0.4$ |  |  |  |  |
| FEMALE          |              |                |                           |                 |  |  |  |  |
| 31              | 5/5          | $17.2 \pm 0.6$ | $19.6 \pm 0.7$            | $+ 2.4 \pm 0.2$ |  |  |  |  |
| 62              | 5/5          | $18.6 \pm 0.4$ | $21.2 \pm 0.7$            | $+ 2.6 \pm 0.4$ |  |  |  |  |
| 125             | 5/5          | $18.0 \pm 0.4$ | $21.0 \pm 0.3$            | $+ 3.0 \pm 0.3$ |  |  |  |  |
| 250             | 5/5          | $18.2 \pm 0.2$ | $20.6 \pm 0.2$            | $+ 2.4 \pm 0.2$ |  |  |  |  |
| 500             | 5/5          | $18.2 \pm 0.5$ | $20.2 \pm 0.6$            | $+ 2.0 \pm 0.3$ |  |  |  |  |

(a) Number surviving/number initially in group

(b) Mean body weight change of the group  $\pm$  standard error of the mean

### FOURTEEN-DAY STUDIES

None of the mice died before the end of the studies (Table 13). The urine of all dosed animals was maroon to orange throughout the studies.

Mean body weight gains by dosed and vehicle control groups were comparable.

| TABLE 13. | SURVIVAL AND | MEAN BODY | WEIGHTS   | OF MICE IN | THE | FOURTEEN-DAY | GAVAGE |
|-----------|--------------|-----------|-----------|------------|-----|--------------|--------|
|           |              | STU       | DIES OF H | C RED NO.  | 3   |              |        |

|                              |         | Mean           | Mean Body Weights (grams) |                                                           |       |  |  |
|------------------------------|---------|----------------|---------------------------|-----------------------------------------------------------|-------|--|--|
| Dose Survival (a)<br>(mg/kg) | Initial | Final          | Change (b)                | Final Weight Relative<br>to Vehicle Controls<br>(percent) |       |  |  |
| MALE                         |         |                |                           |                                                           |       |  |  |
| 0                            | 5/5     | $20.4 \pm 1.1$ | $26.0 \pm 0.9$            | $+5.6 \pm 0.2$                                            |       |  |  |
| 31                           | 5/5     | $21.4 \pm 0.4$ | $24.8 \pm 0.7$            | $+3.4 \pm 0.4$                                            | 95.4  |  |  |
| 62                           | 5/5     | $20.0 \pm 0.8$ | $23.6 \pm 0.7$            | $+3.6 \pm 0.4$                                            | 90.8  |  |  |
| 125                          | 5/5     | $22.2 \pm 0.5$ | $26.0 \pm 0.5$            | $+3.8 \pm 0.4$                                            | 100.0 |  |  |
| 250                          | 5/5     | $21.2 \pm 0.9$ | $24.8 \pm 0.6$            | $+3.6 \pm 0.9$                                            | 95.4  |  |  |
| 500                          | 5/5     | $19.6 \pm 0.5$ | $25.2\pm0.4$              | $+5.6 \pm 0.6$                                            | 96.9  |  |  |
| FHMALE                       |         |                |                           |                                                           |       |  |  |
| 0                            | 5/5     | $16.0 \pm 0.8$ | $19.0 \pm 0.4$            | $+3.0 \pm 0.4$                                            |       |  |  |
| 31                           | 5/5     | $16.4 \pm 0.5$ | $18.8 \pm 0.7$            | $+2.4 \pm 0.4$                                            | 98.9  |  |  |
| 62                           | 5/5     | $15.6 \pm 0.4$ | $18.8 \pm 0.6$            | $+3.2 \pm 0.4$                                            | 98.9  |  |  |
| 125                          | 5/5     | $15.8 \pm 0.4$ | $19.0 \pm 0.5$            | $+3.2 \pm 0.7$                                            | 100.0 |  |  |
| 250                          | 5/5     | $16.0 \pm 0.4$ | $19.6 \pm 0.2$            | $+3.6 \pm 0.4$                                            | 103.2 |  |  |
| 500                          | 5/5     | $14.4 \pm 0.4$ | $18.0 \pm 0.8$            | $+3.6 \pm 1.2$                                            | 94.7  |  |  |

(a) Number surviving/number initially in group (b) Mean body weight change of the group  $\pm$  standard error of the mean

### THIRTEEN-WEEK STUDIES

All deaths that occurred were related to gavage technique (Table 14). The final mean body weight of male mice administered 250 mg/kg was 7% lower than that of the vehicle controls. All dosed animals had red urine throughout the studies. No compound-related gross or microscopic pathologic effects were observed.

Although 500 mg/kg HC Red No. 3 was administered with no effect in the 14-day studies, the highest dose used in the 13-week studies was 250 mg/kg because at higher concentrations the viscosity of HC Red No. 3 made precise administration difficult (see *Dose Selection Rationale*). Dose Selection Rationale: The highest dose of HC Red No. 3 in mice was limited by the viscosity of the corn oil suspension and by the diameter of the gavaging needle rather than by toxicity. During both the single-administration and the 14-day studies, the highest dose was 500 mg/kg, administered in a dose volume of 20 ml/kg, and it produced no effect. The largest gavage volume used in NTP 2-year studies is 10 ml/kg, which would have required a suspension concentration of 50 mg/ml in order to deliver 500 mg/kg. At this concentration, the suspension was extremely difficult to draw through the gavage needle and the 25 mg/ml suspension was the maximum dose that could be gavaged.

| TABLE 14, | SURVIVAL AND | <b>MEAN BODY</b> | WEIGHTS OF   | MICE IN T | THE THIRTEEN-WEEK | GAVAGE |
|-----------|--------------|------------------|--------------|-----------|-------------------|--------|
|           |              | STU              | DIES OF HC R | ED NO. 3  |                   |        |

|                 |              | Mean           | Body Weights (g | <b>Final Weight Relative</b> |                                  |
|-----------------|--------------|----------------|-----------------|------------------------------|----------------------------------|
| Dose<br>(mg/kg) | Survival (a) | Initial (b)    | Final           | Change (c)                   | to Vehicle Controls<br>(percent) |
| MALE            |              |                | 4               |                              |                                  |
| 0               | 8/10         | $26.4 \pm 0.5$ | 39.0 ± 0.9      | $+12.2 \pm 0.9$              |                                  |
| 15              | 7/10         | $25.2 \pm 0.4$ | $39.0 \pm 0.8$  | $+13.7 \pm 0.9$              | 100.0                            |
| 31              | 10/10        | $26.1 \pm 0.4$ | $39.0 \pm 0.8$  | $+12.9 \pm 0.6$              | 100.0                            |
| 62              | 9/10         | $25.9 \pm 0.6$ | $39.7 \pm 0.9$  | $+14.1 \pm 0.6$              | 101.8                            |
| 125             | 7/10         | $25.8 \pm 0.4$ | $39.3 \pm 0.4$  | $+13.4 \pm 0.4$              | 100.8                            |
| 250             | 9/10         | $25.3 \pm 0.6$ | $36.4\pm0.8$    | $+11.3 \pm 0.5$              | 93.3                             |
| FEMALE          |              |                |                 |                              |                                  |
| 0               | 9/10         | $19.1 \pm 0.3$ | $29.0 \pm 0.8$  | + $9.9 \pm 0.6$              |                                  |
| 15              | 10/10        | $20.2 \pm 0.4$ | $30.4 \pm 1.3$  | $+10.2 \pm 1.0$              | 104.8                            |
| 31              | 9/10         | $19.4 \pm 0.3$ | $29.9 \pm 1.1$  | + 10.6 ± 0.8                 | 103.1                            |
| 62              | 9/10         | $19.4 \pm 0.3$ | $28.6 \pm 0.3$  | $+ 9.4 \pm 0.4$              | 98.6                             |
| 125             | 9/10         | $19.4 \pm 0.4$ | $29.9 \pm 0.9$  | $+10.6 \pm 0.7$              | 103.1                            |
| 250             | 10/10        | $19.7 \pm 0.3$ | $28.8 \pm 0.6$  | $+ 9.1 \pm 0.3$              | 99.3                             |

(a) Number surviving/number initially in group. All deaths were due to gavage technique rather than to toxicity.

(b) Initial mean body weight  $\pm$  standard error of the mean of all animals in the group. Subsequent calculations are based on those animals surviving to the end of the study.

(c) Mean body weight change of the survivors  $\pm$  standard error of the mean

### **TWO-YEAR STUDIES**

### **Body Weights and Clinical Signs**

Mean body weights of high dose mice of each sex were comparable to or greater than those of the vehicle controls throughout most of the study (Table 15 and Figure 3). The body weights of both male and female low dose mice tended to be lower than those of other groups throughout the study. No compound-related clinical signs were observed

| Weeks<br>on Study                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Vehicle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | e Control<br>No. of                                               | Av. WL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 125 mg/kg<br>Wt. (percent<br>of veh contro                                                                                                                                                                                                                          | No of                                                                           | Av. WL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 250 mg/k                                                                                                                                                                                                                              | nt No. of<br>ols) Survivors                                                          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| on Study                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (grams)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | No. of<br>Survivors                                               | (grams)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | of veh contro                                                                                                                                                                                                                                                       | is) Survivors                                                                   | (grams)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | of veh contro                                                                                                                                                                                                                         | ols) Survivors                                                                       |
| MALE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                   | a in i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                     |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                       |                                                                                      |
| 0123456789011259382838246049377115993828382460499977115999999905                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{array}{c} \textbf{25.6} \\ \textbf{28.86} \\ \textbf{29.301.96} \\ \textbf{33.3.7.5} \\ \textbf{33.3.7.5} \\ \textbf{33.6.3} \\ \textbf{33.6.3} \\ \textbf{33.7.5} \\ \textbf{33.7.5} \\ \textbf{33.7.5} \\ \textbf{33.6.3} \\ \textbf{33.7.5} \\ \textbf{33.7.5} \\ \textbf{33.6.3} \\ \textbf{33.7.5} \\ 33.7.$ | 50<br>500<br>500<br>500<br>500<br>500<br>500<br>500<br>500<br>500 | $\begin{array}{c} \textbf{26.2} \\ \textbf{28.5} \\ \textbf{28.5} \\ \textbf{29.59} \\ \textbf{31.2} \\ \textbf{33.3} \\ \textbf{34.1.6} \\ \textbf{35.2} \\ \textbf{35.1} \\ \textbf{35.3} \\ \textbf{35.1} \\ \textbf{35.1} \\ \textbf{35.1} \\ \textbf{36.6} \\ \textbf{44.4} \\ \textbf{45.6} \\ \textbf{66.6} \\ \textbf{0.1} \\ \textbf{49.1.1} \\ \textbf{49.9.1} \\ \textbf{49.9.1}$ | 102<br>98<br>95<br>94<br>94<br>94<br>94<br>95<br>96<br>96<br>96<br>96<br>96<br>96<br>96<br>96<br>95<br>95<br>95<br>95<br>95<br>95<br>95<br>95<br>95<br>95<br>95<br>95<br>95                                                                                         | 50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>5 | $\begin{array}{c} 26.7\\ 29.1\\ 30.3\\ 32.3\\ 33.3\\ 34.1\\ 35.4\\ 37.9\\ 38.9\\ 43.5\\ 50.6\\ 51.0\\ 52.6\\ 51.0\\ 52.2\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\ 51.0\\$ | 104<br>101<br>96<br>98<br>102<br>97<br>104<br>99<br>101<br>103<br>102<br>102<br>104<br>103<br>104<br>103<br>104<br>103<br>104<br>103<br>104<br>103<br>104<br>103<br>105<br>102<br>104<br>105<br>102<br>105<br>105                     | 50000000009999888888888877777766554493309                                            |
| FEMALE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                     |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                       |                                                                                      |
| 0<br>12<br>3<br>4<br>5<br>8<br>7<br>8<br>9<br>10<br>112<br>5<br>9<br>3<br>3<br>8<br>2<br>6<br>3<br>7<br>7<br>7<br>1<br>5<br>6<br>3<br>7<br>7<br>7<br>1<br>5<br>6<br>7<br>8<br>9<br>10<br>112<br>5<br>8<br>9<br>10<br>112<br>5<br>8<br>9<br>10<br>112<br>5<br>8<br>9<br>10<br>112<br>5<br>8<br>9<br>10<br>112<br>5<br>8<br>9<br>10<br>112<br>5<br>8<br>9<br>10<br>112<br>5<br>8<br>9<br>10<br>112<br>5<br>8<br>9<br>10<br>112<br>5<br>8<br>9<br>10<br>112<br>5<br>8<br>9<br>10<br>112<br>5<br>8<br>9<br>10<br>112<br>5<br>8<br>9<br>10<br>112<br>5<br>8<br>9<br>10<br>112<br>5<br>8<br>9<br>10<br>112<br>5<br>8<br>9<br>10<br>112<br>5<br>8<br>9<br>10<br>112<br>5<br>8<br>9<br>10<br>112<br>5<br>8<br>9<br>10<br>112<br>5<br>8<br>9<br>10<br>112<br>5<br>8<br>9<br>10<br>112<br>5<br>8<br>9<br>10<br>112<br>5<br>8<br>9<br>10<br>112<br>5<br>8<br>9<br>10<br>112<br>5<br>8<br>8<br>8<br>8<br>10<br>112<br>5<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8 | $\begin{array}{c} 18.9\\ 20.8\\ 21.9\\ 23.1\\ 24.5\\ 24.5\\ 25.6\\ 26.6\\ 27.1\\ 28.5\\ 30.8\\ 32.1\\ 8\\ 35.5\\ 39.3\\ 9.3\\ 9.3\\ 9.1\\ 5.2\\ 24.5\\ 25.6\\ 27.1\\ 28.5\\ 30.8\\ 32.1\\ 8\\ 35.5\\ 39.3\\ 9.3\\ 9.3\\ 9.1\\ 5.2\\ 42.4\\ 44.2\\ 9.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24.5\\ 24$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 50<br>500<br>500<br>500<br>500<br>500<br>500<br>500<br>500<br>500 | $\begin{array}{c} 19.1\\ 20.2\\ 21.8\\ 23.3\\ 24.3\\ 24.3\\ 24.3\\ 24.5\\ 26.2\\ 26.2\\ 26.5\\ 225.8\\ 29.9\\ 31.1\\ 33.3\\ 93.3\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9\\ 33.9$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 101<br>97<br>98<br>94<br>95<br>109<br>96<br>101<br>98<br>96<br>101<br>98<br>96<br>101<br>98<br>97<br>96<br>92<br>94<br>95<br>94<br>95<br>94<br>95<br>94<br>95<br>94<br>95<br>95<br>94<br>95<br>95<br>95<br>95<br>95<br>95<br>95<br>95<br>95<br>95<br>95<br>95<br>95 | 50<br>500<br>500<br>500<br>500<br>500<br>500<br>500<br>500<br>500               | $\begin{array}{c} 19.3\\ 21.5\\ 23.0.2\\ 24.6\\ 4\\ 255.3\\ 1\\ 266.7\\ 5\\ 267.4\\ 8\\ 8\\ 8\\ 8\\ 6\\ 6\\ 334.8\\ 8\\ 8\\ 8\\ 8\\ 8\\ 8\\ 8\\ 8\\ 8\\ 8\\ 8\\ 8\\ 8$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 102<br>102<br>98<br>100<br>98<br>104<br>99<br>102<br>103<br>103<br>103<br>101<br>101<br>105<br>106<br>107<br>106<br>106<br>107<br>106<br>106<br>107<br>106<br>106<br>107<br>106<br>106<br>107<br>106<br>108<br>104<br>95<br>102<br>98 | 50<br>550<br>509<br>499<br>499<br>499<br>499<br>499<br>499<br>499<br>499<br>499<br>4 |

TABLE 15. MEAN BODY WEIGHTS AND SURVIVAL OF MICE IN THE TWO-YEAR GAVAGE STUDIES OF HC RED NO. 3

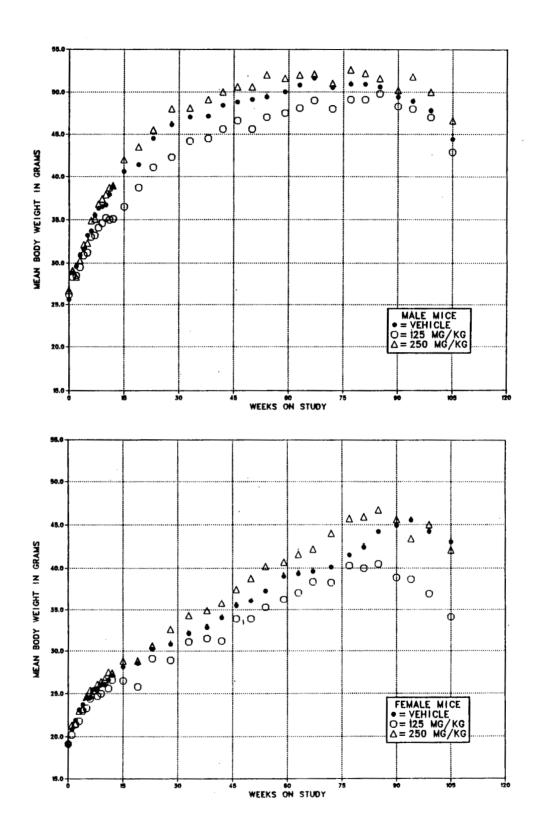



FIGURE 3. GROWTH CURVES FOR MICE ADMINISTERED HC RED NO. 3 IN CORN OIL BY GAVAGE FOR TWO YEARS

### Survival

Estimates of the probabilities of survival of male and female mice administered HC Red No. 3 at the doses in these studies and those of the vehicle controls are shown in the Kaplan and Meier curves in Figure 4. In male mice, the survival of the low dose group was significantly greater (P=0.027) than that of the vehicle control group (Table 16). The survival of all groups of female mice was unusually low in comparison with historical controls. This reduced survival was attributed to a reproductive tract infection that affected all groups of female mice.

# Pathology and Statistical Analyses of Results

This section describes significant or noteworthy

changes in the incidence of mice with neoplastic or nonneoplastic lesions of the liver, forestomach, thyroid gland, kidney, uterus, ovary, and multiple organs. Histopathologic findings on neoplasms in mice are summarized in Appendix B (Tables B1 and B2); Appendix B (Tables B3 and B4) also gives the survival and tumor status for individual male and female mice. Findings on nonneoplastic lesions are summarized in Appendix D (Tables D1 and D2). Appendix E (Tables E3 and E4) contains the statistical analyses of those primary tumors that occurred with an incidence of at least 5% in one of the three groups. The statistical analyses used are discussed in Chapter II (Statistical Methods) and Appendix E (footnotes). Historical incidences of tumors in corn oil vehicle control animals are listed in Appendix F.

### TABLE 16. SURVIVAL OF MICE IN THE TWO-YEAR GAVAGE STUDIES OF HC RED NO. 3

|                                                                                                                             | Vehicle Control                                  | 125 mg/kg              | $250\mathrm{mg/kg}$     |
|-----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|------------------------|-------------------------|
| MALE (a)                                                                                                                    | . <u>'</u> , , , , , , , , , , , , , , , , , , , |                        |                         |
| Animals initially in study<br>Nonaccidental deaths before termination (b)<br>Killed at termination<br>Survival P values (c) | 50<br>20<br>30<br>0.970                          | 50<br>9<br>41<br>0.027 | 50<br>21<br>29<br>0.916 |
| FEMALE (a)                                                                                                                  |                                                  |                        |                         |
| Animals initially in study<br>Nonaccidental deaths before termination (b)<br>Killed at termination<br>Survival P values (c) | 50<br>38<br>12<br>0.523                          | 50<br>42<br>8<br>0.972 | 50<br>41<br>9<br>0.580  |

(a) Terminal kill period: week 105

(b) Includes animals killed in a moribund condition

(c) The result of the life table trend test is in the vehicle control column, and the results of the life table pairwise comparisons with the vehicle controls are in the dosed columns.

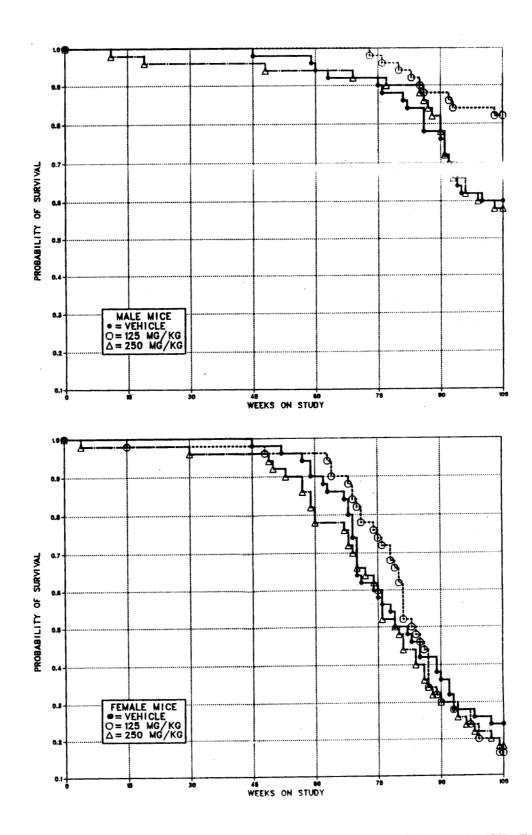



FIGURE 4. KAPLAN-MEIER SURVIVAL CURVES FOR MICE ADMINISTERED HC RED NO. 3 IN CORN OIL BY GAVAGE FOR TWO YEARS

*Liver*: Hepatocellular adenomas or carcinomas (combined) in male mice occurred with a significant positive trend, and the incidence of hepatocellular adenomas or carcinomas (combined) in high dose male mice was significantly greater than that in the vehicle controls (Table 17). The incidences of hepatocellular adenomas, hepatocellular carcinomas, and hepatocellular adenomas or carcinomas (combined) in low dose

male mice were significantly lower than those in the vehicle controls (life table analysis). Hepatocellular adenomas in female mice occurred with a significant negative trend; no significant differences were observed for adenomas or carcinomas (combined). The hepatocellular carcinomas metastasized to the lung in three vehicle control males, one low dose male, and five high dose males but in none of the females.

| TABLE 17. | ANALYSIS | <b>OF LIVER</b> | <b>TUMORS I</b> | IN MICE | IN THE    | <b>TWO-YEAR</b> | GAVAGE | STUDIES OF |
|-----------|----------|-----------------|-----------------|---------|-----------|-----------------|--------|------------|
|           |          |                 | H               | IC RED  | NO. 3 (a) | I               |        |            |

|                                         | Vehicle Control | 1 <b>2</b> 5 mg/kg | 250 mg/kg   |
|-----------------------------------------|-----------------|--------------------|-------------|
| MALE                                    |                 |                    |             |
| Hepatocellular Adenoma                  |                 |                    |             |
| Overall Rates                           | 11/50 (22%)     | 6/50 (12%)         | 16/50 (32%) |
| Adjusted Rates                          | 33.5%           | 13.9%              | 49.4%       |
| Terminal Rates                          | 9/30 (30%)      | 4/41 (10%)         | 13/29 (45%) |
| Life Table Tests                        | P = 0.118       | P=0.048N           | P = 0.162   |
| Incidental Tumor Tests                  | P = 0.140       | P=0.100N           | P = 0.174   |
| Hepatocellular Carcinoma                |                 |                    |             |
| Overall Rates                           | 17/50 (34%)     | 9/50 (18%)         | 21/50 (42%  |
| Adjusted Rates                          | 40.3%           | 20.6%              | 50.2%       |
| Terminal Rates                          | 7/30 (23%)      | 7/41 (17%)         | 10/29 (34%  |
| Life Table Tests                        | P = 0.240       | P = 0.020N         | P = 0.298   |
| Incidental Tumor Tests                  | P = 0.160       | P = 0.112N         | P = 0.192   |
| Tepatocellular Adenoma or Carcinoma (b) |                 |                    |             |
| Overall Rates                           | 25/50 (50%)     | 15/50 (30%)        | 35/50 (70%) |
| Adjusted Rates                          | 59.5%           | 33.1%              | 82.7%       |
| Terminal Rates                          | 14/30 (47%)     | 11/41 (27%)        | 22/29 (76%  |
| Life Table Tests                        | P = 0.044       | P=0.007N           | P = 0.066   |
| Incidental Tumor Tests                  | P=0.017         | P = 0.050N         | P=0.017     |
| FEMALE                                  |                 |                    |             |
| fepatocellular Adenoma                  |                 |                    |             |
| Overall Rates                           | 4/50 (8%)       | 1/50 (2%)          | 0/50 (0%)   |
| Adjusted Rates                          | 29.7%           | 12.5%              | 0.0%        |
| Terminal Rates                          | 3/12 (25%)      | 1/8 (13%)          | 0/9 (0%)    |
| Life Table Tests                        | P = 0.044N      | <b>P=0.285</b> N   | P = 0.092N  |
| Incidental Tumor Tests                  | P = 0.035N      | P=0.235N           | P = 0.072N  |
| Iepatocellular Carcinoma                |                 |                    |             |
| Overall Rates                           | 0/50 (0%)       | 0/50 (0%)          | 2/50 (4%)   |
| lepatocellular Adenoma or Carcinoma     |                 |                    |             |
| Overall Rates                           | 4/50 (8%)       | 1/50 (2%)          | 2/50 (4%)   |
| Adjusted Rates                          | 29.7%           | 12.5%              | 14.1%       |
| Terminal Rates                          | 3/12 (25%)      | 1/8 (13%)          | 1/9 (11%)   |
| Life Table Tests                        | P = 0.321 N     | P = 0.285N         | P = 0.429N  |
| Incidental Tumor Tests                  | P = 0.302N      | P = 0.235N         | P=0.396N    |

(a) The statistical analyses used are discussed in Chapter II (Statistical Methods) and Appendix E (footnotes). (b) Historical incidence at testing laboratory (mean  $\pm$  SD): 109/298, 37%  $\pm$  12%; historical incidence in NTP studies: 340/1,084, 31%  $\pm$  10% Forestomach: Squamous cell papillomas in female mice occurred with a significant positive trend, although the incidence of squamous cell papillomas in the high dose group was not significantly greater than that in the vehicle controls (Table 18). The occurrence of forestomach epithelial hyperplasia or squamous cell papillomas (combined) was not affected by HC Red No. 3 administration (3/50, 2/50, and 4/48 in vehicle control, low dose, and high dose groups, respectively).

Thyroid Gland: Pigmentation of the thyroid gland was observed at increased incidences in dosed mice of each sex (male: vehicle control, 1/48; low dose, 38/50; high dose, 47/50; female: vehicle control, 2/49; low dose, 13/48; high dose, 24/49). Cystic hyperplasia was observed at increased incidences in dosed male mice (vehicle control, 4/48; low dose, 9/50; high dose, 13/50). The incidence of follicular cell adenomas in low dose male mice was significantly lower (P < 0.05) than that in the vehicle controls (Appendix E, Table E3).

*Kidney*: Nephrosis was observed at increased incidences in dosed female mice (vehicle control, 1/50; low dose, 5/50; high dose, 10/50). These lesions, which involved occasional isolated nephrons in the renal cortex, featured thickened basement membranes, crowding of epithelial cells, cytoplasmic vacuolization, and

enlargement and vacuolization of epithelial cell Occasionally, portions of the affected nuclei. tubules were dilated. Early fibrosis and lymphocytic infiltration occurred occasionally in the interstitium of affected areas. The kidneys in the female mice were reviewed in a blind fashion and graded for the presence of nephrosis. The increased incidence of nephrosis was confirmed; however, the apparent effect was ameliorated somewhat by the presence in many mice of glomerulonephritis that appeared to be associated with suppurative inflammation of the genital tract. Thus, the nephrosis may be compound related or secondary to the high incidence of infections. Nephrosis in male mice was comparable in vehicle control and dosed animals.

Multiple Organs: Suppurative inflammation was observed in the uterus, ovary, or multiple organs of 33/38 vehicle control, 37/42 low dose, and 34/41 high dose female mice that died or were killed in a moribund state before the end of the study. Suppurative inflammation of the uterus was observed in 3/12 vehicle control. 0/8low dose, and 0/9 high dose female mice that lived to the end of the study. Cultures were obtained for one uterine horn and ovary in each of eight female mice that were killed in a moribund condition. Results in six of the eight mice were positive for Klebsiella pneumoniae. This infection was believed to be the cause of the reduced survival in female mice.

TABLE 18. ANALYSIS OF FORESTOMACH LESIONS IN FEMALE MICE IN THE TWO-YEAR GAVAGESTUDY OF HC RED NO. 3

|                                 | Vehicle Control | 125 mg/kg | 250 mg/kg |
|---------------------------------|-----------------|-----------|-----------|
| S <b>pith</b> elial Hyperplasia |                 |           |           |
| Overall Rates                   | 3/50 (6%)       | 2/50 (4%) | 1/48 (2%) |
| Squamous Cell Papilloma (a)     |                 |           |           |
| Overall Rates                   | 0/50 (0%)       | 0/50 (0%) | 3/48 (6%) |
| Adjusted Rates                  | 0.0%            | 0.0%      | 22.8%     |
| Terminal Rates                  | 0/12 (0%)       | 0/8 (0%)  | 1/9(11%)  |
| Life Table Tests                | P = 0.030       | (b)       | P = 0.092 |
| Incidental Tumor Tests          | P = 0.031       | (b)       | P = 0.123 |
|                                 |                 |           |           |

(a) Historical incidence of stomach tumors at testing laboratory: 4/297, 1.3%; historical incidence in NTP studies: 7/1,077, 0.6%

(b) No P value is reported because no tumors were observed in the 125 mg/kg and vehicle control groups.

48

# **IV. DISCUSSION AND CONCLUSIONS**

.

Toxicology and carcinogenesis studies of HC Red No. 3, a semipermanent hair dye, were conducted by administering the chemical in corn oil by gavage to groups of 50 male and 50 female F344/N rats for 105 weeks and to groups of 50 male and 50 female  $B6C3F_1$  mice for 104 weeks. Groups of 50 rats and 50 mice of each sex served as vehicle controls.

During the planning of the series of studies on hair dyes, the oral route of administration was selected for each chemical in order to provide a more rigorous challenge than would be possible through dermal application. The absorption of HC Red No. 3 through skin has not been studied, but other structurally related dyes (HC Blue No. 1 and HC Blue No. 2) are known to be absorbed in small amounts (C. Burnett, 1984, personal communication to NTP). In the studies of HC Blue No. 1 (NTP, 1985a) and HC Blue No. 2 (NTP, 1985b), the dyes were mixed with the diet; however, HC Red No. 3 was found to be unstable when mixed with feed and therefore was administered by gavage.

The route of administration of these dyes may have influenced the results of the studies. When administered orally, the dyes are exposed to the bacterial flora of the gastrointestinal tract. Nitro reduction, or N-dealkylation, could be carried out by the anaerobic flora of the intestinal tract. These metabolic steps could result in the formation of a free aromatic amine that might be absorbed and then subjected to hepatic N-acetylation and hydroxylation (metabolic steps believed to be associated with the activation of carcinogenic aromatic amines). HC Blue No. 1, which was found to be carcinogenic in rats and mice (NTP, 1985a), was not mutagenic in the in vivo mouse micronucleus test in which chemicals are administered by intraperitoneal injection. This route of administration limits the amount of chemical available for metabolic reduction to a free aromatic amine by the intestinal flora. HC Red No. 3 was not tested in the mouse micronucleus test. HC Blue No. 1, HC Blue No. 2, and HC Red No. 3 are all mutagenic in Salmonella (NTP, 1985a,b; Appendix M).

The doses of HC Red No. 3 administered to rats during the 2-year studies (0, 250, or 500 mg/kg) were selected on the basis of the results of 13week studies in which rats were dosed with up to

1,000 mg/kg and on the feasibility of gavaging with a viscous suspension. In the 13-week studies, the thyroid gland and kidneys of male and female rats were identified as potential target organs for HC Red No. 3 because of the deposition of a golden-brown pigment (not identified) in the cytoplasm of thyroid gland follicular cells and in the renal convoluted tubular epithelial cells at doses of 250, 500, or 1,000 mg/kg. The intensity of the pigmentation was dose related. Although the accumulated pigment was not considered to be life threatening, there was concern that functional changes might be produced when HC Red No. 3 at 1,000 mg/kg was administered for 2 years. Pigmentation of the kidneys at the 250 mg/kg dose was only slight in both sexes, and there was no pigmentation of the thyroid gland at this dose. Tissues from rats receiving lower doses of HC Red No. 3 were not examined microscopically.

The highest dose of HC Red No. 3 used in both the 13-week and 2-year studies in mice (250 mg/kg) was limited by the viscosity of the corn oil suspension of the dye and the diameter of the gavaging needle. During the 13-week studies, the administration of HC Red No. 3 to mice at doses up to 250 mg/kg did not produce changes in body weight gains or cause clinical signs (other than the excretion of red urine) or histopathologic changes.

The administration of HC Red No. 3 to rats (250 and 500 mg/kg) and mice (125 and 250 mg/kg) for 2 years did not affect body weight gains or survival. In rats, the mean body weights for low dose animals at the termination of the studies were 4% (males) and 5% (females) greater than those of the vehicle control groups. Weight gains by high dose rats were within 10% of the weight gains by the vehicle control groups throughout the studies. In male mice, mean body weights of the low dose group tended to be somewhat lower than those of the vehicle control group; however, mean body weights were always within 10% of the control value, and at the termination of the study, the mean body weight in this group was only 3% lower than that of the vehicle controls. High dose male mice consistently exhibited somewhat greater body weights relative to those of the vehicle controls, and at the termination of the study, the mean body weight of this group was 5% greater than that of the vehicle control group. The depressed body weight gains exhibited by the low dose female mice are difficult to assess because of the presence of a reproductive tract infection in all groups of females. The body weights of both male and female low dose mice tended to be somewhat lower than those of other groups throughout the study.

The reproductive tract infection in female mice was associated with reduced survival of all groups of female mice; 12/50 vehicle control, 8/50 low dose, and 9/50 high dose animals survived to the end of the study. Uterine horns from eight female mice that were killed in a moribund condition (three vehicle control, two low dose, and three high dose) were examined and subjected to bacteriologic culturing. Results of analyses of six of these tissues were positive for Klebsiella pneumoniae. This infection has been present in female  $B6C3F_1$  mice in earlier studies at this and other laboratories; both K. oxytoca and K. pneumoniae have been isolated from tissues of infected animals. The infection appears to be consistently associated with body weight loss and high mortality in NTP studies. The early deaths among female mice may have reduced the sensitivity of the study. The high incidence of early deaths and the absence of a carcinogenic effect render the study in female mice inadequate for assessment of carcinogenicity.

Both rats and mice might have been able to tolerate somewhat higher doses during the studies. Although there was a dose-related increase in the incidence of nephropathy in female rats and nephrosis in female mice, these changes were minimal and, in female mice, were complicated by the presence of genital tract infections.

In mice, there was a dose-related pigmentation of the thyroid glands (male: vehicle control, 1/48; low dose, 38/50; high dose, 47/50; female: vehicle control, 2/49; low dose, 13/48; high dose, 24/49). Although there were no compoundrelated increases in pathologic changes in the thyroid glands of female mice, there was a doserelated increase in the incidence of cystic hyperplasia in male mice (vehicle control, 4/48; low dose, 9/50; high dose, 13/50). The absence of chemically related toxicologic effects in either species suggests that rats and mice could have tolerated higher doses of HC Red No. 3.

In studies with the semipermanent hair dyes HC Blue No. 1 (NTP, 1985a) and HC Blue No. 2 (1985b), pigmentation of multiple organs, including the thyroid gland and kidneys, was a frequent finding. In the study of HC Blue No. 1, 2-year administration of the dye in the diet was found to produce a dose-related increase in the incidence of cystic hyperplasia of the thyroid gland follicular cells in male mice. However, HC Blue No. 2 did not produce this effect. Neither blue dye produced kidney changes in rats or mice.

Transitional cell papillomas were detected in the urinary bladder of one high dose male rat, two low dose female rats, and one high dose female rat; none was observed in the vehicle controls. The incidences of these tumors in dosed rats and vehicle controls were not significantly different. However, this is an uncommon tumor in F344/N rats, having been detected in 0/299 corn oil vehicle control males and 1/296 (0.3%) corn oil vehicle control females at this laboratory and in 0/1,092 vehicle control males and 3/1,084 (0.3%) vehicle control females in the overall Program (Appendix F, Table F1). The papillomas in the HC Red No. 3 studies were present in animals that survived to the termination of the studies.

The incidence of mammary gland fibroadenomas or cystadenomas (combined) in low dose female rats was significantly increased (P < 0.02) (vehicle control, 14/50; low dose, 25/50; high dose, 11/50) and was above the historical control rates at the same laboratory (80/300, 27%) and throughout the Program (269/1,147, 23%; Table F2). However, the relationship of this increase to HC Red No. 3 administration is questionable because the incidence in the high dose group was not elevated relative to the vehicle controls and no other chemically related proliferative lesions were noted in the mammary gland. The reason for the increase only in the low dose group is not apparent.

The incidence of hepatocellular adenomas or carcinomas (combined) in male mice was significantly increased in the high dose group (vehicle control, 25/50; low dose, 15/50; high dose, 35/50). The arguments for an association of HC Red No. 3 with the hepatocellular neoplasms in male mice include the following:

The incidence in the high dose group was significantly greater than that in the vehicle control group, even though the incidence in the vehicle control group was unusually high (historical rate at the laboratory, 109/298, 37%, or throughout the Program, 340/1,084, 31%).

The incidence of hepatocellular neoplasms in the high dose male mouse group was greater than that seen in any corn oil vehicle control group in the Program.

The increased incidences of hepatocellular neoplasms in dosed male mice were significant by the trend test.

Arguments mitigating the association of HC Red No. 3 with hepatocellular neoplasms in male mice include the following:

Liver neoplasms in control male  $B6C3F_1$  mice occur at high incidences and with a wide range of variability (Haseman et al., 1984).

The incidence of hepatocellular neoplasms in low dose male mice was marginally lower than that in the vehicle controls; and the overall rates of liver neoplasms in dosed and vehicle control groups were each 50% (50/100 and 25/50).

The limited data in female mice showed no evidence of a corresponding dose-related increase in the incidence of liver neoplasms.

Because of these factors, the increase in hepatocellular neoplasms observed in male mice was considered possibly associated with administration of HC Red No. 3.

HC Red No. 3 is structurally related to both HC Blue No. 1 and HC Blue No. 2, both of which were studied by NTP (Figure 5). Although HC Blue No. 1 produced hepatocellular neoplasms in male and female mice and marginal increases in the incidences of these neoplasms in male rats (NTP, 1985a), no evidence of carcinogenicity was found in NTP studies of HC Blue No. 2 (NTP, 1985b). The difference in the carcinogenicity of the two blue dyes may be due to differences in the way they are metabolized and excreted (NTP, 1985b). The results of the three studies are compared in Table 19.

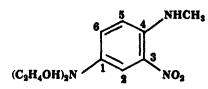
| TABLE 19. | COMPARISON | OF RESULTS IN  | NTP STUDIES   | OF HC BLUE NO.              | 1, HC BLUE NO. 2, AND |
|-----------|------------|----------------|---------------|-----------------------------|-----------------------|
|           |            | HC RED NO. 3 I | N F344/N RATS | AND B6C3F <sub>1</sub> MICE |                       |

| Chemical      | Species<br>(sex)  | Dose<br>(mg/kg)       | Level of<br>Evidence (a) | Organ(s) Affected;<br>Tumor Type                |
|---------------|-------------------|-----------------------|--------------------------|-------------------------------------------------|
| HC Blue No. 1 | Rat               |                       |                          | ······································          |
| (Feed)        | (male)            | (b) 66 or 129         | Equivocal                | Liver; neoplastic nodules/carcinomas            |
| (             | (female)<br>Mouse | (b) 74 or 154         | Some                     | Lung; alveolar/bronchiolar neoplasms            |
|               | (male)            | (b) <b>309</b> or 650 | Clear                    | Liver; hepatocellular carcinomas; thyroid gland |
|               | (female)          | (b) 778 or 1,634      | Clear                    | Liver; hepatocellular carcinomas                |
| HC Blue No. 2 | Rat               |                       |                          |                                                 |
| (Feed)        | (male)            | (b) 194 or 390        | No evidence              |                                                 |
| (             | (female)<br>Mouse | (b) 464 or 999        | No evidence              |                                                 |
|               | (male)            | (b) 1,319 or 2,239    | No evidence              |                                                 |
|               | (female)          | (b) 2,331 or 5,603    | No evidence              |                                                 |
| HC Red No. 3  | Rat               |                       |                          |                                                 |
| (Gavage)      | (male)            | 250 or 500            | No evidence              |                                                 |
| (001080)      | (female)          | 250 or 500            | No evidence              |                                                 |
|               | Mouse             | 200 01 000            | 1.0 0                    |                                                 |
|               | (male)            | 125 or 250            | Equivocal                | Liver: adenomas or carcinomas (combined)        |
|               | (female)          | 125 or 250            | Inadequate               | L., .,                                          |
|               | (ICHIGIC)         | 120 01 200            | study                    |                                                 |

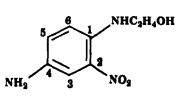
(a) Categories of evidence of carcinogenicity are defined in the Note to the Reader on page 2.

(b) Doses estimated; based on food consumption data.

HC Red No. 3, NTP TR 281


HC BLUE NO.2

### FIGURE 5. CHEMICAL STRUCTURES OF HC RED NO. 3, HC BLUE NO. 1, AND HC BLUE NO. 2


53

6 (C<sub>2</sub>H<sub>4</sub>OH)<sub>2</sub>N (C<sub>2</sub>H<sub>4</sub>OH)<sub>2</sub>N)(C<sub>2</sub>H<sub>4</sub>OH)<sub>2</sub>N)(C<sub>2</sub>C<sub>2</sub>H<sub>4</sub>OH)(C<sub>2</sub>H<sub>4</sub>OH)(C<sub>2</sub>H<sub>4</sub>OH)(C<sub>2</sub>H<sub>4</sub>OH)(C<sub>2</sub>H<sub>4</sub>OH)(C<sub>2</sub>H<sub>4</sub>OH)(C<sub>2</sub>H<sub>4</sub>OH)(C<sub>2</sub>H<sub>4</sub>OH)(C<sub>2</sub>H<sub>4</sub>OH)(C<sub>2</sub>H<sub>4</sub>OH)(C<sub>2</sub>H<sub>4</sub>OH)(C<sub>2</sub>H<sub>4</sub>OH)(C<sub>2</sub>H<sub>4</sub>OH)(C<sub>2</sub>H<sub>4</sub>OH)(C<sub>2</sub>H<sub>4</sub>OH)(C<sub>2</sub>H<sub>4</sub>OH)(C<sub>2</sub>H<sub>4</sub>OH)(C<sub>2</sub>H<sub>4</sub>OH)(C<sub>2</sub>H<sub>4</sub>OH)(C<sub>2</sub>H<sub>4</sub>OH)(C<sub>2</sub>H<sub>4</sub>OH)(C<sub>2</sub>H<sub>4</sub>OH)(C<sub>2</sub>H<sub>4</sub>OH)(C<sub>2</sub>H<sub>4</sub>OH)(C<sub>2</sub>H<sub>4</sub>OH)(C<sub>2</sub>H<sub>4</sub>OH)(C<sub>2</sub>H<sub>4</sub>OH)(C<sub>2</sub>H<sub>4</sub>OH)(C<sub>2</sub>H<sub>4</sub>OH)(C<sub>2</sub>H<sub>4</sub>OH)(C<sub>2</sub>H<sub>4</sub>OH)(C<sub>2</sub>H<sub>4</sub>OH)(C<sub>2</sub>H<sub>4</sub>OH)(C<sub>2</sub>H<sub>4</sub>OH)(C<sub>2</sub>H<sub>4</sub>OH)(C<sub>2</sub>H<sub>4</sub>OH)(C<sub>2</sub>H<sub>4</sub>OH)(C<sub>2</sub>H<sub>4</sub>OH)(C<sub>2</sub>H<sub>4</sub>OH)(C<sub>2</sub>H<sub>4</sub>OH)(C<sub>2</sub>H<sub>4</sub>OH)(C<sub>2</sub>H<sub>4</sub>OH)(C<sub>2</sub>H<sub>4</sub>OH)(C<sub>2</sub>H<sub>4</sub>OH)(C<sub>2</sub>H<sub>4</sub>OH)(C<sub>2</sub>H<sub>4</sub>OH)(C<sub>2</sub>H<sub>4</sub>OH)(C<sub>2</sub>H<sub>4</sub>OH)(C<sub>2</sub>H<sub>4</sub>OH)(C<sub>2</sub>H<sub>4</sub>OH)(C<sub>2</sub>H<sub>4</sub>OH)(C<sub>2</sub>H<sub>4</sub>OH)(C<sub>2</sub>H<sub>4</sub>OH)(C<sub>2</sub>H<sub>4</sub>OH)(C<sub>2</sub>H<sub>4</sub>OH)(C<sub>2</sub>H<sub>4</sub>OH)(C<sub>2</sub>H<sub>4</sub>OH)(C<sub>2</sub>H<sub>4</sub>OH)(C<sub>2</sub>H<sub>4</sub>OH)(C<sub>2</sub>H<sub>4</sub>OH)(C<sub>2</sub>H<sub>4</sub>OH)(C<sub>2</sub>H<sub>4</sub>OH)(C<sub>2</sub>H<sub>4</sub>OH)(C<sub>2</sub>H<sub>4</sub>OH)(C<sub>2</sub>H<sub>4</sub>OH)(C<sub>2</sub>H<sub>4</sub>OH)(C<sub>2</sub>H<sub>4</sub>OH)(C<sub>2</sub>H<sub>4</sub>OH)(C<sub>2</sub>H<sub>4</sub>OH)(C<sub>2</sub>H<sub>4</sub>OH)(C<sub>2</sub>H<sub>4</sub>OH)(C<sub>2</sub>H<sub>4</sub>OH)(C<sub>2</sub>H<sub>4</sub>OH)(C<sub>2</sub>H<sub>4</sub>OH)(C<sub>2</sub>H<sub>4</sub>OH)(C<sub>2</sub>H<sub>4</sub>OH)(C<sub>2</sub>H<sub>4</sub>OH)(C<sub>2</sub>H<sub>4</sub>OH)(C<sub>2</sub>H<sub>4</sub>OH)(C<sub>2</sub>H<sub>4</sub>OH)(C<sub>2</sub>H<sub>4</sub>OH)(C<sub>2</sub>H<sub>4</sub>OH)(C<sub>2</sub>H<sub>4</sub>OH)(C<sub>2</sub>H<sub></sub>

HC BLUE NO.1



HC RED NO.3



The hydroxyethyl groups on the nitrogens in positions 1 and 4 in HC Blue No. 2 may favor conjugation and urinary excretion, whereas the methyl group on the nitrogen in position 4 of HC Blue No. 1 may favor N-dealkylation and formation of an N-hydroxyl group. In HC Red No. 3, the primary amine in position number 4 may undergo acetylation. However, it is difficult to compare the results of the present studies of HC Red No. 3 with the studies of the blue dyes. In the studies of the blue dyes, the chemical was administered in the diet, whereas the corn oil gavage route of administration was used in the HC Red No. 3 studies. The average daily doses of HC Blue No. 1 administered to high dose rats were 129 and 154 mg/kg in males and females, respectively. HC Red No. 3 was tested at higher doses in rats. In mice, however, the highest doses of HC Blue No. 1 were 650 mg/kg in males and 1,634 mg/kg in females. The highest doses of HC Blue No. 2 tested were 390 and 999 mg/kg in male and female rats and 2,239 and 5,603 mg/kg in male and female mice. Mice received 125 or 250 mg/kg HC Red No. 3 in this study, much less than the amount of either blue dye administered to mice. Also, in the present study, it is possible that each sex of both species could have tolerated higher doses than were administered.

After the HC Red No. 3 studies had ended, the dye samples--lot no. C080480 and lot no. 5890377--used for the 2-year studies were examined for trace contamination with nitrosamines and were found to contain at most 11 and 20 ppm, respectively. Based on maximum possible nitrosamine content of the HC Red

No. 3 samples, it was estimated that the high dose rats could have received approximately 10 µg/kg and the high dose mice could have received approximately 5 µg/kg of total nitrosamines per day. Since the nitrosamines were not qualitatively identified, it is impossible to assess their potential impact on the results of these studies. It seems unlikely, however, that these low levels of nitrosamines influenced the results of these studies, since these amounts were equal to (rats) or less than (mice) the amounts of nitrosamines received by dosed animals in the HC Blue No. 2 studies, wherein compound-related increased tumor incidences were not observed. However, this assumes that the nitrosamine contaminants in the HC Red No. 3 study were no more potent as potential carcinogens than were those in the HC Blue No. 2 study.

Conclusions: Under the conditions of these 2year gavage studies of HC Red No.3, there was no evidence of carcinogenicity\* for male or female F344/N rats given 250 or 500 mg/kg per day. There was equivocal evidence of carcinogenicity for male  $B6C3F_1$  mice as indicated by an increased incidence of hepatocellular adenomas or carcinomas (combined) in the 250 mg/kg group. Poor survival coupled with lack of significant findings rendered the study in female  $B6C3F_1$  mice an inadequate study of carcinogenicity. Both sexes of both species may have been able to tolerate higher doses of HC Red No. 3. Therefore, the sensitivity of these studies for detecting carcinogenesis may have been limited.

<sup>\*</sup>Categories of evidence of carcinogenicity are defined in the Note to the Reader on page 2.

## **V. REFERENCES**

1. Armitage, P. (1971) Statistical Methods in Medical Research. New York: John Wiley & Sons, Inc., pp. 362-365.

2. Berenblum, I., Ed. (1969) Carcinogenicity Testing: A Report of the Panel on Carcinogenicity of the Cancer Research Commission of UICC, Vol. 2. Geneva: International Union Against Cancer.

3. Boorman, G.; Montgomery, C., Jr.; Hardisty, J.; Eustis, S.; Wolfe, M., McConnell, E. (1985) Quality assurance in pathology for rodent toxicology and carcinogenicity tests. Milman, H.; Weisburger, E., Eds.: Handbook of Carcinogen Testing. Park Ridge, NJ: Noyes Publications (in press).

4. Cox, D. (1972) Regression models and life tables. J. R. Stat. Soc. B34:187-220.

5. Feigl, F. (1966) Spot Test in Organic Analysis, 7th ed. Amsterdam: Elsevier Publishing Co., p. 249.

6. Frenkel, E.; Brody, F. (1973) Percutaneous absorption and elimination of an aromatic hair dye. Arch. Environ. Health 27:401-404.

7. Gart, J.; Chu, K.; Tarone, R. (1979) Statistical issues in interpretation of chronic bioassay tests for carcinogenicity. J. Natl. Cancer Inst. 62(4):957-974.

8. Haseman, J. (1984) Statistical issues in the design, analysis and interpretation of animal carcinogenicity studies. Environ. Health Perspect. 58:385-392.

9. Haseman J.; Huff, J.; Boorman, G. (1984) Use of historical control data in carcinogenicity studies in rodents. Toxicol. Path. 12:126-135.

10. Haworth, S.; Lawlor, T.; Mortelmans, K.; Speck, W.; Zeiger, E. (1983) Salmonella mutagenicity test results for 250 chemicals. Environ. Mutagen. (Suppl. 1) 5:3-142. 11. International Agency for Research on Cancer (IARC) (1982) IARC Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Humans. Some Aromatic Amines, Anthraquinones and Nitroso Compounds, and Inorganic Fluorides Used in Drinking-water and Dental Preparations, Vol. 27. Lyon: World Health Organization, IARC, pp. 307-318.

12. Kaplan, E.; Meier, P. (1958) Nonparametric estimation of incomplete observations. J. Am. Stat. Assoc. 53:457-481.

13. Linhart, M.; Cooper, J.; Martin, R.; Page, N.; Peters, J. (1974) Carcinogenesis bioassay data system. Comp. Biomed. Res. 7:230-248.

14. Mantel, N.; Haenszel, W. (1959) Statistical aspects of the analysis of data from retrospective studies of disease. J. Natl. Cancer Inst. 22:719-748.

15. Maronpot, R.; Boorman, G. (1982) Interpretation of rodent hepatocellular proliferative alterations and hepatocellular tumors in chemical safety assessment. Toxicol. Pathol. 10:71-80.

16. National Cancer Institute (NCI) (1976) Guidelines for Carcinogen Bioassay in Small Rodents. NCI Carcinogenesis Technical Report Series No. 1, February.

17. National Institutes of Health (NIH) (1978) NIH Specification NIH-11-133f, November 1.

18. National Toxicology Program (NTP) (1985a) NTP Technical Report on the Toxicology and Carcinogenesis Studies of HC Blue No. 1 in F344/N Rats and B6C3F<sub>1</sub> Mice. NTP TR 271. NIH Publication No. 85-2527. U.S. Department of Health and Human Services, Public Health Service, National Institutes of Health. 19. National Toxicology Program (NTP) (1985b) NTP Technical Report on the Toxicology and Carcinogenesis Studies of HC Blue No. 2 in F344/N Rats and B6C3F<sub>1</sub> Mice. NTP TR 293. NIH Publication No. 85-2549. U.S. Department of Health and Human Services, Public Health Service, National Institutes of Health. 20. Tarone, R. (1975) Tests for trend in life table analysis. Biometrika 62:679-682.

21. Wernick, T.; Lanman, B.; Fraux, J. (1975) Chronic toxicity, teratologic, and reproduction studies with hair dyes. Toxicol. Appl. Pharmacol. 32:450-460.

HC Red No. 3, NTP TR 281

### **APPENDIX A**

# SUMMARY OF THE INCIDENCE OF NEOPLASMS IN RATS IN THE TWO-YEAR GAVAGE STUDIES OF HC RED NO. 3

|                                              | CONTRO                                | DL (VEH)       | LOWI | DOSE         | HIGH | DOSE   |
|----------------------------------------------|---------------------------------------|----------------|------|--------------|------|--------|
| ANIMALS INITIALLY IN STUDY                   | 50                                    |                | 50   | ·            | 50   |        |
| ANIMALS NECROPSIED                           | 50                                    |                | 50   |              | 50   |        |
| ANIMALS EXAMINED HISTOPATHOLOGICALLY         | Y 50                                  |                | 50   |              | 50   |        |
| NTEGUMENTARY SYSTEM                          |                                       | <u></u>        |      |              |      |        |
| *SKIN                                        | (50)                                  |                | (50) |              | (50) |        |
| SQUAMOUS CELL PAPILLOMA                      |                                       |                | 1    | (2%)         |      |        |
| SQUAMOUS CELL CARCINOMA                      | 1                                     | (2%)           |      |              |      | (2%)   |
| BASAL-CELL CARCINOMA                         |                                       | ( <b>-</b> - ) | 3    | (6%)         |      | (2%)   |
| SEBACEOUS ADENOCARCINOMA<br>KERATOACANTHOMA  |                                       | (2%)           | 0    | (00)         |      | (2%)   |
| FIBROMA                                      |                                       | (4%)<br>(2%)   | 3    | (6%)         | 2    | (4%)   |
| NEURILEMOMA                                  | 1                                     | (2%)           |      |              | 1    | (2%)   |
| *SUBCUT TISSUE                               | (50)                                  |                | (50) |              | (50) | (270)  |
| TRICHOEPITHELIOMA                            | (00)                                  |                |      | (2%)         | (00) |        |
| FIBROMA                                      | 3                                     | (6%)           |      | (14%)        | 9    | (4%)   |
| LIPOMA                                       | U                                     |                |      | (2%)         | 2    | ( //)  |
| NEUROFIBROSARCOMA                            | 1                                     | (2%)           | •    | \ <b>_</b> , |      |        |
| RESPIRATORY SYSTEM                           |                                       |                |      |              |      |        |
| #LUNG                                        | (50)                                  |                | (50) |              | (50) |        |
| CARCINOMA, NOS, METASTATIC                   | (00)                                  |                | (50) |              |      | (2%)   |
| SQUAMOUS CELL CARCINOMA                      | 1                                     | (2%)           |      |              | 1    | (270)  |
| ALVEOLAR/BRONCHIOLAR ADENOMA                 |                                       | (4%)           | 1    | (2%)         |      |        |
| RHABDOMYOSARCOMA, METASTATIC                 |                                       | (2%)           | -    | (= ~)        |      |        |
| HEMATOPOIETIC SYSTEM                         | · · · · · · · · · · · · · · · · · · · |                |      |              |      |        |
| *MULTIPLE ORGANS                             | (50)                                  |                | (50) |              | (50) |        |
| MALIG. LYMPHOMA, LYMPHOCYTIC TYPI            | E 1                                   | (2%)           |      |              |      |        |
| LEUKEMIA, MONONUCLEAR CELL                   | 8                                     | (16%)          | 3    | (6%)         | 3    | (6%)   |
| <b>#BONE MARROW</b>                          | (50)                                  |                | (50) |              | (49) |        |
| MALIG. LYMPHOMA, HISTIOCYTIC TYPE            |                                       |                | 1    | (2%)         |      |        |
| #LIVER                                       | (50)                                  |                | (50) |              | (50) |        |
| LEUKEMIA, MONONUCLEAR CELL                   | 1                                     | (2%)           |      |              |      |        |
| CIRCULATORY SYSTEM                           |                                       |                |      |              |      |        |
| *SUBCUT TISSUE                               | (50)                                  |                | (50) |              | (50) |        |
| HEMANGIOMA                                   |                                       |                | 1    | (2%)         | 1    | (2%)   |
| DIGESTIVE SYSTEM                             | -                                     |                |      |              |      |        |
| *SOFT PALATE                                 | (50)                                  |                | (50) |              | (50) |        |
| SQUAMOUS CELL PAPILLOMA                      |                                       | (2%)           |      |              |      | (2%)   |
| #LIVER                                       | (50)                                  | (07)           | (50) |              | (50) | (0 ~ ) |
| NEOPLASTIC NODULE                            |                                       | (6%)           | •    | (911)        |      | (2%)   |
| HEPATOCELLULAR CARCINOMA                     |                                       | (2%)           |      | (2%)         |      | (4%)   |
| #PANCREAS<br>ACINAR-CELL ADENOMA             | (50)                                  | (22%)          | (49) | (12%)        | (50) | (22%)  |
| ACINAR-CELL ADENOMA<br>ACINAR-CELL CARCINOMA |                                       | (22%)          | 0    | (1470)       | 11   | (4470) |
| #CECUM                                       | (50)                                  |                | (50) |              | (50) |        |
| LIPOMA                                       | (00)                                  |                | (00) |              |      | (2%)   |
| URINARY SYSTEM                               |                                       | · · · ·        |      | <u> </u>     |      |        |
| <b>#URINARY BLADDER</b>                      | (50)                                  |                | (50) |              | (50) |        |
| TRANSITIONAL-CELL PAPILLOMA                  | ()                                    |                | (    |              |      | (2%)   |

# TABLE A1. SUMMARY OF THE INCIDENCE OF NEOPLASMS IN MALE RATS IN THE TWO-YEAR GAVAGE STUDY OF HC RED NO. 3

|                                   | CONTRO   | L (VEH)      | LOWI         | DOSE         | HIGH      | DOSE  |
|-----------------------------------|----------|--------------|--------------|--------------|-----------|-------|
| ENDOCRINE SYSTEM                  |          |              |              |              |           |       |
| #PITUITARY                        | (50)     |              | (48)         |              | (49)      |       |
| CARCINOMA, NOS                    |          | (6%)         |              | (4%)         |           | (2%)  |
| ADENOMA, NOS                      |          | (18%)        |              | (15%)        |           | (14%) |
| ACIDOPHIL ADENOMA                 |          | (2%)         |              | (4%)         |           | (2%)  |
| #ADRENAL                          | (49)     | (2.07)       | (50)         | ()           | (50)      | (=,   |
| CORTICAL ADENOMA                  | , ,      | (4%)         | 1            | (2%)         | ,         |       |
| PHEOCHROMOCYTOMA                  | 19       | (39%)        | 13           | (26%)        | 9         | (18%) |
| PHEOCHROMOCYTOMA, MALIGNANT       |          |              |              |              | 1         | (2%)  |
| <b>#ADRENAL MEDULLA</b>           | (49)     |              | (50)         |              | (50)      |       |
| PHEOCHROMOCYTOMA                  |          | (2%)         |              |              | 1         | (2%)  |
| GANGLIONEUROMA                    |          | (2%)         |              |              |           |       |
| #THYROID                          | (49)     |              | (49)         |              | (50)      |       |
| FOLLICULAR-CELL ADENOMA           |          | (2%)         |              | (2%)         | •         |       |
| FOLLICULAR-CELL CARCINOMA         |          | (2%)         |              | (4%)         |           | (4%)  |
| C-CELL ADENOMA                    |          | (14%)        | 5            | (10%)        |           | (6%)  |
| C-CELL CARCINOMA                  |          | (10%)        | (10)         |              |           | (2%)  |
| #PANCREATIC ISLETS                | (50)     | (69)         | (49)         | (10)         | (50)      | (60)  |
| ISLET-CELL ADENOMA                |          | (6%)<br>(2%) |              | (4%)<br>(2%) |           | (6%)  |
| ISLET-CELL CARCINOMA              | 1<br>    | (2%)         | 1            | (2%)         | JJ        | (6%)  |
| REPRODUCTIVE SYSTEM               |          |              |              |              |           |       |
| *MAMMARY GLAND                    | (50)     |              | (50)         |              | (50)      |       |
| FIBROADENOMA                      | 8        | (16%)        | 2            | (4%)         | 2         | (4%)  |
| *PREPUTIAL GLAND                  | (50)     |              | (50)         |              | (50)      |       |
| CARCINOMA, NOS                    |          |              | 1            | (2%)         |           | (2%)  |
| ADENOMA, NOS                      | 1        | (2%)         |              |              |           | (2%)  |
| #TESTIS                           | (50)     |              | (50)         |              | (50)      |       |
| INTERSTITIAL-CELL TUMOR           | 46       | (92%)        |              | (84%)        |           | (84%) |
| *SPERMATIC CORD                   | (50)     |              | (50)         |              | (50)      |       |
| MESOTHELIOMA, NOS                 |          |              | 1            | (2%)         |           |       |
| NERVOUS SYSTEM                    |          |              |              |              |           |       |
| #BRAIN                            | (50)     |              | (50)         |              | (50)      |       |
| CARCINOMA, NOS, INVASIVE          | 1        | (2%)         | 1            | (2%)         |           |       |
| SPECIAL SENSE ORGANS              |          |              |              |              |           |       |
| *ZYMBAL GLAND                     | (50)     |              | (50)         |              | (50)      |       |
| CARCINOMA, NOS                    | (00)     |              |              | (2%)         |           | (2%)  |
|                                   | <u> </u> | <u></u>      |              | <u></u>      | <u> </u>  |       |
| MUSCULOSKELETAL SYSTEM            | -        |              | / P.A.       |              | (20)      |       |
| *FEMUR                            | (50)     |              | (50)         |              | (50)      | (0/1) |
| OSTEOSARCOMA<br>*MUSCLE OF THOPAX | (50)     |              | (50)         |              | 1<br>(50) | (2%)  |
| *MUSCLE OF THORAX<br>LIPOMA       |          | (2%)         | (00)         |              | (50)      |       |
| *ABDOMINAL MUSCLE                 | (50)     | (270)        | (50)         |              | (50)      |       |
| LIPOMA                            | (00)     |              |              | (2%)         | (00)      |       |
| *MUSCLE OF LEG                    | (50)     |              | (50)         | (4.70)       | (50)      |       |
|                                   |          | (2%)         | (00)         |              | (00)      |       |
| RHABDOMYOSARCOMA                  |          |              | ······       |              |           |       |
|                                   |          |              |              |              |           |       |
| BODY CAVITIES                     | (80)     |              | (50)         |              | (50)      |       |
| BODY CAVITIES<br>*PELVIS          | (50)     |              | (50)         |              | (50)<br>1 | (294) |
| BODY CAVITIES                     | (50)     |              | (50)<br>(50) |              |           | (2%)  |

# TABLE A1. SUMMARY OF THE INCIDENCE OF NEOPLASMS IN MALE RATS IN THE TWO-YEAR GAVAGE STUDY OF HC RED NO. 3 (Continued)

|                                                           | CONTROL (VEH)  | LOW DOSE | HIGH DOSE        |
|-----------------------------------------------------------|----------------|----------|------------------|
| ALL OTHER SYSTEMS                                         | _              |          |                  |
| *MULTIPLE ORGANS                                          | (50)           | (50)     | (50)             |
| SARCOMA, NOS<br>MESOTHELIOMA, MALIGNANT                   |                |          | 1 (2%)<br>1 (2%) |
| NEURILEMOMA, MALIGNANT                                    | 1 (2%)         |          | 1 (277)          |
| DIAPHRAGM                                                 |                |          |                  |
| SARCOMA, NOS                                              | 1              |          |                  |
| ANIMAL DISPOSITION SUMMARY                                |                |          |                  |
| ANIMALS INITIALLY IN STUDY                                | 50             | 50       | 50               |
| NATURAL DEATH                                             | 5              | 6        | 8                |
| MORIBUND SACRIFICE                                        | 11             | 9        | 6                |
| SCHEDULED SACRIFICE<br>TERMINAL SACRIFICE                 | 33             | 33       | 32               |
| DOSING ACCIDENT                                           | 33             | 2        | 32               |
| ACCIDENTALLY KILLED, NDA                                  | •              | -        |                  |
| ACCIDENTALLY KILLED, NOS                                  |                |          | 4                |
| ANIMAL MISSING                                            |                |          |                  |
| ANIMAL MISSEXED                                           |                |          |                  |
| OTHER CASES                                               |                |          |                  |
| UMOR SUMMARY<br>TOTAL ANIMALS WITH PRIMARY TUMO           | RS** 48        | 48       | 46               |
| TOTAL PRIMARY TUMORS                                      | 152            | 114      | 113              |
| TOTAL ANIMALS WITH BENIGN TUMOR                           |                | 47       | 44               |
| TOTAL BENIGN TUMORS                                       | 120            | 97       | 89               |
| TOTAL ANIMALS WITH MALIGNANT TU                           |                | 14       | 17<br>22         |
| TOTAL MALIGNANT TUMORS<br>TOTAL ANIMALS WITH SECONDARY TU | 29<br>MORS## 2 | 15<br>1  | 1                |
| TOTAL SECONDARY TUMORS                                    | 2              | 1        | i                |
| TOTAL ANIMALS WITH TUMORS UNCER                           | —              | -        |                  |
| BENIGN OR MALIGNANT                                       | 3              | 1        | 2                |
| TOTAL UNCERTAIN TUMORS                                    | 3              | 2        | 2                |
| TOTAL ANIMALS WITH TUMORS UNCER                           | TAIN-          |          |                  |
| PRIMARY OR METASTATIC                                     |                |          |                  |
| TOTAL UNCERTAIN TUMORS                                    |                |          |                  |

# TABLE A1. SUMMARY OF THE INCIDENCE OF NEOPLASMS IN MALE RATS IN THE TWO-YEAR GAVAGE STUDY OF HC RED NO. 3 (Continued)

\* NUMBER OF ANIMALS NECROPSIED \*\* PRIMARY TUMORS: ALL TUMORS EXCEPT SECONDARY TUMORS

# NUMBER OF ANIMALS WITH TISSUE EXAMINED MICROSCOPICALLY ## SECONDARY TUMORS: METASTATIC TUMORS OR TUMORS INVASIVE INTO AN ADJACENT ORGAN

| C                                               | CONTRO    | L (VEH) | LOWI    | DOSE         | HIGH               | DOSE           |
|-------------------------------------------------|-----------|---------|---------|--------------|--------------------|----------------|
| ANIMALS INITIALLY IN STUDY                      | 50        |         | 50      |              | 50                 |                |
| ANIMALS NECROPSIED                              | 50        |         | 50      |              | 50                 |                |
| ANIMALS EXAMINED HISTOPATHOLOGICALLY            | 50        |         | 50      |              | 50                 |                |
| NTEGUMENTARY SYSTEM                             |           |         |         |              |                    |                |
| *SKIN                                           | (50)      |         | (50)    |              | (50)               | ( <b>a a</b> ) |
| SQUAMOUS CELL PAPILLOMA                         |           | (0~)    |         |              | · 1                | (2%)           |
| KERATOACANTHOMA                                 |           | (2%)    | (50)    |              | (50)               |                |
| *SUBCUT TISSUE<br>TRICHOEPITHELIOMA             | (50)      | (2%)    | (50)    |              | (50)               |                |
| SARCOMA, NOS                                    |           | (2%)    |         |              |                    |                |
| FIBROMA                                         |           | (4%)    |         |              | 2                  | (4%)           |
| FIBROSARCOMA                                    | 2         |         | 1       | (2%)         | -                  | (=,~)          |
| LIPOMA                                          | 1         | (2%)    | -       | (2,2)        |                    |                |
| RESPIRATORY SYSTEM                              | <u> </u>  |         | <u></u> | **** <u></u> |                    |                |
| #TRACHEA                                        | (50)      |         | (50)    |              | (50)               |                |
| C-CELL CARCINOMA, INVASIVE                      |           |         |         |              |                    | (2%)           |
| #LUNG                                           | (50)      |         | (50)    |              | (50)               |                |
| ADENOCARCINOMA, NOS, METASTATIC                 |           | (       |         | (2%)         |                    |                |
| ALVEOLAR/BRONCHIOLAR ADENOMA                    | 1         | (2%)    | 1       | (2%)         | -                  | (0~)           |
| C-CELL CARCINOMA, METASTATIC                    |           |         |         |              | 1                  | (2%)           |
| HEMATOPOIETIC SYSTEM                            |           |         |         |              |                    |                |
| *MULTIPLE ORGANS                                | (50)      | (000)   | (50)    | (100)        | (50)               | (00)           |
| LEUKEMIA, MONONUCLEAR CELL                      |           | (20%)   |         | (12%)        |                    | (6%)           |
| #MANDIBULAR L. NODE<br>SARCOMA, NOS, METASTATIC | (50)<br>1 | (2%)    | (50)    |              | (50)               |                |
| CIRCULATORY SYSTEM<br>NONE                      |           |         |         |              |                    |                |
| DIGESTIVE SYSTEM                                |           |         |         |              |                    |                |
| #SALIVARY GLAND                                 | (50)      |         | (49)    |              | (50)               |                |
| SARCOMA, NOS, INVASIVE                          |           | (2%)    |         |              |                    |                |
| <b>#PANCREAS</b>                                | (50)      |         | (50)    |              | (50)               |                |
| ACINAR-CELL ADENOMA                             |           |         |         |              |                    | (2%)           |
| #GASTRIC MUCOSA                                 | (50)      |         | (50)    | (0.0)        | (50)               |                |
| SQUAMOUS CELL PAPILLOMA                         | -         |         |         | (2%)         | /EA                |                |
| #FORESTOMACH                                    | (50)      |         | (50)    |              | (50)               | (194)          |
| SQUAMOUS CELL PAPILLOMA<br>#DUODENUM            | (50)      |         | (49)    |              | 2<br>( <b>4</b> 9) | (4%)           |
| LEIOMYOSARCOMA                                  | (00)      |         | (43)    |              |                    | (2%)           |
| URINARY SYSTEM                                  |           |         |         | <u></u>      |                    |                |
| #KIDNEY                                         | (50)      |         | (50)    |              | (50)               |                |
| TUBULAR-CELL ADENOMA                            | 1         | (2%)    |         |              |                    |                |
| <b>#URINARY BLADDER</b>                         | (50)      |         | (50)    |              | (50)               |                |
| TRANSITIONAL-CELL PAPILLOMA                     |           |         | 2       | (4%)         | 1                  | (2%)           |
| ENDOCRINE SYSTEM                                |           |         |         |              |                    |                |
| #PITUITARY                                      | (50)      | (0.2)   | (50)    |              | (50)               |                |
| CARCINOMA, NOS<br>ADENOMA, NOS                  |           | (8%)    |         | (2%)         |                    | (4%)<br>(30%)  |
| A DE NUMBER A DUENS                             | 18        | (36%)   | 17      | (34%)        | 15                 | (30)%)         |

# TABLE A2. SUMMARY OF THE INCIDENCE OF NEOPLASMS IN FEMALE RATS IN THE TWO-YEARGAVAGE STUDY OF HC RED NO. 3

|                              | CONTRO | OL (VEH) | LOWI | DOSE    | HIGH | DOSE     |
|------------------------------|--------|----------|------|---------|------|----------|
| ENDOCRINE SYSTEM (Continued) |        |          |      |         |      |          |
| #ADRENAL                     | (50)   |          | (50) |         | (50) |          |
| CORTICAL ADENOMA             |        | (4%)     |      | (6%)    | (00) |          |
| CORTICAL CARCINOMA           |        | (2%)     | Ŭ    | (0,0)   |      |          |
| PHEOCHROMOCYTOMA             |        | (6%)     | 3    | (6%)    | 1    | (2%)     |
| PHEOCHROMOCYTOMA, MALIGNANT  | 5      | (070)    | 0    | (0%)    |      | (2%)     |
| #ADRENAL MEDULLA             | (50)   |          | (50) |         | (50) | (2%)     |
| PHEOCHROMOCYTOMA             |        | (2%)     | (00) |         | (00) |          |
| #THYROID                     | (50)   |          | (50) |         | (50) |          |
| FOLLICULAR-CELL ADENOMA      |        | (2%)     |      | (2%)    |      | (4%)     |
| FOLLICULAR-CELL CARCINOMA    | -      | (2.0)    |      | (2%)    |      | (2%)     |
| C-CELL ADENOMA               | 5      | (10%)    |      | (8%)    |      | (8%)     |
| C-CELL CARCINOMA             | v      | (10,0)   |      | (4%)    |      | (4%)     |
| #PARATHYROID                 | (50)   |          | (48) | (1,0)   | (48) | ( • /• / |
| ADENOMA, NOS                 |        | (2%)     | (40) |         | (40) |          |
| #PANCREATIC ISLETS           | (50)   |          | (50) |         | (50) |          |
| ISLET-CELL ADENOMA           | (00)   |          | , ,  | (4%)    |      | (2%)     |
| ISLET-CELL CARCINOMA         |        |          |      | (4%)    | 1    | (4.0)    |
|                              |        |          | 4    |         |      |          |
| REPRODUCTIVE SYSTEM          |        |          |      |         |      |          |
| *MAMMARY GLAND               | (50)   |          | (50) |         | (50) |          |
| ADENOCARCINOMA, NOS          |        |          | 1    | (2%)    | 2    | (4%)     |
| CYSTADENOMA, NOS             |        |          | 1    | (2%)    |      |          |
| FIBROADENOMÁ                 | 14     | (28%)    | 24   | (48%)   | 11   | (22%)    |
| *CLITORAL GLAND              | (50)   |          | (50) |         | (50) |          |
| CARCINOMA, NOS               |        | (2%)     |      | (8%)    |      | (4%)     |
| ADENOMA, NOS                 |        | (=,      |      | (2%)    |      |          |
| #UTERUS                      | (50)   |          | (50) |         | (50) |          |
| LEIOMYOMA                    | (00)   |          | (00) |         |      | (2%)     |
| LEIOMYOSARCOMA               | 1      | (2%)     |      |         |      | (2%)     |
| ENDOMETRIAL STROMAL POLYP    |        | (20%)    | 5    | (10%)   |      | (18%)    |
| ENDOMETRIAL STROMAL SARCOMA  |        | (4%)     | Ŭ    | (10%)   | v    |          |
| #CERVIX UTERI                | (50)   | (4,0)    | (50) |         | (50) |          |
| FIBROMA                      | (00)   |          |      | (2%)    | (00) |          |
| ENDOMETRIAL STROMAL POLYP    |        |          |      | (2%)    |      |          |
| ENDOMETRIAL STROMAL SARCOMA  | 1      | (2%)     | -    | (2 %)   |      |          |
| #UTERUS/ENDOMETRIUM          | (50)   | (2,0)    | (50) |         | (50) |          |
| ADENOMA, NOS                 |        | (2%)     | (00) |         | (00) |          |
| ADENOCARCINOMA, NOS          |        | (2,10)   | 1    | (2%)    |      |          |
| #OVARY                       | (50)   |          | (50) | (470)   | (50) |          |
| GRANULOSA-CELL TUMOR         | (50)   |          |      | (4%)    | (00) |          |
|                              |        |          | ,    | <u></u> |      |          |
| NERVOUS SYSTEM               |        |          |      |         |      |          |
| #BRAIN                       | (50)   |          | (50) |         | (50) |          |
| CARCINOMA, NOS, INVASIVE     |        |          | -    |         | 1    | (2%)     |
| GRANULAR-CELL TUMOR, NOS     |        |          | 1    | (2%)    |      |          |
| SPECIAL SENSE ORGANS         |        |          |      |         |      |          |
| *ZYMBAL GLAND                | (50)   |          | (50) |         | (50) |          |
| CARCINOMA, NOS               |        | (2%)     | (00) |         |      | (4%)     |
|                              |        |          |      |         |      |          |
| MUSCULOSKELETAL SYSTEM       |        |          |      |         |      |          |
| *SKULL                       | (50)   |          | (50) |         | (50) |          |
| CARCINOMA, NOS, INVASIVE     | 1      | (2%)     |      |         |      |          |

# TABLE A2. SUMMARY OF THE INCIDENCE OF NEOPLASMS IN FEMALE RATS IN THE TWO-YEAR<br/>GAVAGE STUDY OF HC RED NO. 3 (Continued)

| C                                                        | ONTROL (VEH)   | LOW DOSE | HIGH DOSE |
|----------------------------------------------------------|----------------|----------|-----------|
| BODY CAVITIES<br>*ABDOMINAL WALL<br>FIBROSARCOMA         | (50)<br>1 (2%) | (50)     | (50)      |
| ALL OTHER SYSTEMS<br>NONE                                |                |          |           |
| ANIMAL DISPOSITION SUMMARY                               | <u></u>        |          |           |
| ANIMALS INITIALLY IN STUDY                               | 50             | 50       | 50        |
| NATURAL DEATH<br>MORIBUND SACRIFICE                      | 2<br>9         | 5<br>6   | 11<br>5   |
| SCHEDULED SACRIFICE                                      | 5              | U        | U         |
| TERMINAL SACRIFICE                                       | 39             | 38       | 34        |
| DOSING ACCIDENT                                          |                |          |           |
| ACCIDENTALLY KILLED, NDA<br>ACCIDENTALLY KILLED, NOS     |                | 1        |           |
| ANIMAL MISSING                                           |                | 4        |           |
| ANIMAL MISSEXED                                          |                |          |           |
| OTHER CASES                                              |                |          |           |
| TUMOR SUMMARY                                            |                |          |           |
| TOTAL ANIMALS WITH PRIMARY TUMORS**                      | 45             | 44       | 41        |
| TOTAL PRIMARY TUMORS<br>TOTAL ANIMALS WITH BENIGN TUMORS | 86<br>37       | 89<br>40 | 68<br>34  |
| TOTAL BENIGN TUMORS                                      | 63             | 67       | 51        |
| TOTAL ANIMALS WITH MALIGNANT TUMORS                      |                | 17       | 14        |
| TOTAL MALIGNANT TUMORS                                   | 23             | 19       | 17        |
| TOTAL ANIMALS WITH SECONDARY TUMORS                      |                | 1        | 2         |
| TOTAL SECONDARY TUMORS                                   | 3              | 1        | 3         |
| TOTAL ANIMALS WITH TUMORS UNCERTAIN                      | •              | 2        |           |
| BENIGN OR MALIGNANT<br>TOTAL UNCERTAIN TUMORS            |                | 2 3      |           |
| TOTAL ANIMALS WITH TUMORS UNCERTAIN                      |                | U        |           |
| PRIMARY OR METASTATIC                                    |                |          |           |
| TOTAL UNCERTAIN TUMORS                                   |                |          |           |

# TABLE A2. SUMMARY OF THE INCIDENCE OF NEOPLASMS IN FEMALE RATS IN THE TWO-YEARGAVAGE STUDY OF HC RED NO. 3 (Continued)

\* NUMBER OF ANIMALS NECROPSIED \*\* PRIMARY TUMORS: ALL TUMORS EXCEPT SECONDARY TUMORS # NUMBER OF ANIMALS WITH TISSUE EXAMINED MICROSCOPICALLY ## SECONDARY TUMORS: METASTATIC TUMORS OR TUMORS INVASIVE INTO AN ADJACENT ORGAN

| GAVAGE STUDY                                                                                                             |          | •           |          |        |             |        |          | _      | ••• |        | -        |          |          |        |          |             |             |    |        | 1          |          |          |          |         |
|--------------------------------------------------------------------------------------------------------------------------|----------|-------------|----------|--------|-------------|--------|----------|--------|-----|--------|----------|----------|----------|--------|----------|-------------|-------------|----|--------|------------|----------|----------|----------|---------|
| AN IMAL<br>HUMBER                                                                                                        |          | 1           | 9        | -      | 1           |        | 8        |        |     | 1      | 1        | 1        | 1        | 1      | 1        | 1           | 8<br>1<br>7 | 1  | 1      | 2          | 2        | 2        | 2        | 2       |
| HEEKS ON<br>Study                                                                                                        |          |             |          |        |             | •      | -        | -      |     |        | ;        | -11      |          | -      |          | -           | i           | 1  | -      | 1          | -        | 1        | 1        | ļ       |
| RYEGUMENTARY SYSTEM                                                                                                      | +*       | . ف.        | ف        | 1      | 6           |        | 11       | _61    |     | -61    | 11       |          | -11      | 6      | 61       |             | -           | 2  |        | _ف         | 61       | لمف      | <u>1</u> | 91      |
| SKIM<br>Squamdus Cell Carcingma<br>Sebacedus Adengcarcingma<br>Keratdacanthoma<br>Fibrona                                | •        | +           | ٠        | •      | •           | *<br>× | ٠        | •      | •   | ٠      | •        | •        | ٠        | ٠      | •        | •           | •           | •  | •      | •          | •        | •        | ٠        | ٠       |
| SUBCUTANEBUS TISSUE<br>Fibroma<br>Heurofibrosargoma                                                                      | ×        | +           | +        | •      | ٠           | +      | +        | +      | ٠   | *<br>x | •        | •        | +        | ٠      | ٠        | ٠           | +           | +  | +      | +          | ٠        | +        | •        | ٠       |
| ESPIRATORY SYSTEM                                                                                                        | +        |             |          | _      | _           |        |          |        |     | -      |          |          |          |        | _        | ~~~~        |             |    |        | -          |          |          | -        | -       |
| LUHOS AND BRÖNCHI<br>Squamgus Cell Carcingma<br>Alyeolaryerghentdlar Ademona<br>Rhabdonygsarcoma, metastatic             | ×        | •           | •        | +      | •           | •      | +        | ٠      | +   | +      | +        | •        | •        | •      | •        | •           | •           | ٠  | •      | •          | •        | •        | •        | •<br>×  |
| TRACHEA                                                                                                                  | +        | ٠           | ٠        | +      | +           | +      | ٠        | ٠      | ٠   | ٠      | ٠        | +        | ٠        | +      | ٠        | +           | +           | +  | ٠      | ٠          | •        | +        | ٠        | ٠       |
| HATOPOIETIC SYSTEM                                                                                                       | +        |             |          |        | -           |        |          |        | _   |        |          |          |          |        |          | -           |             |    |        | -          |          |          |          |         |
| BOHE MARROW                                                                                                              | ∔        | •           | •        | ٠      | ٠           | +      |          |        | . * | •      | <u> </u> | *        |          | +      | .*       |             | ٠           | ٠  |        | <b>.</b>   | •        | *        | *        | .+      |
| SPLEEN                                                                                                                   | +        | <u>_</u> *_ | +        | +      |             | . +    | *        | *      |     | *      | +        | *        | *        | ٠      | *        | <u>.</u> *. | *           | *  | •      | - <b>*</b> | <u>+</u> | *        | ŧ        | *       |
| LYNPH HEDES                                                                                                              | ÷        | *           |          |        | +           |        | *        | *      | *   |        | <u> </u> | <u>*</u> | <u>.</u> | *      |          | *           | •           | *  | +      | -          | *        | <u>*</u> | *        | *       |
| THYPUS                                                                                                                   | •        | ٠           | *        | •      | •           | *      | *        | •      | •   | •      | •        | *        | •        | •      | <u> </u> | *           | <u>.</u>    | *  | *      | +          | •        | <u>*</u> | •        | *       |
| RCULATORY SYSTEM<br>HEART                                                                                                |          | •           | •        | •      |             | •      | •        | •      | •   | •      |          | •        | •        | •      | •        | •           |             | •  | •      |            | •        | •        | •        |         |
| GESTIVE SYSTEM                                                                                                           | Ļ        |             |          | -      | _           | •      |          | -      | -   | -      |          |          | •        | · ·    | -        |             |             |    | _      | -          | •        | <u> </u> |          |         |
|                                                                                                                          |          | N           | н        | H      | н           |        |          | ж      | H   | н      | H        | N        | N        | н      | N        |             | н           | Ħ  |        |            | N        | H        | N        | N       |
| ORAL CAVITY<br>Squamous cell papilloma                                                                                   | Ë        | X           |          |        |             |        |          |        |     |        |          |          |          |        |          |             |             |    |        |            |          |          |          |         |
| SALIVARY BLAND                                                                                                           | ⊢        | +           | •        | .+     | •           | .+     | ٠        | ٠      | ٠   | •      | +        | •        | •        | *      | +        | ٠           | ٠           | •  | +      | - <u>*</u> | ٠.       | *        | •        | *       |
| LIVER<br>Hedplastic Hodule<br>Hedatocellular Carcinoma<br>Leukemia,monduuclear Cell                                      |          | •           | •        | •      | •           | •      | •        | •      | •   | •      | •        | •        | •        | •      | •        | •           | •           | •  | •      | ;          | •        | ÷        | •        | •       |
| BILE DUCT                                                                                                                | Ŀ        | ٠           | ٠        | ٠      | ٠           | ٠      | •        | ٠      | ٠   | •      | ٠        | •        | +        | •      | •        |             | •           | +. |        |            | ٠        | •        | +        | +       |
| GALLBLADDER & CONNON SILE DUCT                                                                                           | L.       |             |          | N.     | H.          | H      | M        | н      | H   | M      | H        | Ħ        | N        | N      | . М.,    | М.,         |             | H. | H.     | <u> </u>   | Ħ        | M        | M        | N       |
| PANCREAS<br>Acimar-Cell Adengma<br>Acimar-Cell Carcingma                                                                 | ×        | •           | ×        | ٠      | ×           | •      | +        | •      | •   | •      | •        | ×        | ż        | •      | +        | •           | •           | •  | •      | :          | •        | •        | •        | ×       |
| ESCPHAGUS                                                                                                                | ┝        | +           | +        | ٠      | •           |        | <u>.</u> | *      |     | *      | *        | *        | <u>*</u> | *      | ٠        | ٠           | ٠.          | +  | •      |            | +        | *        | *        | *       |
| STOMACH                                                                                                                  | +        | ٠           | +        | ٠      | ٠           | ٠      | ٠        | •      | •   | ٠      | •        | *        | •        | +      | *        | *           | *           | ٠  | +      | <u>.</u>   | ٠        | *        | +        | +       |
| SMALL INTESTINE                                                                                                          | ┼┷       | .*          | <b>.</b> | +      | •           | ٠      | +        | ٠      | *   | ٠      | •        | *        | *        | +      | +        | +           | +           | •  | +      |            | •        | <b></b>  | *        | +       |
| LARGE INTESTINE                                                                                                          | •        | +           | +        | •      | •           | *      | *        | +      | •   | *      | +        | *        | *        | +      | *        | +           | +           | *  | •      | <u> </u>   | •        | *        | •        | ٠       |
| THARY SYSTEM                                                                                                             | 1        |             |          |        |             |        |          |        |     |        |          |          |          |        |          |             |             |    |        |            |          | -        |          |         |
| KIDHEY                                                                                                                   | <u>├</u> | •           | ÷        | •      | ÷           | •      | ÷        | ÷.     | ÷   | ÷      | ÷        | ÷        | ÷        | ÷      | ÷        | ÷           | •           | *  | •      | - <u>'</u> | *<br>*   | <u>*</u> | •        | •       |
| URINARY SLADDER<br>Docrine System                                                                                        | *        | •           |          | _      | _           | -      | _        |        |     | ÷      |          |          |          |        |          | <u> </u>    | _           |    |        | -          | <u> </u> | _        |          | •       |
|                                                                                                                          | Ι.       |             |          |        |             |        |          |        |     |        | •        |          | •        |        | •        | •           | •           | •  | •      |            |          |          |          | •       |
| PITUITARY<br>Carcinoma, Hos<br>Adenoma, Hos<br>Acidophil Ad <del>enoma</del>                                             | Ĺ        |             | _        | _      | Ť           |        |          | ×      |     | ×      |          |          | _        | ×      |          | ×           |             |    | ×      |            |          |          | ·        |         |
| ADRENAL<br>Cortical Adenoma<br>Pheochromocytoma<br>Ganglioneuroma                                                        | •        | ٠           | •        | •      | *<br>×      | *<br>× | ٠        | •      | ٠   | *<br>× | •        | •        | +<br>x   | *<br>x | •        | •           | •           | •  | *<br>× | .,<br>.:   | *<br>×   | *<br>X   |          | *<br>x  |
| TYYERTD                                                                                                                  | •        | ٠           | +        | ٠      | ٠           | ٠      | +        | ٠      | +   | +      | ٠        | ٠        | ٠        | ٠      | +        | ٠           | ٠           | +  | ٠      | 0          | +        | +        | +        | ٠       |
| FOLLICULAR-CELL ADENOMA<br>FOLLICULAR-CELL CARCINOMA                                                                     |          |             |          |        |             |        |          |        |     |        |          |          |          |        |          |             |             |    |        |            |          |          | x        |         |
| C-CELL ADENOMA<br>C-CELL CARCINOMA                                                                                       |          |             | _        | _      |             | X.     |          |        | _   |        | _        |          |          | ×      | X        |             |             |    |        | _          | X.,      | -        | _        | _       |
| PARATHYRDID                                                                                                              | <u>+</u> | •           | •        | ٠      | ٠           |        | •.       | ٠      | -   | ٠      | •        | ٠.       | ۰.       | +      | ٠        | ٠           | ٠           | ٠  | ٠      |            | ÷        | <u>.</u> | <u>+</u> | •       |
| PANCREATIC ISLETS<br>ISLET-CELL ADENOMA<br>Islet-Cell Carcinoma                                                          | •        | •           | •        | •      | •           | •      | •        | •      | •   | •      | •        | •        | •        | •      | •        | •           | •           | •  | •      | .,         | •        | •        | •        | *<br>x  |
| PRODUCTIVE SYSTEM<br>Hammary gland                                                                                       |          | +           | •        |        | ٠           | ٠      | •        |        |     |        | •        |          | •        | •      | •        | •           | •           | •  | •      | 4.         | •        | •        | ٠        | •       |
| FIBROADENGMA                                                                                                             | Ļ        | -           | ź.       | *      | ý.          |        |          | · ·    | ,   |        | -        |          |          |        |          | -           | ×.          | ×. |        |            |          |          | _        |         |
| TESTIS<br>Interstitial-Cell Tumor                                                                                        | 1:       | ÷           | ÷        | ÷      | *           | ÷      | ٠        | ÷      | ÷   | ÷      | +        | ÷.       | *        | ÷      | ÷        | ÷           | ÷           | *  | *<br>× | ÷          | *<br>x   | *<br>*   | ÷        | ÷       |
| PROSTATE                                                                                                                 | T.       | •           | +        | •      | ÷           | •      | •        | ÷      | •   | ÷      | ÷        | ÷.       |          | +      | ,        |             | • .         | +  |        |            | ÷.       | *        | •        | ÷       |
|                                                                                                                          | Ť        | Ň           | H        | Ħ      | N           | Ň      | Ň        | Ň      | Ň   | N.     | Ň        |          |          | N      | N        |             | N           | N  | N      | ).<br>}!   | N        | N        | N        | N       |
| PREPUTIAL/CLITORAL GLAND<br>Adenoma, NOS<br>Révous system                                                                | Ļ        |             |          |        |             |        |          |        |     |        |          |          |          |        |          |             | -           |    |        |            |          |          | ×        | <u></u> |
| BRAIN                                                                                                                    | +        | ٠           | ٠        | ٠      | ٠           | ٠      | ٠        | •      | ٠   | ٠      | ٠        | •        | ٠        | +      | ٠        | ٠           | ٠           | ٠  | ٠      | 4          | •        | ٠        | ٠        | ٠       |
| CARCINOMA, NOS. INVASIVE                                                                                                 | <u> </u> |             | _        |        | <del></del> |        | _        | _      |     |        |          |          |          |        |          |             |             |    | _      |            |          | -        |          |         |
|                                                                                                                          |          | •           | ٠        | •      | •           | •      | •        | •      | •   | ٠      | •        | •        | •        | •      | •        | •           | •           | ÷  | +      | 4          | •        | +        | •        | •       |
|                                                                                                                          | 1        |             |          |        |             |        |          |        |     |        |          |          |          |        |          |             |             |    |        |            |          |          |          | x       |
| HUSCLE<br>Lipoma<br>Rhabdonyosarcoma                                                                                     | 1        |             | _        |        |             |        |          |        |     |        |          |          |          |        |          |             |             |    |        |            |          |          |          |         |
| LIPOMA<br>RHABDONYOSARCOMA                                                                                               | 1        |             |          |        |             |        |          |        |     |        |          |          |          | н      | нÌ       |             | N           | н  | N      | *          |          |          | н        | N       |
| ŘHAŠDOHTOSARCOMA<br>L Other Systems<br>Multiple organs noš<br>Neurilemoma, malignant<br>Maligliymphoma, lymphocytic type | N        | M           | N        | N<br>X | H           | N<br>Y | H        | N<br>Y | *   | H      | M        | R        |          |        |          |             |             |    |        | ŕ          | H        | ×        |          |         |
| LIFOMA<br>Rhaddonyggarcona<br>.L Other Systems<br>Multiple Drams NGS                                                     | N        | H           | м        | H<br>X | H           | н<br>х | H        | ×      |     |        | N        |          |          |        |          |             |             |    |        |            |          | ×        |          |         |

### TABLE A3. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE RATS IN THE TWO-YEAR GAVAGE STUDY OF HC RED NO. 3: VEHICLE CONTROL

X: TUMOR INCIDENCE A: AUTOLYSIS H: Mecropsy, Mo Autolysis, No Microscopic Examination M: Animal Missing S: Animal Mis-Sexed B: No Mecropsy Performed

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ANIMAL                                                                                                          | 1    | 2        | 2        | 2        | 3          | 3        | 3        | 1        | 3        | 3        | -        | \$       | 3          | 3        | 1         | 1        | -        | 1        |            | 1        | 1         | 1        | 1          | 1        | 8      |            |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|------|----------|----------|----------|------------|----------|----------|----------|----------|----------|----------|----------|------------|----------|-----------|----------|----------|----------|------------|----------|-----------|----------|------------|----------|--------|------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | HEEKS ON                                                                                                        | +#   | -11      | -        | -        | ╣          | +        | -11      | ╣        | #        | ╢        | Ħ        | 1        | 1          | 批        | 1         | ╢        |          | ╢        | 11         | #        |           | #        | ╣          | -11-     | - 11   | TISSUES    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                 | 11   |          |          | .!       | 1          | 1        | لله      | 1        | 1        | 61       | 1        | <u>,</u> | 1          | 4        |           | il.      |          | 31       | 1          | î١       | <u>il</u> | ii.      | Ц          | <u>,</u> | 4      | ( UNUK 3   |
| 1140071740004       124007       124007       124007       124007       124007       124007       124007       124007       124007       124007       124007       124007       124007       124007       124007       124007       124007       124007       124007       124007       124007       124007       124007       124007       124007       124007       124007       124007       124007       124007       124007       124007       124007       124007       124007       124007       124007       124007       124007       124007       124007       124007       124007       124007       124007       124007       124007       124007       124007       124007       124007       124007       124007       124007       124007       124007       124007       124007       124007       124007       124007       124007       124007       124007       124007       124007       124007       124007       124007       124007       124007       124007       124007       124007       124007       124007       124007       124007       124007       124007       124007       124007       124007       124007       124007       124007       124007       124007       124007       124007       124007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SKIN<br>Squamdus Cell Carcinoma<br>Sebaceous Adengcarcinoma<br>Keratokantmoma                                   | •    | ٠        | ٠        | ٠        | ٠          | ٠        | *<br>×   | ٠        | ٠        | ٠        | ٠        | ٠        | ٠          | ٠        | •         |          | +<br>x   | •        | •          | •        | •         | ٠        | ٠          | •        | ٠      |            |
| Unstanding Statement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SUBCUTANEOUS TISSUE<br>Fibroma                                                                                  | ×    | ٠        | •        | ٠        | •          | ٠        | ٠        | •        | ٠        | +        | +        | •        | •          | •        | +         | •        | •        | •        | •          | •        | ٠         | *<br>×   | •          | •        | •      | 5          |
| TAGENA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                 | +    |          |          |          | -          | -        |          | _        |          | -        |          |          |            |          |           |          |          |          |            |          |           |          | حاصاد      |          |        |            |
| TAGENA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | LUNGS AND SRONCHI<br>Squamdus Cell Carcingma<br>Alveglar/Sronchiglar Adengma<br>Rhabgonygsarcoma, metastatic    | Ŀ    | *<br>x   | •        | •        | •          | •        | •        | •        | •        | •        | •        | •        | •          | •        | •         | •        | •        | •        | •          | •        | •         | •        | •          | ×        | •      | . 1        |
| 1000 RARGEN       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       - <td< td=""><td></td><td>•</td><td>٠</td><td>٠</td><td>٠</td><td>•</td><td>٠</td><td>٠</td><td>•</td><td>٠</td><td>٠</td><td>٠</td><td>+</td><td>٠</td><td>•</td><td>•</td><td>•</td><td>٠</td><td>•</td><td>٠</td><td>٠</td><td>٠</td><td>٠</td><td>٠</td><td>٠</td><td>+</td><td>54</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 | •    | ٠        | ٠        | ٠        | •          | ٠        | ٠        | •        | ٠        | ٠        | ٠        | +        | ٠          | •        | •         | •        | ٠        | •        | ٠          | ٠        | ٠         | ٠        | ٠          | ٠        | +      | 54         |
| STATUS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | HATOPOIETIC SYSTEM                                                                                              |      |          |          |          |            |          |          |          | -        |          |          |          |            |          |           |          |          |          |            |          |           |          | _          |          |        |            |
| 1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1 <td>BONE MARRON</td> <td>+-</td> <td>+</td> <td>٠.</td> <td>+</td> <td><u>+</u>.</td> <td>+</td> <td>+</td> <td>*</td> <td>*</td> <td>÷</td> <td>*</td> <td>+</td> <td>٠</td> <td>+</td> <td>+</td> <td>*</td> <td>*</td> <td>•</td> <td>÷</td> <td>*</td> <td>٠.</td> <td>*</td> <td>*</td> <td>*</td> <td>4</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | BONE MARRON                                                                                                     | +-   | +        | ٠.       | +        | <u>+</u> . | +        | +        | *        | *        | ÷        | *        | +        | ٠          | +        | +         | *        | *        | •        | ÷          | *        | ٠.        | *        | *          | *        | 4      |            |
| Triving                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                 | ++   | +        | +        | +        |            | +        | *        | *        | <u>.</u> | •        | <u>.</u> | <u>.</u> | <u>*</u>   | <u>*</u> | •         | <u>*</u> | <u>*</u> | <u>*</u> | <u>*</u>   | <u>*</u> | *         | •        | <u>*</u> _ | •        | +      |            |
| IRRULTING STATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                 | +    |          | *        | <u> </u> | ÷          | <u>*</u> | •        | <u>.</u> | <u>*</u> | <u>*</u> | ÷        | <u></u>  | <u>*</u> . |          | <u>.</u>  | <u>*</u> | <u>.</u> |          | <u>.</u>   | <u>-</u> | -         | ÷        | ÷          | <u>.</u> | ÷      |            |
| NEART       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0 <td></td> <td>Ļ.</td> <td></td> <td>•</td> <td><u> </u></td> <td><u> </u></td> <td><u> </u></td> <td>-</td> <td></td> <td>•</td> <td>_</td> <td><u> </u></td> <td></td> <td>_</td> <td><u> </u></td> <td>•</td> <td>-</td> <td></td> <td></td> <td>-</td> <td>·</td> <td></td> <td></td> <td></td> <td></td> <td>-1</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                 | Ļ.   |          | •        | <u> </u> | <u> </u>   | <u> </u> | -        |          | •        | _        | <u> </u> |          | _          | <u> </u> | •         | -        |          |          | -          | ·        |           |          |            |          | -1     |            |
| CREATIVE STATE     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                 | Ι.   |          |          |          |            |          |          |          |          |          |          |          |            |          |           |          |          |          |            |          |           |          |            |          |        |            |
| 0741_CALTY     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                 | Ļ    | _        | _        |          | _          | <u> </u> |          | _        | <u> </u> | Ť        |          | _        |            | <u> </u> | -         | -        | ·        | •        |            | ·        |           | ·        |            |          | 4      |            |
| TRUBARDS CELL PAPELLONG           ALTYARY DLAND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                 |      |          |          |          |            |          |          |          |          |          |          |          |            |          |           |          |          |          |            |          |           |          |            |          |        |            |
| DATA FORM       Image in the i                                                                                                                                                                                                                                                                                                             | SQUAMOUS CELL PAPILLOMA                                                                                         | Ļ.   | _        | _        | -        |            | -        |          | <u> </u> |          |          | -        | -        |            |          | -         |          | _        | -        | -          |          | -         |          |            |          |        |            |
| #####     x     x     x     x     x     x     x     x     x     x     x     x     x     x     x     x     x     x     x     x     x     x     x     x     x     x     x     x     x     x     x     x     x     x     x     x     x     x     x     x     x     x     x     x     x     x     x     x     x     x     x     x     x     x     x     x     x     x     x     x     x     x     x     x     x     x     x     x     x     x     x     x     x     x     x     x     x     x     x     x     x     x     x     x     x     x     x     x     x     x     x     x     x     x     x     x     x     x     x     x     x     x     x     x     x     x     x     x     x     x     x     x     x     x     x     x     x     x     x     x     x     x     x     x     x     x     x     x     x     x     x     x     x     x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SALIVARY GLAND                                                                                                  | 1    |          | ٠        | ٠        | +          | •        | +        | •        | +        | ٠        | ٠        | ٠        | •          | -        | •         | ٠        | •        | <u>+</u> | •          | <u>ŧ</u> | ٠         | •        | +          | ٠        | +      | . 41       |
| ALLALLADER & CONVON BILE DUCT     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MEANIASTIC MARKIE                                                                                               | Ŀ    | •        | •        | •        | •          | •        | •        | •        |          | •        | •        | •        | •          |          | •         | •        | •        | •        | •          | •        | •         | •        | •          | •        | •      | 50         |
| PARTIES       2       2       2       2       2       3       3         SEGMAGUS       2       2       2       2       2       3       3         SALL INTESTING       2       2       2       2       2       2       3         SALL INTESTING       2       2       2       2       2       2       3         SALL INTESTING       2       2       2       2       2       3         SALL INTESTING       2       2       2       2       3       3         SALL INTESTING       2       2       2       2       3       3         SIGNARY SUPPI       2       2       2       2       4       2       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | SILE DUCT                                                                                                       | +++  | •        | •        | *        | +          | ٠        | +        | ٠        | +        | •        | +        | +        | *          | +        | <u>*</u>  | ٠        | *        | *        | <u>*</u> . | <u>+</u> | •         | ٠        | *          | +        | -+     |            |
| ACTIVAT-SELL APPROVA       X       X       X       X       X       11         REDMARGUE       X       X       X       X       X       15         STOMACH       X       X       X       X       X       15         STOMACH       X       X       X       X       X       16         STOMACH       X       X       X       X       X       16         STOMACH       X       X       X       X       X       16         STALL INTESTINE       X       X       X       X       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16 <td>GALLBLADDER &amp; COPPION SILE DUCT</td> <td>-</td> <td>Ħ</td> <td></td> <td>Ħ</td> <td>И.</td> <td>M</td> <td>М.,</td> <td></td> <td>N.</td> <td>Ħ</td> <td></td> <td><u>N</u></td> <td>_ال</td> <td></td> <td><u>H.</u></td> <td>×</td> <td>H</td> <td>Ħ</td> <td>N</td> <td><u>H</u></td> <td>Ν.,</td> <td>Н.</td> <td><u>.</u>#</td> <td>N.</td> <td>-</td> <td><u>568</u></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | GALLBLADDER & COPPION SILE DUCT                                                                                 | -    | Ħ        |          | Ħ        | И.         | M        | М.,      |          | N.       | Ħ        |          | <u>N</u> | _ال        |          | <u>H.</u> | ×        | H        | Ħ        | N          | <u>H</u> | Ν.,       | Н.       | <u>.</u> # | N.       | -      | <u>568</u> |
| STGMACH     2     2     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3 <t< td=""><td>PANCREAS<br/>Aginar-Cell Adengma<br/>Aginar-Cell Cargingma</td><td>1.</td><td></td><td>•</td><td>•</td><td>•</td><td>•</td><td>•</td><td>•</td><td>•</td><td>•</td><td></td><td>•</td><td>•</td><td></td><td></td><td>•</td><td>•<br/></td><td>•</td><td>•</td><td>•</td><td>•</td><td><u>.</u></td><td><u> </u></td><td>*</td><td>•</td><td>50</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PANCREAS<br>Aginar-Cell Adengma<br>Aginar-Cell Cargingma                                                        | 1.   |          | •        | •        | •          | •        | •        | •        | •        | •        |          | •        | •          |          |           | •        | •<br>    | •        | •          | •        | •         | <u>.</u> | <u> </u>   | *        | •      | 50         |
| ANALL INTESTINE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ESOPHAGUS                                                                                                       | +    | -        | •        |          | +          | •        | *        |          | +        | <u>.</u> | *        | . *      | +          | *        | ÷         | *        | <u>*</u> | <u>.</u> | +          | *        | *         | +        | ÷          | •        | -      |            |
| Antest Intestine          •         •         •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                 | ++   | •        | •        | •        | *          | •        | •        | •        | *        | *        | <u>+</u> | +        | *          | +        | *         | •        | <u>*</u> | <u>*</u> | <u>+</u>   | <u>*</u> | *         | •        | <u>*</u>   | <u>*</u> | *      |            |
| LARAT 110121     L. L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                 | +    | +        | +        | *        | +          | *        | •        | ÷        | *        |          | _        |          |            |          | *         | •        | <u>.</u> | •        | •          | <u>.</u> | •         | <u>.</u> | ÷          | <u> </u> | 1      | _          |
| KIDMEY       • • • • • • • • • • • • • • • • • • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                 | •    | *        | <u>*</u> | •        | *          | *        | <u>+</u> | <u>+</u> | +        | *        |          | <u> </u> | <u>.</u>   | <u>.</u> | •         | •        | *        | •        | •          | <u>.</u> | •         | •        | <u>.</u>   | •        | -      |            |
| NAMEL     Image: Alaboder     Image: Al                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                 | 1.   |          |          |          |            |          |          |          |          |          |          |          |            |          |           |          |          |          |            |          |           |          |            |          |        |            |
| ADDECRATIC SYSTEM     FILITARY     FILITARY     FILITARY     FILITARY       PILICULAR-CELL ADEMORA     X     X     X     X     X     X     X       ADECRATIC SENSORA     X     X     X     X     X     X     X       ADECRATIC SENSORA     X     X     X     X     X     X     X     X       ADECRATIC SENSORA     X     X     X     X     X     X     X     X       ADECRATIC SENSORA     X     X     X     X     X     X     X     X       ADECRATIC SENSORA     X     X     X     X     X     X     X     X       TWIRED     FOLLICULAR-CELL CARCINOMA     X     X     X     X     X     X     X       PARATURED     X     X     X     X     X     X     X     X     X       PARATURED     X     X     X     X     X     X     X     X     X       PARATURED     X     X     X     X     X     X     X     X     X       PARATURED     X     X     X     X     X     X     X     X     X       PARATURED     X     X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                 | +-   | ÷        |          |          |            | -        | <u> </u> | -        | <u> </u> |          | ,        | <u> </u> | <u>.</u>   | <u> </u> | ž         | <u>.</u> | <u>.</u> | ×        | <u>.</u>   |          | Ţ         | <u>,</u> | <br>•      | Ť        | Ì      |            |
| PITUITARY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                 | Ŀ    | *        |          | <u> </u> | <u> </u>   | -        | <u> </u> | <u> </u> | <u> </u> | ÷        | <u> </u> |          | <u> </u>   | -        |           | -        | -        | -        | -          |          | ·         |          |            | •        | -      |            |
| ADDERNAL<br>CHERGORD ADDETTONA<br>AMAGLISMEURAMA<br>THYROID<br>THYROID<br>THYROID<br>THYROID<br>THYROID<br>C-CELL ADENOMA<br>C-CELL ADENOMA<br>C-CCELL ADENOMA<br>C-CELL ADENOMA<br>C- | PITUITARY<br>CARCINOMA.HOS                                                                                      | ŀ    | •        | ٠        |          | •          | +<br>x   | ٠        | •        | ٠        | ٠        | ٠        | ×        | ٠          | •        | •         | ٠        | +<br>x   | •        | •          | •        | +<br>×    |          | ٠          | ×        | ٠      | 50         |
| TGLIZULAR-CELL ADEMONA<br>C-CELL ADEMONA<br>C-CELL ADEMONA<br>C-CELL ADEMONA<br>C-CELL ADEMONA<br>SCRUTURE SYSTEM     X     X     X     X     X     X     X     X     X       PARATHYROID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ADRENAL<br>Cortical Adenoma<br>Pheochromocytoma                                                                 |      |          | •        |          |            | •<br>×   | *        | •        | *<br>×   | *<br>×   | •        | ٠        | •<br>x     | -        | -         | -        | *<br>×   | •        | •          | •        | +<br>x    | ٠        | •<br>x     | •        | -      | 2          |
| PARATHYROID          • • • • • • • • • • • • • • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | THYRDID<br>Follicular-cell Adenoma<br>Follicular-cell Carcinoma<br>C-cell Adenoma                               | ·    | •        | •        | ٠        | -          | ·        | ٠        | ·        |          | ٠        | •        | ٠        |            |          |           |          | •        | •        | •          | •        | •.        | ٠        | ٠          | ٠        | •      | 1          |
| PARCHARINGSD     Image: Constraint of the second seco                                                                                                                                                                                                                                                                                               |                                                                                                                 | -    | <u>×</u> | •        | -        | _          |          | X        | -        |          | -        | <i></i>  |          |            |          |           |          |          |          |            | -        |           |          |            |          | -      |            |
| EPRODUCTIVE SYSTEM <ul> <li></li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                 | ×    | •        | •        | *<br>*   | •          | •        | •        | •        | •        | •        | •        | +        | •          | •        | +<br>+    | •        | •        | *        | •          | •        | •         | •        | <u>*</u>   | •        | i      | 50,        |
| MAMMARY GLAND <sup>1</sup> + + + + + + + + + + + + + + + + + + +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                 |      | -        |          |          |            |          |          |          | -        | _        |          |          | _          |          |           |          |          | _        |            |          |           |          |            |          | ┥      |            |
| I M I PROSTITIAL-CELL TUNOR     I I I I I I I I I I I I I I I I I I I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MAIMARY GLAND<br>FIBRGADEHOMA                                                                                   | ÷    |          |          |          |            | -        |          |          |          |          |          |          | ×.         |          |           | -        |          | -        | <u>×</u>   |          |           | _        | _          |          | •      | 4          |
| PREPITATE     N N N N N N N N N N N N N N N N N N N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TESTIS<br>Interstitial-cell tunor                                                                               | · Li | ż        | ż        | ÷        | ÷          | <u>.</u> | ż.       | ÷        | ÷        | ż        | ÷.       | ż        | ż.         | ž.       | ž         | ž.       | ž.       | ž        | -          | ž.,      | ž         | ž.       | ž.         | ×.       | ×.     |            |
| ADERNOMA, MOS     1       IRVOUS SYSTEM     1       BRAIN<br>CARCINGMA, MOS, INVASIVE     1       JSCULDSKELETAL SYSTEM     1       NUSCLE     1       LIFOMA     1       RMABDOMYOSARCOMA     1       LUTYTELE ORGANS MOS     N N N N N N N N N N N N N N N N N N N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PROSTATE                                                                                                        | 1.   | •        | +        | ٠        |            | ٠        | •        |          | +        | ٠        | •        | ٠        | +          | •        | •         | +        | •        | •        | •          | *        | ٠         | •        | *          | ٠        | +      | - 51       |
| BRAIN<br>CARCINGMA, NOS, INVASIVE          •••••••••••••••••••••••••••••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ADENOMA, HOS                                                                                                    | -    | N        | H        | H        | Ħ          | Ħ        | N        | H        | N        | Ň        | M        | H        | N          | N        | H         | H        | H        | N        | H          | H        | H         | N        | -          | н        | * <br> | 58#        |
| MUSCLE     + + + + + + + + + + + + + + + + + + +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SRAIN<br>Carcingma, Hgs, invasive                                                                               | •    | •        | ٠        | •        | •          | •        | •        | •        | •        | •        | •        | ×        | •          | •        | •         | •        | •        | •        | •          | •        | ٠         | •        | •          | •        | •      | 50,        |
| MULTIPLE ORGANS NOS NºN N N N N N N N N N N N N N N N N N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | HUSCLE<br>Lipoma                                                                                                | •    | ٠        | ٠        | ٠        | ٠          | ٠        | ٠        | ٠        | ٠        | ٠        | ×        | ٠        | ٠          | ٠        | ٠         | •        | ٠        | •        | ٠          | •        | ٠         | ٠        | ٠          | ٠        | ·      | 1          |
| HEURELENGHA, MALIGNANT TYPE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | LL OTHER SYSTEMS                                                                                                | +    | -        | -        |          | _          |          |          |          | _        |          |          |          |            |          | -         |          | -        |          |            |          |           |          | -          |          |        |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | MULTIPLE ORGANS NOS<br>Meurilemoma, Malignant<br>Malig.lymphoma, lymphocytic type<br>Leukemia,monomucilear cell |      | N        | N        | N        | N          | M        | N        | ĸ        | H<br>X   | H        | N        | M        | N          | H        | N         |          |          |          | N          | N<br>X   | N<br>X_   | "        | "          | N        | N      | 58#        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                 |      |          |          |          |            |          |          |          |          |          |          |          |            |          |           |          |          |          |            |          |           |          |            |          |        |            |

. ANIMALS NECROPSIED

| GAVAG                                                                                  | ES         | T        | JD       | Y        | 0)              | Fl       | HC             | R          | Ð        | D        | N                                             | Э.       | 3:  | L     | 01        | VI         | DO       | $\mathbf{S}$ | E          |          |                   |          |            |                 |        |
|----------------------------------------------------------------------------------------|------------|----------|----------|----------|-----------------|----------|----------------|------------|----------|----------|-----------------------------------------------|----------|-----|-------|-----------|------------|----------|--------------|------------|----------|-------------------|----------|------------|-----------------|--------|
| ANIMAL<br>Humber                                                                       | I          | -        | 1        | -        | 1               | 1        | 9              | -          |          | 1        | 1                                             | 1        | 1   | 1     | 1         | 1          | -        | 1            | 1          | 2        | 2                 | 2        | 2          | 2               | 10.00  |
| STUDY                                                                                  | 1          | -1       | 1        | ļ        | ;               | -        | 1              | 1          | -        | #        | -                                             | 1        | :   | Ì     | 1         | 1          | 1        | -            | 1          | 1        | ş                 | 1        | ;          | 1               | ļ      |
| INTEQUMENTARY SYSTEM                                                                   | 1.01       |          |          | -        | <u>. 61</u>     | -61      |                | 61         | 61       | 21       |                                               | •1       | 21  | 61    | <u>61</u> | <u>(</u> ] |          |              | 11         | 4        | 41                | 61       | -61        | _11_            | •      |
| SKIN<br>Squamqus cell papillona<br>Basal-Cell Carcinoma<br>Keratgaganthoma             | Ŀ          | •        | •        | •        | •               | •        | •              | •          | •        | •        | •.                                            | •        | •   |       | +<br>x    | •          | •        | •            | ×          | •<br>×   | N                 | •        | ٠          | •               | •      |
| SÚBCUTANEOUS TISSUE<br>Trichoepithelioma<br>Fibroma<br>Lipoma<br>Hemangioma            | +          | ٠        | •        | ٠        | ٠               | ٠        | ٠              | ٠          | ٠        | +<br>x   | ٠                                             | ٠        | •   | •     | •         | •          | *<br>x   | *<br>×       | ٠          | •        | H                 | •        | ×          | ٠               | •      |
| RESPIRATORY SYSTEM                                                                     | <u> </u>   |          |          |          |                 |          |                |            |          |          |                                               |          |     |       |           |            |          |              |            |          |                   |          |            |                 | -      |
| LUNGS AND BRONCHI<br>Alveglar/Bronchiglar Abeneta                                      | ŀ          | •        | -        | •        | -               | •        | -              | •          | ÷        | •        | •                                             | •        | •   | •     | •         | •          | •        | •            | •          | -        | <u>.</u>          | •        | •          | •               | _      |
| TRACHEA<br>HENATOPOIETIC SYSTEM                                                        | <b>↓</b> • | <u>.</u> | <u>*</u> | <u>.</u> | <u>.</u>        | <u>*</u> | •              | ٠          | •        | •        | •                                             | •        | *   | •     | •         | *          | <u>.</u> | <u> </u>     | •          | <u>*</u> | •                 | •        | <u>.</u>   | •               | +      |
| SONE MARROM                                                                            | •          | ٠        | +        | ٠        | +               | ٠        | •              | •          | ٠        | •        | •                                             | •        | •   | •     | •         | •          | •        | •            | ٠          | ٠        | •                 | ٠        | ٠          | •               | •      |
| MALIS.LYMPHOMA, HISTIOGYTIC TYPE<br>Spleen                                             | -          |          | -        |          | •               | •        |                |            | •        | •        | •                                             | •        | •   |       | •         | •          |          | •            | •          | •        |                   |          | •          | -               | -      |
| LYMPH HODES                                                                            | ŀ          |          | •        |          | •               | +        | •              | +          | •        | •        | •                                             | •        | •   | •     | •         | •          | ÷        | •            | •          | •        | +                 | •        | •          | •               | ÷      |
| THYMUS                                                                                 | •          | ٠        | +        | +        | ٠               | ٠        | ٠              | +          | +        | ٠        | +                                             | +        | •   | •     | +         | •          | +        | ٠            | ٠          | +        | ٠                 | +        | +          | +               | +      |
| CIRCULATORY SYSTER                                                                     | <b></b>    |          |          |          |                 |          |                |            |          |          |                                               |          |     |       |           |            |          |              |            |          |                   |          |            |                 | -      |
| HEART<br>DIGESTIVE SYSTEM                                                              | •          | •        | •        | •        | •               | *        | *              | •          | +        | ٠        | •                                             | +        | •   | +     | •         | •          | •        | •            | •          | <u>.</u> | <u>.</u>          | +        | •          | *               | ٠      |
| SALIVARY GLAND                                                                         |            | •        | •        | •        | •               | •        | •              | •          | •        | •        | +                                             | •        | •   | •     | •         | •          | •        | •            | •          | •        | •                 | •        | •          | ٠               |        |
| LIVER<br>HEPATOCELLULAR CARCINONA                                                      | •          | +        | •        | ٠        | •               | ٠        | ٠              | +          | ٠        | ٠        | ٠                                             | ٠        | •   | •     | •         | •          | •        | ٠            | •          | ٠        | ٠                 | <u>.</u> | ٠          | •               | +      |
| BILE DUCT                                                                              | •          | •        | •        | •        | +               | •        | •              | •          | •        | •        | +                                             | •        | •   | •     | •         | •          | •        | ÷            | •          | ,        | •                 | ÷        | •          | •               | •      |
| GALLBLADDER & COMMON BILE DUCT                                                         | N          | N        | н        | 18       | N               | н.,      | н_             | н.,        | н.,      | N.,,     | н.,                                           | н        | н   | H     | ł         |            | M        | N            | H.         | ٤        | H                 | N.       | M.         | M               | N      |
| PANCREAS<br>Acihar-Cell Adenoma                                                        | ٠          | •        | •        | •        | ٠               | ٠        | •              | +          | ٠        | •        | •                                             | •        | •   | •     | •<br>•    | •          | •        | ÷            | •          | ٠        | •                 | +        | ٠          | •               | ٠      |
| ESOPHAGUS                                                                              | •          | ٠        | ÷        | •        | +               | •        | +              | <u>+</u>   | •        | •        | •                                             | ŧ.       | •   | •     | •         | •          | +        | •            | +          |          | +                 | •        | •          | ·               | •      |
| STOMACH                                                                                |            | ٠        | ÷        | •        | •               | ٠.       | •              | ٠.         | ٠        | •        | ٠                                             | •        | •   | •     | •         | •          | •        | ٠            | •          | <u>.</u> | •                 | •        | <u>+</u>   | <u>•</u>        | 4      |
| SMALL INTESTINE                                                                        | •          | ٠        | •        | •        | •               | *        | •              | *          | *        | •        | •                                             | •        | •   | •     | •         | •          | •        | •            | *          | -        | •                 | +        | •          | +               | 4      |
| LARGE INTESTINE<br>URINARY SYSTEM                                                      | ŀ          | •        | •        | *        | •               | •        | +              | •          | •        | •        | +                                             | +        | •   | •     | • ·       | •          | •        | •            | •          | -        | •                 | +        | •          | •               | 1      |
| KIDNEY                                                                                 | +          | +        | +        | •        | •               | ۰.       | •              | •          |          | •        | •                                             | •        | •   | • . • | •         | •          | • .      | +            | •          |          | •                 | •        | •          | •               | ,      |
| URINARY SLADDER                                                                        | +          | ٠        | ٠        | •        | ٠               | •        | +              | +          | •        | •        | •                                             | •        | •   | •     | •         | •          | •        | ٠            | ÷          | •        | ٠                 | ٠        | ٠          | •               | •      |
| ENDOCRINE SYSTEM.                                                                      |            |          |          |          |                 |          |                |            |          |          |                                               |          |     |       |           |            |          |              |            |          |                   |          |            |                 | 1      |
| PITUITARY<br>Carcinoma, Nos<br>Adenoma, Nos<br>Acidophil Ad <mark>enoma</mark>         | ×          | •        | •        | -        | •               | •        | •              | •          | •        | •        | •                                             | •        | ×   | •     | •         | •          | •        | •            | •          | ۲<br>۲   | *<br>x            | •        | •          | •               | •      |
| ADRENAL<br>Cortical Adenoma<br>Phedchromocytoma                                        | ·          | •        | •        | •        | •               | •        | •<br>×         | •          | +<br>x   | •        | •                                             | •        | •   | •     | •         | •          | •        | ٠            | ٠          | 2        | •                 | ÷        | •          | +<br>x          | •      |
| TNYROID<br>Follicular-celi Adenoma<br>Follicular-celi Carcinoma<br>C-celi Adenoma      | •          | •        | ٠        | ٠        | •               | +<br>X   | •              | •          | •        | •        | •                                             | • ·      | •   | •     | •         | •          | •        | ٠            | •          | ۲        | +                 | ٠        | •          | •               | -      |
| PARATHYROID                                                                            | •          | •        | •        | +        | •               | •        | ÷              | ÷          | ÷        | •        | •                                             | • . •    | •   | •     |           |            | •        | •            | ÷          |          | •                 |          | +          |                 | -      |
| PANCREATIC ISLETS<br>ISLET-CELL ADENOMA<br>ISLET-CELL CARCIHOMA<br>Reproductive system | •          | ×        | •        | •        | •               | •        | •              | •          | •        | •        | •                                             | •        | •   | • •   | <br>      |            | *<br>*   | •            | •          | •        | •                 | •        | •          | •               | •      |
| MANNARY GLAND                                                                          | •          | •        | ٠        | ٠        | •               | •        | •              | •          | ٠        | Ħ        | ٠                                             | •        | •   | •     | •         |            | •        | ٠            | H          | •        | ٠                 | •        | •          | • 1             | N      |
| FIBRGADENOMA<br>Testis                                                                 | •          | +        | •        | •        | +               | •        | •              | مللہ<br>•  | •        | •        | •                                             |          | •   | • •   | , ,       | , ,        | •        | •            | •          | ,        | •                 | •        | •          | +               | +      |
| INTERSTITIAL-CELL TUNOR<br>PROSTATE                                                    |            | ×        | <u>×</u> | <u>×</u> | <u>×</u>        | <u>×</u> | <u>×</u>       | <u>×</u>   | <u>×</u> | <u>×</u> | <u>×                                     </u> | <u>×</u> |     |       | ب         | <u>ب</u>   | <u>×</u> | <u>×</u>     | <u>×</u>   | <u> </u> |                   | <u>×</u> | <u>×</u>   |                 | +      |
| PREPUTIAL/CLITORAL GLAND                                                               | н          | N        | N        | <u></u>  | . <u>т</u><br>N | ×        | . <del>т</del> | <u>ч</u> н | <u>т</u> | ×        | # 1                                           | N 1      |     | • •   | · · ·     |            | ř<br>N   | <u>т</u>     | N N        | ;<br>;   | <del>,</del><br>н | N        | <u>, т</u> | <u>е</u><br>н ; | Ť      |
| CARCINGMA,NOS<br>VAS DEFERNES, SPERMATIC CORD<br>Mesothelioma, Nos                     | н          | Ħ        |          | N        | N               | M        |                |            |          |          | я :                                           |          |     |       |           | • •        |          | X            |            |          | N                 | _        |            | -               | *      |
| NERVOUS SYSTEM                                                                         |            |          |          |          |                 |          |                |            |          |          |                                               |          |     |       |           |            |          |              |            |          |                   |          |            |                 | 1      |
| BRAIN<br>Carcingma, NOS, invasive                                                      | •          | •        | •        | •        | •               | •        | •              | •          | •        | •        | •                                             | • ;      | k ( |       | • •       |            | •        | •            | •          | •        | •                 | •        | •          | • •             | •      |
| SPECIAL SENSE ORGANS<br>Zymbal's gland                                                 | н          |          |          |          |                 |          |                |            |          |          |                                               |          |     |       |           |            |          |              |            |          |                   |          |            |                 | Ţ      |
| CARCINGMA, NOS                                                                         |            | H        | _        | "        | -               |          | -              | r4         | .4       |          |                                               |          |     |       |           |            | •        | r#           | r <b>t</b> |          | 4                 |          | n .        | H )             | 1      |
| MUSCULOSKELETAL SYSTEM                                                                 |            |          |          |          |                 |          |                |            |          |          |                                               |          |     |       |           |            |          |              |            |          |                   |          |            |                 | Ţ      |
| LIPOMA                                                                                 | •          | •        | -        | •        | -               | •        | •              | •          | •        | •        | •                                             | • •      | • • |       |           |            |          | •            | •          |          | •                 | •        | •          | + +             | 1      |
| TUNICA VAQINALIS<br>Mesothelioma, Hos                                                  | ٠          | +        | •        | •        | •               | •        | •              | •          | •        | •        | •                                             | • •      |     |       | •         |            |          | •            | •          |          | •                 | •        | •          | • •             | ľ      |
| ALL OTHER SYSTEMS                                                                      |            |          |          |          |                 |          |                |            | -        |          |                                               |          |     |       |           |            |          |              |            |          |                   |          |            |                 | $^{+}$ |
| MULTIPLE ORGANS NOS                                                                    | N          | N        | *<br>*   | N        | M               | M        | H              | N          | H        | N 1      | N )                                           | • •      |     |       |           |            |          | N 1          |            |          | N                 | H        | N          | N N             | 1      |

### TABLE A3. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE RATS IN THE TWO-YEAR GAVAGE STUDY OF HC RED NO. 3: LOW DOSE

### TABLE A3. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE RATS: LOW DOSE (Continued)

| AHINAL<br>HUMBER                                                                      | 2                 | 2        | 2          | 2        | 3        | 3        | 31       | 31       | -          |          | 3 3          | 3          | 3        | 4        |          |          |            |          | -        | 1  | -        | -        | 3  |                                       |
|---------------------------------------------------------------------------------------|-------------------|----------|------------|----------|----------|----------|----------|----------|------------|----------|--------------|------------|----------|----------|----------|----------|------------|----------|----------|----|----------|----------|----|---------------------------------------|
| HEEKS ON                                                                              |                   | ∦        | -          | ᆊ        | ╣        | 谢        | ∄        | 扑        |            |          | H            |            | -        | ╢        | #        | 2        |            |          |          | -1 |          | 1        |    | TOTAL<br>TISSUES<br>TUMORS            |
| STUDY                                                                                 | لغب               | 2        | Ш          | 1        | i.       | 31       |          | i.       | 1          | L        | 1.           |            | 4        |          |          |          |            |          | ا ه      |    | i.       | -        | -  | IUNUKS                                |
| SRIN<br>SRUAMOUS CELL PAPILLOMA<br>Basal-Cell Carcinoma<br>Reratoriacianthoma         | +<br>×            | ٠        | ¥          | ٠        | ٠        | •<br>x   | ٠        | •        | •          | • •      | • •          | ٠          | •        | ٠        | •        | •        | • •        | ٠        | •        | •  | •        | •        | ٠  | 59M<br>1<br>3<br>3                    |
| SUBCUTANEGUS TISSUE<br>Trichoepitheliona<br>Pibroma<br>Lipona<br>Hemangloma           | ŀ                 | ٠        | •<br>×     | •        | ٠        | *<br>x   | *<br>×   | •        | •          | • •      | • •          | •          | •        | +<br>×   | +        | •        | + +<br>K   | +<br>×   | •        | •  | •        | •        | •  | 58#<br>1<br>7<br>1                    |
|                                                                                       |                   |          | _          |          |          |          |          | _        |            |          |              |            |          |          |          |          | _          |          |          |    |          |          |    |                                       |
| LUNGS AND BRONCHI<br>ALVEDLAR/SRONCHIGLAR ASEMUNA                                     |                   | •        | +          | •        | •        | •        | ٠        | ٠        | •          | •        | • •          | ٠          | ٠        | ٠        | ٠        | •        | • •        | +        | ٠        | ٠  | ٠        | ٠        | +  | 58                                    |
|                                                                                       |                   | •        | •          | -        | •        | •        | •        | •        |            | • •      | • •          | •          | •        | •        | •        | •        |            | •        |          | •  | •        | •        |    | <u>_</u>                              |
| TRACHEA<br>IMATOPOTETTE SYSTEM                                                        | Ŀ                 | ÷        | <u>.</u>   | <u>.</u> | <u> </u> | ÷        | <u> </u> | <u>.</u> |            |          |              |            |          |          |          |          |            | <u> </u> | -        | -  | -        | _        | 4  |                                       |
|                                                                                       |                   | •        | •          | •        | •        | ٠        | ٠        | •        | •          | • •      | • •          | ٠          | •        | •        |          | •        |            | ٠        | •        | ٠  | •        | •        | +  | 59                                    |
| MALIE.LYMPHEMA. HISTIGGYTIC TYPE                                                      |                   |          | _          | _        |          | _        |          | -        |            |          |              |            |          | _        |          |          |            |          |          | ×  |          |          | -  |                                       |
| SPLEEN                                                                                | ┝┷                | <u>+</u> | *          | <u>+</u> | *        | *        | *        | *        | <u>* '</u> | <u> </u> | * *          | ••••       | *        | <u>.</u> | <u>*</u> | <u>.</u> | • <u>•</u> |          | <u>+</u> | *  | <u>.</u> | ÷        | -  | <u></u>                               |
| LYNPH NODES                                                                           | <u></u> <u></u> + | <u>.</u> | *          | *        | ÷        | ÷        | <u> </u> | *<br>*   | • •        | • •      | • <u>•</u> • | <u>+</u>   | <u>+</u> | ÷        | <u>.</u> | •        | •_•        | ÷        | ÷        | ÷  | <u>.</u> | ÷        | -  | <u>58</u><br>50                       |
| THYNUS<br>ITROULATORY SYSTEM                                                          | 1.                | <u>.</u> | *          | •        | <u>.</u> | -        | -        | -        | _          |          |              | _          |          |          |          |          |            |          | <u> </u> |    | -        | <u> </u> | -  |                                       |
| HEART                                                                                 |                   | •        | •          | •        | •        | •        | •        | •        | • •        | • •      | • •          | •          | •        | •        | •        | •        | • •        | •        | •        | •  | •        | •        | +  | 56                                    |
| IGESTIVE SYSTER                                                                       | ŀ                 |          |            |          |          | -        | -        |          |            |          |              |            | -        |          |          |          |            | _        |          |    | -        | _        | +  |                                       |
| SALIVARY GLAND                                                                        | ŀ                 |          | ٠          | •        | •        | • :      | +        | •        | •          | <u></u>  | •_•          | +          | +        |          | •        | •        | <u>.</u>   | ٠        | •        | •  | •        | •        | •  |                                       |
| LIVER<br>HEPATOCELLULAR CARCINOMA                                                     | ·                 | ٠        | *          | ٠        | ٠        | •        | +        | •        | •          | • •      | • •          | •          | ٠        | •        | ٠        | •        | • •        | ٠        | ٠        | ٠  | ٠        | ٠        | +  | 50                                    |
| NEPATOCELLULAR CARCINORA                                                              | 1.                | •        | •          | •        | +        | •        | •        | •        | •          |          |              |            | •        | •        | •        | •        |            |          |          | +  | •        |          | 1  |                                       |
| GALLELADDER & COMMON BILE DUCT                                                        | Ĺ                 | Н.       |            | N        | Н.       | H.       | ĸ        | м_       | <u>x</u>   | <u>ب</u> | بر           | ×          |          | н        | H        |          |            |          | ×        | н. | м        | м        | н  |                                       |
| PANCREAS                                                                              | •                 | +        | ٠          | +        | +        | ٠        | ٠        | +        | • •        | • •      | + +          | ٠          | ٠        | :        | ٠        | <u>.</u> | • •        | -        | ٠        | ٠  | ٠        | ٠        | +  | 49                                    |
| ACINAR-CELL ADENONA                                                                   | - ×               |          | <u>×</u> . | -        |          |          | <u> </u> |          | -          |          |              |            |          | <u> </u> |          | K        |            |          |          |    |          |          | 7  |                                       |
| ESOPHAGUS .                                                                           |                   |          | ÷          | ÷        | <u>.</u> | Ť        | -        | ÷        | -          |          |              | •          | ÷        | •        | ÷        | •        | • •        | <u> </u> | ÷        | •  | ÷        | ÷        | ÷  |                                       |
| STONACH                                                                               | T.                |          | •          | •        | •        | •        | •        | •        |            | • •      |              | •          | +        | •        | +        | • •      | • •        |          | ÷        | •  | •        |          | •  | 49                                    |
| LARGE INTESTINE                                                                       | 1.                | •        | •          | *        | •        | •        | •        | +        | • •        | • •      | • •          | +          | +        | •        | +        | • •      | • •        | +        | ٠        | +  | +        | +        | •  | 58                                    |
| RINARY SYSTEM                                                                         | ┼                 |          |            | -        |          |          |          |          | _          |          |              |            |          |          |          |          |            |          |          |    |          | -        | -  |                                       |
| KIDNEY                                                                                |                   |          | •          | *        | •        | <u>+</u> | •        | ٠.       | • •        |          | •            |            | +        | •        | •        | •        | • •        |          | •        | ٠. | ٠        | •        |    | - 11                                  |
| URINARY BLADDER                                                                       | •                 | ٠        | ٠          | ٠        | ٠        | ٠        | ٠        | ٠        | • •        | • •      | • •          | +          | +        | ٠        | ٠        | • •      | • •        | ٠        | ٠        | ٠  | ٠        | ٠        | •  | 58                                    |
| NDOCRINE SYSTEM                                                                       | 1                 |          | -          |          |          |          |          | -        |            |          |              |            |          |          |          |          |            |          |          |    |          |          |    |                                       |
| PITUITARY<br>Carcinoma, Nos                                                           | +                 | ٠        | •          | ٠        | ٠        | +        | ٠        | *        | •          | • •      | • •          | +          | +        | •        | -        | • •      | • •        | +        | •        | ٠  | ٠        | ٠        | •  | - 44 2                                |
| ADENOMA, NOS<br>Acidophil Ad <b>enoma</b>                                             | L                 |          |            |          |          |          |          | X        | ;          | K        |              |            | ×        |          |          | ;        | د<br>      | _        |          |    | X        | . ک      | _  | 2                                     |
| ADRENAL                                                                               | •                 | +        | ٠          | ٠        | ٠        | ٠        | ٠        | +        | •          | • •      | • •          | ٠          | ٠        | +        | ٠        | •        | • •        | ٠        | ٠        | ٠  | ٠        | ٠        | +  | 50                                    |
| CORTICAL ADENOMA<br>Pheochromocytoma                                                  | L×.               | _        | X.         |          |          | _        |          |          |            | X        | X            | _ <u>×</u> |          | ×        |          | <u>x</u> |            |          |          | X. |          | ×        |    | فىس                                   |
| THYROID<br>Follicular-cell Ademoma<br>Follicular-cell Carcinoma<br>C-cell Ademoma     | •                 | •        | •          | •        | •        | •        | *<br>×   | •        | • •        | • •      | • *•         | •          | •        | •        | •        | • •<br>× | · ;        | •        | •        | •  | •        | •        | •  | • • • • • • • • • • • • • • • • • • • |
| PARATHYROID                                                                           | Ŀ                 | +        | ٠          |          | ÷        | *        | *        | •        | •          | <u> </u> | • •          | ٠          | ٠        | +        | +        | •        | •          | •        | <u>.</u> | •  | ٠        | ٠        | •  | 49                                    |
| PANCREATIC ISLETS<br>ISLET-CELL ADENOMA<br>ISLET-CELL CARCINOMA<br>LEPRODUCTVE SYSTEM | •                 | *        | •          | •        | •        | •        | •        | •        | •          | • •      | • •          | •          | •        | •        | •        | • •      | • •        | •        | •        | •  | •        | •        | ·  | 49<br>2<br>1                          |
| HAMMARY GLAND<br>FIBROADENOMA                                                         | ŀ                 | ٠        | •          | ٠        | •        | ٠        | •        | ٠        | •          | •        | • •          | •          | •        | •        | • .      | •        | •          | N        | ٠        | ż  | ٠        | ٠        | •  | 50N                                   |
| TESTIS<br>INTERSTITIAL-GELL TUNOR                                                     | :                 | ٠        | ÷          | ÷        | ÷        | ÷        | ÷        | *        | : :        | ; ;      | : :          | ¥          | ٠        | *        | ÷        |          | •          | _*       | ÷        | *  | ÷        | ÷        | ż  | 50<br>- 42                            |
| PROSTATE                                                                              | L.                |          | •          | •        | •        | •        | •        | ÷        | •          | • •      | · •          | ,          | •        | •        | •        | •        | •          | •        |          | •  | •        | +        | •  |                                       |
| PREPUTIAL/CLITORAL GLAND                                                              | Ī                 | N        | Ħ          | N        | N        | N        | N        | _        |            |          | • •          | N          | N        | N        | N        | N 1      | 1 11       | N        | N        | N  | H        | N        | N  | 587                                   |
| CARGINGMA, NGS                                                                        | +                 |          | _          |          |          |          |          |          | н 1        |          |              | ×          |          | μ        |          |          |            |          | ĸ        | н  |          |          | -  | 58×                                   |
| YAS DEPERHES, SPERMATIC CORD<br>Mesothelicma, Hos<br>Ervous system                    | -                 | *<br>    | N          | 4        | *        | ×        | X        |          | - 1        |          |              |            |          |          |          |          |            |          |          | -  |          | -        |    | 1                                     |
| BRAIN<br>Carcingma, NOS, Invasive                                                     | ŀ                 | •        | •          | ٠        | •        | •        | •        | •        | •          | • •      | ••           | •          | •        | •        | •        | • •      | •••        | •        | ٠        | •  | •        | •        | •  | <b>5</b> •,                           |
| PECIAL SENSE GRGANS                                                                   | ,                 | н        | н          | N        | Ħ        | •        | H        | N        | н )        |          |              | м          | м        | н        | N        |          |            | ж        | N        | н  | N        | н        | н  | 58×                                   |
| CARCINOMA, NOS                                                                        | ["                |          |            | .4       | -1       | ×        |          |          |            |          |              |            |          |          |          |          |            |          |          |    |          |          |    | 1                                     |
| NUSCULOSKELETAL SYSTEM<br>Muscle<br>Lipoma                                            |                   | •        | +          | •        | •        | •        | +        | •        | •          | •        | • •          | •          | ٠        | •        | •        | • •      | • •        | •        | +        | •  | •        | +        | •  | 58#                                   |
| SODY CAVITIES                                                                         | +                 |          | _          | _        |          |          |          |          |            |          |              |            |          |          |          |          |            |          |          | _  |          |          | +  |                                       |
| TUNICA VACINALIS<br>Mesothelioma, nos                                                 | ŀ                 | •        | •          | •        | •        | •        | *        | ٠        | •          | • •      | • •          | •          | •        | •        | •        | •        | • •        | ٠        | ٠        | •  | •        | •        | ·  | 587                                   |
| ALL OTHER SYSTERS                                                                     | Γ                 |          |            |          |          |          |          |          |            |          |              |            |          |          |          |          |            |          |          |    |          |          |    |                                       |
| MULTIPLE ORGANS HOS                                                                   | 1 14              |          | M          | N        | N        | N.       | ĸ        | N        | N 1        | W )      | 4 19         | N          | N        | н        | N        | H )      | 4 N        | N        | N        | N  | N        | H        | мJ | 588                                   |

\* ANIMALS HECROPSIED

| ANIMAL<br>Number                                                                                       |          | 9        | 0        | 1        | 0          |          | 1        | -        | 1          | 1      | 1            |          | T   | 9 | 1        | 1        | - 1      | - 11          | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 21             | 2            | 2          | 21           |
|--------------------------------------------------------------------------------------------------------|----------|----------|----------|----------|------------|----------|----------|----------|------------|--------|--------------|----------|-----|---|----------|----------|----------|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------------|------------|--------------|
| HEEKS ON                                                                                               |          | Ž        | -i       | -        | -11        | -        | 1        | -        | 1          | -      | ÷            | 1        | 1   | 4 | -        | -11      | -        | -             | Ī                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -#-            |              | -          | <del>1</del> |
| STUDY                                                                                                  | Ż        | 2        |          | 3        | 3          | 3        | 3        | <u> </u> | 1          | 2      | :            |          | .;  | ŝ | à        | 3        | 3        | 3             | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | .Ц             | ;            | 1          | <u>: </u>    |
| INTEGUMENTARY SYSTEM                                                                                   |          |          | •        | +        |            |          |          | •        | •          | •      | •            |          |     | • | •        | •        | •        | •             | ٠                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                | •            | ٠          | •            |
| SKIN<br>Squamdus Cell Carcingra<br>Basal-Cell Carcingra<br>Sebacedus Adengcarcingra<br>Keratgacanthora |          |          | •        | x        | •          | •        |          |          |            |        |              |          |     |   |          |          |          |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |              |            |              |
| SEBACEDUS ADENOCARCINOMA                                                                               |          |          |          | x        |            |          |          |          |            |        |              |          |     |   |          |          | ×        |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |              |            |              |
| HEURILEMOMA                                                                                            | ×        |          |          |          |            | _        |          |          |            |        |              | -        |     |   | -        |          |          |               | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -              |              | _          |              |
| SUBCUTANEOUS TISSUE<br>Fibroma                                                                         | +        | +        | ٠        | ٠        | *          | +        | +        | +        | +          | +      | •            | • •      | •   | + | +        | •        | •        | +             | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | •              |              | *<br>×     | •            |
| HEHANGIOMA                                                                                             |          |          |          |          |            |          |          |          |            |        |              |          |     |   |          |          |          |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |              |            |              |
| LESPIRATORY SYSTEM                                                                                     |          |          |          |          |            |          |          |          |            |        |              |          |     |   |          |          |          |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |              |            |              |
| LUNGS AND BRONCHI<br>Carcinoma, NDS, Metastatic                                                        | +        | +        | +        | +        | *          | +        | •        | +        | +          | •      | •            | • •      | •   | + | +        | *        | *        | *             | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | . <u>.</u>     | *            | •          | <u>*</u>     |
| TRACHEA                                                                                                | •        | +        | +        |          | •          | +        | +        | •        | •          | ٠      | • •          | • •      | •   | + | +        | +        | +        | +             | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | •              | +            | ٠          | ٠            |
| HEMATOPOIETIC SYSTEM                                                                                   | +        |          |          |          |            |          |          |          |            |        |              |          | _   |   | _        |          |          |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1-1            |              | -          |              |
| BOHE MARROW                                                                                            |          | •        | •        | +        | •          | ٠.       | <u>.</u> | +        | +          | +      | • .          | <u> </u> | +   | ٠ | ٠        | ٠        | ٠        | •             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | . <u>t</u> .   | <u>.</u>     | <u>+</u>   | •            |
| SPLEEN                                                                                                 | Ŀ        | +        | +        | +        | •          | •        | •        | +        | ŧ          | •      | <b>*</b> . • | <u> </u> | ٠   | • | ٠        | ٠        | +        | ٠             | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                | •            | +          | <u>*</u>     |
| LYMPH NODES                                                                                            | Ŀ        | +        |          | +        | +          | +        | •        | ٠        | •          | •      | •            | • •      | •   | ٠ | ٠        | •        | ٠        | •             | ٠.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <u>.</u>       | ٠.           | •          | ٠.           |
| THYNUS                                                                                                 | •        | +        | •        | ٠        | ٠          | ٠        | ٠        | ٠        | •          | ٠      | • •          | • •      | ٠   | + | ٠        | ٠        | +        | ٠             | ٠                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | •              | •            | •          | •            |
| TROULATORY SYSTEM                                                                                      | +        |          |          |          |            | -        |          |          |            |        |              |          |     |   |          |          |          |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | a - painting   |              |            |              |
| HEART                                                                                                  | +        | ٠        | +        | ٠        | +          | ٠        | ٠        | ٠        | +          | +      | + +          | • •      | +   | + | ٠        | ٠        | ٠        | ٠             | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | •              | •            | • .        | •            |
| IGESTIVE SYSTEM                                                                                        |          |          |          |          |            |          |          |          | -          | -      |              |          |     |   |          |          | ······   |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1              |              |            |              |
| ORAL CAVETY                                                                                            |          | M        | ж        | H        | N          | Ħ        | H        | N        | N          | N      | н э          | 6 N      |     | H | N        | H        | Ħ        | N             | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ٠              | N            | N I        | N            |
| SQUAMOUS CELL PAPILLOMA                                                                                | -        | •        |          |          |            |          |          | •        | •          |        | • •          |          |     |   |          |          |          | •             | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | •              | •            |            | ÷            |
| SALIVARY GLAND                                                                                         | 1        |          | <u> </u> |          | - <u>-</u> | Ť        | ÷        |          |            |        |              | •        | ÷   | ÷ | ÷        | •        | •        | •             | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | •<br>•         | •            | •          | •            |
| LIVER<br>Neoplastic Hodule                                                                             | 1        | •        | •        | •        | •          | •        | •        | •        | •          | •      | • •          | •        | •   | • | •        | •        | ÷        | y v           | Ŧ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                |              |            | -            |
| HEPATOCELLULAR CARCINOMA                                                                               |          |          |          |          |            |          |          |          |            | •      |              |          |     |   |          |          |          |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |              |            |              |
| BILE DUCT                                                                                              | <u></u>  | <u> </u> | <u> </u> | <u>.</u> | <u>.</u>   | ÷        | •        | *        | *          |        | <u>+ +</u>   |          |     | Ť | Ť        | <u> </u> |          | Ť             | , in the second | میں اور اور    |              | <u>.</u>   | ×            |
| GALLBLADDER & COMMON SILE DUCT                                                                         | -        |          |          | - 1      |            | _U       |          | *        | •          | •      | • •          |          | +   | • | •        | •        | •        | •             | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | . <u> </u>     | +            | •          | •            |
| PANCREAS<br>Aginar-Cell Adenoma                                                                        | Ŀ        | •        | •        | *        | •          | •        | ż        | ×.       | •          | •      | • •          | ×        |     | x | <u> </u> | ž.       | ž.       | ž.            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                | <u> </u>     | _          | •            |
| ESOPHAGUS                                                                                              | 1 to     | ٠        |          | •        | ٠          | ٠        | ٠        | <u>+</u> | ٠          | ٠      | <u>.</u>     | • •      | . + | ٠ | •        | •        | •        | •             | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | . <del>*</del> | <u>*</u>     | <u>*</u>   | •            |
| STORACH                                                                                                | ++       | ٠        |          | ٠        | +          | ٠        | +        | +        | ٠          | +      | • •          | •        | +   | ٠ | ٠        |          | +        | +             | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                | <u>*</u>     | <u>+</u>   | •            |
| SMALL INTESTINE                                                                                        | 1.       | •        | +        | ٠        |            | •        | +        | ٠        | +          | +      | • •          | • •      | •   | • | .*       | +        | •        | ٠             | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                | •            | <u>.</u>   | <b>*</b>     |
| LARGE INTESTINE<br>Lipoma                                                                              | +        | ٠        | +        | ٠        | +          | +        | ٠        | +        | +          | ٠      | • •          | • •      | ٠   | + | ٠        | •        | •        | *             | ٠                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | •              | +            | •          | •            |
| RINARY SYSTEM                                                                                          |          |          |          |          |            | _        |          | _        |            | _      | -            |          |     |   |          | _        |          |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |              |            |              |
| KIDNEY                                                                                                 |          | ٠        |          | ٠        | •          | +        | •        | •        | +          | •      | • •          | • •      |     | • | +        | •        | •        | ٠             | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | . <u></u>      | •            | •          | •            |
| URINARY BLADDER                                                                                        |          | •        | *        | •        | •          | •        | +        | •        |            | •      | + (          | • •      | +   | • | ٠        | +        | ٠        | •             | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | •              | •            | •          | •            |
| TRANSITIGNAL-GELL PAPILLOMA                                                                            |          |          |          |          |            |          |          |          |            |        |              |          |     |   |          |          |          |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |              |            |              |
| ENDOCRINE SYSTEM                                                                                       |          |          |          |          |            |          |          |          |            |        |              |          |     |   |          |          |          |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |              |            |              |
| PITUITARY<br>Carcingma, Nos                                                                            | •        | +        | +        | +        | •          | •        | •        | +        | +          | •      | • •          | • •      | •   | + | •        | •        | -        | •             | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                | •            | •          | •            |
| ADENOMA, HOS<br>Agidophil Adenoma                                                                      |          |          | ×        |          |            |          | ×        |          | ×          |        |              |          |     |   |          |          |          |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                | X            |            |              |
| ADRENAL                                                                                                | •        | ٠        | ٠        | •        | +          | •        | +        | •        | •          |        | • •          | •        | ٠   | + | +        | +        | +        | •             | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | *              | •            |            | •            |
| PHEDCHROMOCYTOMA<br>Phedchromocytoma, Malighant                                                        |          |          |          |          |            |          | ×        |          |            |        | ×            |          |     |   |          |          |          | x             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |              | x          |              |
| THABUTD                                                                                                | •        | •        | +        | +        | +          | +        | +        | •        | +          | +      | • •          | • •      | +   | + | •        | ٠        | +        | +             | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | •              | ٠            | •          | •            |
| FULICULAR-CELL CARCINOMA<br>C-CELL ADENOMA<br>C-CELL CARCINOMA                                         |          |          |          |          |            |          |          |          |            |        | x            |          |     |   |          |          |          | x             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |              | x          |              |
|                                                                                                        | +        |          | _        |          |            |          |          |          | _          |        |              |          |     |   |          |          |          |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |              |            |              |
| PARATHYRDED                                                                                            | +        |          |          | *        | <u> </u>   | •        | •        | .+       | . <b>t</b> |        | • •          | •        | -   |   | *        |          | •        | •             | <u>.</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ·              | <u>•</u>     | <u>*</u>   | <u>.</u>     |
| PANCREATIC ISLETS<br>Islet-cell Ademoma<br>Islet-cell Carcinoma                                        | +        | •        | •        | •        | +          | •        | *        | •        | •          | •      | • •          | • •      | •   | • | •        | *        | <u>.</u> | •             | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ,              |              | •          | •            |
|                                                                                                        |          |          |          |          |            |          | _        |          |            |        |              |          | X   |   |          |          | ×        |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                | ×            | _          | _            |
| REPRODUCTIVE SYSTEM                                                                                    |          |          |          |          |            |          |          |          |            |        |              |          |     |   |          | •        |          |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |              | <b>.</b> . |              |
| MAMMARY GLAND<br>Fibrgadenoma                                                                          | Ŀ        | •        | *        | •        | •          | <u>.</u> | <u>.</u> | •        | •          | •      | • •          | • •      | -   |   |          | ÷.       | •        | _             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                | _            |            |              |
| 123113                                                                                                 | +        | ٠        | •        | *        | <u>*</u>   | <u>*</u> | <u>*</u> | <u>*</u> | ٠          | ±      | <u>.</u>     | : :      | t   | t | ٠        | t        | t        | t             | <u>:</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | •              | t .          | : :        | t            |
| INTERSTITIAL-CELL TUMOR                                                                                | 1×       |          |          | X        | <u>.</u>   | <u>×</u> | <u>×</u> | <u>×</u> |            | *<br>• | * *          |          | •   | • | ÷        | •        | ÷        | •             | ÷                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | · —            | <u>.</u>     | ••         | •            |
| PROSTATE                                                                                               | -        | +        | <u>.</u> | *        | •          | <u>+</u> | *        | •        | •          |        |              |          |     |   |          |          |          | <u>.</u><br>н |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |              | 8 -1       | <u></u><br>N |
| PREPUTIAL/CLITORAL GLAND<br>Carcingma, Hos                                                             | 1        | H        | N        | Ħ        | H          | N        | H        | H        | N          | H      | H H          | 1 1      | N   | N | N        | N        | H        | "             | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | •              |              | N ^1       |              |
| ADENOMA, NOS                                                                                           |          |          |          |          |            |          |          | _        |            |        |              |          |     |   | _        |          |          |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |              |            |              |
| RERVOUS SYSTEM                                                                                         |          |          |          |          |            |          |          |          |            |        | • •          |          |     | 4 | •        | •        | •        |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | •              | •            | •          | •            |
| BRAIN                                                                                                  | <u> </u> | *        | •        | *        | <u>.</u>   | •        | •        | -        | •          | •      |              |          | •   | • |          | ÷        | *        | <u> </u>      | Ţ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                | <u></u>      |            | *            |
| SPECIAL SENSE ORGANS<br>Zymbal's gland                                                                 | H        | н        | н        | H        | H          | н        | N        | N        | H          | N      |              |          | ж   | н | H        | N        | ×        | н             | н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                | N            |            | •            |
| CARCINOMA.NOS                                                                                          | "        |          | "        | 4        | H          | n        |          |          |            |        |              |          |     |   |          |          |          |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ·              |              |            | *<br>*       |
| USCULOSKELETAL SYSTEM                                                                                  | 1        |          |          |          |            |          |          |          |            |        |              |          |     |   |          |          |          |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                | -            |            |              |
| BONE<br>OSTEDSARCOMA                                                                                   | м        | H        | N        | N        | N          | N        | N        | N        | H          | н      | NP           | ( 11     | H   | H | N        | N        | Ħ        | N             | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1              | н            | H I        | N            |
| SODY CAVITIES                                                                                          |          |          |          |          |            | -        |          |          |            | _      |              |          |     |   |          |          |          | _             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |              |            | -            |
| PERITONEUM                                                                                             | . I M    | H        | н        | H        | N          | N        | N        | Ħ        | N          | N      | н э          | і н      | N   | N | ж        | N        | N        | н             | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | •              | H I          | N 1        | N            |
| LIPOSARCOMA                                                                                            | +        |          |          |          |            |          |          |          |            |        |              |          |     |   |          |          |          |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |              |            |              |
| TUNICA VAGINALIS<br>Mesothelioma, Hos                                                                  | •        | +        | ٠        | +        | ٠          | ٠        | ٠        | +        | +          | •      | + +          | •        | ٠   | ٠ | ٠        | •        | ٠        | ٠             | ٠                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1              | •            | •          | •            |
| ALL OTHER SYSTEMS                                                                                      | +        |          |          |          |            |          |          |          |            |        |              |          |     |   |          |          |          |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | · —            |              |            | _            |
| MULTIPLE ORGANS NOS                                                                                    |          | н        | н        | Ħ        | н          | N        | N        | N        | н          | N      | н н          | • н      | N   | × | N        | N        | N        | н             | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                | <del>H</del> | N 1        | N            |
|                                                                                                        |          |          |          |          |            |          |          |          |            |        |              | .,       |     |   |          |          |          |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |              |            |              |

# TABLE A3. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE RATS IN THE TWO-YEARGAVAGE STUDY OF HC RED NO. 3: HIGH DOSE

### TABLE A3. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE RATS: HIGH DOSE (Continued)

| AHIMAL<br>NUMBER                                                                                                      | 2         | 2      | 2   | 2        | 3          | 3      | 3          | 3        | ]        | 3        | 3        | 3        | 3        | 3        | -        | 1        | -          | -        | 1        | -        | 2        | •          | -        | 1      | 5  | TOTAL              |
|-----------------------------------------------------------------------------------------------------------------------|-----------|--------|-----|----------|------------|--------|------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|------------|----------|----------|----------|----------|------------|----------|--------|----|--------------------|
| WEEKS ON<br>STUDY                                                                                                     |           | -      | -11 | 1        | 1          | 3      | 1          | 1        | ij       | 1        | 1        | 1        | 1        | 1        | 1        | 1        | 1          | -        | 1        | 1        | 1        | 8          | ;        | 7      | 1  | TUMORS             |
| INTEGUNENTARY SYSTEM                                                                                                  | - 41      | 21     | -   | -41      | 31         | -91    | <u>é</u> l | 41       | 1        | 2        | <u>.</u> | 4        | . لف     | <u></u>  | <u>.</u> | <b>.</b> | <u>é (</u> | 21       | 61       | <u>.</u> | <u>.</u> | <u>a</u> 1 | .61      | . 51   | 4  |                    |
| SKIN<br>Squardus Cell Carcinoma<br>Basal-Cell Carcinoma<br>Sebacegus Adengcarcinoma<br>Keratgacanthoma<br>Heurilenoma | ŀ         | N      | •   | •        | •          | •      | •          | •        | •        | •        | •        | •        | •        | •        | •        | •        | •          | •        | •        | *        | •        | •          | •        | *<br>× | •  | 58#<br>1<br>1<br>2 |
| SUBCUTANEGUS TISSUE<br>Fibrima<br>Hemangigma                                                                          | •         | N      | •   | +<br>x   | •          | •      | •          | +        | •        | •        | •        | •        | +        | •        | •        | •        | •          | +        | •        | •        | •        | •          | •        | •      | •  | 50×<br>2<br>1      |
| RESPIRATORY SYSTEM                                                                                                    | +         |        |     | _        |            |        |            |          |          |          |          |          |          | _        | -        |          |            |          |          |          |          |            |          |        |    |                    |
| LUN <b>gs</b> an <b>b Bron</b> chi<br>Carci <b>non</b> a, Hos, Metastatic<br>Trachea                                  | ÷         | ÷      | •   | <u>.</u> | ÷          | •<br>• | ÷          | +        | <u>.</u> | •<br>•   | •<br>•   | •<br>•   | •        |          | -        |          |            | •<br>•   | •        | ÷        | +        | +          | *        | •      | +  |                    |
| HENATOPOLETIC SYSTEM                                                                                                  | +         |        |     |          |            | -      |            | _        | _        |          | -        |          | -        |          |          |          | -          | -        |          |          | _        |            |          |        | -+ |                    |
| SONE MARRON                                                                                                           | 1·        |        | ٠   | +        | +          | •      | ٠          |          | ۰.       | ٠        | •        | •        | +_       | •        | •        | +        | <u>.</u>   | +        | +        | •        | ٠        | •          | ٠        | •      | +  | . 69               |
| SPL EIN                                                                                                               | +         | •      | •   | ٠        | . <b>*</b> | +      | *          | ٠        | <u>+</u> | •        | +        | •        | +        | •        | +        | ÷ .      | *          | •        | <u>*</u> | •        | •        | •          | +        | *      | ᢤ  |                    |
| LYNPH HODES                                                                                                           | +         | •      | *   | *        | <u>.</u>   | *      | <b>میٹ</b> | <u>.</u> | <u>*</u> | •        | *        | *        | *        | •        | *        | <u>*</u> | <u>*</u>   | <u>*</u> | *        | <u>+</u> | *        | <u>+</u>   | <u>•</u> | *      | +  | <u></u>            |
| THYMUS<br>CIRCULATORY SYSTEM                                                                                          | Ļ         | _      | *   | *        | *          | -      | *          | *        | <u>+</u> | <u>*</u> | +        | <u>.</u> | •        | •        | *        | •        | <u>.</u>   | +        | *        | *        | *        | <u> </u>   | •        | •      | 4  | 49                 |
| HEART                                                                                                                 |           | ٠      | •   | ٠        | •          | ٠      | •          | •        | •        | •        | •        | •        | •        | •        | •        | •        | •          | •        | •        | ٠        | ٠        | ٠          | ٠        | ٠      |    | 50                 |
| DIGESTIVE SYSTEM                                                                                                      | ┼─        |        |     |          |            |        |            |          |          | _        |          |          |          |          |          | -        |            |          |          |          |          |            |          |        | +  |                    |
| ORAL CAVITY<br>Squardus Cell Papiliona                                                                                |           | N      | Ħ   | N        | Ħ          | H.     |            | Ħ        | 6        | R        |          | *        | H<br>X   | ×        | M        | #        | M          | ×        | Ħ        | N        |          | N          | H        | H      | н  | 50H                |
| SALIVARY BLAND                                                                                                        | Ŀ         | -      | ٠   | •        | •          | ٠      | •          | ٠        | +        | •        | •        | ÷        | •        | •        | •        | •        | •          | +        | •        |          | +        | ٠          | •        | •      | •  |                    |
| LIVER<br>Neoplastic Nodule<br>Heratdcellular carcinoma                                                                | ·         | ٠      | ٠   | •        | ٠          | ٠      | •          | ٠        | ٠        | •        | •        | •        | •        | •        | •        | •        | •          | •        | ٠        | •        | ٠        | •          | ٠        | ٠      | ۰  | 50<br>1<br>2       |
| SILE DUCT                                                                                                             | F         | ٠      | +   | •        | ٠          | •      | •          | •        | +        | •        | ÷        | +        | •        | +        | +        | •        | •          | ٠        | +        | •        | +        | •          | •        | ٠      | 4  | .58_               |
| GALLBLADDER & COMMON BILE DUCT                                                                                        | <u>له</u> | N      | H   | N        | н          | N.     | Ħ          | N        | Ħ.       | N        | М.,      | N_       | N        | <u>H</u> | H        | N        | <u>#</u>   | Μ        | Ħ        | H_       | Ħ.       | H.,        | M        | М.,    | -  | 58#                |
| PANCREAS<br>Aginar-cell adenoma                                                                                       | 1         | •      | +   | ÷        | +          | +      | *          | *        | +        | •        | •        | •        | ÷        | •        | *        | •        | •          | *        | +        | •        | •        | •          | ٠        | *      | 1  | 50                 |
| ESOPHAGUS                                                                                                             | Ŀ         | ٠      | ٠   | ٠        | •          | +      | •          | •        | •        | •        | +        | ÷        | +        | •        | •        | •        | •          | +        | <b>.</b> | •        | •        | ٠          | +        | •      | •  | 58                 |
| STOMACH                                                                                                               | 1.        | +      | ٠   |          | •          | •      | •          | ٠        | ٠.       | •        | ٠.       | <u>*</u> | <u>+</u> | •        | <u>*</u> | +        | •          | ٠        | ٠        | •        | •        | +          | ٠        | •      | 4  |                    |
| SMALL INTESTIME                                                                                                       | +         | *      | +   | ÷        | •          | ÷      | •          | •        | •        | +        | •        | *        | •        | ÷        | +        | -        | •          | *        | •        | <u>.</u> | •        | •          | •        | •      | +  | 49                 |
| LARGE INTESTINE<br>Lipoma                                                                                             | •         | •      | +   | •        | ٠          | •      | •          | •        | •        | •        | •        | •        | •        | •        | •        | •        | •          | •        | •        | •        | •        | ٠          | •        | •      | *  | 58,                |
| URINARY SYSTEM                                                                                                        | +         |        |     |          |            | -      |            |          |          |          |          | -        |          |          |          |          |            |          |          | -        |          |            |          |        | 1  |                    |
| KIDNEY                                                                                                                | +         | *      | +   | *        | <u>+</u>   | •      | •          | <u>*</u> | <u>.</u> | <u>+</u> | <u>*</u> | *        | <u>*</u> | <u>+</u> | <u>*</u> | <u>*</u> | ÷          | <u>*</u> | *        | ÷        | ÷        | ÷          | ÷        | ÷      | +  | <u>50</u>          |
| URINARY BLADDER<br>TRANSITIONAL-CELL PAPILLONA<br>ENDOCRINE SYSTEM                                                    | Ľ         | •      |     | •        | ×          |        | •<br>      | *        |          | -        | _        | -        | -        | ·        |          |          | _          |          |          | _        |          | _          |          | _      | 4  |                    |
| PITUITARY<br>Carcingma, Nos<br>Adenoma, Nos<br>Acidophil Adenoma                                                      | •         | ٠      | •   | ×        | *<br>X     | •      | •          | •        | •        | •        | ٠        | •        | •        | •        | *<br>x   | •        | •          | •        | •        | •        | •        | •          | ×        | •<br>x | •  | 49<br>7            |
| ADRENAL<br>PHEDCHROMOCYTOMA<br>PheDChromocytoma, Malignant                                                            | ×         | ٠      | *   | +        | ٠          | *      | ٠          | *        | +        | •        | +        | •        | ٠        | ×        | ٠        |          | *          | ż        | *        | •        | ×        | •          | •        | ٠      | ·  | 58<br>18           |
| THYROID<br>Pollicular-Cell Carcinoma<br>C-Cell Adenoma<br>C-Cell Carcinoma                                            | ŀ         | ٠      | •   | •        | +          | •      | +<br>*     | •        | •        | •        | ٠        | ٠        | •        | •        | •        | •        | ×          | •        | •        | •        | ٠        | •          | ×        | •      | •  | 50<br>2<br>3       |
| PARATHYROID                                                                                                           |           | t      |     | •        | ÷          | •      |            | ٠        | •        | ٠        | •        | •        | ٠        | •        | •        | •        | •          | ٠        | •        | +        | ٠        | +          | ٠        | •      | •  | .46                |
| PANCREATIC ISLETS<br>Islet-Cell Adenoma<br>Islet-Cell Carcinoma                                                       | ·         | ٠      | ٠   | •        | ٠          | •      | •          | ٠        | •        | ٠        | •        | ٠        | ٠        | •        | •        | ٠        | •          | ٠        | •        | •        | •        | ż          | •        | •      | ·  | 58<br>3<br>3       |
| REPRODUCTIVE SYSTEM                                                                                                   |           | N      |     |          |            |        |            | •        | •        | •        | •        | •        | •        | •        | •        | •        | •          | н        | •        | •        | •        | •          | •        | •      | •  | 587                |
| FIBROADENOMA                                                                                                          | 1×        |        | *   | ÷        |            |        | -          |          |          | <u> </u> |          |          |          |          |          |          |            |          | -        |          | ×.       |            |          | -      | +  | 2                  |
| TESTIS<br>Interstitial-cell Tumor                                                                                     | 1±        | ÷      | ż   | ż        | ż          |        | ż          | ÷        | -        | •        | ÷        | ż        | ż        | ż.       | ÷        | ž        | ž          | ÷.       | ÷        | ż        | ż        | ż          | ż.       | •      | ᅿ  | 58                 |
| PROSTATE<br>Preputial/clitoral gland                                                                                  | +         | +<br>N | H   | +<br>H   | +<br>N     | +<br>N | +.<br>N    | +<br>N   | •<br>N   | •<br>H   | +<br>H   | +<br>N   | *        | +<br>H   | •<br>N   | +<br>N   | +          | +        | *        | +<br>N   | +<br>H   | *<br>N     | *<br>N   | +<br>N | +  | <u>. 58</u><br>58# |
| CARCINOMA, HOS<br>Adenoma, Hos<br>Hervous System                                                                      |           | ×      |     |          |            |        |            |          |          |          |          |          |          |          |          |          |            |          |          |          |          |            | _        |        | +  | 1                  |
| SRAIN                                                                                                                 | •         | ٠      | ٠   | ٠        | ٠          | ٠      | +          | ٠        | ٠        | ٠        | •        | +        | +        | ٠        | •        | •        | +          | +        | ٠        | •        | +        | •          | ٠        | +      | ٠  | 50                 |
| SPECIAL SENSE ORGANS<br>Zymbal's gland<br>Carcingna, nos                                                              |           | N      | N   | н        | H          | N      | N          | N        | N        | N        | N        | м        | N        | H        | N        | н        | H          | н        | H        | H        | н        | н          | H        | н      | H  | 50%<br>1           |
| MUSCULOSKELETAL SYSTEM                                                                                                | +         |        |     |          |            |        |            |          |          |          |          |          | _        |          |          |          |            |          | _        |          |          | _          |          |        | +  |                    |
| SOME<br>Osteosarcoma                                                                                                  | N         | N      | N   | N        | N          | N      | N          | Ħ        | H        | H        | *        | M        | Ħ        | N        | H        | H        | N          | H        | N        | H        | H        | N          | я        | н      | н  | 58M                |
| BOBY CAVITIES<br>Peritoneum<br>Liposarcoma                                                                            | N         | N      | H   | н        | N          | H      | N          | N        | N        | N        | N        | M        | Ħ        | N        | Ħ        | н        | н          | N        | N        | N        | N        | N          | н        | N      | H  | 50 M               |
| TUNICA VAGINALIS<br>Mesothelioma, Nos                                                                                 | ·         | •      | •   | •        | ٠          | ٠      | +          | ٠        | •        | +        | ٠        | •        | ٠        | ٠        | •        | ٠        | ٠          | ٠        | •        | ٠        | •        | •          | ٠        | ٠      | ٠  | 58%<br>1           |
| ALL OTHER SYSTEMS<br>Multiple organs Mos<br>Sarcoma, Mos<br>Mesothelioma, Malignant<br>Leuenja-Monduclear Cell        | н         | н      | H   | ĸ        | H          | H      | M          | M        | N        | н        | M        | N        | N        | H        | H        | N        | N          | H<br>X   | H        | N        | N        | H          | N        | H      | X  | 50m                |

\* ANIMALS NECROPSIED

| GAVAGE ST                                                                           | UDI        | U  | L. | n | CI       | ĸĿ     | iD       | N        | U      | . 3      |   | V Ľ | H    | <u>IC</u> | L. | <u> </u> | 20       | <u>N</u> | TI       | <u>K(</u> | 끄        |                 |          |          | _ |
|-------------------------------------------------------------------------------------|------------|----|----|---|----------|--------|----------|----------|--------|----------|---|-----|------|-----------|----|----------|----------|----------|----------|-----------|----------|-----------------|----------|----------|---|
| ANTIAL<br>NUMBER                                                                    |            | 2  | ļ  | i | i        | !      | ļ        | 1        | į      |          | 1 | ì   | ;    | 1         | i  | 1        | ł        | 1        | -        | 20        | 2        | 22              | 2        | 2        |   |
| STUDY                                                                               |            | 4  | j  |   | 1        | ł      | -        | i        | 1      | į        | 1 |     | Į.   | •         | ļ  |          | 1        |          | į        | 1         |          | 1               | į        | -        | ļ |
| INTEGUNENTARY SYSTEM                                                                | ╍┼╍┺┷      |    |    |   | - 21     | -      |          | -        |        |          | _ |     | - 11 |           |    |          |          |          |          |           |          |                 |          |          |   |
| SKIN<br>Keratgacanth <del>oma</del>                                                 | +          | +  | +  | + | •        | •      | •        | •        | *      | +        | + | •   | •    | ٠         | +  | •        | •        | +        | .*       | <u></u>   | <u> </u> | *               | •        | +        |   |
| SUBCUTANEOUS TISSUE<br>Trichoepithelidma<br>Sarcoma, nos<br>Fibroma<br>Lipoma       | •          | •  | •  | ٠ | •        | *<br>× | •        | •        | •      | •        | ٠ | •   | •    | •         | ×  | •        | •        | •        | ٠        | •         | ٠        | •<br>x          | ٠        | •        | • |
| RESPIRATORY SYSTEM                                                                  |            |    |    |   |          |        |          |          |        |          |   |     |      | _         |    |          |          |          |          |           |          | -               |          |          |   |
| LUNGS AND BRONCHI<br>ALVEDLAR/BRONCHIDLAR ADENOMA                                   |            | •  | •  | - | •        | •      | •        | <u>+</u> | +      | <u>*</u> |   |     | -    | •         | •  | <u>.</u> | <u>.</u> | •        | <u>.</u> | <u>.</u>  | ÷        | •<br>•          | •        | +        | • |
| TRACINEA<br>HEMATUPOIETIC SYSTEM                                                    | _ <b>_</b> | -  | -  | · |          | -      | _        | -        |        | -        | · | -   | -    |           | -  | ·        |          |          |          | -         | _        | -               | -        |          |   |
| SOME MARROW                                                                         | •          | •  | •  | • |          | •      | ٠        | •        | ٠      |          | + | ٠   | +    | •         | •  | •        | •        | +        | ٠        | •         |          |                 | •        | •        |   |
| SPLEEN                                                                              | Ŀ          | +  |    | • | •        | •      | •        | •        | •      | •        | ٠ | +   | •    | ٠         | +  | ٠        | ٠        | •        | •        | •         | *        | •               | •        | ٠        |   |
| LYMPH HODES<br>Sarcoma, Hos. Hetastatic                                             | ·          | •  | +  | • | •        | ÷      | ٠        | ٠        | ٠      | ٠        | ٠ | ٠   | •    | +         | +  | +        | +        | •        | +        | •         | <u> </u> | •               | •        | ٠        | • |
| THYNUS                                                                              | +          | +  | ٠  | + | +        | +      | *        | +        | ٠      | +        | • | *   | +    | •         | +  | *        | *        | *        | *        | •         | •        | •               | •        | +        | • |
| CIRCULATORY SYSTEM<br>HEART                                                         | •          | ٠  | •  | • | ٠        | •      | ٠        | •        | •      | •        | • | •   | +    | ٠         | ٠  | ٠        | ٠        | ٠        | ٠        | ٠         | •        | ٠               | ٠        | ٠        | ٠ |
| DEGESTEVE SYSTEM                                                                    | -          |    |    |   |          |        |          |          |        |          |   | -   |      |           |    |          |          |          |          |           |          | <u>سم مناجع</u> |          |          |   |
| SALIVARY OLAHD<br>Sarcoma, Hos, Invasive<br>Liver                                   | ÷          | •  | •  | • | <u>.</u> | :      | •        | •        | •      | <u>.</u> | + | •   | •    | <u>.</u>  | ÷  | <u>.</u> | <u>+</u> | <u>+</u> | •        | <u>+</u>  | +        | <u>.</u>        | <u>+</u> | <u>.</u> |   |
| BILE DUCT                                                                           | 1.         | *  | ÷  | ÷ | +        | +      |          | •        | . •    | •        | • | •   |      | •         | +  | •        | •        | •        | •        |           |          | •               | ٠        | •        | , |
| GALLBLADDER & CONTON BILE DUCT                                                      |            | N  | ×  | н | N.       | Я.,    | M        | M        | N      | N        | N | ĸ   | . M  | H         | N. | N        | н        | N        | н        | н         |          | N               | N        | .H       | Я |
| PANCREAS                                                                            | L.         | +. |    | • | •        | •      | •        | ۰.       |        | •        | • | ٠   | ٠    | •         | •  | •        | ٠        | •        | ٠        |           |          | ۰.              | ٠        | ٠        | • |
| ESOPHAGUS                                                                           | ÷          |    | ٠  | ٠ |          | +      | +        | ٠        | ٠      | ٠        | • | •   | •    | •         | ٠  | ŧ        | ٠        | ٠        | ٠        | •         | <u>+</u> | ٠               | •        | •        |   |
| STOMACH                                                                             | •          | •  | +  | ٠ | +        |        | ÷.       |          | ٠      | ٠        | • | •   | ٠    | •         | ۰. | ٠        | ٠        | ٠        | ٠        | ٠         | <u>+</u> | •               | ٠        | ٠        | • |
| SMALL INTESTINE                                                                     | _ <u></u>  | ٠  | ٠  | ٠ | ٠        | ٠      | ٠        | •        | .*     | •        | + | •   | +    | ٠         | •  | <u>.</u> | +        | •        |          | <u>+</u>  | •        | +               | ٠        | ٠        |   |
| LARGE INTESTINE                                                                     | •          | ٠  | ٠  | ٠ | •        | ٠      | ٠        | •        | +      | ٠        | • | •   | +    | ٠         | ٠  | •        | •        | ٠        | +        | •         | +        | •               | ٠        | +        | • |
| URINARY SYSTEM                                                                      |            |    |    |   |          |        |          |          |        |          |   |     |      |           |    |          |          |          |          |           |          |                 |          |          |   |
| KIDNEY<br>Tubular-cell adenoma                                                      |            | +  | *  | • | •        | *      | <u>.</u> | <u>.</u> | •      | •        | • | •   | •    | <u>+</u>  | •  | +        | *        | +        | *        | *         | <u>•</u> | +               | •        | +        | * |
| URINARY SLADDER                                                                     | +          | ٠  | ٠  | + | ٠        | ٠      | ٠        | ٠        | ٠      | ٠        | ٠ | ٠   | ٠    | ٠         | ٠  | ٠        | ٠        | ٠        | ٠        | ٠         | ٠        | ٠               | ٠        | ٠        | + |
| ENDOCRINE SYSTEM                                                                    | +          |    |    |   |          |        |          |          |        |          |   |     |      |           |    |          |          |          |          |           |          | -               |          |          |   |
| PITUITARY<br>Carcinoma, nos<br>Adenoma, nos                                         | ŀ          | ÷  | ÷  | * | •        | •      |          | •        | +<br>× | *<br>*   | ÷ | ×   | *    | •         | ×  | <u>.</u> | •        | ż        | •        | •         | <u> </u> | ÷               | •        | •        | x |
| ADREMAL<br>Cortical Ad <mark>enoma</mark><br>Cortical Carcinoma<br>Phedcaromocytora | ŀ          | ×  | •  | * | •        | •      | •        | •<br>×   | •<br>× | •        | • | •   | •    | •         | •  | •        | ٠        | •        | •        | •         | •        | •               | •        | •        | • |
| THYRGID<br>Follicular-cell Adenora<br>C-cell Adenora                                | ÷          | •  | •  | • | •        | •      | ٠        | ٠        | ٠      | •        | ٠ | •   | •    | •         | ٠  | ×        | +<br>x   | •        | •        | •         | •        | •               | •        | •        | • |
| PARATHYRGID                                                                         | •          | ٠  | ٠  | ٠ | ٠        | ٠      | ٠        | ٠        | ٠      | ٠        | + | +   | ٠    | ٠         | ٠  | ٠        | •        | ٠        | ٠        | ٠         | ٠        | ÷.              | ٠        | ٠        | + |
| ADENOMA, HOS<br>Reproductive system                                                 |            |    |    |   |          |        |          |          |        |          |   | _   |      |           |    | _        | _        |          |          | _         | -        | Ă               |          |          | _ |
| MAMMARY GLAND                                                                       | •          | :  | ٠  | ÷ | ٠        | ٠      | ٠        | ٠        | ٠      | ٠        | ٠ | ٠   | ٠    | •         | ÷  | ÷        | ÷        | *<br>*   | ٠        | ÷         | ٠        | ٠               | ٠        | *        | ٠ |
| FIBROADENOMA<br>Preputial/Clitoral Gland<br>Carcingma, Nos                          | ×          | н  | N  | N | N        | Ħ      | N        | N        | Ħ      | N        | N | N   | Ħ    | Ħ         | H  | N        | N        | N        | N        |           |          | N               | N        | N        | H |
| UTERUS<br>Adenoma, Hos<br>Leichtusargoma                                            | •          | •  | ٠  | ٠ | ٠        | ٠      | ٠        | ٠        | ٠      | •        | ٠ | ٠   | +    | •         | ٠  | •        | ٠        | ٠        | ٠        | ×         | •        | •               | ٠        | ٠        | • |
| ENDOMETRIAL STROMAL POLTP<br>Endometrial stromal sarcoma                            | ×          | _  |    |   | ×        |        | Š.       |          |        |          |   |     |      |           | ×  |          | ×        |          | ×        |           | -        | ¥.              |          |          |   |
| OVARY                                                                               |            | •  |    | • | +        | •      | *        | +        | +      | •        | • | •   | •    | •         | •  | •        | •        | •        | •        | -         |          |                 |          |          |   |
| SRAIN                                                                               |            | •  |    | • | •        | •      | •        | •        |        | •        | ٠ | ٠   | •    | •         | ٠  | •        | •        | ٠        | •        | ٠         | •        | •               | •        | ٠        | • |
| SPECIAL SENSE ORGAND                                                                | -+         |    |    |   |          |        |          |          |        |          |   |     |      |           |    |          |          |          |          | -         |          |                 |          |          |   |
| ZYMSAL'S GLAND<br>CARGINOMA, HOS                                                    |            | N  | H  | N | N        | Ħ      | N        | N        | N      | N        | N | H   | N    | N         | N  | N        | N        | N        | N        | N         | N        | N               | N        | N        | × |
| MUSCULOSKELETAL SYSYEM<br>Bone<br>Carcingma, Hos, invasive                          | н          | N  | 4  | H | H        | N      | N        | #        | N      | N        | H | N   | H    | H         | Ħ  | M        | N        | н        | N        | н         | H        | N               | N        | N        | H |
| SUBY CAVITIES                                                                       |            |    | *  |   | ¥        | ~      |          | н        |        |          | N |     | N    | N         | н  |          |          | N        | н        | н         |          | N               | Ħ        | н        |   |
| PERITONEUM<br>Fibrobarcoma<br>All other systems                                     |            | 4  | *  | N | N        | N      | N        | 4        |        | N        | N |     |      |           | H  | n        | R'       |          | 4        | -         |          | ri<br>          | R        | -        | 1 |
| MULTIPLE ORGANS NOS                                                                 | H          | H  | Ħ  | N | N        | N      | N        | N        | Ħ      | ų        | N | H   | Ņ    | N         | N  | N        | Ħ        | H        | R        | N         | N        | N               | N        | N        | N |

# TABLE A4. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE RATS IN THE TWO-YEARGAVAGE STUDY OF HC RED NO. 3: VEHICLE CONTROL

FORMATION SUBMITTED HISTOLOGY DUE TO PRITOCOL

C: HECROPSY, NO HISTOLOG A: Autolysis M: Amimal Missing B: Ho Hecropsy Performed

LEURENIA MORONUCLER CELL + TISSUE CAANINED MICROSCOPICALLY - Required Tissue not Examined Microscopically X: Tumor Incidence H: Mecropsy, NG Autolysis, NG Microscopic Examination 3: Animak Mis-Sece

|                                                                              |                                              |          |          |          | (        | Co       | nt       | inu      | ue       | d)       |          |          |          |          |          |        |          |          |          |          |             |          |          |    |           |
|------------------------------------------------------------------------------|----------------------------------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|--------|----------|----------|----------|----------|-------------|----------|----------|----|-----------|
| AN IMAL<br>NUMBER                                                            | 2                                            |          | 1        | 2        | 3        | 3        | 3        | 3        | 3        |          | 3        | 3        | 3        | 5        |          |        | 4        | -        | -        | -        | 1           | -        | 1        | -  | TOTAL     |
| HEEKS ON                                                                     | H                                            |          | ╬-       | -        | 1        | ╢        | 2        |          | +        |          | -        |          |          |          |          | 7      |          |          |          | 1        | #           | 1        | #        | *  | TUMORS    |
| STUDY                                                                        | L.                                           | 1        | iL.      | 2        |          | 1        |          |          |          |          | 1        | 21       | نلغ      | 1        | I.i      | Lá     | لغا      | لف       | لف       | 4        | <u>. 10</u> | <u>.</u> | . لغ     | 4  |           |
| SKIN                                                                         | •                                            | ٠        | ٠        | ٠        | •        | •        | ٠        | • •      | •        | •        | •        | •        | :        | • •      | • •      | ٠      | •        | ٠        | ٠        | ٠        | ٠           | ٠        | +        | •  | 50H       |
| KERATOACANTHOMA                                                              | <u>                                     </u> |          |          | •        | •        | •        | •        | •        | •        | •        | ÷        |          | •        |          |          | ÷      | ٠.       | ÷        | •        | •        | +           | ٠        | •        | 7  | 50×       |
| SUBCUTANEOUS TISSUE<br>Trichoepithelioma<br>Sarcoma, Hos<br>firoma<br>Lipoma |                                              | •        |          |          | -        |          |          | ;        | x        |          |          |          |          |          |          |        |          |          |          |          |             | ×        |          |    | 1         |
| RESPIRATORY SYSTER                                                           | <u> </u>                                     |          |          |          |          |          | _        |          |          |          | _        |          |          |          |          |        |          |          |          |          |             |          |          | T  |           |
| LUNGS AND BRONCHI<br>Alyeolar/Bronchidlar Adenoma                            | +                                            | •        | •        | •        | •        | •        | <u>•</u> | •        | +        | •        | +        | <u>.</u> | •        | • •      | · ·      | +      |          |          | +        | <u>.</u> | ż           | *        | <u>.</u> | 4  | 58        |
| TRACHEA                                                                      | •                                            | •        | ٠        | ٠        | ٠        | •        | •        | •        | •        | •        | ٠        | ٠        | •        | •        | • •      | •      | •        | ٠        | ٠        | ٠        | ٠           | ٠        | •        | •  | 54        |
| HEMATOPOIETIC SYSTEM                                                         | +                                            |          |          |          | _        |          |          |          |          |          |          |          |          |          |          |        |          |          |          |          |             |          |          | Τ  |           |
| SOME MARROM                                                                  | <u> </u>                                     | +        | <u>*</u> | *        | *        | *        | *        | <u>*</u> | <u>*</u> |          | <u>+</u> | ÷        | •<br>•   | •        | <u> </u> |        | <u>.</u> | ÷        | ÷        | ÷        | ÷           | ÷        | ÷        | 1  | <u> </u>  |
| SPLEEN                                                                       | ÷                                            | <u>.</u> |          | ÷        | <u>*</u> |          |          |          |          |          | ÷        | -        |          | _        |          | _      |          | ÷        | ÷        | •        | +           | •        | •        | •  | 58        |
| LYMPH HODES<br>Sarcoma, Hos, Metastatic                                      | <u> </u>                                     |          | _        | ÷        |          |          | _        |          | _        |          |          | _        |          |          | _        | _      |          |          | <u> </u> | -        | •           | •        | -        | +  |           |
| THYHUS                                                                       | •                                            | •        | <u>.</u> | •        | <u>.</u> | <u>.</u> | <u>.</u> | •        | •        | •        | <u>.</u> | <u>.</u> | •        | •        | • •      | •      | •        | •        | <u>.</u> | -        | <u> </u>    | -        | <u> </u> | 4  | 58        |
| CIRCULATORY SYSTEM                                                           | 1.                                           | •        | •        | •        | •        | •        | •        | •        | •        | •        | •        | •        | ٠        | •        |          |        | •        | •        | ٠        | ٠        | •           | ٠        | ٠        | +  | 58        |
| DIGESTIVE SYSTEM                                                             | ┿┷                                           |          |          | -        |          | -        |          | -        | _        |          |          |          |          |          | _        |        |          | -        |          |          | _           |          |          | +  |           |
| SALIYARY GLAND<br>Sarcoma, Nos, Invasive                                     | •                                            | ٠        | ٠        | ٠        | ٠        | ٠        | ٠        | •        | •        | •        | •        | •        | •        | •        | •_•      | •      | •        | +        | ٠        | ٠        | •           | •        | ٠        | •  | 50,       |
| SARCOMA, NOS, INVASIVE                                                       | +                                            |          | -        | •        | •        | •        | ÷        | ÷        | ٠.       | •        | •        | •        | •        | •        | • •      |        |          | •        | •        | •        | ٠           | •        | •        | •  | _ 11_     |
| SILE DUCT                                                                    |                                              | •        | ÷        | •        | •        | •        | •        | •        | •        | •        | ÷        | •        | <u>.</u> | •        |          | _      |          | •        |          | •        | •           | •        | •        | •  |           |
| GALLBLADDER & CONTON BILE DUGT                                               | L.                                           | ᆂ        | *        |          | н.       | H_       | H        |          | H        | н        | 1        | N        | N.,      | H., 1    | HH       |        |          | . 11     | . 1      | N        | Ħ.          | <u>N</u> | N        | -  | 588       |
| PANCREAS                                                                     | <u> -</u>                                    | <u>+</u> | •        | ٠        | ٠.       | •        | ٠        | <u>.</u> | * .      | *        | •        | +        | <u>.</u> | • • •    | •        |        | +        |          | •        | •        | *           | <u>+</u> | *        | 4  |           |
| ESOPHAQUS                                                                    | <u>++</u> -                                  | •        | <u>+</u> | 2        | •        | •        | •        | +        | *        | *        | +        | •        | <u>*</u> | •        | <u> </u> | -      | *        | <u>.</u> | •        | *        | <u>+</u>    | ÷        | <u>.</u> | +  |           |
| STOMACH                                                                      | ++                                           | *        | +        | •        | <u>*</u> | <u>+</u> | ÷        | ÷        | <u>+</u> | <u>.</u> | <u>.</u> | ÷        | ÷        |          | <u></u>  |        |          | ÷        | ÷        | ÷        | ÷           | ÷        | ÷        | ÷  |           |
| SMALL INTESTINE<br>Large intestine                                           | †÷                                           | •        |          | ÷        | +        | *        | •        | ÷        | •        | •        | ÷        |          | ÷        | •        | + +      |        | •        | •        | •        | ÷        | •           | •        | ٠        | •  | 58        |
| URINARY SYSTEM                                                               | +                                            |          |          | -        |          |          | _        | _        |          |          |          |          |          |          |          |        | -        |          |          |          | -           |          |          |    |           |
| KIDNEY                                                                       | •                                            | ٠        | ٠        | ٠        | ٠        | ٠        | ٠        | ٠        | ٠        | ٠        | •        | •        | ٠        | •        | • •      |        | • •      | ٠        | •        | •        | •           | •        | •        | ÷  | 58,       |
| TUBULAR-CELL ADENOMA<br>URZHARY BLADDER                                      | 1.                                           | ÷        | •        | ÷        | •        | •        | ٠        | •        | ÷        | ٠        | +        | ٠        | ٠        | •        | • •      | • •    | • •      | •        | •        | •        | •           | •        | ٠        | •  | 50        |
| ENDOCRINE SYSTEM                                                             | +                                            | -        |          | -        |          |          |          | _        |          | -        |          |          |          | _        |          | -      |          |          | -        |          | _           |          |          | 1  |           |
| PITUITARY<br>Carcinoma, Nos<br>Adenoma, Nos                                  | Ŀ                                            | •        | ×        | •        | ÷<br>×   | •        | •        | *<br>×   | •        | •        | •<br>×   | ÷<br>×   | ÷<br>×   | •        | •        |        | : •      | •        | •        | •        | ž           | ×        | ÷<br>×   | 4  | 58        |
| AGRENAL<br>Cortical Adenoma<br>Cortical Carcinoma<br>Phedchromocytoma        | ŀ                                            | •        | •        | •        | •        | ×        | •        | •        | •        | •        | •        | •        | •        |          | ×        |        | • •      | •        | ,<br>,   | ·        | •           | •        | ·        | 1  | 58<br>2   |
| THYROID<br>Folligular-Cell Adenoma<br>C-Cell Adenoma                         | Ŀ                                            | •        | ٠        | •        | +<br>X   | ٠        | •        | ٠        | •        | •        | •        | •        | ·        | •        | •        |        | • •      | •        | ţ        | •        | *<br>*      | •        | ·        | ·  | 50 j      |
| FARATHYRGID<br>Adenoma, NGS<br>Reproductive System                           | ·                                            | ·        | ·        | •        | •        | •        | •        | •        | •        | •        | •        | •        | •        | ·        | •        |        | • •      |          | •        | •        | •           | <u>.</u> | •        | 4  | 58,       |
| HAMMARY GLAND                                                                | •                                            | ٠        | •        | ٠        | ٠        | ٠        | ٠        | ٠        | ٠        | ٠        | :        | ٠        | ٠        | ٠        | :        | •      | • •      | •        | :        | \$       | ;           | ٠        | ٠        | ٠  | 58#<br>14 |
| FIERGADENOMA<br>Preputial/clitoral gland<br>carcinoma, mos                   | N                                            | N        | N        | N        | N        | H        | H        | N        | N        | n        | N        | ĸ        | N        | ĸ        | н 1      | •      | N N      | N        |          | N        | и           | M        | H        | ţ  | 58.       |
| UTERUS                                                                       | ·                                            | •<br>×   | •<br>×   | •        | ٠        | •<br>x   | •        | •        | •        | ٠        | +<br>X   | ٠        | •        | •<br>×   | •        |        | • •<br>× | •        | •        | ٠        | •           | ٠        | ٠        | 1  | 30        |
| LEIDMYOŠARCOMA<br>Endometrial stromal polyp<br>Endometrial stromal sarcoma   | -                                            | _        | _        | _        |          |          | -        | _        | -        |          |          |          |          | _        |          | _      | _        |          | _        |          |             | _        |          |    | <u>1</u>  |
| OVARY                                                                        | ŀ                                            | •        | •        | <u> </u> | •        | •        | •        | <u>.</u> | <u>*</u> | -        | <u>.</u> | •        | ÷        | <u>.</u> | -        |        | • •      | _        |          | _        |             |          |          | -1 |           |
| RERVOUS SYSTEM                                                               |                                              |          |          |          | •        | •        | •        | •        | •        | •        | ٠        | ٠        | •        | ٠        | •        | •      |          |          | •        | ٠        | •           | ٠        | ٠        | •  | 58        |
| SPECIAL SERVE ORGANS                                                         | +-                                           | -        |          |          | _        |          |          | _        |          | -        |          |          |          | -        |          | -      |          |          |          |          |             | -        | _        | -  |           |
| ZYMBAL'S OLAND<br>Carcinoma, HQS                                             | M                                            | N        | ×        | N        | N        | N        | H        | H        | N        | Ħ        | H        | N        | *        | *        | H        | •      | • •      |          | H        | N        | ×           | Ħ        | *        | *  | 50×<br>1  |
| MUSCULOSKELETAL SYSTEM<br>Bone<br>Carcinoma, Hos, invasive                   | N                                            | N        | N        | H        | ×        | N        | N        | N        | N        | H        | N        | N        | N        | N        | N        | N      | × ×      |          | ×        | H        | ×           | N        | *        | ×  | 50*       |
| SOBY CAVITIES<br>Peritoneum<br>Fibrosarcoma                                  | H                                            | N        | H        | N        | Ħ        | N        | Ħ        | ×        | H        | ×        | N        | NX       | N        | N        | N        | N      | н н      | N        | N        | N        | N           | N        | M        | N  | 54#       |
| ALL OTHER SYSTEMS                                                            | +                                            |          |          | -        |          |          |          |          |          |          |          |          | -        |          |          |        |          |          |          |          |             |          |          |    |           |
| TULTIPLE ORGANS HOS                                                          | N                                            | N        | Ň        | H        | N        | M        | ×        | N        | H        | N        | N        | N        | ×        | *        | N        | N<br>X | N H      |          | N        |          | N           | ž.       |          | ." | 50*       |

## TABLE A4. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE RATS: VEHICLE CONTROL (Continued)

ANIMALS HECROPSIED

| GAVAG                                                                  | ES             | ΤU       | <b>D</b>  | r c | )F       | HC       | R        | ED       | ) [      | 10       | . 3:     | L             | ЭW       | D        | 0S       | E        |            |          |            |   |          |              |          |   |
|------------------------------------------------------------------------|----------------|----------|-----------|-----|----------|----------|----------|----------|----------|----------|----------|---------------|----------|----------|----------|----------|------------|----------|------------|---|----------|--------------|----------|---|
| ANIMAL<br>Number                                                       |                | ;        |           | 0   | 0        | 1        | •        | -        | 1        | 1        | 1        | 1             |          |          |          | 1        | []         | 1        | 2          | 2 | 2        | 2            | 2        | Γ |
| HEEKS ON<br>STUDY                                                      |                | Π        |           | -   |          | ;        |          | 1        | 1        | 1        | 1        | 1             | 1,       |          |          |          | T,         |          |            |   | 1        | ;            |          | t |
| INTEGUMENTARY SYSTEM                                                   | 11             | 11       | 6         | . 6 | لف       | 1        | لغ       | 1        | 6        | أغ       | فا.      | 61            | 1.1      | قال      | 1 2      | 6        | Lž         | 6        | 6          | ف | Ĺi       | فا           | ٦        | Ļ |
| SUBCUTANEOUS TISSUE                                                    | +              | +        | +         | +   | +        | •        | +        | •        | ٠        | ٠        | •        | •             | • •      | •        | N        | +        | •          | +        | +          | ٠ | +        | +            | +        |   |
| FIBROSARCOMA<br>Respiratory system                                     | ┶              |          |           |     | ~~~~     |          |          |          |          |          |          |               |          |          |          |          | _          |          |            |   | _        |              |          |   |
| LUNGS AND BRONCHI                                                      |                |          |           |     |          |          |          |          |          |          |          |               |          |          |          |          |            |          |            |   |          |              |          |   |
| ADEHOCARCINOMA, NOS, METASTATIC<br>Alveolar/Bronchiglar Adenoma        | ×              |          | ·         | •   | Ť        | -        | •        | •        | •        | •        | •        | •             |          |          | •        |          |            | •        |            | X |          |              |          | _ |
| TRACHEA                                                                | +              | +        | +         | +   | +        | +        | +        | +        | •        | +        | +        | •             | • •      | +        | +        | +        | +          | +        | +          | + | +        | +            | +        |   |
| CHATOPOIETIC SYSTEM                                                    | Τ              |          |           |     |          |          |          |          |          |          |          |               |          |          |          |          |            |          |            |   |          |              |          |   |
| BONE MARROW                                                            | ++             | +        | *         | +   | +        | +        | +        | +        | *        | +        |          | •             | <u>+</u> |          |          | <u>+</u> |            | +        | •          | - | •        | .*           | +        | - |
| SPLEEN                                                                 | +              | +        |           | +   | +        |          | +        | •        | •        | •        | +        | •             | • •      | •        |          |          | - <u>`</u> | <u>+</u> | •          | + | +        | +            | +        | - |
| LYNPH NODES                                                            | +              | <u>+</u> | *         | ÷.  | <u>.</u> | •        | •        | •        | •        | +        | •        | • •           | •        |          | <u>+</u> |          |            | *        | +          | • | +        | •            | <u>.</u> | - |
| Thypus                                                                 | Ŀ              | +        | •         | •   | +        | <u> </u> | <u> </u> | *        | •        | +        | +        | • •           | • •      | •        | •        |          |            | •        | *          | + | •        | *            | +        |   |
| IRCULATORY SYSTEM                                                      |                |          |           |     |          |          |          |          |          |          |          |               |          |          |          |          |            |          |            |   |          |              |          |   |
| HEART                                                                  | +              | +        | +         | +   | +        | *        | +        | +        | +        | +        | +        | + •           | • •      | +        | +        | +        |            | +        | +          | + | +        | •            | +        |   |
| IGESTIVE SYSTEM                                                        | 1.             |          |           |     |          |          |          |          |          |          |          |               |          |          |          |          |            |          |            |   |          |              |          |   |
| SALIVARY GLAND                                                         | +              | ÷.       | *         | •   | •        | <u>*</u> | •        | *        | •        |          | •        | * <u> </u>    |          | *        |          | •        | ` <b>`</b> |          |            | + | -        | •            | +        | - |
|                                                                        | +              |          |           | •   | <u>.</u> | *        | *        | ••••••   | •        | ÷        | <u>.</u> | • <u>•</u> •• |          | *        | -        | *        |            | *        |            | + | +        | +            | <u>+</u> | - |
| SILE DUCT                                                              | † ·            | *        | •         | •   |          | *        | ÷        | <u>•</u> | <u>.</u> | <u>*</u> | <u>.</u> | <u>*</u>      |          | *        | •        | *        | <u> </u>   | *        | _ <b>*</b> | • | +        |              | <u> </u> | - |
| GALLBLADDER & CONTION BILE DUCT<br>Pancreas                            | <b>H</b> .     | -        | _         |     | -        | <b>.</b> |          | A        | A        | A        | R        |               |          | _        |          |          |            | _N_      | _N_        |   | _        |              | - 11     | - |
| ESOPHAGUS                                                              | <del>ا ا</del> | -        | -         | ÷   | <u> </u> | <u>.</u> |          | <u>.</u> | <u>.</u> | <u>*</u> |          | <u>* 1</u>    |          |          |          | •        |            |          | •          |   | <u>.</u> | •            | •        | • |
|                                                                        | H.             |          | ÷         |     |          | <u> </u> |          |          | •        | <u>+</u> | •        |               |          |          | -        |          | <u></u>    | •        |            | ÷ | *        | <u>.</u>     |          |   |
| STOMACH<br>Squamous cell papilloma                                     | Ŀ              |          | -         | •   | +        | +        | •        | •        | •        | •        | • •      | • •           | +        | •        | •        | •        | ۰۰<br>سا   | +        | *          | * | +        | •            | +        |   |
| SMALL INTESTINE                                                        |                | ٠        | ٠         | ٠   | +        | ٠        | ٠        | +        | ÷        | ٠        | •        | • •           | •        | ÷        | ٠        | +        |            | •        | . +        | + |          | ٠            | +        | _ |
| LARGE INTESTINE                                                        | +              | +        | +         | +   | +        | +        | +        | +        | •        | +        | •        | • •           | +        | +        | +        | +        | ŧ,         | ٠        | +          | + | ٠        | +            | ٠        |   |
| LINARY SYSTEM                                                          | +              |          |           |     |          |          |          |          |          |          |          |               |          |          |          |          |            |          |            |   |          |              |          |   |
| KIDNEY                                                                 | 1±             | +        | +         | ٠   | ٠.       | ٠        | ÷        | +        | ÷        | +        | ÷        | + +           | +        | •        | +        | ٠        | 1          | ٠        | +          | + | +        | ٠            | +        |   |
| URINARY BLADDER                                                        | +              | t        | +         | ٠   | +        | •        | •        | •        | +        | +        | •        | • •           | •        | +        | ٠        | +        | ۰.         | ٠        | ٠          | ٠ | ٠        | ٠            | +        |   |
| TRANSITIONAL-CELL PAPILLOMA<br>Hoogrine System                         | ┶              | X        |           |     |          |          |          |          |          |          |          | _             |          |          |          |          |            |          |            |   |          | _            |          |   |
| PITUITARY                                                              | 1.             |          |           |     |          |          |          |          |          |          |          |               |          | •        |          | -        |            |          |            |   |          |              | •        |   |
| CARCINOMA, HOS<br>ADENOMA, HOS                                         |                | •        | •         | •   | Ţ        | ÷        | ÷        | •        | ¥.       | •        | •        | <br>          |          | ž        | •        |          | 1          | Ť        | •          | • | Ţ        | Ţ            | Ţ        |   |
| ADRENAL                                                                | 1.             | +        |           |     | <u>.</u> | •        | •        |          | •        | •        | •        | • •           |          |          |          | •        |            | •        | •          | • | +        | - <b>^</b> - | <u>م</u> |   |
| CORTIČAL ADENOMA<br>Phedchromocytoma                                   |                | •        | •         | •   | •        | •        | •        | •        | •        | •        | ¥        | •••           | •        | •        | ×        | •        | ,          | •        | x          | Ť | •        | Ť            | •        |   |
| THYRDID                                                                | 1.             | •        | •         | •   | •        | •        | •        | •        | •        | •        | • •      |               | •        | •        | •        | •        |            | •        | •          | • | •        | •            | •        |   |
| FOLLICULAR-CELL ADENOMA<br>Follicular-cell carcinoma<br>C-cell Adenoma |                |          | •         | ·   | •        | •        | ·        |          |          | x        | •        |               | •        | ·        | ·        | ·        | •          | ·        | ·          |   | •        | ·            | ×        |   |
| C-CELL CARCINOMA                                                       | +              |          |           |     |          |          |          |          |          | <u></u>  |          |               |          |          |          |          |            |          |            |   |          |              |          | - |
| PARATHYROID                                                            | ++             | +        | •         | +   | •        | +        | +        | +        | •        | •        | + (      | • •           | *        | -        | •        | *        |            | •        | +          | + | +        | +            | •        | - |
| PANCREATIC ISLETS<br>ISLET-CELL ADENOMA                                | +              | +        | *         | •   | +        | •        | •        | •        | •        | •        | + (      | • •           | •        | +        | +        | •        | •          | •        | +          | + | •        | +            | +        |   |
| ISLET-CELL CARCINOMA<br>Eproductive system                             | <b></b>        |          | ×         |     |          |          |          |          |          | X        |          |               |          |          |          |          |            | _        |            |   |          |              |          |   |
|                                                                        |                |          |           |     |          |          |          | •        |          |          |          |               |          |          |          |          |            |          |            |   |          |              |          |   |
| MAMMARY GLAND<br>Adenocarcinoma, Nos                                   | ×              | •        | •         | •   | •        | •        | •        | •        | •        | •        | • •      | • •           | •        | •        | •        | •        | •          | •        | •          | • | •        | •            | •        |   |
| CYSTADENOMA, NOS<br>Fibroadenoma                                       | ⊢              |          | <u>_X</u> | X   | ×_       |          |          |          | x        |          | X        |               |          | <u>×</u> | X        | x        |            |          |            | x |          | ×            | X        |   |
| PREPUTIAL/CLITORAL GLAND<br>Carcingma, Nos<br>Adenoma, Nos             | N              | N        | N         | N   | N        | N        | H        | N I      | N        | N        | N P      |               | N        | N        | ×        | X        | X          | Ħ        | H<br>X     | H | N        | N            | N        |   |
| UTERUS                                                                 | •              | •        | ٠         | •   | +        | ٠        | •        | •        | +        | •        | + +      | • •           | +        | +        | •        | ٠        | •          | •        | •          | + | +        | +            | •        |   |
| ADENOCARCINOMA, NOS<br>Fibroma<br>Endometrial stromal Polyp            | L              |          | X         |     |          |          |          |          |          |          |          |               |          |          |          |          | _          |          |            | x |          |              |          |   |
| OVARY<br>Grahulosa-Cell Tumor                                          | •              | +        | +         | +   | ٠        | +        | •        | •        | •        | •        | •;       |               | ٠        | •        | ٠        | +        | ٠          | ٠        | •          | • | ÷        | ٠            | +        |   |
| RVOUS SYSTEM                                                           | <u> </u>       |          |           |     |          |          |          |          |          |          |          |               |          |          |          |          |            |          |            |   | - "-     |              |          | • |
| BRAIN<br>Granular-Cell Tumor, Hos                                      | •              | •        | •         | •   | •        | ٠        | •        | •        | •        | •        | • •      | + +           | •        | ٠        | +        | •        | •          | •        | •          | ٠ | •        | ٠            | +        |   |
| L OTHER SYSTEMS                                                        | <u> </u>       |          |           |     |          |          |          |          |          |          |          |               |          |          |          |          |            |          |            |   |          |              | _        | • |
| MULTIPLE GROANS NOS<br>Leukemia.mononuclear cell                       | N              | N        | N         | N   | N        | N        | N I      | N P      | N I      | N I      | N N      | I N           | N        | N        | N        | Ħ        | Ŋ          | N        | N          | N | N        | N            | N        |   |

# TABLE A4. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE RA'TS IN THE TWO-YEARGAVAGE STUDY OF HC RED NO. 3: LOW DOSE

| ANIMAL<br>Number                                                                     | 2          | 27         | 2        | 2        | 3          | 3        | 3        | 3        | 3        | 3        | 3        | 3        | 3         | 3        |          |              | 4        | 4        |          |            | 4         | 4         | 4          | 4        | s      | TOTAL               |
|--------------------------------------------------------------------------------------|------------|------------|----------|----------|------------|----------|----------|----------|----------|----------|----------|----------|-----------|----------|----------|--------------|----------|----------|----------|------------|-----------|-----------|------------|----------|--------|---------------------|
| WEEKS ON<br>Study                                                                    |            |            | -        |          | 9          |          | 1        | -        | 3        | 1        |          | 3        | -         | 1        | 1        | 1            | ;        | -        | 1        | 0          | 0         | 0         | 01         | 1        |        | TISSUE              |
| NTEGUMENTARY SYSTEM                                                                  | لف إ       | ف          | 6        | 31       | 81         | 61       | 61       | 61       | 61       | 61       | 61       | 16       | 61        | 61_      | 61       | 61           | 91       | 61       | 61       | لف         | لك.       |           | _ف_        | لغ       | 4      |                     |
| SUBCUTANEOUS TISSUE<br>Fibrosarcoma                                                  | +          | +          | +        | +        | +          | +        | •        | +        | +        | +        | +        | •        | +         | +        | •        | +            | *<br>x   | •        | •        | +          | +         | +         | •          | +        | +      | 508                 |
| ESPIRATORY SYSTEM                                                                    | +          |            |          |          | ****       | _        |          |          |          |          |          |          |           |          |          |              | _        |          |          |            |           |           | -          | •        |        |                     |
| LUNGS AND BRONCHI<br>Adenocarcinoma, nos, metastatic<br>Alveolar/bronchiolar Adenoma | •          | +          | •        | +        | •          | •        | •        | •        | +        | +        | •        | •        | •         | •        | •        | +            | +        | •        | +        | •          | +         | •         | +          | •        |        | 58                  |
| TRACHEA                                                                              | +          | +          | +        | +        | +          | +        | +        | +        | +        | ٠        | ٠        | +        | •         | +        | +        | +            | +        | +        | +        | +          | +         | ٠         | ٠          | ٠        | +      | 50                  |
| EMATOPOIETIC SYSTEM                                                                  | +          |            | _        | _        |            |          |          |          |          |          |          |          |           | -        |          |              |          |          |          |            |           |           |            |          |        |                     |
| BONE MARROW                                                                          | +          | +          | *        | +        | <u>+</u>   | +        | +        | +        | +        | *        | +        | *        | *         | *        | •        | *            | *        | +        | +        | +          | +         | <u>+</u>  | *          | +        | -+     | 5.0                 |
| SPLEEN                                                                               | +          | +          | +        | +        | *          | +        | +        | +        | +        | *        | +        | *        | +         | +        | *        | <u>+</u>     | <u>+</u> | *        | +        | +          | *         | *         | +          | +        | +      | 50                  |
| LYMPH HODES                                                                          | + <u>+</u> | +          | +        | +        | +          | *        | *        | *        | +        | +        | +        | +        | +         | +        | +        | +            | +        | <u>+</u> | +        | *          | *         | <u>+</u>  | *          | *        | -++    | 50                  |
| THYMUS                                                                               | +          | +          | +        | +        | +          | +        | +        | +        | +        | *        | *        | +        | +         | +        | +        | +            | +        | +        | +        | +          | *         | +         | +          | +        | +      | 54                  |
| IRCULATORY SYSTEM                                                                    |            |            |          |          |            |          |          |          |          |          |          |          |           |          |          |              |          |          |          |            |           |           |            |          |        |                     |
| HEART                                                                                | +          | +          | +        | *        | *          | +        | *        | +        | +        | +        | +        | *        | +         | +        | •        | +            | •        | +        | +        | +          | +         | +         | +          | •        | +      | 58                  |
| IGESTIVE SYSTEM                                                                      | T          |            |          |          |            |          |          |          |          |          |          |          |           |          |          |              |          |          |          |            |           |           |            |          |        |                     |
| SALIVARY GLAND                                                                       | +          | +          |          | •        | *          | *        | +        | +        | +        | *        | *        | *        | <u>+</u>  | <u>*</u> | <u>*</u> | <del>*</del> | *        | *        | *        | <u>*</u>   | <u>+</u>  | *         | *          | <u>*</u> | ╣      | - 49                |
| LIVER                                                                                | ++-        | <u>+</u>   | +        | +        | .*         | +        | •        | +        | +        | *        | <u>+</u> | <u>+</u> | <u>+</u>  | *        | <u>*</u> | <del>۴</del> | <u>*</u> | <u>*</u> | *        | *          | <u>*</u>  | ÷         | <u>*</u>   | <u>*</u> | -      | 50                  |
| BILE DUCT                                                                            | +          | +          | +        | +        | *          | <u>+</u> | *        | <u>+</u> | <u>+</u> | +        | *        | *        | <u>*</u>  | •        | *        | ·            | <u>*</u> | •        | +        | <u>.</u>   | ÷         | ÷         | ÷          | <u>.</u> | ∄      | 50                  |
| GALLBLADDER & CONTION BILE DUCT                                                      | +-         | <u>. N</u> | <u> </u> | <u>M</u> |            | <u> </u> | <u>N</u> | <u>N</u> | <u>N</u> | <u>.</u> |          | <u>N</u> | <u>.н</u> | N        | <u>u</u> | •            | <u>.</u> | а        | <u> </u> | - <u>H</u> | _ <u></u> | _Ľ        | - <b>E</b> |          |        | 501                 |
| PANCREAS                                                                             | +          |            | *        | *        | ÷          | <u> </u> |          | <u>.</u> | <u>*</u> | ÷        | -        | -        |           | <u>*</u> | <u>*</u> | <u>.</u>     | <u>.</u> | <u> </u> | <u> </u> |            | <u> </u>  | - <u></u> | Ť          | <u> </u> | Ť      |                     |
| ESOPHAGUS                                                                            | 1          |            | <u>.</u> | ÷        | - <u>-</u> | ÷        | •        | ÷        | •        | *<br>*   | +        | ÷        |           | _        |          | *<br>+       | •        | *        | +        | ÷          | ÷         | +         | •          | •        | -      | 58                  |
| STUMACH<br>Squamdus cell papilloma                                                   | Ľ          | <u> </u>   | <u> </u> | •        | +          | <u> </u> | <u>.</u> | <u> </u> | <u> </u> | _        | <u> </u> | _        |           |          |          | -            |          |          | <u> </u> | ×.         | <u> </u>  |           |            | · .      | 4      |                     |
| SMALL INTESTINE                                                                      | <u>_</u>   | +          |          | +        | +          | +        | ٠.       | +        | •        | ٠        | ٠        | •        | +         | <b>+</b> | <u>+</u> | <u>+</u>     | +        | +        | •        | +          | •         | +         | +          | +        | -+     | 69                  |
| LARGE INTESTINE                                                                      | +          | +          | +        | ٠        | +          | +        | +        | ٠        | +        | +        | ٠        | +        | •         | +        | •        | •            | •        | +        | +        | +          | +         | +         | •          | ٠        | +      | 50                  |
| RINARY SYSTEM                                                                        | +          |            |          |          |            |          |          | _        |          |          |          |          |           |          |          |              | -        |          |          |            |           | -         |            |          |        | ان والمحالي المراجع |
| KIDNEY                                                                               | 1.         | +          | +        |          | •          | +        | +        | +        | •        | +        | +        | +        | *         | <u>+</u> | <u>+</u> | <u>+</u>     | +        | +        | *        | *          | +         | <u>+</u>  | *          | •        | +      | 5.8                 |
| URINARY BLADDER                                                                      | +          | +          | +        | +        | +          | +        | +        | +        | +        | ٠        | +        | +        | *         | +        | •        | +            | +        | •        | +        | +          | +         | +         | +          | +        | +      | 50                  |
| TRANSITIONAL-CELL PAPILLOMA                                                          | <u> </u>   |            |          |          |            |          |          |          | _        |          |          |          |           | _        |          | _            |          |          | _        | -          |           |           |            |          | -+     |                     |
| NDOCRINE SYSTEM<br>Pituitary                                                         |            |            |          | •        |            | •        | •        | •        | •        | •        | +        | •        | •         | •        | +        | •            | •        | +        | ÷        | •          | +         | +         | +          | •        | +      | 58                  |
| CARCINGMA, NOS<br>ADENOMA, HOS                                                       | L.         | ×          |          |          | ×          |          | <u> </u> |          |          |          | x        |          |           |          | x        |              |          |          |          |            |           |           | ×          |          | ×      | 1                   |
| ADRENAL<br>Cortical Adenoma<br>Pheochromocytoma                                      | Ŀ          | <u> </u>   | •        | *        | •          | *        | •        | •        | •        | +        | •        | •        | •         |          | ż        | +            | •        | •        | +        | <u>+</u>   | •<br>     | ÷         | +          | ××       | 1      | 56                  |
| THYROID<br>Follicular-cell Adenoma                                                   | +          | +          | +        | ٠        | +          | +        | •        | ٠        | •        | +        | +        | +        | +         | +        | ÷        | +            | +        | +        | +        | +          | ٠         | +         | ٠          | +        | +      | 58                  |
| FOLLICULAR-CELL CARCINOMA<br>C-CELL ADENOMA                                          | 1          |            |          | J        |            |          |          |          |          |          |          |          |           |          |          |              |          |          | x        | ×          |           | x         |            |          |        |                     |
| C-CELL CARCINOMA                                                                     | +          |            |          | <u>~</u> |            |          |          |          |          |          |          | •        | •         |          |          | +            |          | +        |          | •          | +         | +         | -          | •        | •      | 48                  |
| PARATHYROID                                                                          | †÷         | <u>,</u>   | <u> </u> | ÷        | •          | <u> </u> | •        |          | •        | •<br>•   | •        | •        | •         | +        | *        | +            | *        | +        | +        | +          | •         | +         | +          | +        | +      | 58                  |
| PANCREATIC ISLETS<br>ISLET-CELL ADENOMA<br>ISLET-CELL CARGINOMA                      | ×          | •          | •<br>    | ·        | x          | <u> </u> |          |          | ·        |          |          |          |           |          |          |              |          |          |          |            |           |           |            |          |        |                     |
| EPRODUCTIVE SYSTEM                                                                   |            |            |          |          |            | *        |          |          | •        |          |          |          | •         |          |          | •            |          | •        | •        | •          | •         | •         | •          | •        |        | 582                 |
| MAMMARY GLAHD<br>Adenocarcinoma, NGS<br>Cystadenoma, NGS<br>Fibroadenoma             | L.         | •<br>X     | +        | •<br>×   | +<br>.x    | ×        | •        | •        | •        | ÷<br>×   | ×        | ·        | •<br>×    | ×        | •        | Ý            | *<br>×   | ×        | •<br>    |            |           | -         | ×          | ×        |        | 2                   |
| PREPUTIAL/CLITORAL GLAND<br>Carcinoma.Hos<br>Adenoma. Hos                            | N          | M          | N        | N        | N          | H<br>X   | H        | N        | N        | N        | N        |          | N         |          | N        | H            | Ħ        | H        | H        | н          | N         | N         | N          | N        | N      | 50                  |
| UTERUS<br>Adenocarcingma, nos<br>fibroma<br>Endometrial stromal polyp                | ŀ          | +<br>x     | +        | •        | •          | +<br>X   | +<br>x   | ٠        | •        | ×        | +        | •        | •         | •        | •        | •            | +        | •        | •        | •          | •         | •         | ٠          | •        | +<br>X | 50                  |
| GRAHULOSA-CELL TUMOR                                                                 | ·          | +          | +        | •        | ٠          | •        | •        | +        | +        | +        | +        | •        | +         | +        | •        | +            | +        | •        | •        | +          | +         | •         | •          | •        | X      | 50                  |
| ERVOUS SYSTEM                                                                        | +          |            |          |          |            |          |          |          |          |          | ~        |          |           |          |          |              |          |          | -        | -          |           |           |            |          | $\neg$ |                     |
| BRAIN<br>GRANULAR-CELL TUMOR, HOS                                                    | •          | +          | •        | •        | •          | •        | •        | •        | *        | •        | •        | •        | •         | •        | •        | •            | •        | *        | •        | •          | •         | •         | •          | •        | ×      | 56                  |
| LL OTHER SYSTEMS                                                                     | -          |            |          |          |            |          |          | ton a    |          |          |          | _        |           |          |          |              |          |          |          |            |           |           |            |          | T      |                     |

### TABLE A4, INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE RATS: LOW DOSE (Continued)

\* ANIMALS NECROPSIED

| GAVAGI                                                                                                                                                             | <u>s si</u> | ľU | D        | ( 0      | FI                | HC          | R      | EC          | ) N  | 10.      | . 3:       | H         | IG     | H   | DC       | )S       | E  |              |             |          |             |          |          |        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----|----------|----------|-------------------|-------------|--------|-------------|------|----------|------------|-----------|--------|-----|----------|----------|----|--------------|-------------|----------|-------------|----------|----------|--------|
| AN IMAL<br>NUMSER                                                                                                                                                  |             | 0  | 0        | 0        | 0<br>0<br>5       | 0           | 9      | 0           | 0    | 0        | 1          | 1         | 1      | 1   | 1        | 1        | 1  |              | 1           | 2        | 0<br>2<br>1 | 022      | 023      | 2      |
| WEEKS ON<br>STUDY                                                                                                                                                  |             | 1  |          | -        | •                 | -           | -      | -           | 8    | -1       | -          | 8         | -1     |     | 1        | 1        | 1  | -1           | 91          | -        | 0<br>9      | 9        | 0        | 9      |
| INTEGUMENTARY SYSTEM                                                                                                                                               | لغب         | 6  | 6        | 2        | 61                | . 61        | 6      | 61          | 01   | 61       | 61         | <u>61</u> | 61     | 61  | 6        | 61       | 21 | _11          | -51         | لغ       | 5           | 1        | 6        | 51     |
| SKIN<br>Squamdus cell papilloma                                                                                                                                    | +           | +  | +        | +        | ٠                 | +           | +      | +           | +    | +        | +          | +         | ٠      | +   | •        | +        | *  |              | ٠           | +        | +           | +        | +        | •      |
| SUBCUTANEOUS TISSUE<br>Fibroma                                                                                                                                     | •           | +  | +        | +        | +                 | +           | +      | +           | +    | ٠        | +          | +         | *      | ٠   | +        | +        | ٠  | •            | ŧ           | +        | ٠           | +        | +        | ٠      |
| RESPIRATORY SYSTEM                                                                                                                                                 | +           | _  |          |          |                   |             |        |             |      |          | -          |           |        |     |          |          |    | -            | _           |          |             |          |          |        |
| LUNGS AND BRONCHI<br>C-CELL CARCINGMA, METASTATIC                                                                                                                  | •           | +  | +        | +        | +                 | •           | ٠      | ٠           | +    | *        | . +        | +         | ٠      | +   | +        | •        | +  | ••           | +           | +        | +           | +        | +        | ٠      |
| TRACHEA<br>C-CELL CARCINOMA, INVASIVE                                                                                                                              | •           | ٠  | ٠        | ٠        | +                 | +           | •      | ٠           | +    | *        | ٠          | +         | ٠      | +   | +        | +        | ٠  | ••           | ٠           | +        | ٠           | •        | +        | ٠      |
| HEMATOPOIETIC SYSTEM                                                                                                                                               | +           |    |          |          |                   |             |        |             | _    |          |            |           |        | -   |          |          |    |              | _           | -        |             |          |          |        |
| SONE MARRON                                                                                                                                                        | Ŀ           | +  | +        | ٠        | +                 | ٠           | +      | +           | +    | +        | +          | +         | +      | ٠   | +        | ٠        | ٠  |              | +           | ٠        | ÷           | •        | +        | ٠      |
| SPLEEN                                                                                                                                                             | L+.         | .+ | +        | +        | +                 | ÷           | +      | +           | +    | +        | +          | +         | •      | ÷   | +        | ÷        | +  |              | ٠           | +        | ÷           | ٠        | ٠        | ÷      |
| LYMPH NODES                                                                                                                                                        | Ŀ           | +  |          | +        | +                 | *           | +      | +           | +    | +        | +          | ٠         | +      | •   | +        | +        | +  |              | +           | +        | +           | +        | +        | •      |
| THYMUS                                                                                                                                                             | •           | +  | +        | +        | +                 | +           | +      | +           | +    | +        | +          | +         | +      | +   | +        | +        | +  |              | +           | ٠        | +           | +        | +        | +      |
| CIRCULATORY SYSTEM                                                                                                                                                 | ┿──         |    |          |          |                   |             |        |             |      |          |            |           |        |     |          |          |    |              |             |          | -           |          |          |        |
| HEART                                                                                                                                                              | +           | •  | +        | +        | +                 | +           | +      | +           | +    | +        | +          | +         | +      | •   | •        | •        | •  | 0            | •           | +        | +           | +        | ٠        | +      |
| DIGESTIVE SYSTEM                                                                                                                                                   | +           | _  |          |          |                   |             |        | _           |      |          |            |           |        |     |          |          |    | -            |             |          |             | _        |          | _      |
| SALIVARY GLAND                                                                                                                                                     | 1.          |    | +        | +        | +                 | +           | •      | •           | •    | +        | +          | •         | +      | •   | •        | •        | +  |              | •           | +        |             | +        | •        | +      |
| LIVER                                                                                                                                                              | T.          | •  |          | <u> </u> |                   |             |        |             | •    | +        | +          | •         | +      | +   | •        | •        | •  |              | •           |          | •           |          | •        | •      |
|                                                                                                                                                                    | 1÷          |    |          | <u> </u> | Ť                 | Ť           | Ť      | Ť           | •••• |          |            |           | *      | •   | <u> </u> | <u> </u> |    |              |             |          | Ż           | •        | <u> </u> |        |
| BILE DUCT                                                                                                                                                          | <u>+</u>    |    |          |          |                   |             |        |             | •    |          | *          | •         | •      |     |          |          |    |              |             |          |             |          |          |        |
| GALLBLADDER & COPHION BILE DUCT                                                                                                                                    | -8-         | _1 | N        |          | <u>    H     </u> | N           |        |             |      |          |            | <u> </u>  |        | М., |          | И.,      |    | -1 [         | <u>. N.</u> |          | N           |          |          |        |
| PANCREAS<br>Acimar-Cell Adenoma                                                                                                                                    | Ŀ           | +  |          | *        | •                 | +           | •      | +           | •    | •        | <b>ب</b> . | •         | •      | •   | •        | +        | *  |              | •           | •        | •           | +        | •        | +      |
| ESOPHAGUS                                                                                                                                                          | ∔           | ٠  | +        | ٠        | +                 | +           | +      | +           | +    | +        | +          | +         | .*     | +   | +        | +        | +  |              | ÷           | •        | +           | +        | +        | *      |
| STOMACH<br>Squamgus cell papilloma                                                                                                                                 | <u>  •</u>  | •  | •        | +        | •                 | +           | •      | +           | •    | •        | •          | •         | +      | +   | +        | +        | •  | ۰.<br>معر مع | +           | +        | +           | +        | +        | ż      |
| SMALL INTESTINE<br>Leidhydsarcoma                                                                                                                                  | +           | •  | +        | ٠        | •                 | •           | •      | •           | ٠    | +        | •          | •         | •      | •   | +        | +        | •  |              | +           | •        | •           | -        | •        | •      |
| LARGE INTESTINE                                                                                                                                                    | +           | +  | +        | ٠        | +                 | +           | +      | +           | +    | +        | +          | +         | +      | +   | +        | ٠        | +  | •            | +           | +        | +           | +        | +        | +      |
| JRIHARY SYSTEM                                                                                                                                                     | $\square$   |    |          | _        |                   |             |        |             |      |          |            |           |        |     |          |          |    |              |             |          |             |          |          |        |
| KIDNEY                                                                                                                                                             | 1±          | +  | <u>+</u> | +        | •                 | +           | •      |             | +    | +        | ٠          | +         | +      | •   | +        | •        | +  |              | •           | +        | +           | +        | ٠        | +      |
| URINARY BLADDER<br>Transitional-Cell Papilloma                                                                                                                     | +           | +  | +        | +        | •                 | +           | •      | ٠           | ٠    | ٠        | ٠          | ٠         | +      | •   | •        | +        | ٠  | ••           | ٠           | *<br>X   | +           | +        | +        | +.     |
| INDOCKINE SYSTEM                                                                                                                                                   | +           |    |          | _        |                   |             |        |             |      |          |            |           |        |     |          |          |    |              |             |          |             |          |          |        |
| PITUITARY<br>Carcinoma, HOS                                                                                                                                        | •           | +  | +        | ٠        | •                 | ٠           | +      | •           | +    | +        | ٠          | +         | +      | +   | +        | +        | •  | ١            | +           | •        | ٠           | ٠        | •        | •      |
| ADENOMA, HOS                                                                                                                                                       | <u>⊢×</u>   | X  | X        |          |                   |             |        |             |      | X        |            |           |        |     |          |          |    | -            |             | <u>×</u> |             |          | ×.       | X      |
| ADREMAL<br>Pheochromocytoma<br>Pheochromocytoma, malignant                                                                                                         | •           | •  | ٠        | +        | +                 | •           | +      | +           | •    | •        | •          | *         | *      | *   | *        | •        | •  | •            | *           | +        | +           | +        | •        | +      |
| THYROID                                                                                                                                                            | •           | +  | +        | +        | +                 | +           | +      | +           | +    | +        | +          | +         | +      | •   | +        | +        | +  | 4            | +           | ٠        | +           | +        | +        | ٠      |
| FOLLICULAR-CELL ADENOMA<br>Follicular-cell carcinoma<br>C-Cell Adenoma                                                                                             |             | x  | x        |          |                   |             |        |             | x    |          |            |           |        |     | x        |          |    |              |             |          |             |          | x        |        |
| C-CELL CARCINOMA                                                                                                                                                   | 1           |    |          |          |                   |             |        |             |      | <u> </u> |            |           |        |     |          |          |    |              |             | <u>×</u> |             |          |          |        |
| PARATHYROID                                                                                                                                                        | +           | •  | . +      | •        | •                 | •           | •      | •           | *    | <u>.</u> | <u>.</u>   | ÷         | *      | •   | •        | •        | •  | <u> </u>     | ÷           | ÷        | ÷           | <u>.</u> | <u>+</u> | ÷      |
| PANCREATIC ISLETS<br>Islet-Cell Adenoma                                                                                                                            | •           | •  | *        | •        | •                 | *           | •      | •           | ×    | *        | •          | +         | •      | •   | •        | •        | +  | 1            | •           | •        | +           | *        | +        | +      |
| REPRODUCTIVE SYSTEM                                                                                                                                                |             |    |          |          |                   |             |        |             |      |          |            |           |        |     |          |          |    |              |             |          |             |          |          |        |
| MAMMARY GLAND<br>Ademocarcingma, NOS<br>Fibroadengma                                                                                                               | •           | +  | +        | +        | +<br>x            | +           | •      | •           | •    | ×        | •          | *<br>x.   | +<br>x | •   | *        | +<br>x   | •  | •            | •           | •<br>x   | •           | •        | +<br>_x  | *      |
| PREPUTIAL/CLITORAL GLAND<br>Carcinoma.Nos                                                                                                                          | H           | Ħ  | N        | M        | N                 | N           | N      | N           | N    | N        | N          | Ħ         | N      | N   | N        | N        | N  | ĸ            | N           | N        | N           | N        | N        | N      |
| UTERUS                                                                                                                                                             | 1           | +  | •        | •        | +                 | +           | +      | ÷           | •    | +        | +          | +         | •      | +   | •        | +        | +  | 4            | +           | •        | +           | •        | +        | +      |
|                                                                                                                                                                    | •           |    |          |          |                   |             |        |             |      |          | x          |           | x      |     |          |          |    | x            |             | x        | ¥           |          | -        | -      |
| LEIOMYOMA<br>LEIOMYOSARCOMA                                                                                                                                        | •           | -  |          |          |                   |             |        | - <b>-</b>  |      |          |            |           |        |     |          |          | _  |              | _           |          | _           |          |          |        |
| LEIDMYOMA                                                                                                                                                          | *<br>  •    | •  | •        | •        | •                 | •           | +      | +           | ÷    | ٠        | +          | +         | •      | •   | +        | +        | +  | •            | +           | ٠        | +           | +        | +        | +      |
| LEIDHYOMA<br>Leidhyosarcoma<br>Endometrial Stromal Polyp                                                                                                           | •           |    | •        | ٠        | •                 | •           | •      | •           | ٠    | ٠        | •          | •         | •      | •   | •        | •        | •  | <u> </u>     | +           | +        | •           | +        | •        | +      |
| LEIDHYONA<br>LEIDHYOSARCOMA<br>Endometrial Stromal Polyp<br>Gvary                                                                                                  | •           |    | •        | •        | •                 | •           | •      | •           | •    |          |            |           | •      |     |          |          |    | _            |             | •        | •           | •<br>•   | •<br>•   | •<br>• |
| LEIDHYOMA<br>LEIDHYOSARCOMA<br>Endomerial Stromal Polyp<br>Ovary<br>Kervous System<br>Braim                                                                        | ·           | •  |          |          | •<br>•            | •<br>•      | •<br>• | •           |      |          |            |           |        |     |          |          |    | _            |             |          |             | _        |          |        |
| LEIOMYONA<br>LEIOMYOSARCONA<br>Endometrial Stromal Polyp<br>Ovary<br>Hervous System<br>Braim<br>Carcinoma, Nos, Invasive                                           | ·           | •  |          |          | +<br>+<br>N       | +<br>+<br>H | •      | +<br>+<br>H |      | ÷        | •          | •         |        | •   | •        | +        | +  | _            | •           |          |             | _        |          |        |
| LEIONYONA<br>LEIONYOSARCOMA<br>ENDOMETRIAL STROMAL POLYP<br>Ovary<br>Hervous System<br>Sraim<br>Carcinoma, nos, invasive<br>IPECIAL Sense Organs<br>Zymbal's gland | •           | •  | •        | •        | •                 | +           | •      | •           | •    | ÷        | •          | •         | •      | •   | •        | +        | +  | <br>+<br>    | •           | ٠        | •           | •        | •        | •      |

# TABLE A4. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE RATS IN THE TWO-YEARGAVAGE STUDY OF HC RED NO. 3: HIGH DOSE

| TABLE A4. | INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE RATS: HIGH DOSE (Continued) |
|-----------|-------------------------------------------------------------------------|
|           |                                                                         |

| AN IMAL<br>NUMBER                                                                                     | 2            | 2        | 2        | 2,9      | 3        | 3        | 32 | 3        | 3              | 3        | 3  | 37       | 3          | 3          | 4   |           | 4 2      | 6      | 4        | 1        | 4        | 4       | 4        | ;        | 5       | TOTAL                  |
|-------------------------------------------------------------------------------------------------------|--------------|----------|----------|----------|----------|----------|----|----------|----------------|----------|----|----------|------------|------------|-----|-----------|----------|--------|----------|----------|----------|---------|----------|----------|---------|------------------------|
| WEEKS ON<br>STUDY                                                                                     | 9            | 0        | 1        |          |          | 0        | -  | ?        |                | 1        | -  |          | 8          | -          | 1   | 1         | 1        | -      | 0        |          | 1        | j       | 8        | ?        | J       | TUMORS                 |
| INTEGUMENTARY SYSTEM                                                                                  |              | 61       | ् हा     | 61       | 61       | 61       | 41 | 21       | <u>. i è i</u> | 61.      | 61 | 6)       |            | <u>a</u> ) | 61. | _ 1       | نغ       | لف     | 61       | _ او     | -        | -       |          | _71      | ╇       |                        |
| SKIN<br>Squamous cell papilloma                                                                       | +            | ٠        | +        | +        | +        | ٠        | ٠  | +        | +              | +        | ÷  | ٠        | ٠          | +          | +   | +         | N        | +      | +        | +        | ٠        | +       | +        | +        | +       | 50×                    |
| SUBCUTANEOUS TISSUE                                                                                   | 1.           | •        | •        | +        | +        | ÷        | +  | •        | •              | +        | +  | +        | +          | +          | •   | +         | N        | +      | +        | +        | •        | •       | •        | ÷        | +       | 58×                    |
| FIBROMA                                                                                               |              |          |          |          |          |          |    |          |                |          |    |          |            |            |     |           |          | _      |          |          | X        |         |          |          |         | 2                      |
| RESPIRATORY SYSTEM                                                                                    |              |          |          |          |          |          |    |          |                |          |    |          |            |            |     |           |          |        |          |          |          |         |          |          |         |                        |
| LUNGS AND BRONCHI<br>C-Cell Carcingma, Metastatic                                                     | Ŀ            |          | +        | +        | <u>+</u> | +        | *  | *        | *              | *        | •  | +        | <u>+</u>   | +          | +   | +         | ÷        | +      | +        | <u>.</u> | *        | *       | +        | <u>+</u> | 4       | 50                     |
| TRACHEA<br>C-CELL CARCINGMA, INVASIVE                                                                 | +            | +        | +        | +        | ٠        | ٠        | ٠  | +        | +              | +        | ٠  | +        | +          | +          | +   | +         | •        | +      | +        | ٠        | ٠        | +       | +        | +        | +       | 50                     |
| HEMATOPOIETIC SYSTEM                                                                                  | <u> </u>     |          |          |          |          |          |    |          |                |          |    |          |            |            | _   |           |          |        |          |          | -        |         | _        |          | +       | ·                      |
| BONE MARROW                                                                                           | 1.           |          |          | •        | •        | •        | •  | •        | •              | •        | •  | +        | •          | •          | ٠   | •         | +        | •      | +        | •        | +        | +       | •        | •        | +       | 58                     |
| SPLEEN                                                                                                | 1.           | +        | +        | +        | +        | +        | ÷  | +        | •              | •        | •  | +        | +          | +          | +   | •         | +        | +      | +        | •        | •        | +       | +        | +        | +       | 58                     |
| LYMPH NODES                                                                                           | •            | +        | +        | +        | +        | •        | •  | +        | +              | •        | •  | +        | +_         | +          | +   | •         | •        | +      | •        | +        | •        | •       | +        | +        | +       | 56                     |
| THYMUS                                                                                                | 1            | +        | +        | +        | +        | +        | +  | +        | +              | ٠        | +  | •        | +          | +          | +   | +         | +        | +      | ٠        | +        | •        | +       | +        | +        | •       | 58                     |
| CIRCULATORY SYSTEM                                                                                    |              |          |          | _        |          | -        |    |          |                |          |    | _        |            |            |     |           | -        |        |          |          |          |         |          |          | -+      |                        |
| HEART                                                                                                 | •            | +        | +        | +        | ٠        | +        | +  | ٠        | ٠              | ٠        | ٠  | +        | •          | •          | ٠   | +         | +        | •      | ٠        | +        | ٠        | ٠       | +        | +        | +       | 54                     |
| DIGESTIVE SYSTEM                                                                                      |              |          |          |          |          |          |    |          |                |          |    |          | `          | -          |     |           |          |        |          |          |          |         |          |          | 1       |                        |
| SALIVARY GLAND                                                                                        | ++           | •        | ٠        | *        | ٠        | +        | +  | *        | *              | •        | +  | •        | •          | +          | +_  | +         | +        | +      | <u>+</u> | +        | +        | +       | +        | +        | 4       | 58                     |
| LIVER                                                                                                 | +            | +        | +        | •        | +        | +        | •  | +.       | +              | +        | •  | +        | <u>+</u>   | +          | •   | *         | +        | +      | +        | •        | •        | ٠       | +        | +        | *       |                        |
| BILE DUCT                                                                                             | ++-          | +        | ÷        | +        | +        | +        | *  | +        | +              | +        | •  | <u>+</u> | •          | •          | •   | *         | <u>.</u> | *      | •        | +        | <u>.</u> | +       | +        | •        | +       |                        |
| GALLBLADDER & COPHION BILE DUCT                                                                       | ┝┻           |          |          | H        | N.       | <u>H</u> |    | М        | <u></u>        | <u> </u> |    |          |            | H          |     | <u>N.</u> | N        |        | <u>.</u> |          | <u>.</u> | <u></u> | <u>H</u> | <u>.</u> | ┦       |                        |
| PANCREAS<br>Acimar-cell Adengma                                                                       | +            | +        | ÷.       | +        | *        | •        | *  | <u>+</u> | *              | *        | •  | <u>.</u> | •          | •          | •   | *         | •        | •      | *        | <u>*</u> | *        | +       | +        | +        | 1       | 50,                    |
| ESOPHAGUS                                                                                             | Ŀ            | +        | •        | ٠        | +        | +        | *  | •        | *              | *        | ٠  | +        | +          | •          | +   | <u>+</u>  | +        | •      | <u>+</u> | +        | ÷        | ٠       | <u>+</u> |          | ÷       | 58                     |
| STOMACH                                                                                               | +            | ٠        | +        | +        | +        | ٠        | +  | +        | +              | +        | •  | ٠        | +          | ٠          | ٠   | +         | ٠        | +      | +        | +        | +        | ٠       | ٠        | \$       | 1       | 58,                    |
| SQUAMOUS CELL PAPILLOMA                                                                               | +-           | •        | +        | +        | •        | •        | •  | •        | +              | +        | •  | •        | +          | •          | •   | ÷         | ÷        | •      | •        | •        | •        | •       | •        | •        |         | 49                     |
| SMALL INTESTINE<br>Leiomyosarcoma                                                                     | ↓ Ļ          | _        | _        | <u> </u> | -        |          | _  | ×.       |                |          |    |          |            |            |     |           |          |        | _        | _        |          | _       | _        |          | +       |                        |
| LARGE INTESTINE                                                                                       | •            | +        | +        | +        | +        | +        | +  | +        | •              | +        | •  | •        | +          | +          | +   | +         | •        | *      | +        | •        | +        | +       | -        | +        | *       | 49                     |
| URINARY SYSTEM                                                                                        |              |          |          |          | _        |          |    |          |                |          |    |          |            |            |     |           |          |        |          |          |          |         |          |          |         |                        |
| KIDNEY                                                                                                | +            | <u>+</u> | <u>+</u> | <u>+</u> | <u>+</u> | <u>*</u> | •  | •        | <u>+</u>       | <u>+</u> | ÷  | ÷        | <u>+</u> - | ÷          | ÷   | ÷         | •        | •      | <u>.</u> | *        | ÷        | ÷       | ÷        | ÷        | *       | <u>58</u><br>50        |
| URINARY BLADDER<br>Transitional~Cell Papilloma                                                        | 1            | •        | •        | •        | •        | •        | •  | Ť        | •              | •        | •  | Ť        | -          | •          | •   | •         | Ť        | Ť      | •        | •        | •        | ·       | •        | ·        |         | 1                      |
| ENDOCRINE SYSTEM                                                                                      | -+           |          |          |          |          |          |    | _        |                |          |    |          |            |            |     |           | _        |        |          |          |          |         |          |          | ٦       |                        |
| PITUITARY<br>Carcinoma, NOS                                                                           | +            | ٠        | ٠        | +        | +        | +        | *  | ٠        | +              | •        | +  | +        | +          | +          | •   | +         | •        | •      | +        | *x       | +        | •       | •        | +        | *       | 58 2                   |
| ADENOMA, NOS                                                                                          | +            |          |          | X        | _        | X        |    | -        |                | X        |    | <u>×</u> |            | X.         |     |           |          |        | X.,      | _        | <u>×</u> | _       | _        | <u>×</u> | +       | 15                     |
| ADRENAL<br>Phedchromocytoma<br>Phedchromocytoma, malignant                                            | Ŀ            | •        | +        | <u> </u> | •        | •        | *  | •        | •              | •        | +  | <u> </u> | <u>+</u>   | <u>•</u>   | •   | •         | +        | •      | +        | +        | •<br>    | +       | *<br>x   | +        | 4       | 54                     |
| THYRGID<br>Foliicular-cell Ademoma<br>Foliicular-cell Carcingma<br>C-cell Ademoma<br>C-cell Carcingma | ×            | •        | •        | ×        | •        | +        | •  | •        | •              | •        | •  | •        | •          | •          | •   | +         | •        | •      | •        | •        | •        | +       | +        | •        |         | 50<br>2<br>1<br>4<br>2 |
| PARATHYRGID                                                                                           | -            | +        | +        | +        | +        | ÷        | ÷  | ٠.       | *              | •        | +  | ٠        | •          | <u>.</u>   | +   | +         | *        | +      | ÷        | +        | •        | •       | •        | +        | +       | 48                     |
| PANCREATIC ISLETS<br>Islet-cell Adengma                                                               | +            | ٠        | ٠        | ٠        | ٠        | ٠        | ٠  | ٠        | ٠              | ٠        | +  | +        | ٠          | ٠          | +   | •         | +        | •      | •        | +        | +        | +       | +        | ٠        | •       | 50,                    |
| REPRODUCTIVE SYSTEM                                                                                   |              |          |          |          | _        |          | -  | -        |                |          |    | -        | <u> </u>   | -          |     |           |          |        |          | _        |          |         |          |          | +       |                        |
| MAMMARY GLAND<br>Adenocarcinoma, Nos<br>Fibroadengma                                                  | •            | ٠        | ٠        | ٠        | ٠        | •        | ٠  | ٠        | •              | ٠        | +  | +<br>X   | ٠          | +<br>X     | •   | +<br>X.   | +<br>X_  | •      | ×        | •        | +        | •       | •        | +<br>x   | •       | 58X<br>2               |
| PREPUTIAL/CLITORAL GLAND<br>CARCINOMA,NOS                                                             | *            | N        | NX       | *        | N        | N        | ×  | N        | N              | Я        | Ħ  | N        | N          | н          | H   | N         | N        | N      | H        | H        | H        | N       | N        | я        | HI<br>X | 58H<br>2               |
| UTERUS<br>LEIOMYOMA<br>LEIOMYOSARCOMA                                                                 | ·            | +        | ٠        | +        | *        | +        | •  | +        | +              | ٠        | •  | •        | +<br>¥     | +          | +   | •         | ٠        | *<br>x | ٠        | •        | *        | •       | •        | +        | •       | 58                     |
| ENDOMETRIAL STROMAL POLYP                                                                             | +.           | <u> </u> | •        | ÷        | ÷        | +        | +  | •        | +              | •        | •  | •        | <u>م</u>   | +          | •   | •         | •        | +      | •        | +        | +        | +       | ÷        | •        | •       | 58                     |
| NERVOUS SYSTEM                                                                                        | - <u> </u> - |          | -        |          |          |          |    |          |                | _        | -  |          |            |            |     | _         | <u> </u> | _      | _        |          | _        |         |          |          | +       |                        |
| SRAIN<br>CARCINGMA, NOS, INVASIVE                                                                     | •            | ٠        | ٠        | ٠        | ٠        | ٠        | ٠  | ٠        | ٠              | •        | ٠  | ٠        | ٠          | ٠          | ٠   | ٠         | ٠        | ٠      | +        | *<br>×   | ٠        | +       | ٠        | ٠        | +       | 58<br>1                |
| SPECIAL SENSE ORGANS                                                                                  |              |          |          |          |          |          |    |          |                |          |    |          | _          |            |     | _         |          |        |          |          |          |         |          |          | -+      |                        |
| ZYMBAL'S GLAND<br>Carcinoma, Hos                                                                      | ×            | Ħ        | H        | M        | N        | N        | N  | N        | N              | N        | M  | N        | N          | H          | N   | N         | H        | H      | N        | N        | , N      | N       | H        | N        | N       | 50×<br>2               |
| ALL OTHER SYSTEMS                                                                                     |              |          |          |          |          |          |    | _        |                |          |    |          |            |            |     |           |          |        |          |          |          |         |          |          |         |                        |
| HULTIPLE ORGANS HOS                                                                                   | 1 1          | N        | N        | N        | N        | н        | N  | н        | N              | N        | N  | N        | N          | N          | N   | N         | N        | Ħ      | N        | N        | N        | N       | M        | N        | M       | 50*                    |

HC Red No. 3, NTP TR 281

78

## **APPENDIX B**

# SUMMARY OF THE INCIDENCE OF NEOPLASMS IN MICE IN THE TWO-YEAR GAVAGE STUDIES OF HC RED NO. 3

| TABLE B1. | SUMMARY OF THE | INCIDENCE | OF NEOPL | ASMS IN | MALE MICE | IN THE TWO-YEAR |
|-----------|----------------|-----------|----------|---------|-----------|-----------------|
|           |                | GAVAGE    | STUDY OF | HC RED  | NO. 3     |                 |

| C                                                                | ONTRO     | DL (VEH) | LOWI | DOSE                                  | HIGH      | DOSE  |
|------------------------------------------------------------------|-----------|----------|------|---------------------------------------|-----------|-------|
| ANIMALS INITIALLY IN STUDY                                       | 50        |          | 50   |                                       | 50        |       |
| ANIMALS NECROPSIED                                               | 50        |          | 50   |                                       | 50        |       |
| ANIMALS EXAMINED HISTOPATHOLOGICALLY                             | 50        |          | 50   |                                       | 50        |       |
| NTEGUMENTARY SYSTEM                                              |           |          |      | · · · · · · · · · · · · · · · · · · · |           |       |
| *SKIN                                                            | (50)      |          | (50) |                                       | (50)      |       |
| FIBROMA<br>NEUROFIBROMA                                          |           |          |      | (4%)<br>(2%)                          | 1         | (2%)  |
| RESPIRATORY SYSTEM                                               |           |          |      |                                       |           |       |
| #LUNG                                                            | (50)      |          | (49) |                                       | (50)      |       |
| HEPATOCELLULAR CARCINOMA, METAST                                 | 3         | (6%)     | 1    | (2%)                                  | 5         | (10%) |
| ALVEOLAR/BRONCHIOLAR ADENOMA                                     |           | (12%)    | 7    | (14%)                                 | 7         | (14%) |
| ALVEOLAR/BRONCHIOLAR CARCINOMA                                   | 6         | (12%)    | 7    | (14%)                                 | 7         | (14%) |
| HEMATOPOIETIC SYSTEM                                             |           |          |      |                                       |           |       |
| *MULTIPLE ORGANS                                                 | (50)      |          | (50) |                                       | (50)      |       |
| MALIG. LYMPHOMA, LYMPHOCYTIC TYPE                                |           |          |      | (4%)                                  |           | (2%)  |
| MALIG. LYMPHOMA, HISTIOCYTIC TYPE                                |           | (2%)     |      | (2%)                                  |           | (2%)  |
| MALIGNANT LYMPHOMA, MIXED TYPE                                   | 6         | (12%)    |      | (10%)                                 | 3         | (6%)  |
| LYMPHOCYTIC LEUKEMIA                                             | (50)      |          |      | (2%)                                  | (50)      |       |
| <b>#BRONCHIAL LYMPH NODE</b><br>ALVEOLAR/BRONCHIOLAR CA, METASTA | (50)      |          | (49) |                                       | (50)      | (99)  |
| #MESENTERIC L. NODE                                              | (50)      |          | (49) |                                       | (50)      | (2%)  |
| MALIG. LYMPHOMA, HISTIOCYTIC TYPE                                | (00)      |          |      | (2%)                                  |           | (2%)  |
| #PEYER'S PATCH                                                   | (50)      |          | (48) | (2%)                                  | (50)      | (270) |
| MALIG. LYMPHOMA, LYMPHOCYTIC TYPE                                | (00)      |          |      | (2%)                                  | (00)      |       |
| ZIRCULATORY SYSTEM                                               |           |          |      |                                       |           |       |
| #SPLEEN                                                          | (50)      |          | (50) |                                       | (50)      |       |
| HEMANGIOSARCOMA                                                  | 4         | (8%)     |      |                                       | 2         | (4%)  |
| #LIVER                                                           | (50)      |          | (50) |                                       | (50)      |       |
| HEMANGIOSARCOMA                                                  | 4         | (8%)     | 2    | (4%)                                  | 2         | (4%)  |
| DIGESTIVE SYSTEM                                                 | (20)      |          | (20) |                                       |           |       |
| #SUBMAXILLARY GLAND                                              | (50)      | (2%)     | (50) |                                       | (50)      |       |
| SQUAMOUS CELL CARCINOMA<br>#LIVER                                | (50)      | (270)    | (50) |                                       | (50)      |       |
| HEPATOCELLULAR ADENOMA                                           |           | (22%)    |      | (12%)                                 |           | (32%) |
| HEPATOCELLULAR CARCINOMA                                         |           | (34%)    |      | (18%)                                 |           | (42%) |
| CARCINOID TUMOR, METASTATIC                                      |           |          | -    | •                                     |           | (2%)  |
| *COMMON BILE DUCT                                                | (50)      |          | (50) |                                       | (50)      |       |
| CARCINOID TUMOR, MALIGNANT                                       |           |          |      |                                       | 1         | (2%)  |
| #FORESTOMACH                                                     | (50)      |          | (50) |                                       | (50)      |       |
| SQUAMOUS CELL PAPILLOMA                                          |           |          |      |                                       |           | (2%)  |
| #JEJUNUM<br>ADENOCARCINOMA, NOS                                  | (50)<br>1 | (2%)     | (48) |                                       | (50)<br>1 | (2%)  |
| JRINARY SYSTEM                                                   |           | <u></u>  |      |                                       |           |       |
| #KIDNEY                                                          | (50)      |          | (50) |                                       | (50)      |       |
| TUBULAR-CELL ADENOCARCINOMA                                      |           | (2%)     |      |                                       |           |       |
| <b>#URINARY BLADDER</b>                                          | (49)      |          | (49) |                                       | (50)      |       |
| TRANSITIONAL-CELL PAPILLOMA                                      |           |          |      |                                       | 1         | (2%)  |

|                                  | CONTROL (VEH) | LOW DOSE                                     | HIGH DOSE |
|----------------------------------|---------------|----------------------------------------------|-----------|
| ENDOCRINE SYSTEM                 |               | <u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u> |           |
| #ADRENAL                         | (50)          | (50)                                         | (50)      |
| PHEOCHROMOCYTOMA                 | 1 (2%)        |                                              |           |
| #ADRENAL/CAPSULE                 | (50)          | (50)                                         | (50)      |
| ADENOMA, NOS                     | 2 (4%)        | 4 (8%)                                       | 3 (6%)    |
| #THYROID                         | (48)          | (50)                                         | (50)      |
| FOLLICULAR-CELL ADENOMA          | 8 (17%)       | 3 (6%)                                       | 5 (10%)   |
| <b>#PANCREATIC ISLETS</b>        | (50)          | (50)                                         | (50)      |
| ISLET-CELL ADENOMA               | 1 (2%)        |                                              | 4 (8%)    |
| REPRODUCTIVE SYSTEM              |               |                                              | <u> </u>  |
| *SEMINAL VESICLE                 | (50)          | (50)                                         | (50)      |
| ALVEOLAR/BRONCHIOLAR CA, METAST  |               |                                              | 1 (2%)    |
| #TESTIS                          | (50)          | (50)                                         | (50)      |
| INTERSTITIAL-CELL TUMOR          |               | 2 (4%)                                       |           |
| NONE<br>                         | (50)          | (50)                                         | (50)      |
| ADENOMA, NOS                     | 2 (4%)        |                                              | 3 (6%)    |
| MUSCULOSKELETAL SYSTEM<br>NONE   |               |                                              |           |
| BODY CAVITIES                    |               |                                              |           |
| *THORAX                          | (50)          | (50)                                         | (50)      |
| NEUROFIBROSARCOMA                |               | 1 (2%)                                       |           |
| *MEDIASTINUM                     | (50)          | (50)                                         | (50)      |
| ALVEOLAR/BRONCHIOLAR CA, METAST. |               | <b>(7•</b> )                                 | 1 (2%)    |
| *MESENTERY                       | (50)          | (50)                                         | (50)      |
| SARCOMA, NOS                     |               |                                              | 1 (2%)    |
| ALL OTHER SYSTEMS                |               | <u>,</u>                                     |           |
| *MULTIPLE ORGANS                 | (50)          | (50)                                         | (50)      |
| SARCOMA, NOS, METASTATIC         |               | <u> </u>                                     | 1 (2%)    |
| NEUROFIBROSARCOMA                |               | 1 (2%)                                       |           |
| LUMBAR REGION                    |               |                                              |           |
| NEUROFIBROSARCOMA                |               | 1                                            |           |

# TABLE B1. SUMMARY OF THE INCIDENCE OF NEOPLASMS IN MALE MICE IN THE TWO-YEARGAVAGE STUDY OF HC RED NO. 3 (Continued)

| CC                                                                                                                                                                                                                                                                                                                                             | NTROL (VEH)                                   | LOW DOSE                                   | HIGH DOSE                                   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|--------------------------------------------|---------------------------------------------|
| ANIMAL DISPOSITION SUMMARY                                                                                                                                                                                                                                                                                                                     |                                               | <u> </u>                                   |                                             |
| ANIMALS INITIALLY IN STUDY                                                                                                                                                                                                                                                                                                                     | 50                                            | 50                                         | 50                                          |
| NATURAL DEATH                                                                                                                                                                                                                                                                                                                                  | 8                                             | 4                                          | 3                                           |
| MORIBUND SACRIFICE                                                                                                                                                                                                                                                                                                                             | 12                                            | 5                                          | 18                                          |
| SCHEDULED SACRIFICE                                                                                                                                                                                                                                                                                                                            |                                               |                                            |                                             |
| TERMINAL SACRIFICE                                                                                                                                                                                                                                                                                                                             | 30                                            | 41                                         | 29                                          |
| DOSING ACCIDENT                                                                                                                                                                                                                                                                                                                                |                                               |                                            |                                             |
| ACCIDENTALLY KILLED, NDA                                                                                                                                                                                                                                                                                                                       |                                               |                                            |                                             |
| ACCIDENTALLY KILLED, NOS                                                                                                                                                                                                                                                                                                                       |                                               |                                            |                                             |
| ANIMAL MISSING                                                                                                                                                                                                                                                                                                                                 |                                               |                                            |                                             |
| ANIMAL MISSEXED                                                                                                                                                                                                                                                                                                                                |                                               |                                            |                                             |
| OTHER CASES                                                                                                                                                                                                                                                                                                                                    |                                               |                                            |                                             |
| TOTAL ANIMALS WITH PRIMARY TUMORS**<br>TOTAL PRIMARY TUMORS<br>TOTAL ANIMALS WITH BENIGN TUMORS<br>TOTAL BENIGN TUMORS<br>TOTAL BENIGN TUMORS<br>TOTAL ANIMALS WITH MALIGNANT TUMORS<br>TOTAL ANIMALS WITH SECONDARY TUMORS<br>TOTAL SECONDARY TUMORS<br>TOTAL ANIMALS WITH TUMORS UNCERTAIN-<br>BENIGN OR MALIGNANT<br>TOTAL UNCERTAIN TUMORS | 44<br>72<br>22<br>31<br>32<br>41<br>## 3<br>3 | 36<br>57<br>17<br>25<br>27<br>32<br>1<br>1 | 42<br>82<br>31<br>41<br>30<br>41<br>9<br>10 |
| TOTAL ANIMALS WITH TUMORS UNCERTAIN-                                                                                                                                                                                                                                                                                                           |                                               |                                            |                                             |
|                                                                                                                                                                                                                                                                                                                                                |                                               |                                            |                                             |

## TABLE B1. SUMMARY OF THE INCIDENCE OF NEOPLASMS IN MALE MICE IN THE TWO-YEAR GAVAGE STUDY OF HC RED NO. 3 (Continued)

• NUMBER OF ANIMALS NECROPSIED •• PRIMARY TUMORS: ALL TUMORS EXCEPT SECONDARY TUMORS

# NUMBER OF ANIMALS WITH TISSUE EXAMINED MICROSCOPICALLY ## SECONDARY TUMORS: METASTATIC TUMORS OR TUMORS INVASIVE INTO AN ALJACENT ORGAN

| •                                                          | CONTRO | L (VEH)      | LOWI    | DOSE          | HIGH      | DOSE     |
|------------------------------------------------------------|--------|--------------|---------|---------------|-----------|----------|
| ANIMALS INITIALLY IN STUDY                                 | 50     |              | 50      |               | 50        |          |
| ANIMALS NECROPSIED                                         | 50     |              | 50      |               | 50        |          |
| ANIMALS EXAMINED HISTOPATHOLOGICALLY                       | Y 50   |              | 50      |               | 50        |          |
| INTEGUMENTARY SYSTEM                                       |        |              |         |               |           |          |
| *SUBCUT TISSUE                                             | (50)   |              | (50)    |               | (50)      |          |
| SEBACEOUS ADENOMA                                          |        |              |         |               | 1         | (2%)     |
| RESPIRATORY SYSTEM                                         |        |              |         |               |           |          |
| #LUNG                                                      | (50)   |              | (49)    |               | (50)      |          |
| ALVEOLAR/BRONCHIOLAR ADENOMA                               | 4      | (99)         |         | (2%)          | 1         | (2%)     |
| ALVEOLAR/BRONCHIOLAR CARCINOMA<br>OSTEOSARCOMA, METASTATIC |        | (2%)<br>(2%) | 1       | (2%)          |           |          |
| HEMATOPOIETIC SYSTEM                                       |        |              |         |               |           |          |
| *MULTIPLE ORGANS                                           | (50)   |              | (50)    |               | (50)      |          |
| MALIG. LYMPHOMA, LYMPHOCYTIC TYP                           |        | (2%)         |         | (4%)          | -         |          |
| MALIGNANT LYMPHOMA, MIXED TYPE                             |        | (6%)         |         | (2%)          |           | (12%)    |
| <b>#PANCREATIC L. NODE</b>                                 | (50)   |              | (49)    | (904)         | (50)      |          |
| MALIGNANT LYMPHOMA, MIXED TYPE<br>#LIVER                   | (50)   |              | (50)    | (2%)          | (50)      |          |
| MALIG. LYMPHOMA, HISTIOCYTIC TYPE                          | (50)   |              |         | (2%)          | (00)      |          |
| CIRCULATORY SYSTEM                                         |        |              |         |               |           |          |
| *MULTIPLE ORGANS                                           | (50)   |              | (50)    |               | (50)      |          |
| HEMANGIOSARCOMA                                            | (,     |              |         | (2%)          |           |          |
| *PELVIC ORGANS                                             | (50)   |              | (50)    |               | (50)      |          |
| HEMANGIOSARCOMA                                            |        |              |         |               |           | (2%)     |
| #LIVER                                                     | (50)   |              | (50)    |               | (50)      |          |
| HEMANGIOSARCOMA                                            | 1      | (2%)         |         |               |           | <u> </u> |
| DIGESTIVE SYSTEM                                           |        |              |         |               |           |          |
| #LIVER                                                     | (50)   |              | (50)    |               | (50)      |          |
| HEPATOCELLULAR ADENOMA                                     | 4      | (8%)         | 1       | (2%)          | •         | (10)     |
| HEPATOCELLULAR CARCINOMA<br>#FORESTOMACH                   | (50)   |              | (50)    |               | 2<br>(48) | (4%)     |
| SQUAMOUS CELL PAPILLOMA                                    | (50)   |              | (30)    |               |           | (6%)     |
| #JEJUNUM                                                   | (48)   |              | (49)    |               | (50)      | ~~ ~~ /  |
| ADENOMA, NOS                                               | 1      | (2%)         |         |               |           |          |
| ADENOCARCINOMA, NOS                                        | 1      | (2%)         |         |               |           |          |
| URINARY SYSTEM<br>NONE                                     |        |              |         |               |           |          |
|                                                            |        |              | <u></u> |               |           |          |
| ENDOCRINE SYSTEM<br>#PITUITARY                             | (47)   |              | (45)    |               | (43)      |          |
| ADENOMA, NOS                                               | -      | (9%)         |         | (4%)          |           | (14%)    |
| #ADRENAL                                                   | (50)   |              | (49)    | ,             | (49)      | • •• •   |
| PHEOCHROMOCYTOMA                                           |        | (2%)         |         |               |           |          |
| OSTEOSARCOMA, METASTATIC                                   |        | (2%)         |         |               |           |          |
| #ADRENAL/CAPSULE                                           | (50)   |              | (49)    | (00)          | (49)      |          |
| ADENOMA, NOS                                               |        |              |         | (2%)          |           |          |
| #ADRENAL MEDULLA<br>PHEOCHROMOCYTOMA                       | (50)   |              | (49)    | (2%)          | (49)      |          |
|                                                            |        |              | 1       | (4 <i>N</i> ) |           |          |

#### TABLE B2. SUMMARY OF THE INCIDENCE OF NEOPLASMS IN FEMALE MICE IN THE TWO-YEAR GAVAGE STUDY OF HC RED NO. 3

|                                  | CONTROL (VEH)     | LOWD          | OSE   | HIGH | DOSE |
|----------------------------------|-------------------|---------------|-------|------|------|
| ENDOCRINE SYSTEM (Continued)     |                   |               |       |      |      |
| #THYROID                         | (49)              | (48)          |       | (49) |      |
| FOLLICULAR-CELL ADENOMA          | 2 (4%)            | 1             | (2%)  | 2    | (4%) |
| FOLLICULAR-CELL CARCINOMA        |                   |               |       | 1    | (2%) |
| REPRODUCTIVE SYSTEM              |                   |               |       |      |      |
| *MAMMARY GLAND                   | (50)              | (50)          |       | (50) |      |
| ADENOMA, NOS                     |                   |               |       | 1    | (2%) |
| ADENOCARCINOMA, NOS              |                   | 2             | (4%)  |      |      |
| #UTERUS                          | (50)              | (50)          | •     | (50) |      |
| LEIOMYOMA                        | 1 (2%)            | ()            |       |      |      |
| ENDOMETRIAL STROMAL POLYP        | 2 (4%)            | 1             | (2%)  |      |      |
| #OVARY                           | (45)              | (48)          | (2.0) | (48) |      |
| GRANULOSA-CELL TUMOR             | 1 (2%)            | ( <b>*</b> U) |       | (40) |      |
| TERATOMA, NOS                    | _ (=,0)           |               |       | 1    | (2%) |
| NERVOUS SYSTEM<br>NONE           | an - <del>1</del> | , <u> </u>    |       |      |      |
| SPECIAL SENSE ORGANS             |                   |               |       |      |      |
| *HARDERIAN GLAND                 | (50)              | (50)          |       | (50) |      |
| ADENOMA, NOS                     |                   |               |       | 1    | (2%) |
| MUSCULOSKELETAL SYSTEM           |                   |               |       |      |      |
| *RIB                             | (50)              | (50)          |       | (50) |      |
| OSTEOSARCOMA                     | 1 (2%)            |               |       |      |      |
| BODY CAVITIES                    |                   |               |       |      |      |
| *MEDIASTINUM                     | (50)              | (50)          |       | (50) |      |
| ALVEOLAR/BRONCHIOLAR CA, INVASIV | E                 | 1             | (2%)  |      |      |
| ALL OTHER ORGANS                 |                   |               |       |      |      |
| *MULTIPLE ORGANS                 | (50)              | (50)          |       | (50) |      |
| SARCOMA, NOS                     | 1 (2%)            | ,             |       |      | (2%) |
| FIBROSARCOMA                     | 1 (2%)            |               |       |      |      |
| ANIMAL DISPOSITION SUMMARY       |                   |               |       |      |      |
| ANIMALS INITIALLY IN STUDY       | 50                | 50            |       | 50   |      |
| NATURAL DEATH                    | 24                | 22            |       | 19   |      |
| MORIBUND SACRIFICE               | 14                | 20            |       | 22   |      |
| SCHEDULED SACRIFICE              |                   |               |       |      |      |
| TERMINAL SACRIFICE               | 12                | 8             |       | 9    |      |
| DOSING ACCIDENT                  |                   |               |       |      |      |
| ACCIDENTALLY KILLED, NDA         |                   |               |       |      |      |
| ACCIDENTALLY KILLED, NOS         |                   |               |       |      |      |
| ANIMAL MISSING                   |                   |               |       |      |      |
| ANIMAL MISSEXED                  |                   |               |       |      |      |
| OTHER CASES                      |                   |               |       |      |      |

# TABLE B2. SUMMARY OF THE INCIDENCE OF NEOPLASMS IN FEMALE MICE IN THE TWO-YEARGAVAGE STUDY OF HC RED NO. 3 (Continued)

| CO                                   | NTROL (VEH) | LOW DOSE | HIGH DOSE |
|--------------------------------------|-------------|----------|-----------|
| TUMOR SUMMARY                        |             |          |           |
| TOTAL ANIMALS WITH PRIMARY TUMORS**  | 16          | 15       | 18        |
| TOTAL PRIMARY TUMORS                 | 26          | 17       | 27        |
| TOTAL ANIMALS WITH BENIGN TUMORS     | 12          | 7        | 10        |
| TOTAL BENIGN TUMORS                  | 15          | 8        | 15        |
| TOTAL ANIMALS WITH MALIGNANT TUMORS  | 9           | 8        | 11        |
| TOTAL MALIGNANT TUMORS               | 10          | 9        | 11        |
| TOTAL ANIMALS WITH SECONDARY TUMORS  | ¥# 1        | 1        |           |
| TOTAL SECONDARY TUMORS               | 2           | 1        |           |
| TOTAL ANIMALS WITH TUMORS UNCERTAIN- |             |          |           |
| BENIGN OR MALIGNANT                  | 1           |          | 1         |
| TOTAL UNCERTAIN TUMORS               | 1           |          | 1         |
| TOTAL ANIMALS WITH TUMORS UNCERTAIN- |             |          |           |
| PRIMARY OR METASTATIC                |             |          |           |
| TOTAL UNCERTAIN TUMORS               |             |          |           |

## TABLE B2. SUMMARY OF THE INCIDENCE OF NEOPLASMS IN FEMALE MICE IN THE TWO-YEARGAVAGE STUDY OF HC RED NO. 3 (Continued)

NUMBER OF ANIMALS NECROPSIED
 PRIMARY TUMORS: ALL TUMORS EXCEPT SECONDARY TUMORS
 NUMBER OF ANIMALS WITH TISSUE EXAMINED MICROSCOPICALLY
 SECONDARY TUMORS: METASTATIC TUMORS OR TUMORS INVASIVE INTO AN ADJACENT ORGAN

| GAVAGE STU                                                                                                                                               | יםנ          | r C      | )F          | H          | CR     | EI       |          | NO      | . 3                   | 3: 1     | /E                  | HI               | CL                | E         | CO        | )N'      | TR          | 0            | L                                         | _          |          |          |          |          |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------|-------------|------------|--------|----------|----------|---------|-----------------------|----------|---------------------|------------------|-------------------|-----------|-----------|----------|-------------|--------------|-------------------------------------------|------------|----------|----------|----------|----------|
| AN IMAL<br>NUMBER                                                                                                                                        | Î            | 0        | 0           |            | 0      | 0        | 9        | 0       | 0                     | 1        | 1                   | 1                | 1                 | 1         | 1         | 1        | 11          | 1            | 1                                         | 2          | 2        | 2        | 2        | 2        |
| WEEKS ON<br>STUDY                                                                                                                                        | 6            | 0        | 0           |            | 9      | 0        |          | ?       | 8                     | 2        | ġ                   | 1                | 8                 | ?         | 6         | 2        | 0           |              | 2                                         | 9          |          | 91       | 8        | 2        |
| RESPIRATORY SYSTEM                                                                                                                                       |              | _        | -           |            |        | -21      | -21      | ليقير   |                       |          |                     | -                | ي الد ال          |           |           |          |             |              |                                           |            |          |          |          |          |
| LUNGS AND BRONCHI<br>Hepatocelular Carcinoma, metasta<br>Alveolar/Bronchidlar Adenoma<br>Alveolar/Bronchidlar Carcinoma                                  | +            | *<br>X   | +<br>X<br>X | *<br>×     | ×      | *<br>×   | +<br>×   | *       | ×                     | +        | +<br>_×_            | •                | •                 | *<br>×    | ×         | +<br>x_  | •           | •            | •                                         | +          | •        | •        | •        | •<br>    |
| TRACHEA                                                                                                                                                  | -            |          | +           | -          | +      | -        | +        | +       | +                     | -        | ٠                   | +                | +                 | ٠         | +         | •        | +           | 4            | +                                         | ٠          | +        | -        | +        | +        |
| EMATOPOIETIC SYSTEM                                                                                                                                      | <u>}</u>     |          |             |            |        |          |          |         |                       |          |                     |                  |                   |           |           |          | -           |              |                                           |            |          | -        |          |          |
| SONE MARRON                                                                                                                                              | Ŀ            | *        | ÷           | ÷          | +      | <u>+</u> | +        | +       | +                     | <u>+</u> |                     | +                | +                 | •         | +         | +        | •           |              | +                                         | <u>+</u>   | <u> </u> | +        | +        | <u>+</u> |
| SPLEEN<br>Hemangiosarcoma                                                                                                                                | +            | <u>+</u> | •           | •          | +      | +        | +        | ÷       | ٠                     | +        | +                   | +                | +                 | +         | *         | +        | +           |              | •                                         | +          |          | +        | +        | ÷        |
| LYMPH NODES                                                                                                                                              | <u>  +</u>   | .*       | +           | *          | +      | +        | <u>+</u> | ÷       | *                     | <u>+</u> | +                   | +                | •                 | +         | +         | ٠        | ٠           |              | +                                         | *          | +        | +        | *        | *        |
| THYMUS                                                                                                                                                   | +            | +        | ٠           | •          | -      | +        | +        | ٠       | +                     | +        | ٠                   | •                | ٠                 | +         | -         | •        | -           | ••           | +                                         | +          | -        | ٠        | ٠        | +        |
| TROULATORY SYSTEM                                                                                                                                        |              |          |             |            |        |          | <b>.</b> |         |                       |          |                     |                  |                   |           |           |          |             |              |                                           |            |          |          |          |          |
| HEART                                                                                                                                                    | +            | +        | ٠           | ٠          | +      | +        | ٠        | +       | ٠                     | •        | +                   | +                | +                 | +         | +         | +        | ٠           | •            | ٠                                         | +          | +        | +        | +        | +        |
| IGESTIVE SYSTEM                                                                                                                                          | 1            |          |             |            |        |          |          |         |                       |          |                     |                  |                   |           |           |          |             |              |                                           |            |          |          |          |          |
| SALIVARY GLAND<br>Squamous cell carcingma                                                                                                                | +            | <u>+</u> | +           | +          | +      | +        | +        | +       | +                     | +        | *                   | +                | +                 | *         | +         | *        | •           |              | +                                         | +          | +        | ż        | ÷        | +        |
| LIVER<br>Hepatocellular adenoma<br>Hepatocellular carcinoma<br>Hemangiosarcoma                                                                           | •            | •        | *××         | •          | *××    | •        | ž        | •<br>.x | +<br>x                | •        | *<br>×              | •                | ×                 | *<br>×    | *<br>×    | •        | ×           | ;            | •<br>ــــــــــــــــــــــــــــــــــــ | *<br>×     | *        | +        | ×        | ·        |
| SILE DUCT                                                                                                                                                | +            | •        | *           | +          | +      | +        | +        | ٠       | ŧ.                    | ٠        | +                   | +                | +                 | +         | +         | +        | ÷.          | <u> </u>     | ÷                                         | <u>_</u>   | <u>.</u> | •        | <u>+</u> | <u>+</u> |
| GALLBLADDER & COMMON BILE DUCT                                                                                                                           |              | ٠        | •           | +          | . И    | ٠        | ٠        | •       | +.                    | <u>+</u> | +.                  | +                | +                 | M         | N         | ٠        | •           | <u>.</u>     | ×                                         | *          | <u>+</u> | +        | +        | <u>.</u> |
| PANCREAS                                                                                                                                                 | +            | +        | •           | +          | •      | •        | +        | •       | •                     | +        | +                   | •                | •                 | +         | •         | <u>+</u> | +           | <u> </u>     | ف                                         | <u>.</u>   | <u>+</u> | •        |          | +        |
| ESOPHAGUS .                                                                                                                                              | +            | ٠        |             | •          | •      | +        | +        | +       | +                     | +        | *                   | +                | *                 | <u>+</u>  | +         | <u>+</u> | <u>.</u>    | <b>.</b>     | <u>+</u>                                  | <u> </u>   | <u> </u> | +        | *        | <u>*</u> |
| STOMACH                                                                                                                                                  | . <u>*</u>   | +        |             | +          | +      | ٠        | +        | •       | *                     | •        | +                   | *                | <u>+</u>          | <u>+</u>  | +         | <u>+</u> | <u>+</u>    | - <u>-</u> - | <u> </u>                                  | <u>+</u>   | +        | +        | *        | *        |
| SMALL INTESTINE<br>Adenocarcinoma, Nos                                                                                                                   | +            | +        | <u> </u>    | *          | *      | •        | +        | *       | +                     | +        | +                   | +                | •                 | +         | +         | <u>+</u> | *           | . <u>.</u>   | •                                         | <u>+</u>   | *        | +        | +        | •        |
| LARGE INTESTINE                                                                                                                                          | •            | ٠        | +           | +          | ٠      | +        | +        | +       | +                     | +        | +                   | +                | ٠                 | ٠         | ٠         | +        | ٠           | ٠            | ٠                                         | +          | +        | +        | +        | +        |
| RINARY SYSTEM                                                                                                                                            | <u> </u>     | -        | -           |            |        |          |          |         |                       |          |                     |                  | -                 |           |           |          | _           |              |                                           |            |          |          |          |          |
| KIDNEY<br>Tubular-cell Adengcarcinoma                                                                                                                    | +            | +        | +           | •          | •      | *        | +        | .+      | +                     | •        | •                   | •                | •                 | +         | •         | <u>•</u> | +           | <u>.</u>     | <u> </u>                                  | <u>+</u>   | <u> </u> | <u>.</u> | +        | <u> </u> |
| URINARY BLADDER                                                                                                                                          | •            | •        | ٠           | +          | +      | +        | +        | ٠       | ٠                     | +        | +                   | ٠                | +                 | ٠         | +         | •        | +           | +            | +                                         | +          | +        | ٠        | +        | +        |
| NDOCRINE SYSTEM                                                                                                                                          |              |          |             |            |        |          |          |         |                       |          |                     |                  |                   |           |           |          |             |              |                                           |            |          |          |          |          |
| PITUITARY                                                                                                                                                | +            | +        | .*          | *          | +      | +        | +        | +       | .*                    | +        | . +                 | +                | +                 | ÷         | <u>+.</u> | +        | +           | <u>*</u>     | *                                         | - <b>-</b> | *        | +        | +        | <u>+</u> |
| ADRENAL<br>Adenoma, nos<br>Pheochromocytoma                                                                                                              | ·            | +        | •           | •          | •      | •        | •        | •       | *                     | *        | •                   | *                | •                 | *         | *         | *        | *           | <u>.</u>     | •                                         | •          | +        | +        | •        | •        |
| THYROID<br>Follicular-Cell Adenoma                                                                                                                       | +            | +        | +           | ÷          | +      | *        | ٠        | +       | ٠                     | ٠        | +                   | +                | •                 | •         | •         | •        | ÷.          | *            | •                                         | +          | +        | -        | +        | +        |
| PARATHYROID                                                                                                                                              |              | -        | +           |            | •      | -        | +        | +       | +                     | -        | +                   | +_               | +                 | +         | +         | +        | ÷           | +            | +                                         | +          | +        | -        | +        | +        |
| PANCREATIC ISLETS<br>ISLE7-CELL ADENOMA                                                                                                                  | +            | +        | +           | +          | •      | +        | ٠        | +       | +                     | +        | +                   | +                | •                 | +         | +         | +        | •           | +            | ٠                                         | +          | ٠        | •        | +        | +        |
| EPRODUCTIVE SYSTEM                                                                                                                                       | <u> </u>     |          |             |            |        |          |          |         |                       |          |                     |                  |                   | -         |           |          | -           |              |                                           |            |          |          |          |          |
| MAMMARY GLAND                                                                                                                                            | -            | N        | <u>.</u> H. | H.         | H      | H        | M        | N       | N                     | N.       | H                   | N:               | N                 | N         | H_        | H        | <u>H_</u>   | N.           | N.                                        | _گ         | <u> </u> | <u>H</u> | <u> </u> | _گ       |
| TESTIS                                                                                                                                                   | <u>+</u>     | ٠        | +           |            | +      | +        | •        | •       | +                     | +        | +                   | +                | +                 | +         | +         | *        | <u>*</u>    | <u>+</u>     | *                                         | *          | •        | +        | <u>+</u> | +        |
| PROSTATE                                                                                                                                                 | +            | ٠        | ٠           | ٠          | +      | ٠        | +        | +       | ٠                     | ٠        | +                   | +                | •                 | •         | •         | •        | +           | +            | +                                         | +          | +        | +        | +        | •        |
| ERVOUS SYSTEM                                                                                                                                            |              |          |             |            |        |          |          |         |                       |          |                     |                  |                   |           |           |          |             |              | -                                         |            |          |          |          |          |
| BRAIN<br>PECIAL SENSE ORGANS                                                                                                                             | +            | +        | +           | .*         | *      | *        | +        | +       | +                     | +        | +                   | •                | <u>.</u>          | <u>+</u>  | •         | <u>*</u> | <b>*</b>    | +            | *                                         | +          | +        | *        | •        | •        |
| HARDERIAN GLAND<br>Adenoma, Nos                                                                                                                          | X            | Ħ        | H           | N          | N      | H        | H        | N       | M                     | M        | N                   | H                | N                 | N         | N         | M        | M           | Ħ            | N                                         | N          | N        | Ħ        | N        | N        |
| LL OTHER SYSTEMS                                                                                                                                         |              |          | -           | *          |        |          |          |         |                       |          |                     |                  |                   |           |           |          |             |              |                                           |            | •        |          |          |          |
| MULTIPLE ORGANS NOS<br>Malig.lymphoma, Histidcytic type<br>Malignant Lymphoma, Mixed Type                                                                | H            | м        | M           | N          | N      | H        | ĸ        | N       | N                     | x        |                     |                  | x_                |           |           |          |             | N            |                                           | N          | H        | N        | H        | N        |
| 1735UE EXAMINED MICROSCOPICALLY<br>1 Required Tissue Not Examined Mic<br>1 Tumor Incidence<br>1: McCROPSY, No Autolysis, No Micro<br>3: Amimal Mis-Sexed | R03C<br>9C0P | IC       | CAI<br>EX/  | .LY<br>WII | (A T 3 | ON       |          | c       | 1<br>3<br>3<br>1<br>2 | AUT      | ROP:<br>Oly:<br>Mal | 57,<br>513<br>MI | INI<br>NO<br>SSII | 91:<br>10 | 5701      | .061     | 4 ))<br>21] | UĽ           | TO                                        | PRO        | TOC      | OL       |          |          |

# TABLE B3. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE MICE IN THE TWO-YEARGAVAGE STUDY OF HC RED NO. 3: VEHICLE CONTROL

HC Red No. 3, NTP TR 281

| TABLE B3  | INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE MICE: VEHICLE CONTROL (Continued) |   |
|-----------|-----------------------------------------------------------------------------|---|
| IADLE DO. | INDIVIDUAL ANIMAL I UNOR FAINOLOGI OF MALL MICE. VEHICLE CONTROL (Conumer)  | * |

| ANIMAL<br>Number                                                                                                        | 2          | 27      | 2 | 2        | 3        | 3        | 3          | 3        | 3        | 3        | 3        | 3        | j.       | 3         | 1        |          | 2           | 1        |          | 1        | 1        | 1        |          |        | ¥, | TOTAL          |
|-------------------------------------------------------------------------------------------------------------------------|------------|---------|---|----------|----------|----------|------------|----------|----------|----------|----------|----------|----------|-----------|----------|----------|-------------|----------|----------|----------|----------|----------|----------|--------|----|----------------|
| WEEKS CN ,<br>Study                                                                                                     | -          | į       | 4 | •        | ļ        | ļ        | j          | ļ        | ļ        | 2        | ļ        | ;        | ļ        | <u>; </u> | ļ        |          |             |          | 5        | ļ        | ļ        | j        | 2        | ţ      | -  | TUMORS         |
| RESPIRATORY SYSTEM                                                                                                      |            |         |   |          |          |          |            |          |          | •        | •        | •        | •        | •         | •        | •        | •           |          |          | •        | •        | •        | •        | •      |    | 56             |
| LUNGS AND BRONCHI<br>Hepatocelular Carcinoma, metasta<br>Alveolar/Bronchiolar Adenoma<br>Alveolar/Bronchidlar Carcinoma | •          | •       | • | •        | •        | •        | •          | •        | •        |          | x        | •        | •        | •         | •<br>    |          |             | •<br>    | <u> </u> |          |          |          | <u> </u> |        | 1  | <br>           |
| TRACHEA                                                                                                                 | •          | -       | - | +        | +        | +        | -          | -        | •        | -        | ٠        | •        | •        | •         | +        | +        | •           | -        | +        | +        | -        | +        | ٠        | -      | -  | 31             |
| REMATOPOIETIC SYSTEM                                                                                                    |            |         |   |          | -        |          | _          |          |          | -        |          |          |          |           | -        |          |             |          |          |          |          |          |          |        | 1  |                |
| SONE MARROW                                                                                                             | +          | +       |   | +        | .+       | ٠        | +          | *        | +        | +        | +        | +        | +        | •         | +        | •        | +           | •        | •        | +        | *        | +        | +        | +      | +  | 58             |
| SPLEEN<br>Hemangiosarcoma                                                                                               | •          | +       | + | +        | •        | +        | *          | +        | +        | •        | ٠        | *        | •        | •         | •        | •        | •           | *        | •        | •        | *        | •        | +        | •      | •  | 50             |
| LYNPH HODES                                                                                                             | •          | •       | + | ٠        |          | +        | ÷          | +        | •        | ŧ        | ٠.       | •        | •        | •         | +        | •        | •           | •        | +        | <b>•</b> | +        | +        | +        | +      | +  |                |
| THYPUS                                                                                                                  | •          | +       | + | -        | +        | •        | •          | ٠        | -        | -        | -        | •        | •        | •         | +        | +        | •           | +        | •        | ٠        | +        | -        | •        | •      | •  | 35             |
| CIRCULATORY SYSTEM                                                                                                      |            |         | _ |          |          |          |            |          |          |          |          |          |          |           |          | -        |             |          |          |          |          |          |          |        | ╈  |                |
| HEART                                                                                                                   | •          | ٠       | + | +        | •        | +        | ٠          | +        | •        | •        | ٠        | •        | ٠        | •         | ٠        | •        | •           | +        | •        | •        | +        | +        | •        | ٠      | •  | 58             |
| DIGESTIVE SYSTEM                                                                                                        | -          | -       |   |          |          |          |            |          |          |          |          |          |          | -         | -        | -        |             |          |          |          |          |          |          |        | ╈  |                |
| SALIVARY GLAND<br>Squamdus cell carcinoma                                                                               | ٠          | •       | • | •        | +        | •        | ٠          | +        | •        | +        | •        | •        | •        | •         | •        | +        | •           | •        | •        | •        | •        | •        | •        | •      | •  | 58,            |
| LIVER<br>Hepatocellular Adenoma<br>Hepatocellular Carcinoma<br>Hemangiosarcoma                                          | •          | *<br>×  | • | •        | •        | *<br>x   | *<br>×     | •        | *××      | +<br>x   | •        | *        | •        | *         | •        | ×        | +<br>X<br>X | *        | •        | *        | •        | *<br>x   | +<br>x   | *<br>x | •  | 50<br>11<br>17 |
| BILE DUCT                                                                                                               | +          | ٠       | + | ÷        | ٠        | •        | +          | +        | ÷        | •        | +        | +        | •        | •         | <u>*</u> | •        | •           | •        | •        | •        | •        | <u>+</u> | •        | +      | •  | 58             |
| GALLBLADDER & CONNON BILE DUCT                                                                                          | H.         | •       | + | ٠        | ٠.       | ÷        | . <b>+</b> |          | •        | •        | ٠        | •        | •        | ٠         | •        | •        | н.          | ÷        | H        |          | •        | •        | •        | N      | •  | 58#            |
| PANCREAS                                                                                                                | . •        | ٠       | ٠ | +        | ٠        | ٠        | ٠          |          | <b>+</b> | •        | •        | •        | ٠        | •         | +        | <u>+</u> | •           | ٠        | ÷        | +        | ٠        | *        | •        | ÷      | 4  | 58             |
| ESOPHAGUS                                                                                                               | +          | •       | ٠ | ٠        | •        | <u>+</u> | ÷          | •        | •        | ٠.       | •        | ٠.       | ٠        | •         | •        | <u>د</u> | <u>۰</u>    | •        | •        | -        | •        | <u>*</u> | ٠        | ٠      | •  | . 49           |
| STOMACH .                                                                                                               | . <b>t</b> | •       | + | +        | +        | •        | •          | +        | +        | +        | +        | ÷        | ٠        | +         | +        | •        | <b>+</b>    | <b>+</b> | •        | +        | •        | *        | +        | •      | •  | 59             |
| SMALL INTESTINE<br>Adenocarcinoma, NOS                                                                                  | •          | •       | + | +        | •        | +        | +          | +        | •        | •        | •        | •        | +        | •         | •        | +        | •           | +        | +        | •        | •        | •        | ÷        | +      | •  | 50             |
| LARGE INTESTINE                                                                                                         | +          | +       | • | +        | +        | +        | +          | +        | +        | •        | +        | •        | •        | •         | +        | •        | •           | •        | +        | +        | •        | +        | •        | +      | +  | 50             |
| URINARY SYSTEM                                                                                                          |            |         |   |          |          |          |            |          |          |          |          |          |          |           |          |          |             |          |          |          |          |          |          |        | Τ  |                |
| KIDNEY<br>Tubular-Cell Adenocarcingma                                                                                   | •          | •       | + | •        | •        | +        | •          |          | -        |          |          | -        |          |           | X        | _        | •<br>       | •        | •<br>    | •        | •        | •        | •        | •      | *  | 58,            |
| URINARY BLADDER                                                                                                         | •          | +       | + | +        | +        | +        | +          | +        | *        | +        | +        | *        | +        | +         | •        | +        | •           | •        | +        | •        | •        | •        | *        | •      | 1  | 49             |
| ENDOCRINE SYSTEM                                                                                                        |            |         |   |          |          |          |            |          |          |          |          |          |          |           |          |          |             | _        |          |          |          |          |          |        |    | 46             |
| PITUITARY                                                                                                               |            | -       | - | <u>.</u> | <u>.</u> | -        | •          | ÷        | •        | <u>-</u> | +        | ž        |          | •         | <u>.</u> | <u> </u> | <u> </u>    |          | <u>.</u> |          | <u>.</u> | <u> </u> | ÷        |        |    | 58             |
| ADRENAL<br>Adenoma, Hos<br>Pheochropocytoma                                                                             | ×          |         |   | _        | x        | •<br>•   | •          | •        |          | _        | <u> </u> |          |          |           | ×        |          |             |          | •        | ·        | •        |          |          |        | +  | ²              |
| THYROID<br>Follicular-C <b>ell</b> Ad <b>enoma</b>                                                                      | ż          | •       | • | •        | •        | •        | *          | +        | +        | +        | +        | •        | •        | <u>*</u>  | •        | ×        | •           | •        | •        | •        | +        | +        | +        | +      | +  | 48,            |
| PARATHYROID                                                                                                             | ++         |         | - | +        | •        | +        | -          | •        | •        | -        | +        | ÷        | *        | -         |          | •        | •           |          | *        |          | -        | <u>*</u> | -        | -      | ╋  |                |
| PANCREATIC ISLETS<br>ISLET-CELL ADENOMA                                                                                 | •          | •       | • | •        | •        | •        | +          | •        | •        | •        | •        | •        |          | *         | +        | •        | +           | •        | •        | •        | •        | •        | *        | •      | *  | 58 1           |
| REPRODUCTIVE SYSTEM                                                                                                     |            |         |   |          |          |          |            |          |          |          |          |          |          |           |          |          |             |          |          |          |          |          |          |        | Τ  |                |
| MANMARY GLAND                                                                                                           | M          | N       | H | H        | N        | N        | H          | H.       | M        | N        |          | <u>N</u> | <u>N</u> | <u>H</u>  | <u>H</u> | H        | <u>N</u>    | <u>.</u> | N        | <u>H</u> | Nł       | <u>N</u> | N .      | N .    | -  |                |
| 122713                                                                                                                  | *          | •       | + | *        | •        | •        | <u>*</u>   | <u>*</u> | •        | •        | •        | *        | *        | <u>*</u>  | <u>*</u> | *        | <u>+</u>    | <u>*</u> | •        | <u>*</u> | <u>*</u> | <u>*</u> | ÷        | *<br>* | +  | <br>51         |
| PROSTATE                                                                                                                | +          | •       | • | +        | <u>+</u> | •        | •          | +        | +        | +        | +        | •        | *        | +         | *        | +        | •           | *        | +        | +        | *        | +        | *        |        | -  |                |
| HERVOUS SYSTEM                                                                                                          |            |         |   |          |          | •        | •          | •        | •        | •        | •        | •        | •        | •         | •        | •        | •           | •        | •        | •        | •        | ٠        | ٠        | •      | •  | 58             |
| BRAIN<br>Special Sense Organs                                                                                           |            | -       |   | <u> </u> |          | <b>T</b> | •          | <u>.</u> |          |          |          |          |          |           |          |          |             |          | <u>.</u> |          |          |          |          |        |    |                |
| HARDERIAN GLAND<br>Adenoma, Hos                                                                                         | 10         | N       | * | N X      | N        | N        | N          | N        | N        | N        | H        | N        | N        | N         | N        | N        | N           | N        | *        | N        | M        | M        | N        | *      | *  | 5811           |
| ALL OTHER SYSTEMS                                                                                                       |            | _       |   |          |          |          |            |          |          |          |          |          |          |           |          |          |             |          |          |          |          |          |          |        |    |                |
| MULTIPLE ORGANS NOS<br>Malig.Lymphoma, Histigcytic type<br>Malignant Lymphoma, Mixed Type                               | N          | н<br>Х. | N | N        | N        | N        | N          | N        | N        | N        | N        | N<br>X   | N        | N         | *        | N        | M           | ×        | N<br>X   | N        | N        | *        | N        | N      | X  | 58H<br>1       |

\* ANIMALS NECROPSIED

:

| LUMBA JOB LEWING CALL AND LAND AND AND AND AND AND AND AND AND AND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | GAVAG                                              | E S'         | τι       | <b>JD</b> | YC         | )F       | HO          | CR           | .E)        | DI           | NO       | ), 3     | 3: I     | 101      | N I      | DC        | )SI    | 0        |          |     |           |     |    |          |                 |        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|--------------|----------|-----------|------------|----------|-------------|--------------|------------|--------------|----------|----------|----------|----------|----------|-----------|--------|----------|----------|-----|-----------|-----|----|----------|-----------------|--------|
| STUDY     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9     9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                    | 0            |          | 0         | -          | 8        | -           | 8            | 8          | 8            | 1        | 1        | 1        | 1        | 1        | 1         | 1      | 1        | 1        | 1   | 2         | 2   | 2  | S        | 2               | 2      |
| NTEOMENTARY SYSTEM     Si i i i i i i i i i i i i i i i i i i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | HEEKS ON                                           | - H          | 1        | ᆌ         | -11        | -        | 하           | 1            | 1          | 1            | 1        |          | 1        | 1        | 1        | 1         | 1      | 1        | 1        | 1   | 1         |     | 1  | Ţ        | 1               | 1      |
| SER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                    | L <u>i</u> l | <u> </u> | 1         | اف         | <u>.</u> | <u>i</u>    | إذ           |            | il.          | اف       | šI.      | 3        | لغ       |          | <u>il</u> | اف     | 1        | اف.      | اق. | اف        | اق. | اة | اله.     | <u>.</u>        | 4      |
| LUMBA JOB LEWING CALL AND LAND AND AND AND AND AND AND AND AND AND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SKIH<br>Fibroma                                    | •            | +        | ٠         | +          | N        | •           | •            | •          |              | +        | ٠        | +        | •        | •        | •         | +      | •        | •        | •   |           | +   | •  | •        | •               | ٠      |
| MEANORELINATION       X       X       X         TRACHEA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | RESPIRATORY SYSTEM                                 |              |          |           |            |          |             |              |            |              |          |          |          |          |          |           |        |          |          |     |           |     |    |          |                 | Т      |
| TRACHEA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | HEPATOCELLULAR CARCINGMA, METASTA                  | +            | •        | •         | +<br>      | *<br>×   | -           | •            | •          | •            | +        | •        | +        | *<br>x   | •        | •<br>x    | •      | •        | +        | •   | •         | •   | •  | •        | +<br><u>×</u> _ | •      |
| BOME MARROM <td></td> <td>-  </td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>+</td> <td>-</td> <td>•</td> <td>-</td> <td>-</td> <td>•</td> <td>-</td> <td>•</td> <td>+</td> <td>-</td> <td>+</td> <td>-</td> <td>-</td> <td>٠</td> <td>-</td> <td>-</td> <td>+</td> <td>+</td> <td>•</td> <td>-</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                    | -            | -        | -         | -          | -        | +           | -            | •          | -            | -        | •        | -        | •        | +        | -         | +      | -        | -        | ٠   | -         | -   | +  | +        | •               | -      |
| SPLEEN               · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | HEMATOPOIETIC SYSTEM                               |              | _        |           |            | _        |             |              |            |              |          |          |          |          |          |           |        |          |          | _   |           |     |    |          |                 | ٦      |
| LYMPH MODES AND ALL STRUCTTIC TYPE<br>TYPRUS<br>HALS LYMPHOMA, HISTIGCTTIC TYPE<br>HEART<br>HEART<br>HEART<br>HEART<br>HEART<br>HEART<br>HEART<br>SALUARY SIAND<br>LYPE AND<br>SALUARY SIAND<br>LYPE AND<br>LYPE                                                                                            | BONE MARROW                                        | ÷            | +        | +         |            | +        | .+          | +            | ٠          | ٠.           | +        | +        | <u>+</u> | +        | ŧ        | •         | •      | +        |          | +   | +         | •   | +  | <u>+</u> | <u>+</u>        | *      |
| 1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1 <td>SPLEEN .</td> <td>÷</td> <td>ŧ.</td> <td>+</td> <td>+</td> <td>+</td> <td>•</td> <td>+</td> <td>•</td> <td>•</td> <td>+</td> <td>*</td> <td>+</td> <td>+</td> <td>+</td> <td>+</td> <td>*</td> <td>*</td> <td><u> </u></td> <td>٠.</td> <td>+</td> <td>+</td> <td>+</td> <td>+</td> <td>*</td> <td>2</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SPLEEN .                                           | ÷            | ŧ.       | +         | +          | +        | •           | +            | •          | •            | +        | *        | +        | +        | +        | +         | *      | *        | <u> </u> | ٠.  | +         | +   | +  | +        | *               | 2      |
| INTRUS     INTRUS     INTRUS     INTRUS       SALIVARY GLAND     INTRUS     INTRUS     INTRUS       SALIPARY     INTESTING     INTESTING     INTESTING       STORACH     INTESTING     INTESTING     INTESTING       SALIARY SYSTEM     INTESTING     INTESTING     INTESTING       SALINDER <td< td=""><td>LYMPH HODES<br/>Malig.lymphoma, Histigcytic type</td><td>+</td><td>•</td><td>•</td><td>+</td><td>+</td><td>+</td><td>+</td><td>+</td><td>+</td><td>•</td><td>*</td><td>+</td><td>+</td><td>*</td><td>+</td><td>•</td><td><u> </u></td><td><u> </u></td><td>•</td><td>+</td><td>*</td><td>-</td><td><u>.</u></td><td>*</td><td>+</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | LYMPH HODES<br>Malig.lymphoma, Histigcytic type    | +            | •        | •         | +          | +        | +           | +            | +          | +            | •        | *        | +        | +        | *        | +         | •      | <u> </u> | <u> </u> | •   | +         | *   | -  | <u>.</u> | *               | +      |
| HEART     • • • • • • • • • • • • • • • • • • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | THYMUS                                             | -            | +        | +         | +          | ٠        | -           | +            | +          | •            | -        | •        | +        | +        | •        | +         | *      | *        | +        | +   | •         | +   | +  | +        | •               | -      |
| JEART     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CIRCULATORY SYSTEM                                 |              |          |           |            |          |             |              |            |              |          |          |          |          |          |           |        |          | _        |     |           |     |    |          |                 | 7      |
| SALIVARY GLAND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | HEART                                              | +            | +        | +         | +          | +        | +           | +            | +          | +            | +        | ٠        | +        | +        | •        | +         | •      | +        | +        | +   | ٠         | +   | *  | +        | +               | *      |
| SALIARY GLAND     IVER     IVER     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | DIGESTIVE SYSTEM                                   |              |          |           |            |          |             |              |            |              |          |          |          |          |          |           |        |          |          |     |           |     |    |          |                 |        |
| List Approx Definition A     X     X     X     X     X       MEPATOESLULAR CARETHONA     X     X     X     X     X       SILE DUGT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SALIVARY GLAND                                     | 1*           | +        | •         | •          | •        | +           | . <u>+</u> . | *          | ٠            | +        | +        | *        | +        | <u>+</u> | +         | *      | *        | +        | *   | +         | +   | +  | +        | *               | 늭      |
| BILE DUCT          •         •         •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | HEPATOCELLULAR ADENOMA<br>Hepatocellular carcingma | •            |          | •         | +          | •        | *<br>×      | +            | ٠          | +            | +        | •        | +        | +        | +        | •         | •      | +        | •        | •   | +         | •   |    |          |                 | *<br>× |
| AALLSLADDER & COMMON STLE DUGT         PARCREAS         ESOPMADUS         STOMACH         STALL INTESTIME         MALLSLATTENAC, L'MPHOCYTIC TYPE         LARGE INTESTIME         MALKARY SYSTEM         KITMARY SYSTEM         VIENARY STATEM         VIENTARY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                    | <u> </u>     | -        |           |            | <u> </u> |             |              |            |              |          |          |          |          |          | •         | •      | •        | •        | •   | •         | •   | •  | •        | •               | -      |
| PARCREAS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                    | L.           | Ť        |           | - <u>-</u> | <u> </u> | <u> </u>    |              | <u> </u>   |              | <u> </u> |          | •        | •        | •        | ÷         | •      | 11       | •        | •   | •         | •   | •  |          | •               | +      |
| PARCERAS <ul> <li></li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                    | -            | ÷        |           |            | -        | _ <u></u> _ |              | - <u>-</u> |              | Ť        | ÷        | •        | *        | •        | ÷         | •      | •        | •        | •   | +         | +   | +  | •        | +               | +      |
| STOMACH          • • • • • • • • • • • • • • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                    | L.           | Ť        | Ť         |            |          |             | - <u>*</u>   | <u> </u>   | - <u>`</u> - | •        | +        | +        | +        | +        | +         | ÷      | +        | +        | •   | •         | +   | •  | +        |                 | +      |
| SMALL INTESTINE<br>MALIG. LYMPHOCYTIC TYPE       - + + + + + + + + + + + + + + + + + + +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                    | Ť.           | +        | •         | +          | +        | +           | +            | +          |              |          | +        | +        | +        | •        | •         | •      | +        | +        | +   | +         | +   | •  | +        | +               | •      |
| LARGE INTESTINE       + + + + + + + + + + + + + + + + + + +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SMALL INTESTINE                                    | -            | •        | +         | +          | ţ        | +           | +            | +          | +            | ٠        | +        | +        | +        | +        | ٠         | +      | +        | ٠        | +   | +         | +   | •  | +        | +               | +      |
| LARCH INTEDICAL     XEIMARY SYSTEM       KIDNARY SYSTEM     + + + + + + + + + + + + + + + + + + +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |              |          |           |            |          |             | •            | •          | •            | •        | +        | +        | +        | •        | +         | +      | +        | +        | +   | +         | +   | •  | +        | +               | +      |
| KIDNEY     + + + + + + + + + + + + + + + + + + +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                    | Ļ            |          |           |            |          |             | _            |            |              |          |          | _        |          |          | _         |        | ninter t |          | _   |           | -   | _  |          | _               | د سور  |
| URINARY BLADDER URINARY BLADDER URINARY BLADDER URINARY BLADDER URINARY BYSTEM PITUITARY ADREMAL ADREMALAR ADREMALAR ADREMAL ADREMALAR ADREMAL ADREMALAR ADREMAL ADREM                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                    |              |          | •         |            | •        | •           | •            | •          | +            | +        | +        | +        | +        | +        | •         | •      | •        | +        |     | +         | +   | •  | +        | +               | ÷      |
| UNARAL BLADEA<br>ENDOCRINE SYSTEM<br>PITUITARY<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADREMAL<br>ADRE |                                                    |              |          |           | -          |          | -           | •            | •          | •            | •        | +        | +        | +        | •        | +         | •      | •        | +        | +   | •         | +   | +  | +        | +               | +      |
| PITUITARY     + + + + + + + + + + + + + + + + + + +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                    | Ļ            |          |           |            |          |             |              |            |              | _        |          |          |          | -        | _         |        | ي الدين  | _        | -   |           | -   |    |          | -               | -      |
| ADREMAL<br>ADEMOMA, NOS<br>THYRDID<br>POLLIGULAR-CELL ADEMOMA<br>PARATHYRDID<br>PARATHYRDID<br>ADEMOMA<br>PARATHYRDID<br>TOTALE<br>PARATHYRDID<br>TOTALE<br>PROSTATE<br>PROSTATE<br>PROSTATE<br>PLEURA<br>MEROFIBROSARCOMA<br>ALL OTHER SYSTEMS<br>MULTIPLE ORGAMS MOS<br>MULTIPLE O                                                                                                                                                                                                                                                   |                                                    |              |          | +         | +          | •        | +           | ~            | •          | +            | +        | •        | ٠        | +        | •        |           | •      | <u>.</u> | +        | ÷   | +         |     | +_ | =        | •               | •      |
| TWYRDID<br>POLLICULAR-CELL ADENOMA       + + + + + + + + + + + + + + + + + + +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ADRENAL                                            | •            | +        | +         | ţ          | +        | +           | +            | +          | +            | ÷        | +        | +        | +        | +        | +         | +      | +        | +        | +   | +         | +   | ٠  | +        | +               | ٠      |
| PARATHYRDID     + + + + + + + + + + + + + + +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | THYROID                                            | •            | ÷        | +         | +          | +        | +           | ÷            | +          | +            | +        | +        | +        | +        | +        | +         | +      | +        | +        | ٠   | +         | +   | ٠  | ٠        | +               | +      |
| REPRODUCTIVE SYSTEM     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                    | 1.           | <u>_</u> |           | _          | +        | •           |              | _          | +            | -        | -        | +        | •        | +        |           | •      | +        | +        | +   | -         | -   | +  | •        | +               | -      |
| HAMMARY GLAND     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    | ⊢            |          | _         |            |          |             |              | _          | _            |          |          |          |          |          |           |        |          |          |     |           |     |    |          | _               | -      |
| TESTISS     Y + + + + + + + + + + + + + + + + + + +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                    | L            | M        | M         |            | M        | ж           | н            | N          | <u>.</u>     | H        | H.       | N        | H        | H.       | н         | N      | н.       | ×        | N   | <u>N.</u> | M   | N  | N        | H               | H      |
| PROSTATE     + + + + + + + + + + + + + + + + + + +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | TRATE                                              | ŀ            | +        | +         | •          | +        | ٠           | +            | +          | *            | •        | ٠        | +        | +        | •        | +         | +      | •        | +        | •   | +         | +   | +  | <u> </u> | +               | +      |
| BRAIN     + + + + + + + + + + + + + + + + + + +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                    | +            | +        | +         | +          | +        | ٠           | +            | +          | +            | ٠        | ٠        | +        | +        | +        | +         | +      | 4        | ٠        | ٠   | ٠         | +   | ٠  | ٠        | +               | +      |
| JDDY CAVITIES     PLEURA<br>NEUROFIBROSARCOMA     N N N N N N N N N N N N N N N N N N N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NERVOUS SYSTEM                                     | +            |          |           |            | _        |             |              |            |              |          |          |          |          |          | ,         |        |          |          |     |           | ·   |    |          |                 |        |
| PLEURA<br>MEUROFIBROSARCOMA<br>ALL OTHER SYSTEMS<br>MULTIPLE ORGANS MOS<br>MULTIPLE ORGANS MOS<br>MULTI                                                                                                                                                                                                                                                               | BRAIN<br>BODY CAVITIES                             | ≁            | •        | *         | +          | +        | +           | •            | <u>+</u>   | <u>+</u>     | <u>+</u> | <u>+</u> | *        | <u>+</u> | •        | <u>}</u>  | •      | -1 -     | •        | •   | +         | •   | •  | .+       | •               | •      |
| ALL OTHER SYSTEMS<br>MULTIPLE ORGANS NOS<br>NEUROFISROSARCOMA<br>MALIO.LYMPHOGA, HISTOCYTIC TYPE<br>MALIO.LYMPHOGA, HISTOCYTIC TYPE<br>LYMPHOCYTIC LEUKEMIA<br>LYMPHOCYTIC LEUKEMIA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | PLEURA                                             | H            | H        | N         | Ħ          | N        | N           | N            | N          | Ħ            | H        | N        | N        | Ħ        | N        | N         | N      | F        | N        | N   | N         | N   | N  | Ħ        | N               | N      |
| MULTIPLE ORGANS NOS<br>NEUROFIEROSARCOMA<br>MALIG.LYMPHOMA, HISTOCYTIC TYPE<br>LYMPHOGY, HISTOCYTIC TYPE<br>LYMPHOCYTIC LEUKEMIA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ALL OTHER SYSTEMS                                  | +            | ·        |           |            |          |             |              |            |              |          |          |          |          |          |           |        |          |          | -   |           |     |    |          | _               |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | MULTIPLE ORGANS NOS                                | 1            |          |           | Ħ          | M        |             | H            | N          | N            | N        |          | M        | M        | N        | H         | H<br>X | H        | N        | Ħ   | N         | N   | N  | Ħ        | N               | N      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | LUMBAR REGION                                      |              |          |           |            |          |             |              |            |              |          |          |          |          |          |           |        | _        |          |     |           |     |    |          |                 |        |

# TABLE B3. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE MICE IN THE TWO-YEARGAVAGE STUDY OF HC RED NO. 3: LOW DOSE

HC Red No. 3, NTP TR 281

| <u> </u>                                                 | - + - + + + + + + + + + + + + + + + + + | +                                                            |                                                                                                                                                                                                           | •<br>•<br>•<br>•<br>•                                                                                                                                                                                            |                   | N + XX - + + + - + + X + + |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   | •        | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | + +<br>× ×<br>× ×<br>+ +<br>+ +<br>+ +<br>+ +<br>+ +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -<br>-<br>-<br>- | • • • • • • • • • • • • • • • • • • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | •        | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ≤ <br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | •       •       •       •       •       •       •       •       •       •       • |                                               | <ul> <li>58)</li> <li>58)</li> <li>49</li> <li>16</li> <li>49</li> <li>36</li> <li>49</li> <li>36</li> <li>49</li> <li>36</li> <li>58</li> <li>58</li> <li>38</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|----------------------------------------------------------|-----------------------------------------|--------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|----------------------------|--------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| +<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+ | +<br>-<br>+<br>+<br>+<br>+<br>+<br>+    | + x - + + + + x                                              | *X - + + + + + + + + + + + + + + + + + +                                                                                                                                                                  | * × -                                                                                                                                                                                                            |                   | • ×× •                     | •<br>•<br>•                                                        | • •<br>• •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - +<br>- +<br>- + | •        | * · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | + +<br>× ×<br>× ×<br>+ +<br>+ +<br>+ +<br>+ +<br>+ +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -<br>-<br>-<br>- | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | •        | •<br>•<br>•                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | *<br>*<br>*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <u>+</u><br>+<br>+<br>+<br>+                                                      | + 1<br>+ 1<br>+ 1<br>+ 1<br>+ 1<br>+ 1<br>+ 1 | + 49<br>+ 49<br>+ 58<br>+ 49<br>+ 36<br>+ 49<br>+ 36<br>+ 49<br>+ 36<br>+ 36<br>+ 38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| +<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+ | +<br>-<br>+<br>+<br>+<br>+<br>+<br>+    | + x - + + + + x                                              | *X - + + + + + + + + + + + + + + + + + +                                                                                                                                                                  | * × -                                                                                                                                                                                                            |                   | • ×× •                     | •<br>•<br>•                                                        | • •<br>• •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - +<br>- +<br>- + | •        | * · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | + +<br>× ×<br>× ×<br>+ +<br>+ +<br>+ +<br>+ +<br>+ +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -<br>-<br>-<br>- | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | •        | •<br>•<br>•                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | *<br>*<br>*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <u>+</u><br>+<br>+<br>+<br>+                                                      | + 1<br>+ 1<br>+ 1<br>+ 1<br>+ 1<br>+ 1<br>+ 1 | + 49<br>+ 49<br>+ 58<br>+ 49<br>+ 36<br>+ 49<br>+ 36<br>+ 49<br>+ 36<br>+ 36<br>+ 38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| + · · · · · · · · · · · · · · · · · · ·                  | - + - + + + + + + + + + + + + + + + + + | -<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+               | * * * * * *                                                                                                                                                                                               | -<br>+<br>+<br>+                                                                                                                                                                                                 |                   | -                          | •<br>•<br>•                                                        | • •<br>• •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - +<br>- +        | •        | * · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | - +<br><u>+ +</u><br>+ +<br>+ +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -<br>-<br>-<br>- | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | •        | •<br>•<br>•                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | *<br>*<br>*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <u>+</u><br>+<br>+<br>+<br>+                                                      | + 1<br>+ 1<br>+ 1<br>+ 1<br>+ 1<br>+ 1<br>+ 1 | <ul> <li>16</li> <li>49</li> <li>58</li> <li>49</li> <li>36</li> <li>49</li> <li>36</li> <li>49</li> <li>58</li> <li>58</li> <li>58</li> <li>58</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| + · · · · · · · · · · · · · · · · · · ·                  | - + - + + + + + + + + + + + + + + + + + | -<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+               | * * * * * *                                                                                                                                                                                               | -<br>+<br>+<br>+                                                                                                                                                                                                 |                   | -                          | •<br>•<br>•                                                        | • •<br>• •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - +<br>- +        | •        | * · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | - +<br><u>+ +</u><br>+ +<br>+ +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -<br>-<br>-<br>- | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | •        | •<br>•<br>•                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | *<br>*<br>*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <u>+</u><br>+<br>+<br>+<br>+                                                      | + 1<br>+ 1<br>+ 1<br>+ 1<br>+ 1<br>+ 1<br>+ 1 | <ul> <li>16</li> <li>49</li> <li>58</li> <li>49</li> <li>36</li> <li>49</li> <li>36</li> <li>49</li> <li>58</li> <li>58</li> <li>58</li> <li>58</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| + · · · · · · · · · · · · · · · · · · ·                  | *<br>*<br>*                             | *<br>*<br>*<br>*                                             | * * * * * *                                                                                                                                                                                               | •                                                                                                                                                                                                                |                   | -                          | •<br>•<br>•                                                        | • •<br>• •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - +<br>- +        | •        | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | •        | •<br>•<br>•                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | *<br>*<br>*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <u>+</u><br>+<br>+<br>+<br>+                                                      | + 1<br>+ 1<br>+ 1<br>+ 1<br>+ 1<br>+ 1<br>+ 1 | + 49<br>- 50<br>- 49<br>- 36<br>- 49<br>- 36<br>- 50<br>- 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| *                                                        | *<br>*<br>*                             | -<br>•<br>•<br>*                                             | * * * * * *                                                                                                                                                                                               | •                                                                                                                                                                                                                |                   | -                          | •<br>•<br>•                                                        | • •<br>• •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - +<br>- +        | •        | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | •        | •<br>•<br>•                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | +<br>+<br>+<br>+                                                                  | + +<br>- +<br>- +<br>+ +                      | -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     - |
| *                                                        | *<br>*<br>*                             | -<br>•<br>•<br>*                                             | * * * * * *                                                                                                                                                                                               | •                                                                                                                                                                                                                |                   | -                          | •<br>•<br>•                                                        | • •<br>• •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - +<br>- +        | •        | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | •        | •<br>•<br>•                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | +<br>+<br>+<br>+                                                                  | + +<br>- +<br>- +<br>+ +                      | -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     - |
| *                                                        | *<br>*<br>*                             | -<br>•<br>•<br>*                                             | * * * * * *                                                                                                                                                                                               | •                                                                                                                                                                                                                |                   | -                          | •<br>•<br>•                                                        | • •<br>• •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - +<br>- +        | •        | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | •        | •<br>•<br>•                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | +<br>+<br>+<br>+                                                                  | + +<br>- +<br>- +<br>+ +                      | + 49<br>- 36<br>- 49<br>- 49<br>- 59<br>- 59<br>- 59<br>- 59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| *                                                        | *<br>*<br>*                             | -<br>•<br>•<br>*                                             | * * * * * *                                                                                                                                                                                               | •                                                                                                                                                                                                                | • •<br>• •<br>• • | -                          | •<br>•<br>•                                                        | • •<br>• •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - +<br>- +        | •        | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | •        | •<br>•<br>•                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | •<br>•<br>•                                                                       | × - + + +                                     | > 36<br>49<br>50<br>50<br>50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| *                                                        | •<br>•                                  | +<br>+<br>X                                                  | •<br>•<br>•<br>×                                                                                                                                                                                          |                                                                                                                                                                                                                  |                   | •                          | •<br>•<br>•                                                        | • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | • •               |          | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                  | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | •        | •<br>•<br>•                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | •<br>•<br>•                                                                       | - •                                           | + 49<br>- 49<br>- 50<br>- 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| *                                                        | *<br>*                                  | +<br>+<br>X                                                  | +<br>+<br>X                                                                                                                                                                                               | •<br>•<br>•                                                                                                                                                                                                      | • •<br>• •        | •                          | +<br>+<br>X                                                        | • •<br>• •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | • •               | •        | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | •                | <u>+</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <u>*</u> | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ÷ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | +                                                                                 | • •<br>• •                                    | - <u>40</u><br>- 50<br>- 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| *                                                        | *<br>*                                  | +<br>+<br>X                                                  | +<br>+<br>X                                                                                                                                                                                               | *<br>*<br>*                                                                                                                                                                                                      | • •<br>• •<br>• • | •                          | +<br>+<br>X                                                        | • •<br>• •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | • •               | •        | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | •                | <u>+</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <u>*</u> | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ÷ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | +                                                                                 | • •<br>• •                                    | - <u>40</u><br>- 50<br>- 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| *<br>*<br>*                                              |                                         |                                                              |                                                                                                                                                                                                           | +<br>+<br>+                                                                                                                                                                                                      | · · ·             |                            | *<br>*<br>*                                                        | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                 | •        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | • •<br>• •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | +                | *<br>*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | *        | *<br>*<br>*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | +<br>+<br>X                                                                       | • •<br>• •<br>×                               | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| •<br>•                                                   |                                         |                                                              |                                                                                                                                                                                                           | •<br>•<br>•                                                                                                                                                                                                      | · · ·             |                            | *<br>*<br>*                                                        | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                 | •        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | +                | *<br>*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | +        | *<br>*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | +<br>X                                                                            | • •<br>×                                      | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| +<br>•                                                   |                                         |                                                              |                                                                                                                                                                                                           | +<br>•<br>#                                                                                                                                                                                                      | • •               |                            | *<br>                                                              | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                 | · •      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ; •<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | •                | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | •        | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | × .                                                                               | × •                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| •                                                        | •<br>•<br>•                             | +<br>+<br>+                                                  | •<br>N                                                                                                                                                                                                    | •                                                                                                                                                                                                                | • •               | •                          | <u>+</u>                                                           | • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | •                 | •        | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | •                | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | +        | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <u>.</u>                                                                          | + +                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| •                                                        | +<br>+<br>+                             | •<br>•                                                       | <u>N</u>                                                                                                                                                                                                  | <u>N</u>                                                                                                                                                                                                         | •                 |                            |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                   |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| •                                                        | +                                       | •                                                            | +_                                                                                                                                                                                                        |                                                                                                                                                                                                                  |                   |                            |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Þ. 1              |          | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | +                | <u>+</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <u>+</u> | ŧ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <u>•</u>                                                                          | <u>+ 1</u>                                    | L503                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| •                                                        | +                                       |                                                              |                                                                                                                                                                                                           |                                                                                                                                                                                                                  | • •               | +                          |                                                                    | + (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | • •               | +        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | •                | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | +        | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <u>.</u>                                                                          | • •                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                          |                                         | <u>+</u>                                                     | •                                                                                                                                                                                                         | •                                                                                                                                                                                                                | ••                | •                          | +                                                                  | • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <u>+</u>          | •        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  | <u>.</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | *        | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <u>.</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <u>+</u>                                                                          | <u>+</u> +                                    | - 38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                          | +                                       | •                                                            | +                                                                                                                                                                                                         | •                                                                                                                                                                                                                | • •               | +                          | +                                                                  | + •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | • •               | +        | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <u>+</u>         | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | +        | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | •                                                                                 | <u>•</u> ••                                   | - 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| •                                                        | •                                       | +                                                            | +                                                                                                                                                                                                         | •                                                                                                                                                                                                                | • •               | •                          | •                                                                  | • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | • •               | •        | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | •<br>•           | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | •        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | _                                                                                 | •••                                           | 46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| +                                                        | +                                       | +                                                            | *                                                                                                                                                                                                         | +                                                                                                                                                                                                                | + +               | +                          | +                                                                  | • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | • •               | • •      | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | •                | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | +        | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <u>*</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | +                                                                                 |                                               | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                          |                                         |                                                              |                                                                                                                                                                                                           |                                                                                                                                                                                                                  | •                 |                            |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                   |                                               | 38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| •                                                        | +                                       | <u>*</u>                                                     | *                                                                                                                                                                                                         | +                                                                                                                                                                                                                | <u>* *</u>        |                            | <u>.</u>                                                           | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                   | <u> </u> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                | <u>,                                     </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | +        | <u>*</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | •                                                                                 | * *                                           | 49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| •                                                        | *                                       | +                                                            | +                                                                                                                                                                                                         | <u>•</u>                                                                                                                                                                                                         | • •               | +                          | +                                                                  | * *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | · ·               | +        | + ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | + +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | _                                                                                 |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                          |                                         |                                                              |                                                                                                                                                                                                           |                                                                                                                                                                                                                  |                   |                            |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <b>.</b> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                   |                                               | . 47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| +<br>+                                                   | +                                       | +                                                            | •                                                                                                                                                                                                         | ÷<br>×                                                                                                                                                                                                           | • •               | •                          | +                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | •                | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | +        | ÷<br>×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | +                                                                                 | + +                                           | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| +                                                        | +                                       | +                                                            | +                                                                                                                                                                                                         | +                                                                                                                                                                                                                | • •               | +                          | •                                                                  | • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | • •               | •        | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ÷ +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | +                | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | +        | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | •                                                                                 | + +                                           | 58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| -                                                        | •                                       | ٠                                                            | +                                                                                                                                                                                                         | •                                                                                                                                                                                                                | - +               | +                          | +                                                                  | + +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | • •               | •        | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | - +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                | ٠                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | +        | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | •                                                                                 | • •                                           | 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                          |                                         |                                                              |                                                                                                                                                                                                           |                                                                                                                                                                                                                  |                   |                            |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                   |                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| <u>H</u>                                                 | Ħ.                                      | M                                                            | M                                                                                                                                                                                                         | 11                                                                                                                                                                                                               | N H               | <u> </u>                   | Nł.                                                                | н 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <u></u> .         | <u>N</u> | <u>_H</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | HH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N                | H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | H        | М                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <u>N</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | H                                                                                 | <u>H H</u>                                    | 4 <u></u> 50×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| •                                                        | +                                       | ÷                                                            | •                                                                                                                                                                                                         | •                                                                                                                                                                                                                | • •               | •                          | +                                                                  | • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | • •               | •        | • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | •                | <u>+</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •        | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | _                                                                                 |                                               | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| •                                                        | *                                       | •                                                            | +                                                                                                                                                                                                         | *                                                                                                                                                                                                                | • •               | +                          | +                                                                  | + +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | • •               | •        | + ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | •                | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | •        | <u>.</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ÷ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | •                                                                                 |                                               | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                          |                                         |                                                              |                                                                                                                                                                                                           |                                                                                                                                                                                                                  |                   |                            |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                   |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                          |                                         |                                                              |                                                                                                                                                                                                           |                                                                                                                                                                                                                  |                   |                            | -                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                   |                                               | T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| M                                                        | 71                                      | M                                                            |                                                                                                                                                                                                           |                                                                                                                                                                                                                  | ni M              | N                          | 4                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | n A               |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ni M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ni<br>           | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                   | "                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                          |                                         |                                                              | N                                                                                                                                                                                                         | N                                                                                                                                                                                                                | x                 |                            | N                                                                  | H 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | H H               | I N      | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | N N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | N                | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | N        | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | M                                                                                 | N H                                           | 1 58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                          |                                         |                                                              |                                                                                                                                                                                                           |                                                                                                                                                                                                                  |                   |                            |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                   |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                          |                                         | <br><br>- +<br>- +<br>- +<br>- +<br>- +<br>- +<br>- +<br>- + | +<br>+<br>- + +<br>- + + +<br>- + + + + | + +<br>+ +<br>+ + + + + + +<br>+ + + + + + + + + + + + + + + + + + + + |                   |                            | X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X | +     +     +     +     +     +       X     +     +     +     +     +       -     -     +     +     +     +       -     +     +     +     +     +       -     +     +     +     +     +       -     +     +     +     +     +       -     +     +     +     +     +       +     +     +     +     +     +       +     +     +     +     +     +       +     +     +     +     +     +       +     +     +     +     +     +       +     +     +     +     +     +       +     +     +     +     +     +       +     +     +     +     +     +       +     +     +     +     +     +       +     +     +     +     +     +       +     +     +     +     +     +       +     +     +     +     +     +       +     +     +     +     +     +       +     +     + <td></td> <td></td> <td>+         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +</td> <td>+    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +</td> <td></td> <td>.         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .</td> <td></td> <td>+       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +</td> <td>+       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +</td> <td>+ + + + + + + + + + + + + + + + + + +</td> <td></td> <td></td> |                   |          | +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         +         + | +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    +    + |                  | .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         . |          | +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       + | +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       + | + + + + + + + + + + + + + + + + + + +                                             |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

#### TABLE B3. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE MICE: LOW DOSE (Continued)

\* ANIMALS NECROPSIED

| GAVAGE                                                                                                                            | ST          | U        | DY       | 0        | FH       | IC       | RI          | ED       | ) N    | 0.       | 3:                    | H        | IG          | H        | DC        | )SI        | E           |              |             |         |           |             |          |          |        |
|-----------------------------------------------------------------------------------------------------------------------------------|-------------|----------|----------|----------|----------|----------|-------------|----------|--------|----------|-----------------------|----------|-------------|----------|-----------|------------|-------------|--------------|-------------|---------|-----------|-------------|----------|----------|--------|
| ANIMAL<br>Humber                                                                                                                  | 0<br>0<br>1 | 0        | 0        | 0<br>0   | 0        | 0        | 0<br>0<br>7 | 0        | 0      | 0        | 1                     | 1        | 0<br>1<br>3 |          | 1         | !          | 8<br>1<br>7 |              | 0<br>1<br>9 | 2       | 2         | 0<br>2<br>2 | 2        | 21       | 2      |
| WEEKS ON<br>Study                                                                                                                 | 8           | 0        |          | 9        | 9        | 9        |             | 1        | 8      | 91       | 1                     | -        | -           | 1        |           | 4          | -           | 1            | -           | 8       | 9         | -           | 1        | 0        | -      |
| INTEGUNENTARY SYSTEM                                                                                                              | لق          | -11      | -21      | 21       | -11      | _11      | _51,        | . 21,    | -21    |          | -21                   | - 11     | -11-        | 21       | -11       | <u>.</u>   | 21          | -11          | -21         | <u></u> | -11-      | 10          | -21      | _12_     | 괵      |
| SKIN<br>Fibroma                                                                                                                   | +           | ٠        | +        | +        | +        | +        | +           | +        | +      | +        | +                     | +        | +           | N        | N         | +          | +           | 4            | +           | +       | +         | +           | +        | *        | +      |
| RESPIRATORY SYSTEM                                                                                                                |             |          |          |          |          |          |             |          |        |          |                       |          | -           |          |           |            |             | -            |             |         |           |             |          | _        | +      |
| LUNGS AND BRÖNCHI<br>Hepatocellular Carcingma, metasta<br>Alveolar/Bronchiolar Adenoma<br>Alveolar/Bronchiolar Carcingma          | *×          | +        | +        | •        | +<br>x   | +<br>    | +           | •        | +<br>× | +        | •                     | +        | +           | •        | *<br>×    | ٠          | •           | •            | •           | •       | +         | •           | *        | •        | •      |
| TRACHEA                                                                                                                           | +           | +        | -        | +        | -        | ٠        | -           | -        | +      | ٠        | -                     | ٠        | -           | +        | -         | +          | -           | • .          | -           | -       | ٠         | -           | -        | -        | +      |
| HEMATOPOIETIC SYSTEM                                                                                                              |             |          |          |          |          |          |             |          |        |          |                       |          |             |          |           |            |             |              |             |         |           |             |          |          | ٦      |
| BONE MARROW                                                                                                                       | <u> </u>    | +        | *        | +        | <u>+</u> | <u>+</u> | +           | +        | •      | +        | +                     | +        | *           | +        | *         | +          | +           | -1°          | *           | +       | *         | +           | +        | <u>+</u> | 쒸      |
| SPLEEN<br>Hemangidsarcoma                                                                                                         | •           | +        | <u>.</u> | *        | +        | +        | +           | +        | +      | ÷.       | <u>+</u>              | +        | +           | <u>+</u> | +         | +          | +           |              | +           | +       | ÷         | +           | +        | +        | 4      |
| LYMPH NODES<br>Alvedlar/bronchiolar CA, metastat<br>Malig.lymphoma, histiocytic type .                                            | +           | •        | •        | +        | •        | •        | +           | •        | •      | •        | <b>*</b> <sup>1</sup> | •        | +<br>×      | •        | +         | •          | +           | 4 ·          | +           | +       | •         | +           | •        | •        | -      |
| THYNUS                                                                                                                            | +           | +        | -        | -        | •        | +        | -           | +        | +      | +        | •                     | +        | +           | +        | +         | +          | +           | •            | *           | +       | +         | *           | +        | -        | +      |
| CIRCULATORY SYSTEM                                                                                                                |             |          |          |          |          |          |             |          |        |          |                       |          |             |          |           |            | •           |              | •           | •       |           |             | •        |          |        |
| HEART<br>DIGESTIVE SYSTEM                                                                                                         | Ļ           | +        | -        | <u> </u> | •        | <u> </u> | •           | <u> </u> |        | +        |                       | •        | +           | +        | +         | •          | -           |              |             | -       | -         | _           | <u> </u> | +        | 4      |
| SALIVARY GLAND                                                                                                                    | +           | •        | +        | +        | +        | +        | •           | •        | +      | •        | •                     | •        | •           | +        | •         | +          | +           |              | •           | •       | •         | ٠           | • .      | +        |        |
| LIVER                                                                                                                             | +           | +        | +        | +        | +        | +        | +           | +        | +      | +        | +                     | +        | •           | +        | +         | +          | +           |              | +           | +       | +         | +           | •        | ÷ ·      | •      |
| HEPATOCELLULAR ADEHOMA<br>Hepatocellular carcinoma<br>Carcinoid Tumor, metastatic<br>Hemangiosarcoma                              | x           |          | ×        | x        | _        | ×        | X           |          | x      | ×        |                       | ×        | ×           | ×        | ×         | ×          | ×           |              | ×           | ×       | X.        | ×           | X        | × :      | ×      |
| BILE DUCT                                                                                                                         | +           | •        | ٠        | +        | +        | +        | ٠           | ٠        | +      | <u>+</u> | ٠                     | ٠        | *           | +        | •         | +          | +           |              | •           | ٠       | *         | ٠           | +        | <u>*</u> | 4      |
| GALLBLADDER & COTHON BILE DUCT<br>Carcingid Tumor, Malignant                                                                      | •           | +        | •        | +        | +        | +        | +           | +        | +      | N        | *                     | +        | +           | •        | +         | N          | •           | ,            | •           | *       | +         | *           | +        | •        | 1      |
| PANCREAS                                                                                                                          | +           | .+       | •        | +        | +        | +        | +           | +        | ÷      | •        | +                     | <u>+</u> | <u>+</u>    | +        | +         | •          | •           | - <u>}</u>   | +           | ÷       | +         | *           | +        | +        | 4      |
| ESOPHAGUS .                                                                                                                       | +           | +        | +        | +        | +        | +        | +           | +        | +      | +        | +                     | +        | +           | +        | +         | +          | +           | <u>_</u>     | +           | +       | +         | +           | +        | +        | 4      |
| STOMACH<br>Squamdus cell papilloma                                                                                                | +           | +        | +        | +        | +        | +        | *           | ٠        | +      | +        | •                     | +        | *           | +        | +         | +          | +           | •            | *           | +       | •         | +           | +        | +        | *      |
| SMALL INTESTINE                                                                                                                   | •           | +        | +        | +        | •        | +        | +           | +        | +      | +        | +                     | +        | •           | +        | +         | ٠          | +           | F            | +           | +       | ٠         | +           | +        | +        | t      |
| ADENOCARCINOMA, HOS                                                                                                               | •           | •        | +        | •        | •        | •        | •           | •        | •      | +        | +                     | •        | •           | +        | +         | • '        | •           |              | +           | •       | •         | +           | •        | •        | 4      |
| LARGE INTESTINE<br>URINARY SYSTEM                                                                                                 | <u> </u>    |          | -        | · ·      |          | _        |             |          |        | _        |                       |          |             |          |           |            |             | -            |             | -       |           |             | _        |          | -      |
| KIDNEY                                                                                                                            | +           | +        | +        |          | +        | +        | +           | •        | +      | <u>.</u> | +                     | +        | •           | +        | +         | +          | +           | . <u>*</u>   | ٠           | +       | +         | +           | +        | +        | ±      |
| URINARY BLADDER<br>TRANSITIONAL-CELL PAPILLOMA                                                                                    | +           | +        | ٠        | ٠        | +        | +        | •           | +        | +      | +        | +                     | ٠        | +           | +        | •         | <b>+</b> \ | +           | ٠            | *<br>x      | ٠       | ٠         | •           | ٠        | ٠        | ٠      |
| ENDOCRINE SYSTEM                                                                                                                  | <u> </u>    |          |          |          |          |          |             |          |        |          |                       |          |             |          |           |            |             |              |             | -       |           |             |          |          | -      |
| PITUITARY                                                                                                                         | ÷           | +        | +        | +        | +        | +        |             | +        | t      | -        | +                     | •        | +           | +        | +         | +          | +           | . <b>*</b> . | +           | +       | •         | *           | +        | +        | 4      |
| ADRENAL<br>Adenoma, Hos                                                                                                           | +           | +        | +        | +        | +        | +        | +           | +        | +      | +        | +                     | +        | •           | •        | +         | +          | +           | ż            | +           | •       | •         | +           | +        | •        | •      |
| THYROID<br>Follicular-Cell Adenoma                                                                                                | +           | +        | +        | *<br>×   | +        | +        | +           | +        | +      | +        | •                     | +        | +           | ٠        | +         | +          | +           | +            | +           | ٠       | ٠         | *<br>x      | +        | ż        | ٠      |
| PARATHYROID                                                                                                                       | ÷           | •        | ÷        | -        | -        | ÷        | +           |          | -      | ÷        | -                     | <u>.</u> | ٠           | •        | •         | -          | +           | <u>+</u>     | -           | -       | •         | -           | -        | -        | -      |
| PANCREATIC ISLETS<br>ISLET-CELL ADENOMA                                                                                           | •           | •        | ٠        | +        | +        | +        | +           | ٠        | +      | *        | ٠                     | ٠        | ٠           | +        | ٠         | +          | •           | +            | +           | *       | •         | ٠           | +        | •        | ۱      |
| REPRODUCTIVE SYSTEM                                                                                                               |             |          | _        |          |          |          |             |          |        |          |                       |          |             |          |           |            |             | _            |             |         |           |             |          |          |        |
| MAMMARY GLAND                                                                                                                     | <u>. N</u>  |          | N        |          | _H_      |          | <u>. M</u>  |          |        |          |                       |          | N           |          | .н.,<br>• | <u>×</u>   | <u></u>     | . #          | <u> </u>    |         | <u>N'</u> | <u>N</u>    | <u>+</u> |          | 4      |
| TESTIS                                                                                                                            | <u> </u>    | <u>+</u> | <u>*</u> | <u>+</u> | +        | +        | +           | _+       | •      | ÷.       | +                     | +        | *<br>•      | *<br>+   | *         | •          | +           | *            | +_          | ÷       | ÷         | +           | •        |          | ÷      |
| PROSTATE<br>Semimal Vesicle<br>Alveolar/bronchiolar ca, metastat                                                                  | ÷           | +        | •        | +        | ż        | +        | •           | •        | •      | +        | +                     | •        | •           | •        | +         | +          | •           | +            | ٠           | +       | ÷         | +           | +        | +        | •      |
| NERVOUS SYSTEM                                                                                                                    |             |          |          | _        |          |          |             |          |        |          |                       |          |             |          |           |            |             | -            |             |         | <u> </u>  | _           |          | -        | 4      |
| BRAIN                                                                                                                             |             | ٠        | •        | •        | +        | +        | ٠           | ٠        | ٠      | +        | ÷                     | ٠        | ٠           | ÷        | ٠         | •          | ٠           | ٠            | ٠           | ٠       | +         | +           | +        | ٠        | +      |
| SPECIAL SENSE ORGANS                                                                                                              |             |          |          |          |          |          |             |          |        |          |                       |          |             |          | -         |            |             |              | -           |         |           |             |          |          | ┥      |
| HARDERIAN GLAND<br>Adengma, Nos                                                                                                   | ×           | N        | N        | н        | N        | N        | N           | N        | N      | N        | N                     | H        | H           | Ħ        | N         | N          | X           | N            | N           | N       | N         | X           | И        | ×        | H      |
| BODY CAVITIES                                                                                                                     |             |          |          |          |          |          |             |          |        | N        | н                     | ×        | н           | N        | N         | ų          | ¥.          | M            | н           | H       | N         | N           | N        | N        | H      |
| MEDIASTINUM<br>Alveolar/bronchiglar CA, Metastat                                                                                  | H           | N<br>    | N<br>    | N<br>    | N<br>    | N<br>    | N           | н<br>    | N<br>  |          |                       |          |             |          |           |            |             |              |             |         |           |             |          |          | $\neg$ |
| MESENTERY<br>Sarcoma, Hos                                                                                                         | н           | H        | N        | N        | N        | H        | N           | N        | N      | N        | N                     | H        | N           | 1        | N         | ri         | H           | N            |             | ×       | N         | H           | N        | N        | H      |
| ALL OTHER SYSTEMS<br>Multiple organs nos<br>Sarcoma, nos, metastatic                                                              | н           | H        | N        | Ħ        | N        | N        | N           | N        | N      | N        | N                     | н        | N           | N        | N         | н          | N           | н            | N           | N       | ĸ         | N           | N        | N        | N      |
| SARCOMA, HOS, MELASIAIG<br>Malig.lymphoma, lymphocytic type<br>Malig.lymphoma, Histiccytic type<br>Malighant lymphoma, Mixed type |             |          |          |          |          |          |             |          |        |          |                       |          |             | x        | X         |            |             |              |             | x       |           |             |          |          | x      |
|                                                                                                                                   |             |          | _        |          |          |          |             |          |        |          |                       | -        |             |          |           | -          |             |              |             |         |           |             |          |          |        |

# TABLE B3. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE MICE IN THE TWO-YEARGAVAGE STUDY OF HC RED NO. 3: HIGH DOSE

| ANIMAL<br>NUMBER                                                                                                                                                                       | 24       | 2            | 2        | 2        | 3 | 3        | 32 | 0<br>3<br>3 | 3        | 3        | 0<br>3<br>6 | 37          | 3        | 3        |            | 4        | 4        | 4        | \$            | -            | 4      | 0<br>4<br>7 | 4  | 4        | 0<br>5<br>0 | TOTAL              |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------------|----------|----------|---|----------|----|-------------|----------|----------|-------------|-------------|----------|----------|------------|----------|----------|----------|---------------|--------------|--------|-------------|----|----------|-------------|--------------------|
| WEEKS ON<br>Study                                                                                                                                                                      | 7        | ,            | 0        | 0        | 1 | 0        | 1  | 0           | 6        | 1        | 9           | 0           | 8        | 1        |            | 0        | 8        | -        | 0             | ò            | 9      | 9           | 1  |          | 0           | TUMORS             |
| INTEGUMENTARY SYSTEM                                                                                                                                                                   | 71       | _11          | -11      | 3        | 1 | - 11     | 5  | 31          | 9        | 11       | _0_         | <u>.</u> 11 | -11-     | . 11.    | 51         | 31       | .6.1     | 31       | 21            | -21          | -81    | - 11        | 21 | 21       | -21         | r                  |
| SKIN<br>Fibroma                                                                                                                                                                        | ٠        | ٠            | ٠        | +        | + | H        | +  | +           | +        | ٠        | •           | +           | ٠        | +        | •          | ٠        | •        | +        | +             | +            | •      | •           | •  | +        | +           | 50%<br>1           |
| RESPIRATORY SYSTEM                                                                                                                                                                     |          |              |          |          |   |          |    |             |          |          |             |             |          |          |            |          |          |          |               |              |        |             |    |          |             |                    |
| LUNGS AND BRONCHI<br>Hepatocelular Carcinoma, metasta<br>Alveolar/Bronchiolar Adenoma<br>Alveolar/Bronchiolar Carcinoma                                                                | +<br>×   | *<br>×       | +<br>x   | •        | + | •        | +  | •           | *<br>x   | ×        | + x x       | •           | ×        | +        | *<br>×     | +        | +        | •        | •             | ÷<br>×       | +<br>  | +           | •  | *        | *<br>×      | 50<br>5<br>7<br>7  |
| TRACHEA                                                                                                                                                                                | +        | +            | +        | +        | ٠ | -        | -  | +           | ٠        | +        | +           | -           | -        | +        | -          | -        | •        | +        | -             | +            | ٠      | ٠           | -  | -        | +           | 26                 |
| HEMATOPOIETIC SYSTEM                                                                                                                                                                   |          |              |          |          |   | _        |    |             |          |          |             |             |          |          |            | -        |          |          |               |              |        |             |    |          |             |                    |
| BONE MARROW                                                                                                                                                                            |          | +            | •        | +        | + | +        | •  | *           | +        | ÷        | ٠.          | +           | ٠        | +        | +          | +        | •        | •        | *             | •            | *      | •           | +  | •        | +           | 50                 |
| SPLEEN<br>Hemangiosarcoma .                                                                                                                                                            | •        | +            | +        | •        | + | •        | •  | •           | +        | •        | •           | +           | +        | +        | •          | •        | •        | •        | +             | +            | +      | +           | •  | *<br>    | +           | 2                  |
| LYMPH HODES<br>Alveolar/Bronchiolar CA, Metastat<br>Malig.lymphoma, Histiocytic Type                                                                                                   | +        | •            | •        | +        | + | •        | *  | +           | •        | •        | •           | •           | *        | <u> </u> | •          | •        | •        | •        | •             | *            | ×      | •           | •  | <u>.</u> | 1           | 50                 |
| THYMUS                                                                                                                                                                                 | +        | -            | ٠        | •        | + | +        | +  | +           | •        | -        | +           | +           | •        | ٠        | +          | +        | •        | +        | +             | +            | ٠      | +           | +  | ٠        | +           | 39                 |
| CIRCULATORY SYSTEM                                                                                                                                                                     |          |              |          |          |   |          |    |             |          |          |             |             |          | ,        |            |          |          |          |               |              |        |             |    |          |             |                    |
| HEART                                                                                                                                                                                  | +        | +            | +        | +        | + | +        | +  | +           | +        | •        | +           | +           | +        | +        | *          | +        | +        | *        | •             | *            | *      | +           | +  | •        | *           | 50                 |
| DIGESTIVE SYSTEM                                                                                                                                                                       |          |              |          |          |   |          | ,  |             |          |          |             |             |          |          |            |          |          |          | *             |              |        |             |    |          |             |                    |
| SALIVARY GLAND                                                                                                                                                                         | +        | <u>*</u>     | <u>+</u> | <u>.</u> | ÷ | <u>.</u> | *  | *           | <u>.</u> | ÷        | +           | <u>.</u>    | <u>.</u> | ÷        | ÷          | •        | <u>+</u> | ÷        | *             | - <u>-</u> - | +      | ÷           | •  | •        | +           | <u>50</u>          |
| LIVER<br>Hepatocellular adenoma<br>Hepatocellular carcinoma<br>Carcinoid Tumor, metastatic<br>Hemangiosarcoma                                                                          | ×        | x            | x        |          | x | •        | •  | x           | ×        | x        | ×           | ×           | ×        | -        | ×          | ×        | ·        | ž        |               |              | ×.     | ×           | x  | ·        | ×           | 16<br>21<br>1<br>2 |
| SILE DUCT                                                                                                                                                                              | +        | ÷            | +        | ÷        | ÷ | +        | ٠  | •           | •        | +        | ٠           | +           | ٠        | ٠        | •          |          | +        | +        | +             | ٠            | ÷      | ٠           | ÷  | •        |             | 58.                |
| GALLBLADDER & COMMON BILE DUCT<br>Carcinoid Tumor, Malignant                                                                                                                           | +        | ÷            | +        | ٠        | + | +        | +  | +           | +        | N        | ٠           | +           | ٠        | +        | +          | N        | +        | +        | +             | +            | Ħ      | ٠           | +  | +        | H           | 50×                |
| PANCREAS                                                                                                                                                                               | +        | +            | +        | +        | ÷ | +        | ÷. | +_          | +        | +        | +           | •           | ٠        | ٠        | +          | +        | •        | +        | •             | ٠            | •      | +           | +  | .+       | +           |                    |
| ESOPHAGUS                                                                                                                                                                              | +        | +            | +        | +        | ÷ | •        | +  | ٠           | +        | ٠        | +           | +           | •        | +        | ٠          | +        | +        | +        | +             | ÷            | +      | +           | +  | +        | •           | 50                 |
| STOMACH<br>Squamous cell papilloma                                                                                                                                                     | +        | +            | ÷        | ٠        | + | ٠        | +  | +           | ٠        | +        | +           | +           | ٠        | +        | •          | ٠        | +        | +        | ٠             | +            | ٠      | ٠           | +  | ٠        | +           | 58                 |
| SMALL INTESTINE<br>Adenocarcinoma, Hos                                                                                                                                                 | +        | ÷            | +        | ٠        | + | ٠        | ٠  | +           | +        | ٠        | +           | ٠           | ٠        | ٠        | +          | +        | ٠        | ٠        | +             | ٠            | ٠      | ٠           | +  | ٠        | ٠           | 58,                |
| LARGE INTESTINE                                                                                                                                                                        | +        | +            | +        | +        | + | +        | +  | +           | +        | +        | +           | ٠           | ٠        | +        | +          | +        | +        | +        | +             | +            | ٠      | +           | ٠  | +        | +           | 58                 |
| URINARY SYSTEM                                                                                                                                                                         |          |              |          |          |   |          |    |             |          |          |             |             |          |          |            |          |          |          |               |              |        |             |    |          | -           |                    |
| KIDNEY .                                                                                                                                                                               | +        | +            | +        | +        | + | +        | +  | +           | +        | •        | •           | ٠           | +        | ٠        | +          | +        | .+       | +        | .+            | 4            | ٠      | +           | +  | •        | -+          | 50                 |
| URINARY BLADDER<br>Transitional-Cell Papilloma                                                                                                                                         | +        | •            | •        | +        | * | +        | •  | ٠           | +        | •        | +           | +           | ٠        | +        | +          | +        | +        | +        | +             | +            | +      | •           | +  | •        | +           | 50 1               |
| ENDOCRINE SYSTEM                                                                                                                                                                       |          |              |          |          |   |          |    | _           |          |          |             |             |          |          | • •        |          |          | -        | _             |              |        |             |    |          | $\neg$      |                    |
| PITUITARY .                                                                                                                                                                            | . •      | •            | +        | +        | - | ٠        | ٠  | •           | •        | +        | +           | ÷           | +        | <u>+</u> | +          | •        | +        | +        | •             | +            |        | <u>.</u>    | *  | +        | +           | 44                 |
| ADENOMA, NOS                                                                                                                                                                           | +        | +            | +        | ٠        | + | +        | +  | +           | +        | +        | +           | ÷.          | +        | +        | +          | +        | +        | +        | +             | +            | +      | *           | *  | ż        | +           | 50                 |
| THYROID                                                                                                                                                                                | •        | +            | +        | ٠        | ٠ | \$       | ٠  | +           | ٠        | ţ        | ٠           | ٠           | +        | +        | ٠          | +        | +        | ٠        | +             | +            | ٠      | +           | +  | +        | +           | 58                 |
| FOLLICULAR-CELL ADENOMA<br>PARATHYROID                                                                                                                                                 | •        | +            |          | •        | + | <u>,</u> | +  | +           | +        | +.       | ÷.          | +           | •        | +        | <u>+</u> _ | -        | -        | +        | +             | +            | +      | ÷           | ÷  | ÷        | ÷           | 36                 |
| PANCREATIC ISLETS<br>Islet-Cell Adenoma                                                                                                                                                | •        | +            | ٠        | +        | ٠ | ٠        | +  | +           | +        | +        | +           | +           | +        | +        | +          | +        | +        | +        | +             | *<br>×       | +      | *           | +  | ٠        | +           | 58.4               |
| REPRODUCTIVE SYSTEM                                                                                                                                                                    |          |              |          |          |   |          |    |             |          |          |             |             |          |          |            |          |          |          |               |              |        |             |    |          |             |                    |
| MANNARY GLAND                                                                                                                                                                          | <u> </u> | <u>. N</u> . |          |          |   |          |    |             |          |          |             |             |          | <u>N</u> |            |          |          |          |               |              |        |             |    |          | -           | <u>58×</u>         |
| TESTIS                                                                                                                                                                                 | ļ.       | +            | *        | +        | + | <u>+</u> | *  | *           |          | _        |             |             |          | ÷        |            | <u>*</u> | <u>*</u> | <u>.</u> | <u>*</u><br>* | *<br>+       | ÷.     | ÷           | •  | <u>*</u> | ╧           | <u> </u>           |
| PROSTATE .<br>Seminal vesicle                                                                                                                                                          | +-       | +            | *        | ÷        | ÷ | ÷        | +  |             |          |          |             |             |          | +        |            |          | +        |          |               |              |        | ÷           | ÷  |          | +           | <u>. 38</u><br>58# |
| ALVEOLAR/BRONCHIDLAR CA, METASTAT                                                                                                                                                      | Ľ        |              |          | *        |   |          |    | -           |          |          | -           | -           |          |          |            |          |          |          |               |              |        |             |    |          |             | ĩ                  |
| NERVOUS SYSTEM                                                                                                                                                                         |          |              |          |          |   |          |    |             |          |          |             |             |          |          |            |          |          |          |               |              |        |             |    |          |             |                    |
| BRAIN                                                                                                                                                                                  | •        | +            | •        | •        | + | •        | +  | •           | +        | <u>+</u> | +           | +           | +        | •        | •          | *        | +        | •        | •             | +            | *      | +           | Ŧ  | •        | 4           | 58                 |
| SPECIAL SENSE ORGANS<br>Harderian gland                                                                                                                                                | н        | н            | N        | Ħ        | н | N        | N  | N           | N        | н        | N           | H           | N        | N        | N          | N        | N        | N        | N             | N            | н      | н           | N  | н        | н           | 50×                |
| ADENOMA, NOS                                                                                                                                                                           | Ļ        |              |          |          |   |          |    |             |          |          |             |             |          |          |            |          |          |          |               |              | -      |             |    |          | -           | 3                  |
| MEDIASTINUM<br>Alveglar/bronchiglar ca. Metastat                                                                                                                                       | н        | N            | N        | N        | N | N        | H  | н           | N        | N        | H           | H           | H        | H        | H          | N        | н        | N        | N             | N            | N<br>X | N           | N  | H        | н           | 504                |
| MESENTERY<br>Sarcoma, Nos                                                                                                                                                              | × ×      | M            | H        | N        | H | N        | N  | H           | N        | M        | N           | M           | N        | N        | N          | N        | N        | N        | N             | H            | H      | H           | N  | N        | N           | 50×<br>1           |
| ALL OTHER SYSTEMS<br>Multiple organs hos<br>Sarcoma, hos, metastatic<br>malig.lymphoma, lymphocytic type<br>malig.uymphoma, mistigcytic type<br>malig.hamit lymphoma, mistigcytic type | X        | N            | N        | н        | N | N        | N  | N           | N        | H        | н           | н           | N        | H        | N          | N        | н        | ×        | н             | H            | H      | N           | N  | N        | N           | 50×<br>1<br>1      |

### TABLE B3. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE MICE: HIGH DOSE (Continued)

\* ANIMALS NECROPSIED

| GAVAGE STU                                                                                                                                         | JDY      | 0          | FI | HĊ         | R        | ED  | N           | 0.          | 3:                  | V        | EH                         | IC        | LI       | <u>C</u>  | 01         | NT       | R          | DL            | 1  |           |          |     |            |             |   |
|----------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------|----|------------|----------|-----|-------------|-------------|---------------------|----------|----------------------------|-----------|----------|-----------|------------|----------|------------|---------------|----|-----------|----------|-----|------------|-------------|---|
| AN IMAL<br>NUMBER                                                                                                                                  | 0        | 8          | 3  | i          | 0        | 8   | 0<br>0<br>7 | 0<br>0<br>0 | 9                   | i        |                            | 2         |          | ;         | 1          | 1        | 1          | 0             | -  | 20        | 2        | 22  | 23         | 229         |   |
| STUDY                                                                                                                                              | 8        | 8          | 5  | 7          | 5        | 7   | 2           | 7           | 7                   | 2        | ġ                          | ġ         | ġ        | j         | 8          | ş        | 7          | 0             | 5  | 5         | ?        | 6   | ġ          | 7           | 1 |
| ESPIRATORY SYSTEM                                                                                                                                  | +-       |            |    |            |          |     |             | _           |                     |          |                            |           |          |           |            |          |            |               |    |           | _        |     |            |             |   |
| LUNGS AND BRONCHI<br>Alvedlar/Bronchiglar Carcinoma<br>Ostedsarcoma, metastatic                                                                    | ŀ        | +          | +  | •          | +        | +   | •           | +           | +                   | +        | +                          | +         | +        | •         | *          | +        | •          | •             | *  | *<br>     | *        | +   | ×          | +           | _ |
| TRACHEA                                                                                                                                            | -        | +          | +  | +          | +        | -   | -           | +           | +                   | +        | +                          | ٠         | +        | -         | ٠          | +        | +          | -             | -  | -         | +        | -   | -          | ٠           |   |
| EMATOPOIETIC SYSTEM                                                                                                                                | -+       | _          |    |            |          |     |             |             |                     |          |                            |           |          |           |            | _        | -          |               |    |           |          |     |            |             | - |
| SONE MARROW                                                                                                                                        | 1±       | •          | ÷  | +          | +        |     | +           | +           | +                   | +        | +                          | +         | +        | +         | •          | +        | +          | ٠             | +  | <u>+</u>  | <u>+</u> | ٠   | +          | <u>+</u>    | _ |
| SPLEEN                                                                                                                                             | 1.       | +          | +  | t          | +        | ÷   | +           | +           | ÷                   | <u>+</u> | •                          | +         | ٠        | +         | ٠          | +        | +          | +             | ÷. | <u>+</u>  | <u>+</u> | +   | +          | <u>+</u>    | - |
| LYNPH NODES                                                                                                                                        | ++       | ŧ          | •  |            | ٠        | +   | +           | +           |                     | +        | <u>+</u> .                 | +         | ٠.       | +         | +          | +        | ÷          | +             | +  | t         | *        | ٠   | +          | <u>+</u>    |   |
| THYMUS                                                                                                                                             | +        | ٠          | +  | +          | +        | +   | +           | -           | +                   | -        | +                          | ٠         | +        | +         | -          | ٠        | +          | +             | +  | -         | +        | +   | ٠          | •           |   |
| TROULATORY SYSTER                                                                                                                                  | +        |            |    |            |          |     |             | -           |                     |          |                            |           |          |           |            |          |            |               |    |           |          |     |            |             |   |
| HEART                                                                                                                                              | +        | +          | +  | +          | +        | +   | +           | +           | +                   | +        | +                          | +         | +        | +         | +          | +        | ٠          | +             | +  | ٠         | +        | ٠   | •          | +           |   |
| IGESTIVE SYSTEM                                                                                                                                    | +        |            |    | -          | _        |     | -           |             |                     |          | , ere                      |           |          |           |            |          |            |               |    |           |          |     |            |             |   |
| SALIVARY GLAND                                                                                                                                     | ++       | +          | +  | +          | +        | ٠   | ٠           | +           | ٠                   | +        | +                          | +         | +        | •         | +          | •        | +          | <u>.</u>      | +  | <u>_</u>  | +        | +   | <u>+</u> . | +           | - |
| LIVER<br>Hepatocellular adenoma<br>Hemangiosarcoma                                                                                                 | •        | •          | •  | +          | *        | •   | +           | +           | •                   | •        | •                          | •         | •        | +         | •          | •        | •          | •             | +  | •         | •        | •   | ×          | •           |   |
| BILE DUCT                                                                                                                                          | •        | +          | •  |            | +        | +   | ٠           | +           | +                   | +        | +                          | ٠         | ٠        | +         | •          | ٠        | +          | +             | •  | ٠         | <u>.</u> | ٠   | <u>.</u>   | *           | _ |
| GALLBLADDER & COMMON BILE DUCT                                                                                                                     | L.       | +          | N  | +          | +        | +   | .1          | +           | •                   | +        | +                          | +         | +        | +         | M          | И        | ٠          | <u>, H</u>    | •  | N.        | ÷        | +   | +          | +           |   |
| PANCREAS                                                                                                                                           | ŀ        | +          | +  | +          | +        | +   | . +         | +           | ٠                   | •        | +                          | +         | •        | +         | •          | +        | +          | <u>+</u> .    | +  | +         | +        | +   | . •        | <u> </u>    |   |
| ESOPHAGUS                                                                                                                                          | Ŀ        | +          | ٠  | +          | +        | +   | •           | +           |                     | *        | ٠.                         | t         | +        | •         | ٠          |          | +          |               | +  | +         | +        | +   | <u>+</u>   | <u>+</u>    |   |
| STOMACH                                                                                                                                            | ÷        | •          | +  | +          | +        | +   | •           |             | •                   | ٠        |                            | •         | •        | •         | •          | +        | +          | <u>.</u>      | +  | +         | +        | +   | +          | +           |   |
| SMALL INTESTINE<br>Adenoma, nos<br>Adenocarcinoma, nos                                                                                             | •        | +          | •  | +          | •        | •   | ٠           | •           | *                   | ٠        | •                          | ٠         | •        | +         | •          | •        | +          | •             | •  | -         | +        | •   | •          | •           |   |
| LARGE INTESTINE                                                                                                                                    | +        | •          | +  | +          | +        | +   | ٠           | +           | +                   | +        | +                          | +         | +        | +         | •          | +        | +          | +             | +  | +         | ٠        | +   | +          | -           |   |
| RINARY SYSTEM                                                                                                                                      | +        |            | _  |            |          |     | -           | -           |                     |          |                            |           | -        |           |            |          |            |               |    |           |          | _   |            |             | - |
| KIDNEY                                                                                                                                             | Ŀ        | +          | •  | .+         | +        | +   | +           | +           | +                   | +        | +                          | +         | +        | +         | +          | +        | +          |               | +  | <u>+</u>  | ٠        | ٠   | +          | <u>+</u>    |   |
| URINARY BLADDER                                                                                                                                    | +        | +          | •  | +          | +        | +   | +           | ٠           | +                   | +        | +                          | +         | ٠        | +         | •          | +        | +          | +             | +  | ٠         | +        | +   | ٠          | +           |   |
| NDOCRINE SYSTEM                                                                                                                                    | +        |            |    |            | _        |     |             |             |                     |          |                            |           |          |           |            |          |            |               |    | ينقني بسر |          |     |            |             | - |
| PITUITARY<br>Adenoma, NCS                                                                                                                          | ŀ        | +          | •  | +          | +        | •   | •           | •           | +                   | ÷        | +                          | +         | ÷        | ÷.        | •          | +        | •          | <u>.</u>      | ÷  | •         | +        | •   | •          | •           |   |
| ADRENAL<br>Pheochromocytoma<br>Osteosarcoma, metastatic                                                                                            | Ŀ        | +          | •  | •          | •        | +   | •           | +           | •                   | •        | •                          | •         | •        | •         | •          | •        | •          | •             | ×  | *         | •        | +   | •          | •           |   |
| THYROID                                                                                                                                            | +        | +          | +  | +          | +        | +   | +           | ٠           | +                   | +        | +                          | +         | +        | •         | +          | +        | ٠          | <u>.</u>      | +  | +         | +        | +   | ٠          | +           |   |
| FOLLICULAR-CELL ADENOMA                                                                                                                            | +        |            |    |            |          | -   |             |             |                     |          |                            |           |          |           |            | •        | _          | . فـــ        |    |           |          |     |            |             |   |
|                                                                                                                                                    | 1-       | <u> </u>   |    | ÷          | -        | -   | *           | *           | *                   | *        | *                          | ÷         | -        | Ľ.        | •          | -        |            |               |    |           | _        | ÷   |            |             |   |
| EPROBUCTIVE SYSTEM                                                                                                                                 | .        | •          |    |            |          |     |             |             | щ                   | •        | v                          | •         | •        |           | •          | •        | •          | •             | •  | •         | •        | •   | •          | •           |   |
| HANNARY GLAND                                                                                                                                      | +        | <u>,</u>   |    | _ <u>₹</u> | <u>×</u> |     | <u> </u>    | <u> </u>    | <br>_               | <u> </u> | - A                        | <u>.</u>  | <u>.</u> | - <u></u> | - <u>-</u> |          | ÷          | <u> </u>      | ÷  | ÷         | <u> </u> | ÷   | •          | - <u>`-</u> |   |
| UTERUS<br>Leionyoma<br>Endometrial Stromal Polyp                                                                                                   | Ļ        | •          | -  |            |          |     |             |             | -                   | •        | •                          | •         | -        | x         | *          | -        |            | -             | -  | x         |          | •   | -          |             | - |
| GRANULOSA-CELL TUMOR                                                                                                                               | •        | •          | +  | +          | •        | +   | -           | •           | •                   | •        | -                          | •         | +        | <u>+</u>  | +          | •        | •          | •<br>         | •  | +         | <u> </u> | +   | ×          | <u>.</u>    |   |
| ERVOUS SYSTEM                                                                                                                                      | 1.       |            | ,  |            |          |     |             |             |                     |          |                            |           |          |           | •          | •        |            |               |    |           |          |     | •          |             |   |
| BRAIN                                                                                                                                              | <u></u>  | *          | *  | +          | +        | •   | *           | <u>+</u>    | <u> </u>            | +        | *                          | -         |          | <u> </u>  | *          | <u> </u> | ÷          |               | -  | <u> </u>  |          | *   |            |             | _ |
| NUSCULOSKELETAL SYSTEM                                                                                                                             | 1.       |            |    |            |          |     | ш           | μ.          | н                   | 14       | н                          |           |          |           | ¥.         | ×        | M          | ¥             | μ  | μ         | M        |     | N          | N           |   |
| DOME<br>OSTEOSARCOMA<br>LL OTHER SYSTEMS                                                                                                           | <b>N</b> | H          |    |            |          |     | н           | *           | -                   |          |                            |           |          | -         |            |          |            |               |    | <u>×</u>  | _        |     |            | _           |   |
| MULTIPLE ORGANS NOS<br>Sarcoma, Nos<br>Fibrosarcoma<br>Malig.lymphoma, lymphogytic type<br>Malignant lymphoma, Mixed type                          |          | N          | N  | H          | M        | H   | H<br>X      | N           | N                   | N<br>X   | N                          | N         |          |           |            | N        | N          | н<br>         | N  | N         | N        | N   | N          | ×<br>       |   |
| <ul> <li>TISSUE EXAMINED MICROSCOPICALLY</li> <li>Required Tissue Not Examined Mi<br/>x: Tumor incidence</li> <li>NG Autolysis, No Mici</li> </ul> | ICROS    | C8P<br>P10 |    |            | NAT      | IDN | -           |             | :<br>G:<br>A:<br>M: | AUT      | TIS<br>ROP<br>TOLY<br>(MAL | ΥΥ,<br>SΙ | NC       | HI        | 510        | 100      | 51<br>17 1 | 15(7)<br>)U [ | TO | PRO       | 1700     | :0L |            |             |   |

TABLE B4. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE MICE IN THE TWO-YEAR GAVAGE STUDY OF HC RED NO. 3: VEHICLE CONTROL

X: TUMOR INCIDENCE N: Necropsy, No Autolysis, No Microscopic Examination S: Animal Mis-Sexed

MI ANIMAL MISSING SI NO NECROPSY PERFORMED

|                                                                                                                           |             |     |          |   |             | (C       | on | tin | ue       | ed)      |        |    |             |   |          |     |          |    |             |            |        |   |             |            |             |       |
|---------------------------------------------------------------------------------------------------------------------------|-------------|-----|----------|---|-------------|----------|----|-----|----------|----------|--------|----|-------------|---|----------|-----|----------|----|-------------|------------|--------|---|-------------|------------|-------------|-------|
| ANTMAL<br>Number                                                                                                          | 2           | 27  | 2        | 2 | 9<br>2<br>8 | 3        | 32 | 3   | 3        | 3        | 2      | 37 | 0<br>3<br>8 | 3 | i        |     | 41       | •  | •           |            | •      | • | •           | 4          | 5           | TOTA  |
| NEEKS ON<br>Study                                                                                                         | 0<br>6<br>2 | 845 | 7        | 9 | ?           | 3        |    | 5   | 3        | 2        | 2      |    | 2           | ġ | ?        | ļ   | j        | j  | 0<br>7<br>0 | ġ          | 8<br>7 | 9 | 0<br>8<br>3 | ş          | 0<br>6<br>3 | TISSU |
| RESPIRATORY SYSTER                                                                                                        |             |     | •        | • | •           | +        | +  | +   | +        | •        | •      | •  | •           | • | •        | •   | •        | ٠  | •           | •          | •      | + | +           | •          | •           | 50    |
| LUNGS AND BRONCHI<br>Alveolar/Bronchidlar Carcinoma<br>Osteosarcoma, metastatic                                           | Ĺ           |     |          |   |             |          |    |     |          |          |        |    |             |   |          |     |          |    |             |            |        |   |             |            | -           |       |
| TRACHEA                                                                                                                   | +           | -   | -        | + | ٠           | -        | -  | -   | +        | •        | •      | -  | +           | - | -        | -   | +        | +  | +           | +          | *      | + | -           | -          | ٠           | 29    |
| HEMATOPOIETIC SYSTEM                                                                                                      | Γ           |     |          |   |             |          |    |     |          |          |        |    |             |   |          |     |          |    |             |            |        |   |             |            |             |       |
| BONE MARROW                                                                                                               | +           | +   | <u> </u> | + | +           | <u>.</u> | +  | +   | <u>.</u> | +        | +      | +  |             | + | *        | *   | +        | +  | +           | +          | +      | + | +           | *          | +           |       |
| SPLEEN                                                                                                                    | ┢           | •   | . +      | + | +           | +        | *  | +   | +        |          | +      | +  | *           | + | <u>+</u> | *   | +.       | +. | +           | +          | +      | + | +           | +          | ┦           |       |
| LYNPH NODES                                                                                                               | ┝           |     | +        | + | <b>t</b>    | +        | +  | +   | +        | +        | +      | +. | *           | + | +        | +   | *        | +  | *           | +          | +      | + | <u>.</u>    | +          | 4           | 5     |
| THYMUS                                                                                                                    | +           | -   | ٠        | + | +           | +        | ٠  | +   | +        | +        | +      | +  | •           | + | •        | +   | •        | +  | +           | +          | •      | + | +           | -          | *           | 41    |
| CIRCULATORY SYSTEM                                                                                                        | 1           |     | -        |   |             |          |    |     |          |          |        |    |             |   |          |     |          |    |             |            |        |   |             |            |             |       |
| HEART                                                                                                                     | +           | +   | +        | + | +           | +        | +  | +   | +        | +        | +.     | +  | +           | + | +        | +   | ٠        | +  | +           | +          | +      | + | +           | +          | +           | 58    |
| DIGESTIVE SYSTEM                                                                                                          | T           |     |          |   |             |          |    |     |          |          |        |    |             |   |          |     |          |    |             |            |        |   |             |            |             |       |
| SALIVARY GLAND                                                                                                            | <u>L</u>    | ٠   | ٠        | + | +           | -        | ٠. | .+  | +        | +        | ٠      | +  | +           | + | +        | +   | +        | •  | •           | <b>•</b> · | +      | + | +           | .+         | -4          |       |
| LIVER<br>Hepatocellular Adenoma<br>Hemangidsarcoma                                                                        | •           | •   | •        | × | +           | +        | +  | +   | +        | ٠        | +<br>× | •  | +           | * | •        | •   | •        | •  | •           | ż          | *      | + | +           | •          |             | 58    |
| BILE DUCT                                                                                                                 | •           | .+  | +        | • | +           | +        | +  | •   | +        | +        | +      | +  | +           | + | +        | +   | +        | +  | +           | .+         | +      | + | ٠           | +          |             | 51    |
| GALLBLADDER & CONVION BILE DUCT                                                                                           | Ŀ           | +   | +        | • |             | H        | +  |     | ÷        | ÷        | +      | +  | •           | + | H        | •   | +        | N  | Ν.          | +          |        | ٠ | +           | N          | •           |       |
| PANCREAS                                                                                                                  | •           | ÷   | +        | + | ÷           | +        | +  | +   | +        | +        | •      | +  | +           | • | +        | +   | +        | +  | ÷           | +          | +      | + | ٠           | +          | +           |       |
| ESOPHAGUS                                                                                                                 | Ŀ           | +   | +        |   | +           | •        | +  | ٠   | •        | <u>.</u> | •      |    | ٠           | ٠ | +        | ÷.  | •        | •  | ÷           | •          | ٠      | ٠ | •           | +          |             | 5     |
| STOMACH                                                                                                                   |             | •   | •        | + | •           | ٠        | ٠. | +   | +        | ٠        | +      |    | +           | + | +        | +   | ٠        | •  | •           |            | +      | + | +           | +          | +           | 58    |
| SMALL INTESTINE<br>Adenoma, nos<br>Adenocarcinoma, nos                                                                    | +           | ٠   | ٠        | + | ٠           | •        | ×  | •   | •        | •        | +<br>X | •  | •           | • | •        | •   | •        | •  | •           | •          | •      | ٠ | +           | +          | ٠           | 48    |
| LARGE INTESTINE                                                                                                           | •           | +   | +        | + | +           | +        | ٠  | +   | +        | ٠        | ٠      | +  | +           | • | +        | +   | +        | +  | •           | +          | +      | + | +           | +          | +           | 49    |
| URINARY SYSTEM                                                                                                            |             |     |          |   |             |          |    |     | -        |          |        |    |             |   |          |     |          |    |             |            |        |   |             |            |             |       |
| KIDHEY                                                                                                                    | ++          | +   |          | • | •           |          | +  | +   | •        | <u>+</u> | +      |    |             |   |          | +   | •        | •  | +           | +          | •      | + | +           | *          | *           |       |
| URINARY BLADDER                                                                                                           | +           | +   | +        | + | +           | +        | *  | +   | *        | +        | +      | +  | +           | + | +        | +   | +        | +  | +           | *          | +      | • | *           | +          | *           | 50    |
| ENDOCRINE SYSTEM                                                                                                          |             |     |          |   |             |          |    |     |          |          |        |    |             |   |          |     |          |    |             |            |        |   |             |            |             |       |
| PITUITARY<br>Adenoma, NGS                                                                                                 | <b>!</b>    | +   | -        | - | •           | +        | +  |     | •        | _        |        |    |             |   | -        |     | +        | •  | +           | •          | •      | + |             | •          | +           | 47    |
| ADRENAL<br>Pheochromogytoma<br>Osteosarcoma, metastatic                                                                   | Ľ           | +   | •        | • | +           | +        | •  | •   | •        | •        | •      | •  | +           | • | •        | •   | •        | •  | •           | •          | •      | • | +           | •          | -           | 50    |
| THYROID<br>Follicular-Cell Adenoma                                                                                        | ŀ           | •   | •        | * | +           | •        | •  | -   | +        | +        | +      | •  | +           | • | •        | +   | +        | +  | +           | •          | +      | + | •           | •          | +           | 49    |
| PARATHYROID                                                                                                               | -           | -   | -        | + | +           | +        | •  | -   | +        | •        | +      | -  | +           | - | -        | -   | •        | +  | +           | •          | •      | + | +           | •          | +           | 32    |
| REPRODUCTIVE SYSTEM                                                                                                       |             |     |          |   |             |          |    |     |          |          |        |    |             |   |          |     |          |    |             |            |        |   |             |            | Τ           |       |
| MAPPARY GLAND                                                                                                             | 1.          | +   | ÷        |   | +           | •        | +  | +   | +        | +        | +      | +  | . +         | + | +        | +   | <b>+</b> | +  | +           | •          | +      | + | +           | . <b>+</b> | +           | 58    |
| UTERUS<br>Leighyoma<br>Endometrial Stromal Polyp                                                                          | ŀ           | •   | •        | • | •           | •        | +  | +   | •        | •        | +      | +  | ٠           | • | •        | +   | *<br>×   | *  | •           | •          | •      | + | •           | •          | •           | 54    |
| GRANULDSA-CELL TUNOR                                                                                                      | •           | •   | •        | - | +           | ٠        | ٠  | -   | -        | •        | +      | •  | •           | • | •        | •   | •        | •  | •           | +          | •      | ٠ | •           | •          | •           | 45    |
| HERVOUS SYSTEM                                                                                                            | T           |     |          |   |             |          |    |     |          |          |        |    |             |   |          |     |          |    |             |            |        |   |             |            | T           |       |
| BRAIN                                                                                                                     | •           | +   | +        | + | +           | +        | +  | •   | •        | +        | +      | +  | +           | + | +        | •   | +        | *  | +           | +          | +      | + | •           | +          | +           | 58    |
| HUSCULOSKELETAL SYSTEM                                                                                                    | H           | н   | н        | H | н           | N        | N  | N   | N        | H        | N      | н  | H           | N | н        | H   | N        | N  | N           | H          | N      | N | N           | N          |             | 50    |
| ALL OTHER SYSTEMS                                                                                                         | 1           |     |          |   |             |          |    |     |          |          |        |    |             | м |          |     |          | н  |             |            | μ      |   |             | *          | Ţ           | 51    |
| MULTIPLE GRGAMS MOS<br>Sarcoma, Mos<br>Fibrosarcoma<br>Malig.lymphoma, lymphogytic type<br>Malighant Lymphoma, mixed type | M           | X   | N        | H | N           | N        | н  | N   | N        | N        | N      | H  | N           | N | H        | . N | N        | -  | N           | M          | X      | M | N           | N          | M           | 21    |

TABLE B4. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE MICE: VEHICLE CONTROL (Continued)

\* ANIMALS NECROPSIED

| GAVAG                                                                                                        | ES         | STI | UD     | Y   | OF | 'H  | CI       | RE  | D | N        | Э.  | 3:       | LO     | W  | D   | os         | Е | _        |        |          |     |    |          |      |            |
|--------------------------------------------------------------------------------------------------------------|------------|-----|--------|-----|----|-----|----------|-----|---|----------|-----|----------|--------|----|-----|------------|---|----------|--------|----------|-----|----|----------|------|------------|
| AN IMAL<br>HUMBER                                                                                            | ļ          | 1   | 0      | -   | 0  | 0   | 9        | 0   |   | 1        | 1   | 1        | 1      | 1  | 1   | 11         | 1 | 1        | -      | Z        | 2   | 2  | 2        | 2    | 0 2 5      |
| WEEKS ON<br>Study                                                                                            | 1          | ŝ   | -<br>t | ?   | -  | a l | 2        |     | 1 | 1        | 1   | 1        | -      | ?  |     |            | ? | 8        | -      | 8        |     | 8  | 1        | 8    | 8          |
| RESPIRATORY SYSTEM                                                                                           | ┝╝         |     |        | _21 |    |     | <u> </u> | -21 |   |          | _/1 |          |        |    | -11 | -          |   |          | للنليج |          |     |    | -21      | - 21 | - <b>1</b> |
| LUNGS AND BRONCHI<br>Alvedlar/Bronchiolar Adenoma<br>Alvedlar/Bronchiolar Carcinoma                          | ŀ          | +   | •      | •   | ٠  | +   | +<br>X   | •   | * | •        | •   | •        | •      | •  | +   | •          | + | •        | •      | •        | •   | *  | •        | +    | •          |
| TRACHEA                                                                                                      | +          | +   | •      | -   | -  | +   | +        | -   | + | +        | +   | +        | -      | +  | +   | -          | + | •        | -      | -        | ٠   | -  | +        | +    | +          |
| TENATOPOIETIC SYSTEM                                                                                         | ┢──        |     |        |     |    |     |          |     |   |          |     |          |        | -  |     |            |   |          | _      |          |     |    |          |      | -          |
| BONE MARRON                                                                                                  | L+         | +   | +      | +   | •  | +   | •        | •   | + | +        | +   | +        | +.     | .+ | +   | +          | + |          | +      | ÷.,      | . • | +  | +        | +    | 4          |
| SPLEEN                                                                                                       | . +        | +   | +      | •   | +  | +   | +        | +   | + |          |     |          | +      | •  | +   | •          |   | •        | +      | +        | ٠   | +  | +        | ٠    |            |
| LYMPH HODES<br>Malighant Lymphoma, Mixed Type                                                                | •          | •   | •      | +   | ٠  | +   | +        | +   | + | •        | +   | +        | •      | •  | •   | +          | • | •        | +      | •        | •   | •  | +        | +    | _          |
| TNYHUS                                                                                                       | +          | ٠   | +      | +   | +  | •   | ٠        | ٠   | + | ٠        | +   | -        | •      | +  | •   | -          | ٠ | ٠        | ٠      | +        | ٠   | -  | +        | +    | 4          |
| STREULATURY SYSTEM                                                                                           | -          |     |        |     |    |     |          |     |   | _        | _   |          |        |    |     |            |   |          |        | _        |     |    |          |      | 1          |
| HEART                                                                                                        | •          | +   | +      | +   | ٠  | +   | +        | +   | + | +        | ۰.  | ٠        | +      | +  | +   | +          | ٠ | ٠        | +      | ٠        | +   | ٠  | +        | +    | 4          |
| DIGESTIVE SYSTEM                                                                                             | <u> </u>   |     |        |     |    |     | -        |     |   |          |     |          |        | -  |     |            |   |          |        |          | -   |    |          |      | -          |
| SALIVARY GLAND                                                                                               | +          | +.  | ٠      | ٠   | ٠  | +   | •        | ٠   | + | +        | •   | ٠        | ÷      |    | ۰.  | +          | + | <u>.</u> | +      | +        | ٠   | •  | +        | +    | 1          |
| LIVER<br>Hepatocellular Adenoma<br>Malig.lymphoma, Histiocyvic type .                                        | ·          | +   | *      | •   | •  | •   | •        | •   | • | •        | •   | •        | •      | •  | •   | •          | • | •        | •      | •        | •   | •  | ×        | •    | •          |
| BILE DUCT                                                                                                    | +          | •   | •      |     | •  | +   | +        | +   | ٠ | +        | •   | +        | +      | +  | •   | +          | + | *        | +      | <u>+</u> | •   | +  | *        | +    |            |
| GALLBLADDER & CONTION BILE DUCT                                                                              | +          | •   | ٠      | +   | N  | +   | +        | •   | + | +        | •   | +        | *      | н  | •   | +          | × | <u>_</u> | +      | t.       | +   | N  | +        | +    |            |
| PANCREAS                                                                                                     |            | *   | •      | +   | ٠  | +   | ٠        | +.  | ٠ | +        | +   | ÷        | +      | ÷  | ٠.  | +          | + | •        | +      | +        | •   | ٠  | +        | •    | 4          |
| ESOPHAGUS                                                                                                    |            | +   | +      | •   | •  | +   | •        | +   | • | ٠        | •   | ٠        | ٠.     | ٠  | •   | +          | ٠ | ٠        | •      | •        | •   | +  | ٠        | +    | 4          |
| STOMACH                                                                                                      |            |     | ٠      | •   | ٠  | ٠.  | •        | ÷   | + | •        |     | *        | •      | •  | +   | •          | ٠ | •        | •      | ٠        |     | +  | •        | +    |            |
| SMALL INTESTINE                                                                                              | ·          | +   | •      | +   | +  | +   | •        | +   | • | •        | •   | •        |        | •  | +   | •          | • |          | +      |          |     | ٠. | .+       | +    | 4          |
| LARGE INTESTINE                                                                                              | +          | •   | +      | +   | +  | +   | +        | +   | ٠ | +        | +   | +        | +      | •  | +   | +          | + | ٠        | •      | +        | +   | +  | +        | +    | •          |
| IRTHARY SYSTEM                                                                                               | <u> </u>   |     |        |     |    |     | _        | _   |   |          | -   |          |        |    |     |            |   |          | _      | -        |     |    |          | -    | -          |
| KIDNEY                                                                                                       | •          | ٠   | +      | ÷   | +  | +   | +        | +   | + | ÷        | +   | +        | +      | +  | +   | +          | ٠ | <u>.</u> | +      | +        | +   | +  | +        | +    |            |
| URINARY BLADDER                                                                                              | +          | +   | •      | +   | +  | +   |          | +   | + | +        | +   | *        | ٠      | ٠  | +   | +          | + | ٠        | +      | +        | ٠   | ٠  | ٠        | +    | 4          |
| ENDUCRINE SYSTEM                                                                                             | -          |     |        | _   |    |     |          |     |   |          |     |          |        |    |     | _          |   |          | -      |          |     |    |          | _    | -          |
| PITUITARY<br>Adengma, Hos                                                                                    | ż          | ٠   | •      | •   | •  | •   | •        | •   | + | •        | •   | ٠        | *      | •  | •   | <b>+</b> . | • | <u>.</u> | +      | +        | -   | +  | +        | +    | •          |
| ADRENAL<br>Adenoma, nos<br>Pheochromocytoma                                                                  | +          | ٠   | +      | •   | •  | *   | •        | •   | + | *        | +   | •        | *      | +  | *   | •          | * | •        | •      | •        | +   | *  | ż        | *    | •          |
| THYROID<br>Follicular-Cell Adenoma                                                                           | •          | ٠   | ٠      | ٠   | +  | +   | +        | ٠   | + | +        | •   | •        | +      | •  | +   | +          | • | ÷.       | +      | +        | •   | •  | •        | •    | +          |
| PARATHYROID                                                                                                  | +          | +   | -      | ٠   | -  | +   | ٠        | •   | + | ٠        | ٠   | ٠        | •      | +  | •   | +          | • | -        | •      | -        | +   | -  | +        | +    | 4          |
| REPRODUCTIVE SYSTEM                                                                                          | [          |     |        | -   |    |     |          |     |   |          | -   |          |        |    |     |            |   |          |        |          |     |    |          |      | -          |
| MAMMARY GLAND<br>Adenocarcingma, Hos                                                                         | ŀ          | •   | •      | +   | +  | •   | +        | ٠   | + | <u>.</u> | •   | •        | *      | +  | •   | •          | • | +        | •      | +        | •   | +  | •        | ż    | •          |
| UTERUS<br>Endometrial stromal PGLYP                                                                          | <u> </u> ⁺ | +   | •      | +   | +  | +   | •        | •   | • | •        | •   | •        | +      | •  | +   | +          | • | <u>+</u> | •      | •        | +   | +  | +        | •    | 4          |
| GVARY                                                                                                        | •          | +   | +      | +   | +  | •   | •        | +   | • | +        | +   | +        | +      | +  | +   | +          | + | <u>+</u> | •      | *        | +   | +  | •        | *    | 1          |
| IERVOUS SYSTEM                                                                                               |            |     |        |     |    |     |          |     |   |          |     |          |        |    |     |            |   |          |        |          |     |    |          |      | ĺ          |
| BRAIN                                                                                                        | +          | +   | •      | *   | •  | +   | *        | •   | + | *        | *   | •        | +      | *  | *   | •          | * | <u>.</u> | *      | •        | •   | •  | <u>.</u> | *    | 4          |
| SODY CAVITIES                                                                                                |            |     |        |     |    |     |          |     |   |          |     |          |        |    |     |            |   |          |        |          |     |    |          |      |            |
| MEDIASTINUM<br><u>Alveolar/Bronchiolar CA, invasive</u><br>All oth <i>e</i> r syst <b>ens</b>                | <b>N</b>   | N   | Ħ      |     | N  | *   | X        | M   | N | H        | N   | <u>н</u> | N<br>  | H  | *   | N          | N | N        |        | N        | N   | ×  |          | H    | N          |
| MULTIPLE ORGANS HOS<br>Hemangiosarcoma<br>Malig.lymphoma, lymphocytic type<br>Malignant Lymphoma, mixed type | N          | . N | N      | H   | N  | N   | N        | N   | N | H<br>X   | N   | M        | N<br>X | N  | N   | N          | H | H        | H      | 10       | H   | N  | N        | N    | H          |

# TABLE B4. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE MICE IN THE TWO-YEARGAVAGE STUDY OF HC RED NO. 3: LOW DOSE

| AHIMAL<br>Number                                                                                             | 2        | 2        | ž        | ž    | 3  | 3              | 3   | 3        | 3        | 3        | 3        | ş        | š                                     | š  |          | Ľ        | 2        |          | š |          | 1        | 1          |   | 1        | ŝ.     | TOTAL     |
|--------------------------------------------------------------------------------------------------------------|----------|----------|----------|------|----|----------------|-----|----------|----------|----------|----------|----------|---------------------------------------|----|----------|----------|----------|----------|---|----------|----------|------------|---|----------|--------|-----------|
| WEEKS ON<br>Study                                                                                            | 8        | ?        | -        | 1    | -  | 1              | ?[  | 2        | 8        | 1        | -        | -        | į                                     | 6  | ?        |          | 2        | •        | ? | -        | 4        | -          | 8 |          | 5      | TUMOR     |
| ESPIRATORY SYSTEM                                                                                            | -91      | <u>.</u> | -11-     | -21- |    | - 21           | 11. | 21       | <u> </u> | 21       |          |          | - LA                                  |    |          |          |          |          |   |          |          |            |   |          | Т      |           |
| LUNGS AND BRONCHI<br>Alveolar/Bronchiolar Adenoma<br>Alveolar/Bronchiolar Carcinoma                          | +        | •        | •        | •    | •  | •              | +   | •        | •        | •        | •        | •        | •                                     | •  | •        | •        | ×        | •        | • | -        | •        | •          | • | •        | •      | <b>••</b> |
| TRACHEA                                                                                                      | -        | +        | -        | + -  | -  | -              | -   | +        | -        | -        | +        | -        | +                                     | -  | +        | •        | -        | •        | • | •        | +        | +          | - | +        | -      | 27        |
| EMATOPOIETIC SYSTEM                                                                                          |          |          |          |      |    |                |     |          | _        |          |          |          |                                       |    |          |          |          |          |   |          |          | _          |   |          | T      |           |
| BONE MARRON                                                                                                  | +        | +        | +        | +    | ٠  | +              | +   | +        | +        | +_       | +        | +        | +                                     | +  | +        | -        | +        | <u>+</u> | • | +        | <u>+</u> | +          | + | *        | 4      | 49        |
| SPLEEN                                                                                                       | ٠        | +        | +        | +    |    | •              | •   | +        | +        | +        | +        | <u>+</u> | •                                     | •  | +        | <b>+</b> | •        | •        | • | +        | •        | +          | + | +        | 4      | 58        |
| LYMPH HODES<br>Malignant Lymphoma, Mixed Type                                                                | +        | +        | •        | •    | +  | +              | •   | •        | •        | +        | <u>+</u> | +        | ÷                                     | •  | +        | +        | •        | •        | + | •        | +        | •          | • | +        | +      |           |
| THYMUS                                                                                                       | +        | +        | ٠        | +    | ٠  | +              | +   | +        | ٠        | -        | +        | +        | •                                     | •  | -        | +        | •        | •        | • | +        | +        | •          | + | •        | -      | 48        |
| CIRCULATORY SYSTEM                                                                                           |          |          | _        |      |    |                |     |          |          | _        | _        |          |                                       |    |          |          |          |          |   |          |          |            |   |          | T      |           |
| HEART                                                                                                        | +        | ٠        | ٠        | ٠    | ٠  | +              | •   | +        | +        | •        | •        | +        | +                                     | •  | +        | •        | •        | +        | + | +        | +        | •          | • | <u>+</u> | 1      | 56        |
| DIGESTIVE SYSTEM                                                                                             |          |          |          | -    |    |                |     |          |          |          |          |          |                                       |    |          |          |          |          |   |          |          |            |   |          |        |           |
| SALIVARY GLAND                                                                                               | <u>+</u> | +        | <u>+</u> | •    | ٠  | +              | +   | +        | *        | *        | <u>+</u> | +        | +                                     | +  | <u>+</u> | *        | •        | 4        | + | <u>+</u> | <u>+</u> | +          | + | +        | +      |           |
| LIVER<br>HEPATOCELLULAR ADENOMA<br>Malig.lymphoma, Histigcytic type .                                        | ٠        | •        | ٠        | •    | .+ | +              | •   | •        | •        | •        | •        | •        | •                                     | •  | +<br>x   | •        | <u>.</u> | *        | • | <u>.</u> | •        | •          | • | <u>+</u> | 1      |           |
| BILE DUCT                                                                                                    | +        | +        | +        | +    | +  | . <del>.</del> | ٠   | +        | +        | +        | +        | +        | •                                     | +  | <u>+</u> | •        | +        | ÷        | + | +        | ٠.       | •          | ٠ | +        | 4      | 51        |
| GALLBLADDER & CONMON BILE DUCT                                                                               | +        | +        | +        | +    | •  | +              | +_  | +        | •        | +        | +        | +        | +                                     | N_ | +        | H        | +        | ÷        | ٠ | *        | ٠        | •          | ٠ | ٠        | ÷      |           |
| PANCREAS                                                                                                     | •        | +        | •        | •    | •  | +              | +   | •        | +        | •        | +        | ٠        | +                                     | +  | +        | ÷        | +        | *        | • | +        | ٠        | <b>•</b> : | * | +        | *      |           |
| ESOPHAGUS                                                                                                    | •        | •        | •        | •    | ٠  |                | ٠   | •        | +        | •        | +        | +        | +                                     | •  | -        | •        | •        | •        | + | +        | ٠        | +          | ٠ | +        |        |           |
| STOMACH                                                                                                      | •        | +        | •        | •    | •  | ٠              | ٠   | •        | +        | •        | +        | •        | +                                     | +  | +        | ÷        | +        | ÷        | ٠ | +        | •        | t          | + | +        |        | _ 58      |
| SMALL INTESTINE                                                                                              | •        | +        | +        | •    | +  | +              | +   | -        | •        | +        | +        | •        | •                                     | •  | ÷        | •.       | •        | ÷.       | + | •        | •        | •          | + | •        | •      | 69        |
| LARGE INTESTINE                                                                                              | +        | +        | •        | +    | •  | +              | •   | +        | +        | +        | +        | +        | +                                     | ٠  | +        | ٠        | +        | +        | + | -        | +        | +          | + | ٠        | +      | 49        |
| URINARY SYSTEM                                                                                               |          |          |          | _    |    |                |     |          |          |          |          | _        |                                       | _  | _        |          |          |          |   | _        |          |            | - |          | +      |           |
| KIDNEY                                                                                                       | +        | +        | +        | +    | +  | +              | ٠   | •        | +        | +        | +        | +        | *                                     | +  | +        | •        | +        | 1        | + | +        |          | +          | • | ÷        | 4      |           |
| URINARY BLADDER                                                                                              | •        | +        | +        | •    | +  | +              | ٠   | ٠        | ٠        | ٠        | ٠        | ٠        | ٠                                     | •  | ٠        | •        | ٠        | ٠        | ٠ | ٠        | ٠        | ٠          | ٠ | •        | •      | 50        |
| ENDDCRINE SYSTEM                                                                                             |          |          | -        |      |    | -              |     |          | _        |          |          |          |                                       |    |          |          |          |          | _ | -        | -        |            |   |          | 1      |           |
| PITUITARY<br>Adenoma, NGS                                                                                    | +        | ٠        | ٠        | ÷    | •  | -              | ٠   | -        | •        | •        | +        | +        | •                                     | •  | -        | •        | •        |          | • | -        | •        | •          | • | •        | +      | 45        |
| ADRENAL<br>Adehoma, Mos<br>Phedchromocytona                                                                  | •        | +        | •        | ٠    | +  | +              | •   | •        | •<br>x   | +        | •        | •        | •                                     | •  | •        | •        | •        | •        | • | -        | •        | •          | * | •        | 1      | 49        |
| THYROID<br>FOLLICULAR-CELL ADENOMA                                                                           | ÷        | +        | +        | ٠    | +  | +              | •   | ٠        | •        | +        | •        | ٠        | ٠                                     | •  | -        | ٠        | •        | •        | • | +        | +        | •          | • | •        | +      | 48        |
| PARATHYROID                                                                                                  | +        | +        | -        | ٠    | •  | -              | -   | ٠        | -        | •        | +        | ٠        | +                                     | •  | •        | ٠        | •        | •        | • | •        | ٠        | +          | ٠ | +        | -      | 38        |
| REPRODUCTIVE SYSTEM                                                                                          |          | _        |          |      | _  |                |     |          |          |          |          | _        |                                       |    | -        |          |          |          |   | _        |          |            |   | _        |        |           |
| MAMMARY GLAND<br>ADENGCARCINGMA, NOS                                                                         | ŀ        | ٠        | •        | ٠    | •  | •              | •   | •        | •        | •        | ٠        | •        | <u>.</u>                              | •  | •        | •        | •        | H        | • | •        | •        | •          | • | •        | •      | 50        |
| UTERUS<br>Endometrial stromal Polyp                                                                          | ŀ        | +        | +        | +    | •  | +              | +   | •        | •        | •        | +        | +        | +                                     | +  | +        | ż        | +        | +        | • | <u>+</u> | <u>+</u> | +          | - | •        | •      | 54        |
| OVARY                                                                                                        | •        | •        | +        | +    | +  | +              | •   | +        | <u>`</u> | _        | •        | +        | <u> </u>                              | *  | +        | +        | <u>.</u> | <u>+</u> | + | •        | *        | +          | + | +        | 4      | 48        |
| NERVOUS SYSTEM                                                                                               |          |          |          |      |    |                |     |          |          | •        | +        | •        | •                                     | •  | •        | ٠        | •        | •        |   |          |          | •          | • | •        | •      | 58        |
| BRAIN                                                                                                        | Ľ        | +        | +        | •    | *  | •              | •   | <u>.</u> | <u> </u> | <u> </u> | *        | ÷        | , , , , , , , , , , , , , , , , , , , |    |          |          | -        |          |   |          | -        | _          |   | ,        | -      |           |
| BODY CAVITIES                                                                                                |          |          |          |      |    |                |     |          |          |          |          |          |                                       |    | H        |          |          | H        | N | N        | N        | N          | H | Ħ        | N      | 581       |
| MEDIASTINUM<br>ALVEGLAR/BRONCHIGLAR CA. INVASIVE<br>ALL OTHER SYSTEMS                                        | +        | N        | N        | N    | H  | N              | N   | *        | N        | -        |          | *        |                                       | N  |          |          |          |          | - | -        | -        |            |   |          |        |           |
| MULTIPLE ORGANS NOS<br>Hemanglosarcoma<br>Malig.lymphoma, Lymphocytic Type<br>Malignant Lymphoma, Mixed Type | H        | N        | N        | Ħ    | M  | N              | M   | N        | N        | N        | ×        | N        | ×                                     | N  | N        | N        | ×        | N        | H | N        | M        | N          | N | X        | N<br>X | 56        |

### TABLE B4. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE MICE: LOW DOSE (Continued)

\* ANIMALS HECROPSIED

| GAVAC                                                           | ge s | T | JD       | Y        | OF       | H        | CR         | E        | <b>D</b> ] | NO         | ). 3     | 3: 1       | HI       | GH       | I D       | 08         | SE.  |            |          | _          |          |          |            |          |           |
|-----------------------------------------------------------------|------|---|----------|----------|----------|----------|------------|----------|------------|------------|----------|------------|----------|----------|-----------|------------|------|------------|----------|------------|----------|----------|------------|----------|-----------|
| ANIMAL<br>HUMBER                                                | 0    | 0 | Ģ        | 9        | 0        | 0        | 9          | 0        | 8          | 1          | 0        | 1          | 1        | 1        | 1         | 1          | 1    | 1          | 1        | S          | 2        | 222      | 2          | 24       |           |
| WEEKS ON<br>STUDY                                               | 0    | 7 | 7        | 0        |          | 7        | -          | 0        |            | 8          | ?        | ş          | 4        |          | -         | 6          | ?    | -          | 5        | 8          | i        | 0        | į          | ?        | 0.00      |
| INTEGUNENTARY SYSTEM                                            | +-*  |   |          |          | ~        | _21      |            |          | -11        |            | _        | ببقي       |          |          | -21       |            | _8.4 |            |          | -91        | _        |          |            | - 11     | -         |
| SUBCUTANEDUS TISSUE<br>Sebacedus Adenoma                        | +    | • | +        | +        | •        | +        | , <b>+</b> | +        | ٠          | •          | +        | +          | +        | +        | •         | +          | •    | Ħ          | •        | +          | ٠        | ٠        | +          | +        | 4         |
| ESPIRATORY SYSTEM                                               | +    |   |          |          |          |          |            |          |            |            |          |            |          |          |           |            |      |            |          |            |          |          |            |          |           |
| LUNGS AND BRONCHI<br>Alveolar/Bronchiolar Adenoma               | +    | + | +        | +        | +        | +        | +          | •        | ż          | +          | •        | +          | +        | *        | +         | +          | •    | •          | <u>+</u> | +          | •        | +        | +          | +        | -         |
| TRACHEA                                                         | -    | + | •        | +        | -        | -        | -          | •        | •          | -          | -        | -          | +        | +        | •         | -          | *    | *          | •        | -          | -        | +        | •          | -        | 4         |
| MEMATOPOIETIC SYSTEM                                            |      |   | _        |          |          |          |            |          |            |            |          |            |          |          |           |            |      |            |          |            |          |          |            |          | _         |
| BONE MARROW                                                     | ++   | + | +        | <u>+</u> | *        | +        | +          | +        | <u>.</u>   | +          | +        | *          | •        | *        |           | +          | +    | *          | <u>_</u> |            | +        | +        | +          |          | -1        |
| SPLEEN                                                          | ++   |   |          | +        | +        | <u>.</u> | +          | +        | +          | +          | +        |            | +        | +        | +         | +          | +    | +          | <b>.</b> | +          | <u>+</u> | •        | +          | +        |           |
| LYMPH HODES                                                     | +    | + | <u>+</u> | +        | +        |          | +          | +        | . •        |            |          | +          | *        | +        | +         | +          | +    | +          | <b>.</b> | <u>.</u>   | *        | +        | +          | *        | -         |
| THYMUS                                                          | +    | + | +        | +        | +        | -        | +          | +        | +          | +          | +        | ٠          | •        | ٠        | ٠         | •          | -    | -          | ٠        | +          | +        | +        | +          | +        | •         |
| SIRCULATORY SYSTEM                                              |      |   |          |          |          |          |            |          |            |            |          |            |          |          |           | _          |      |            |          |            |          |          |            |          | -         |
| HEART                                                           | +    | + | +        | +        | +        | +        | +          | +        | +          | +          | •        | +          | +        | +        | •         | +          | •    | +          | 4        | •          | +        | +        | +          | +        | +         |
| IGESTIVE SYSTEM                                                 |      |   | •        |          |          |          |            |          | -          |            |          |            |          |          |           |            |      |            |          |            |          |          |            |          |           |
| SALIVARY GLAND                                                  | ++   |   | •        | +        | +        |          | +          | +        | *          | <u>+</u>   | *        | *          | +        | +        | +         | ÷          | *    | <u> </u>   |          | <u> </u>   | ÷        |          | -          | -        | -1        |
| LIVER<br>Hepatocellular carcinoma                               | +    | + | *        | +        | *        | +        | +          | *        | +          | +          | +        | +          | +        | +        | +         | +          | *    | +          | 4)<br>   | *          | +        | *        | +          | +        | _         |
| BILE DUCT                                                       | Ţ    | + | +        | . •      | +        | +        | +          | +        | •          | +          | +        | +          | +        | +        | +         | +          | •    | ÷          | 4        | •          | +        | +        | +          | •        |           |
| GALLBLADDER & COPHION SILE DUCT                                 |      | + | +.       | +        | +        | •        | +          | +        | +          | +          | +        | N          | +        | +        | •         | +          | +    | +          |          | •          |          | +        | +          | N        | į         |
| PANCREAS                                                        |      | + | *        |          |          | +        | +          |          |            | *          | *        |            | +        |          |           | +          | +_   | +          |          | +          | +        | •        | *          | +        |           |
| ESOPHAGUS                                                       | •    | + | +        | +        | +        | +.       | +          | +        | +          | •          |          | +          | +        | +        | ٠         | +          | +    | +          | - 1      | +          |          | +        | +          | +        |           |
| STUMACH<br>Squamdus Cell Papilluma                              | •    | • | +        | +        | •        | +        | +          | \$       | +          | •          | +        | +          | +        | ٠        | +         | •          | ٠    | +          | •        | ٠          | +        | ٠        | +          | -        | •         |
|                                                                 | 1.   |   |          |          | <u> </u> | +        | +          | •        | -          | +          | •        | +          | +        | +        | •         | •          | •    | ÷          |          | +          | +        | +        | +          | +        |           |
| SMALL INTESTINE                                                 | Ť    | ÷ | ÷        | <u> </u> | <u> </u> | ÷        | <u> </u>   | <u> </u> | <u> </u>   |            | ÷        | ÷          | +        | +        | +         | +          | +    | •          |          | +          | •        | +        | +          | +        | -         |
| LARGE INTESTINE                                                 |      | Ť |          | _        |          |          | <u> </u>   | <u> </u> |            | _          |          |            |          |          | <u> </u>  | · ·        |      |            | -        |            | _        |          |            |          | _         |
| RINARY SYSTEM                                                   |      |   |          |          |          |          |            |          |            |            |          |            |          |          |           |            |      |            |          |            |          |          |            |          |           |
| KIDNEY                                                          | +    |   |          |          |          | -        | <u> </u>   | <u>.</u> |            | - <u>-</u> | <u> </u> | . <u>.</u> |          | Ť        | - <u></u> | - <u>-</u> |      | - <u>-</u> | - (      | - <u>-</u> |          | <u> </u> | - <u>-</u> | <u>,</u> | <u>د.</u> |
| URINARY BLADDER                                                 |      | + | _        | +        | +        | +        | *          | *        | +          | •          | -        | +          | _        | <u> </u> | <u> </u>  | <u> </u>   | -    | <u> </u>   |          |            |          | <u> </u> |            | <u> </u> | _         |
| INDOCRINE SYSTEM                                                |      |   |          |          |          |          |            |          |            |            |          |            |          |          |           |            |      |            |          |            |          |          |            | ÷.       |           |
| PITUITARY<br>Adenoma, Hos                                       | +    | + |          | ż        | +        |          | <u> </u>   | +        | ż          | <u>.</u>   | -        | -          | ÷.       | <u>+</u> | <u> </u>  | +          | +    | <u>+</u>   |          | <u>.</u>   | <u>+</u> | +        | +          | <u> </u> |           |
| ADRENAL                                                         | +    | • |          | +        | +        | +        | +          | +        | +_         | +          | -        | +          | <u>.</u> | <u>+</u> | +         | +          | +    | +          |          | +          | .+       | +        |            | <u>+</u> |           |
| THYROID<br>Follicular-cell Adenoma<br>Follicular-cell Carcinoma | +    | + | ٠        | +        | ٠        | +        | +          | *<br>×   | ×          | ٠          | +        | •          | +        | +        | •         | +          | +    | +          | •        | +          | *        | •        | •          | •        | 1         |
| PARATHYROID                                                     |      | • |          | •        |          |          | +          | -        | -          |            | -        | -          | +        | +        | -         | -          | +    | +          | -        | -          | +        | •        | •          | •        | 4         |
| EPRODUCTIVE SYSTEM                                              | -+   |   |          | _        |          |          | _          |          |            |            | _        |            |          | _        | _         |            |      |            |          |            |          |          |            |          | -         |
| MAMMARY GLAND<br>Adengma, Ngs                                   | N    | + | +        | +        | +        | +        | +          | +        | +          | •          | +        | +          | +        | +        | +         | +          | +    | H          | +        | •          | N        | +        | •          | +        | +         |
| UTERUS                                                          | 1.   | + | •        | +        | +        | +        | +          | +        | +          | •          | •        | +          | +        | +        | +         | +          | +    | +          | . *      | +          | +        | ÷        | +          | +        |           |
| OVARY<br>TERATOMA, NOS                                          | •    | + | +        | +        | +        | ٠        | •          | +        | +          | +          | +        | +          | +        | •        | •         | •          | •    | +          | +        | +          | +        | +        | +          | +        | 4         |
| NERVOUS SYSTEM                                                  |      | - |          |          |          |          |            |          |            |            |          |            |          |          |           |            |      | ~          | -        |            | -        |          |            |          | -         |
| BRAIN                                                           | +    | + | +        | +        | +        | +        | +          | +        | +          | +          | ٠        | +          | +        | +        | +         | +          | +    | +          | +        | +          | +        | +        | +          | +        | ٠         |
| FECIAL SENSE ORGANS                                             |      |   |          | _        |          |          |            |          | _          |            | _        |            | *        |          |           |            |      |            |          |            |          |          |            |          |           |
| HARDERIAN GLAND<br><u>Adendma, Ngs</u><br>50dy cavities         | •    | N | N        | N        | н        | H        | N          | N        | н          | N          | N        | N          | N        | Ħ        | N         | N          | N    | H          | N        | N          | H        | H        | H          | N        | *         |
| PERITONEUM<br>Hemangiosarcoma                                   | N    | Ħ | N        | N        | N        | H        | H          | H        | N          | N          | NX       | N          | N        | N        | N         | N          | N    | N          | M        | N          | N        | Ħ        | H          | H        | •         |
|                                                                 | _    | _ | _        |          |          |          |            |          |            |            |          |            |          |          |           |            |      |            |          |            | -        |          |            |          |           |
| ALL OTHER SYSTEMS                                               | 1    |   |          |          |          |          |            |          |            |            |          |            |          |          |           |            |      |            |          |            |          |          |            |          |           |

#### TABLE B4. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE MICE IN THE TWO-YEAR GAVAGE STUDY OF HC RED NO. 3: HIGH DOSE

| ANIMAL<br>Humber                                                                          | 2           | 2<br>2<br>7 | 2        | 2        | 30       | 3        | 3        | 3 3               | 03           | 3            | 0<br>3<br>7 | 0<br>3<br>8 | 3        | 4        | 1        | 2        |          | 4             | 4        | 0<br>4<br>6 | 0<br>4<br>7 | -        | 4        | 5 | TOTAL       |
|-------------------------------------------------------------------------------------------|-------------|-------------|----------|----------|----------|----------|----------|-------------------|--------------|--------------|-------------|-------------|----------|----------|----------|----------|----------|---------------|----------|-------------|-------------|----------|----------|---|-------------|
| WEEKS ON<br>Study                                                                         | 0<br>7<br>9 | 8           | ġ        | 6        | 3        | 0        | 6        | 5 7               | 7            | 8            | 9           | 0           | 5        | 9        | 9        | 8        | 8        | 5             | 57       | 5           | 9           | 9        | 8        | 7 | TISSUES     |
| INTEGUMENTARY SYSTEM                                                                      |             |             | +        |          |          |          |          | • •               |              | +            |             | _           |          | •        |          |          |          | _             |          |             |             | •        | +        |   | 58#         |
| SUBCUTANEOUS TISSUE<br>Sebacedus Adenoma                                                  | +           | •           | Ť        | +        | N        | •        | •        | •                 | · H          | •            | ×           | •           | •        | •        |          | •        |          | Τ.            |          | •           | Ţ           | Ť        | •        |   | 38W<br>1    |
| RESPIRATORY SYSTEM                                                                        |             |             |          |          |          |          |          |                   |              |              |             |             |          |          |          |          |          |               |          |             |             |          |          |   |             |
| LUNGS AND BRONCHI<br>Alveolar/Bronchiolar Adenoma                                         | +           | +           | +        | +        | +        | +        | <u>+</u> | + •               | • •          | +            | +           | +           | <u>+</u> | +        | ÷        | +        | ÷        | +             | +        | +           | +           | +        | +        | + | 50          |
| TRACHEA                                                                                   | -           | -           | +        | -        | +        | -        | •        | + •               | -            | +            | +           | -           | -        | +        | +        | -        | +        | -             | •        | -           | -           | ٠        | -        | + | 29          |
| HEMATOPOLETIC SYSTEM                                                                      | Γ.          |             |          |          |          |          |          |                   |              |              |             |             |          |          |          |          |          |               |          |             |             |          |          |   | 69          |
| BONE MARROW<br>Spleen                                                                     | †÷          | <u> </u>    | ÷        | •        | -        | •        | •        | • •               |              | <u> </u>     | ÷           | +           | ÷        | ÷        | ÷        |          |          | ÷             | ÷        | ÷           | ÷           | •        | ÷        | + | 50          |
| LAMBH NODES                                                                               | L.          | •           | +        | +        | •        | +        | +        | + . +             | +            | +            | +           | +           | +        | +        | +        | +        | *        | +             | *        | +           | •           | +        | +        | + | 30          |
| THYMUS                                                                                    | +           | +           | -        | +        |          | +        | +        | - +               | • •          | +            | +           | +           | -        | +        | +        | +        | +        | +             | +        | +           | +           | ٠        | +        | - | 39          |
| CIRCULATORY SYNTEM                                                                        | 1-          |             |          |          |          |          |          |                   |              |              |             |             |          |          |          |          |          |               | _        |             |             |          |          | + |             |
| HEART                                                                                     | +           | +           | ٠        | ٠        | ٠        | +        | +        | + +               | +            | +            | +           | ٠           | +        | +        | •        | •        | ÷        | +             | ٠        | ٠           | •           | ٠        | ٠        | + | 50          |
| DIGESTIVE SYSTEM                                                                          | 1           |             |          |          |          |          |          |                   |              |              |             |             |          |          |          |          |          |               |          |             |             |          |          |   |             |
| SALIVARY GLAND                                                                            | ┼┷          | +.          | +        | *        | •        | *        | •        | • •               | +            | <u>+</u>     | +           | +           | +        | +        | <u>+</u> | +        | <u>*</u> | ÷             | *        | *           | *           | +        | *        | ╇ |             |
| LIVER<br>HEPATOCELLULAR CARCINGMA                                                         | Ľ           | +           | +        | ÷.       | <u>*</u> | +        | +        | + +               | •            | +            | +           | +           | •        | +        | *        | +        | +<br>    | +             | +        | +           | +           | •        | +        | * | 502         |
| BILE DUCT                                                                                 | +           | +           | •        | ٠        | ŧ.       | •        | <u>+</u> | • •               |              | •            | +           | +           | ٠        | +        | <u>+</u> | ŧ        | ±        | ÷             | +        | ÷           | +           | +        | +        | ᅪ |             |
| GALLBLADDER & CONMON SILE DUCT                                                            | ┝┷          | +           | +        | +        | +        | +        | H        | + +               | +            | +            | <u>+</u>    | +           | <u>+</u> | +        | N        | +        | <u>*</u> | <b>+</b>      | ٠        | +           | +           | +        | Н.,      | + |             |
| PANCREAS                                                                                  | <u></u> ++- | +           | +        | •        | <u>+</u> | +        | <u>•</u> | • •               | •            | +            | +           | +           | <u>+</u> | +        | <u>+</u> | *        | ±        | <u>+</u>      | <u>+</u> | *           | +           | +        | •        | + | 58          |
| ESOPHAGUS                                                                                 | <u> </u>    | <u>.</u>    | <u>+</u> | <u>+</u> | +        | <u>+</u> | <u>*</u> | <u>• •</u>        | •            | <u>+</u>     | ÷           | <u>+</u>    | <u>*</u> | <u>*</u> | <u>*</u> | <u>*</u> | <u>*</u> | <u>*</u><br>• | *        | <u>*</u>    | <u>*</u>    | ÷        | <u>.</u> | + |             |
| STOMACH<br>Squamdus cell papilloma                                                        | +           | <u>+</u>    | •        | •        | •        | -        | •        |                   | -            | Ľ.           | -           | •           | •        |          | •        | <u> </u> |          |               | <u> </u> | -           | *           | ž.       | _        | - | 44 <u>_</u> |
| SMALL INTESTINE                                                                           | L.          | +           | *        | +        | +        | +        | <u>+</u> | + +               | +            | _ <u>+</u> _ | <u>+</u>    | +           | +        | •        | +        | ÷        | <u>*</u> | <u>+</u>      | •        | +           | +           | +        | +        | 4 |             |
| LARGE INTESTINE                                                                           | +           | +           | +        | +        | +        | +        | +        | + +               | •            | +            | +           | +           | +        | +        | +        | +        | +        | *             | +        | +           | +           | +        | *        | + | 49          |
| JRINARY SYSTEM                                                                            |             |             |          |          |          |          |          |                   |              |              |             |             |          |          |          |          |          |               |          |             |             |          |          |   |             |
| KIDHEY .                                                                                  | ++-         | +           | ÷.       | ÷        | <u>+</u> | +        | •        | <u>• •</u><br>• • |              | •            | •           | +           | *        | +        | •<br>•   | •<br>•   | ≟<br>+   |               | +        | +           | +           | +        | +        | Ť | <u> </u>    |
| URINARY BLADDER<br>ENDOCRINE SYSTEM                                                       | Ļ           |             | -        | _        | <u> </u> |          |          |                   |              |              |             |             | <u> </u> |          | <u> </u> | •        |          |               |          |             |             |          |          | + |             |
| PITUITARY<br>ADENOMA, HOS                                                                 | -           | ÷           | +        | •        | +        | +        | •        | + +               | -            | +            | ÷<br>x      | *           | +        | •        | •        | •        | +        | +             | +        | +           | +           | •        | •,       | + | 43          |
| ADRENAL                                                                                   | ŀ           | +           | +        | ÷        | ÷        | +        | ÷        | • •               | •            | +            | •           | +           | +        | •        | ÷        | •        | ±        | •             | •        | ŧ           | ÷           | •        | •        | + |             |
| THYRÖID<br>Follicular-Cell Adenoma<br>Follicular-Cell Carcinoma                           | •           | +           | +        | +        | +        | +        | +        | + +               | •            | •            | +.          | •<br>x      | +        | +        | +        | +        | +<br>    | •             | •        | +           | +           | •        | +        | • | 49<br>2     |
| PARATHYRGID                                                                               | -           | -           | +        | +        | +        | +        | •        | + -               | -            | +            | +           | -           | +        | +        | +        | -        | •        | -             | •        | -           | +           | ٠        | •        | + | 24          |
| REPRODUCTIVE SYSTEM                                                                       | <u>†</u>    |             | _        | _        |          |          |          |                   | •••••        |              |             |             |          |          |          |          | -        |               |          |             |             |          |          | 1 |             |
| MAMMARY GLAND<br>Adenoma, Nos                                                             | +           | +           | •        | +        | +        | +        | •        | • •               | N            | +            | *           | +           | +        | •        | +        | +        | •        | •             | +        | +           | +           | +        | +        | • | 58×         |
| UTERUS                                                                                    | L.          | +           | +        | +        | +        | +        | +        | <u>+</u>          | <del>*</del> | +            | •           | +           | •        | +        | +        | <u>+</u> | <u>.</u> | *             | *        | •           | <u>+</u>    | <u>+</u> | +        | * |             |
| UVARY<br>Teratoma, Hos                                                                    | •           | •           | •        | +        | ×        | •        | +        | • •               | •            | •            | +           | +           | +        | •        | •        | •        | •        | *             | •        | *           | •           | +        | +        | + |             |
| NERVOUS SYSTEM                                                                            |             |             |          |          |          |          |          |                   |              |              |             |             |          |          |          |          |          |               |          |             |             |          |          |   |             |
| BRAIN<br>SPECIAL SENSE ORGANS                                                             | +           | +           | +        | +        | ÷        | •        | +        | + •               | +            | *            | +           | +           | +        | +        | *        | +        | •        | +             | +        | *           | +           | *        | +        | 4 | 58          |
| SPECIAL SENSE URGANS<br>Harderian gland<br>Adenoma, Hos<br>Body Caviites                  | N           | N           | H        | N        | N        | N        | N        | N N               | N            | H            | N           | N           | Ħ        | H        | N        | H        | hi<br>   | N             | H        | N           | N           | N        | ×        | м | 50N         |
| BODY CAVITIES<br>Peritoneum<br>Hemangiosarcoma                                            | N           | N           | N        | N        | N        | ĸ        | H        | н н               | H            | H            | 'n          | N           | M        | Ħ        | N        | N        | н        | N             | N        | H           | N           | N        | N        | N | 58¥<br>1    |
| ALL OTHER SYSTEMS<br>Multiple organs nos<br>Sarcoma, nos<br>Malomant Lymphoma, mixed type | N           | N           | *        | N        | н        | N        | N        | N H               | N            | N            | H           | N           | N        | N        | N        | N        | H        | H             | N        | H           | м           | H.       | H        | N | 50M         |

 TABLE B4. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE MICE: HIGH DOSE (Continued)

N ANIMALS HECROPSIED

HC Red No. 3, NTP TR 281

### **APPENDIX C**

# SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN RATS IN THE TWO-YEAR GAVAGE STUDIES OF HC RED NO. 3

| CO                                            | ONTRO     | OL (VEH)     | LOWI | DOSE                    | HIGH      | DOSE  |
|-----------------------------------------------|-----------|--------------|------|-------------------------|-----------|-------|
| ANIMALS INITIALLY IN STUDY                    | 50        |              | 50   |                         | 50        |       |
| ANIMALS NECROPSIED                            | 50        |              | 50   |                         | 50        |       |
| ANIMALS EXAMINED HISTOPATHOLOGICALLY          | 50        |              | 50   |                         | 50        |       |
| NTEGUMENTARY SYSTEM                           |           |              |      |                         |           |       |
| *SKIN                                         | (50)      |              | (50) |                         | (50)      |       |
| EPIDERMAL INCLUSION CYST                      |           | (2%)         |      |                         |           |       |
| STEATITIS<br>INFLAMMATION, CHRONIC            |           | (2%)<br>(2%) |      |                         | 1         | (2%)  |
| FIBROSIS                                      |           | (2%)         |      |                         | 1         | (270) |
| *SUBCUTANEOUS TISSUE                          | (50)      | (2 N)        | (50) |                         | (50)      |       |
| HEMORRHAGE                                    | (00)      |              |      | (2%)                    | (00)      |       |
| HEMORRHAGIC CYST                              |           |              | _    | <b>()</b>               | 1         | (2%)  |
| INFLAMMATION, CHRONIC<br>FIBROSIS             | 1         | (2%)         |      |                         | 2         | (4%)  |
| RESPIRATORY SYSTEM                            |           |              |      | <del></del> <del></del> |           |       |
| *NASAL CAVITY                                 | (50)      |              | (50) |                         | (50)      |       |
| INFLAMMATION, ACUTE SUPPURATIVE               |           |              |      |                         |           | (2%)  |
| #TRACHEA                                      | (50)      |              | (50) |                         | (50)      |       |
| INFLAMMATION, ACUTE SUPPURATIVE               |           |              |      |                         |           | (2%)  |
| #LUNG/BRONCHIOLE                              | (50)      |              | (50) |                         | (50)      | (0.0) |
| HYPERPLASIA, EPITHELIAL                       | (20)      |              |      |                         |           | (2%)  |
| #LUNG                                         | (50)      |              | (50) |                         | (50)      | (40)  |
| ASPIRATION, FOREIGN BODY<br>FOREIGN BODY, NOS | 1         | (2%)         |      |                         | 4         | (4%)  |
| CONGESTION, NOS                               |           | (8%)         | 4    | (8%)                    | 2         | (4%)  |
| EDEMA, NOS                                    | -         | (0,2)        |      | (2%)                    | -         | (=,0) |
| PNEUMONIA, ASPIRATION                         | 1         | (2%)         | -    | (=)                     | 1         | (2%)  |
| BRONCHOPNEUMONIA, ACUTE                       | -         | (=,          | 1    | (2%)                    |           | (2%)  |
| INFLAMMATION, FOCAL GRANULOMATOU              | S 1       | (2%)         |      |                         |           |       |
| PIGMENTATION, NOS                             |           | (2%)         |      |                         | 1         | (2%)  |
| HYPERPLASIA, ADENOMATOUS                      |           | (4%)         | 1    | (2%)                    |           | (4%)  |
| HYPERPLASIA, ALVEOLAR EPITHELIUM              |           | (2%)         |      |                         |           | (2%)  |
| #LUNG/ALVEOLI                                 | (50)      |              | (50) | (0.2)                   | (50)      |       |
| HEMORRHAGE                                    |           |              | 1    | (2%)                    |           |       |
| IEMATOPOIETIC SYSTEM                          | (20)      |              | (10) |                         | (50)      |       |
| #SPLEEN                                       | (50)      | (2%)         | (49) |                         | (50)      |       |
| ACCESSORY STRUCTURE<br>CONGESTION, NOS        |           | (2%)         |      |                         |           |       |
| FIBROSIS                                      | -         |              | 1    | (2%)                    |           |       |
| FIBROSIS, FOCAL                               | 2         | (4%)         | •    | (= ··· /                |           |       |
| NECROSIS, ISCHEMIC                            |           | (2%)         | 1    | (2%)                    |           |       |
| PIGMENTATION, NOS                             |           |              |      |                         | 1         | (2%)  |
| HEMOSIDEROSIS                                 |           |              | 1    | (2%)                    |           | (6%)  |
| ATROPHY, FOCAL                                |           |              |      |                         |           | (2%)  |
| HEMATOPOIESIS                                 |           | (2%)         |      | (2%)                    |           | (2%)  |
| #MANDIBULAR L. NODE                           | (50)      | (07)         | (50) |                         | (49)      |       |
| HEMORRHAGE                                    | 1         | (2%)         |      |                         | •         | (90)  |
| HYPERPLASIA, LYMPHOID                         | (50)      |              | (50) |                         | 1<br>(49) | (2%)  |
| #CERVICAL LYMPH NODE<br>HYPERPLASIA, NOS      |           | (2%)         | (00) |                         | (43)      |       |
| #BRONCHIAL LYMPH NODE                         | (50)      |              | (50) |                         | (49)      |       |
| EDEMA, NOS                                    | (00)      |              |      | (2%)                    | (         |       |
| HYPERPLASIA, LYMPHOID                         |           |              |      | (2%)                    |           |       |
| <b>#INGUINAL LYMPH NODE</b>                   | (50)      |              | (50) | -                       | (49)      |       |
|                                               |           | (00)         | •    |                         |           |       |
| HYPERPLASIA, LYMPHOID                         | 1         | (2%)         |      |                         |           |       |
| HYPERPLASIA, LYMPHOID<br>#LIVER               | ۱<br>(50) | (2%)         | (50) |                         | (50)      | (2%)  |

# TABLE C1. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE RATS IN THE TWO-YEAR GAVAGE STUDY OF HC RED NO. 3

|                                             | CONTRO    | L(VEH)   | LOWI | DOSE   | HIGH     | DOSE   |
|---------------------------------------------|-----------|----------|------|--------|----------|--------|
| IEMATOPOIETIC SYSTEM (Continued)            |           | <u> </u> |      |        | <u> </u> |        |
| #PEYER'S PATCH                              | (50)      |          | (49) |        | (49)     |        |
| HYPERPLASIA, LYMPHOID                       | 2         | (4%)     |      |        |          |        |
| #COLON                                      | (50)      |          | (50) |        | (50)     |        |
| HYPERPLASIA, LYMPHOID                       | 1         | (2%)     |      |        |          |        |
| #THYMUS<br>METAPLASIA, OSSEOUS              | (50)<br>1 | (2%)     | (50) |        | (49)     |        |
| ZIRCULATORY SYSTEM                          |           |          |      |        |          |        |
| #MANDIBULAR L. NODE                         | (50)      |          | (50) |        | (49)     |        |
| LYMPHANGIECTASIS                            | (00)      |          | (00) |        | , ,      | (4%)   |
| #MESENTERIC L. NODE                         | (50)      |          | (50) |        | (49)     | ( = /  |
| LYMPHANGIECTASIS                            |           | (2%)     | (00) |        | (/       |        |
| #HEART                                      | (50)      | (=,      | (50) |        | (50)     |        |
| FIBROSIS, FOCAL                             | 1         | (2%)     | • •  | (6%)   | 5        | (10%   |
| FIBROSIS, MULTIFOCAL                        | -         | · ·      | -    | -      |          | (2%)   |
| #HEART/ATRIUM                               | (50)      |          | (50) |        | (50)     |        |
| THROMBUS, MURAL                             | 1         | (2%)     |      |        |          |        |
| #MYOCARDIUM                                 | (50)      |          | (50) |        | (50)     |        |
| INFLAMMATION, CHRONIC                       |           | (78%)    | 43   | (86%)  | 36       | (72%   |
| FIBROSIS, DIFFUSE                           |           | (4%)     |      |        |          |        |
| *MESENTERIC ARTERY                          | (50)      |          | (50) |        | (50)     |        |
| INFLAMMATION, CHRONIC                       | 1         | (2%)     |      |        |          |        |
| <b>#PANCREAS</b>                            | (50)      |          | (49) |        | (50)     |        |
| PERIARTERITIS                               |           |          |      | (2%)   | -        |        |
| *MESENTERY                                  | (50)      |          | (50) |        | (50)     |        |
| PERIARTERITIS                               |           | (2%)     |      | (2%)   |          |        |
| DIGESTIVE SYSTEM                            |           |          |      |        |          |        |
| #SALIVARY GLAND                             | (49)      |          | (50) |        | (48)     | (0.01) |
| EDEMA, NOS                                  | (50)      |          | (50) |        |          | (2%)   |
| #LIVER                                      | (50)      |          | (50) | (971)  | (50)     |        |
| CONGESTION, NOS                             | ,         | (2%)     | 1    | (2%)   |          |        |
| HEMORRHAGE                                  |           | (270)    | 1    | (2%)   |          |        |
| INFLAMMATION, ACUTE SUPPURATIVE             | •         |          |      | (2%)   |          |        |
| NECROSIS, COAGULATIVE<br>NECROSIS, ZONAL    |           |          | *    | (2,0)  | 1        | (2%)   |
| CYTOPLASMIC VACUOLIZATION                   | ٥         | (18%)    | 7    | (14%)  |          | (8%)   |
| FOCAL CELLULAR CHANGE                       |           | (4%)     | · ·  | (14,0) |          | (6%)   |
| HYPERPLASIA, NODULAR                        |           | (2%)     |      |        | Ŭ        | (0,0)  |
| ANGIECTASIS                                 | •         | (4,2)    | 1    | (2%)   |          |        |
| #BILE DUCT                                  | (50)      |          | (50) |        | (50)     |        |
| INFLAMMATION, CHRONIC                       | (+ - )    |          |      |        |          | (2%)   |
| HYPERPLASIA, NOS                            | 23        | (46%)    | 21   | (42%)  | 15       | (30%   |
| #PANCREAS                                   | (50)      |          | (49) |        | (50)     |        |
| ECTOPIA                                     | 1         | (2%)     |      |        |          |        |
| LYMPHOCYTIC INFLAMMATORY INFIL              | ſR        |          |      |        | 1        | (2%)   |
| INFLAMMATION, CHRONIC                       |           |          | 1    | (2%)   |          |        |
| ATROPHY, NOS                                |           |          |      |        | 1        | (2%)   |
| ATROPHY, FOCAL                              |           |          | 1    | (2%)   |          |        |
| HYPERPLASIA, FOCAL                          |           | (2%)     |      |        |          |        |
| <b>#PANCREATIC ACINUS</b>                   | (50)      |          | (49) |        | (50)     |        |
| ATROPHY, NOS                                |           | (8%)     | 5    | (10%)  |          | (2%)   |
| ATROPHY, FOCAL                              |           | (6%)     | -    | (100)  |          | (2%)   |
| HYPERPLASIA, NOS                            |           | (14%)    |      | (18%)  |          | (16%)  |
| HYPERPLASIA, FOCAL                          | 5         | (10%)    | 5    | (10%)  |          | (2%)   |
| STORDOLASIA MERLISK                         |           |          |      |        |          | (4%)   |
| HYPERPLASIA, DIFFUSE                        | 180       |          | 1201 |        |          |        |
| #STOMACH<br>INFLAMMATION, ACUTE SUPPURATIVE | (50)      |          | (50) | (2%)   | (50)     |        |

# TABLE C1. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE RATS IN THETWO-YEAR GAVAGE STUDY OF HC RED NO. 3 (Continued)

| URINARY SYSTEM         (50)         (50)         (50)           (ALCULUS, UNKIN GROSS OR MICRO         1         (2%)         1           (YDRONEPHROSIS         1         (2%)         1           (YST, NOS         1         (2%)         1           (YST, NOS         1         (2%)         1           INFLAMMATION, SUPPURATIVE         1         (2%)         1           INFLAMMATION, CHRONIC         1         (2%)         39           NEPHROSIS, NOS         1         (2%)         1           NEPHROSIS, NOS         1         (2%)         1           PIGMENTATION, NOS         3         (6%)         9           PIGMENTATION, NOS         1         (2%)         1           PIGMENTATION, NOS         1         (2%)         1           PIGMENTATION, NOS         3         (6%)         9           PIGMENTATION, NOS         1         (2%)         1 <th></th> <th>CONTRO</th> <th>OL (VEH)</th> <th>LOWI</th> <th>DOSE</th> <th>HIGH</th> <th>DOSE</th>                                                    |                                       | CONTRO  | OL (VEH) | LOWI  | DOSE           | HIGH | DOSE       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|---------|----------|-------|----------------|------|------------|
| #GASTRIC SUBMUCOSA       (50)       (50)       (50)       (50)         INPLAMMATION, CHRONIC       1 (2%)       (50)       (50)       (50)         EDEMA, NOS       2 (4%)       1       (2%)       (50)       (50)       (50)         INPLAMMATION, ACUTE       1 (2%)       1       (2%)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)       (1)<                                                                                                                                                                          | ESTIVE SYSTEM (Continued)             |         |          |       |                |      |            |
| #FORESTOMACH         (50)         (50)         (50)           EDEMA, NOS         2 (4%)         1           ULCER, NOS         2 (4%)         1           INFLAMMATION, ACUTE         1 (2%)         1           INFLAMMATION, ACUTE         1 (2%)         1           INFLAMMATION, ACUTE/CHRONIC         2 (4%)         1           DEGENERATION, NOS         1 (2%)         1           HYPERPLASIA, PENTHELIAL         5 (10%)         49)           HYPERPLASIA, PENTHELIAL         5 (10%)         49)           #SMALLINTESTINE         (50)         (49)         (49)           HYPERPLASIA, PENTHELIAL         1 (2%)         1         1           #SMALLINTESTINE         (50)         (50)         (49)         (49)           HYPERPLASIA, PENTHELIAL         1 (2%)         1         1         1           #SMALLINKMATION, ACUTE/CHRONIC         1 (2%)         1         1         1           URINARY SYSTEM         4         1 (2%)         1         1         1           #KIDNEY         1 (2%)         1 (2%)         1         1         1         1         1         1         1         1         1         1         1         1                                                                                                                             |                                       | (50)    |          | (50)  |                | (50) |            |
| DEDMA NOS         2 (4%)           ULCER, NOS         2 (4%)           INFLAMMATION, ACUTE         1 (2%)           INFLAMMATION, ACUTECHRONIC         2 (4%)           DEGENERATION NOS         1 (2%)           HYPERPLASIA, PAPILLARY         1 (2%)           HYPERPLASIA, PAPILLARY         1 (2%)           HYPERPLASIA, PAPILLARY         1 (2%)           HYPERPLASIA, EPITHELIAL         5 (10%)           HYPERPLASIA, EPITHELIAL         1 (2%)           FOLODENUM         (50)         (50)           CALCULUS,UNKN GROSS OR MICRO         1 (2%)           HYDRONEPHROSIS         1 (2%)         1           INFLAMMATION, CHRONIC         1 (2%)         1           INPLAMMATION, CHRONIC         1 (2%)         1           INPLAMMATION, CHRONIC         1 (2%)         1           INPLAMMATION, NOS         1 (2%)         1           NEPHROSIS, NOS         1 (2%)         1           NEPHROPATHY         39 (                                                                                                 |                                       | 1       | (2%)     |       |                |      |            |
| ULCER, NOS         2 (4%)           INFLAMMATION, ACUTE         1 (2%)           INFLAMMATION, ACUTECHRONIC         2 (4%)           DEGENERATION, NOS         1 (2%)           HYPERPLASIA, EPITHELIAL         5 (10%)           HYPERPLASIA, PAPILARY         1 (2%)           HYPERPLASIA, PAPILARY         1 (2%)           HYPERPLASIA, PAPILARY         1 (2%)           HYPERPLASIA, EPITHELIAL         1 (2%)           #MUDOBEUM         (50)         (49)           INFLAMMATION, ACUTE/CHRONIC         1 (2%)           JUNARY SYSTEM         (50)         (50)           #KIDNEY         (50)         (50)           CYST, NOS         1 (2%)         1 (2%)           INFLAMMATION, CHRONIC         1 (2%)         1 (2%)           NEPHROPATHY         39 (78%)         48 (96%)         39           NEPHROSIS, MOS         1 (2%)         1 (2%)           PIGMENTATION, NOS         1 (2%)         1 (2%)           PIGMENTATION, NOS         1 (2%)         9                                                                                                                  | FORESTOMACH                           | (50)    |          | (50)  |                | (50) |            |
| INFLAMMATION, ACUTE         1 (2%)           INFLAMMATION, ACUTE/CHRONIC         2 (4%)           DEGENERATION NOS         1 (2%)           HYPERPLASIA, EPITHELIAL         5 (10%)           HYPERPLASIA, EPITHELIAL         1 (2%)           HUDODENUM         (50)         (50)           JUOLOBUM         (50)         (50)           INFLAMMATION, ACUTE/CHRONIC         1           JINARY SYSTEM         1 (2%)         1           #KIDNEY         1 (2%)         1           INFLAMMATION, CHRONIC         1 (2%)         1           INFLAMMATION, CHRONIC         1 (2%)         1           NEPHROSIS, NOS         1 (2%)         1           PIGMENTATION, NOS         1 (2%)         1           PIGMENTATION, NOS         1 (2%)         1           PIGMENTATION, NOS         1 (2%)                                                                                                                             | EDEMA, NOS                            |         |          | 2     | (4%)           |      |            |
| INFLAMMATION, ACUTE/CHRONIC         2 (4%)           DEGENERATION, NOS         1 (2%)           HYPERPLASIA, PEPITHELIAL         5 (10%)           HYPERPLASIA, PEPITHELIAL         5 (10%)           #SMALL INTESTINE         (50)         (49)           HYPERPLASIA, EPITHELIAL         1 (2%)         (49)           HYPERPLASIA, EPITHELIAL         1 (2%)         (49)           HYPERPLASIA, EPITHELIAL         1 (2%)         (49)           FDUODENUM         (50)         (50)         (50)           VELAMMATION, ACUTE/CHRONIC         1 (2%)         1           ZMNARY SYSTEM         ************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ULCER, NOS                            |         |          | 2     | (4%)           |      |            |
| DEGENERATION, NOS         1 (2%)           HYPERPLASIA, PAPILLARY         1 (2%)           HYPERPLASIA, PAPILLARY         1 (2%)           HYPERPLASIA, PAPILLARY         1 (2%)           HYPERPLASIA, EPITHELIAL         5 (10%)           #SMALLINTESTINE         (50)         (49)           HUDENUM         (50)         (49)         (49)           HUDENUM         (50)         (50)         (50)           CALCULUS, UNKN GROSS OR MICRO         1 (2%)         1           CYST, NOS         1 (2%)         1           INFLAMMATION, SUPPURATIVE         1 (2%)         1           INFLAMMATION, CHRONIC         1 (2%)         1           NEPHROPATHY         39 (78%)         48 (96%)         39           NEPHROSIS, NOS         1 (2%)         1         1           NEPHROSIS, NOS         1 (2%)         1         1           VECROSIS, MEDULLARY         1 (2%)         1         1         1           PIGMENTATION, NOS         1 (2%)         1         1         1         1           #KIDNEY/UBULE         (50)         (50)         (50)         1         1         1           PIGMENTATION, NOS         1 (2%)         1         1 </td <td>INFLAMMATION, ACUTE</td> <td></td> <td></td> <td>1</td> <td>(2%)</td> <td></td> <td></td>                       | INFLAMMATION, ACUTE                   |         |          | 1     | (2%)           |      |            |
| HYPERPLASIA, P2PTLARY       5 (10%)         HYPERKERATOSIS       5 (10%)         #MPERKERATOSIS       5 (10%)         #MPERKERATOSIS       5 (10%)         #MPERKERATOSIS       1 (2%)         #DUODENUM       (50)       (49)         HYPERPLASIA, EPITHELIAL       1 (2%)         #DUODENUM       (50)       (49)         INFLAMMATION, ACUTE/CHRONIC       1 (2%)         JRINARY SYSTEM       (50)       (50)         #KIDNEY       (50)       (50)         CALCULUS,UNKN GROSS OR MICRO       1 (2%)       1         CYST, NOS       1 (2%)       1         INFLAMMATION, SUPPURATIVE       1 (2%)       1         INFLAMMATION, GHRONIC       1 (2%)       1         NEPHROSIS, NOS       1 (2%)       1         NEPHROSIS, NOS       1 (2%)       1         NEPHROSIS, NOS       1 (2%)       1         VEGMENTATION, NOS       1 (2%)       1         PIGMENTATION, NOS       1 (2%)       1         PIGMENTATION, NOS       1 (2%)       5         PIGMENTATION, NOS       3 (6%)       9         PIGMENTATION, NOS       1 (2%)       5         PIGMENTATION, NOS       1 (2%)                                                                                                                                                                                                   | INFLAMMATION, ACUTE/CHRONIC           |         |          | 2     | (4%)           |      |            |
| HYPERPLASIA, PAPILLARY       1 (2%)         HYPERKERATOSIS       5 (10%)         #SMALLINTESTINE       (50)       (49)         #DUDDENUM       (50)       (49)         #DUDDENUM       (50)       (49)         #NTLAMMATION, ACUTE/CHRONIC       1       1         #KIDNEY       (50)       (50)       (50)         #KIDNEY       (50)       (50)       (50)         CALCULUS,UNKN GROSS OR MICRO       1       (2%)       1         CYST, NOS       1       (2%)       1         INFLAMMATION, SUPPURATIVE       1       (2%)       1         INFLAMMATION, SUPPURATIVE       1       (2%)       1         NEPROPATHY       39 (78%)       48 (96%)       39         NEPHROPATHY       1       (2%)       1         PIGMENTATION, NOS       1       (2%)       1         PIGMENTATION, NOS       1       (2%)       1         PIGMENTATION, NOS       1       (2%)       1         #KIDNEY/FULUS       (50)       (50)       (50)         DILATATION, NOS       1       (2%)       9         PIGMENTATION, NOS       1       (2%)       1         #URINEY/FELVIS </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                               |                                       |         |          |       |                |      |            |
| HYPERKERATÓSIS       5       (10%)         #SMALLINTESTINE       (50)       (49)       (49)         HYPERPLASIA, EPITHELIAL       1       (2%)       (49)         #DUODENUM       (50)       (49)       (49)         INFLAMMATION, ACUTE/CHRONIC       1       (2%)       (49)         JINNARY SYSTEM       (50)       (50)       (50)       (50)         CALCULUS, UNKN GROSS OR MICRO       1       (2%)       1       (2%)         HYDRONEPHROSIS       1       (2%)       1       (2%)       1         CYST, NOS       1       (2%)       1       (2%)       1         INFLAMMATION, CHRONIC       1       (2%)       1       1       (2%)       1         NEPHROSIS, NOS       39       (78%)       48       (96%)       39       1       1       1       (2%)       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>                                                                                                                                                       |                                       |         |          |       |                |      |            |
| #SMALLINTESTINE       (50)       (49)       (49)         HYPERPLASIA, EPITHELIAL       1 (2%)       (49)         #DUODENUM       (50)       (49)       (49)         INFLAMMATION, ACUTE/CHRONIC       1       (2%)       (49)         #KIDNEY       (50)       (50)       (50)       (50)         CALCULUS, UNKN GROSS OR MICRO       1 (2%)       1       1         HYDRONEPHROSIS       1 (2%)       1       1         CYST, NOS       1 (2%)       1       1         INFLAMMATION, SUPPURATIVE       1 (2%)       1       1         INFLAMMATION, CHRONIC       1 (2%)       1       1         NEPHROPATHY       39 (78%)       48 (96%)       39         NEPHROSIS, NOS       1 (2%)       1       1         PIGMENTATION, NOS       1 (2%)       1       1         PIGMENTATION, NOS       1 (2%)       1       1         PIGMENTATION, NOS       3 (6%)       9       9         #KIDNEY/TUBULE       (50)       (50)       (50)       (50)         PIGMENTATION, NOS       3 (6%)       9       9         #KIDNEY/TUBULE       (50)       (50)       (50)       (50)                                                                                                                                                                                                                 |                                       |         |          |       |                |      |            |
| HYPERPLASIA, EPITHELIAL       1 (2%)         #DUODENUM       (50)       (49)       (49)         INFLAMMATION, ACUTE/CHRONIC       1       1         JRINARY SYSTEM       (50)       (50)       (50)         #KIDNEY       (50)       (50)       (50)         CALCULUS, UNKN GROSS OR MICRO       1 (2%)       1         HYDRONEPHROSIS       1 (2%)       1       (2%)         INFLAMMATION, SUPPURATIVE       1 (2%)       1 (2%)         INFLAMMATION, CHRONIC       1 (2%)       1 (2%)         SCAR       1 (2%)       1 (2%)         NEPHROPATHY       39 (78%)       48 (96%)       39         NEPHROSIS, NOS       1 (2%)       1       1         NECROSIS, MEDULLARY       1 (2%)       1       1         PIGMENTATION, NOS       1 (2%)       1       1         #KIDNEY/CORTEX       (50)       (50)       (50)       (50)         DILATATION, NOS       1 (2%)       1       1       2%)         #KIDNEY/TUBULE       (50)       (50)       (50)       (50)         HEMORRHAGE       1 (2%)       1       2%)       1         #UBLADDERMUCOSA       (50)       (50)       (50)       <                                                                                                                                                                                           |                                       |         |          |       | (10%)          |      |            |
| #DUODENUM         (50)         (49)         (49)           INFLAMMATION, ACUTE/CHRONIC         1         1           JRINARY SYSTEM         (50)         (50)         (50)           #KIDNEY         (50)         (50)         (50)           CALCULUS, UNKN GROSS OR MICRO         1         (2%)         1           CYST, NOS         1         (2%)         1           INFLAMMATION, SUPPURATIVE         1         (2%)         3           INFLAMMATION, CHRONIC         1         (2%)         3           NEPHROSIS, NOS         1         (2%)         1           NEPHROSIS, MEDULLARY         1         (2%)         1           PIGMENTATION, NOS         1         (2%)         1           PIGMENTATION, NOS         1         (2%)         9           PIGMENTATION, NOS         1         (2%)         9           PIGMENTATION, NOS         3         (50)         (50)         (50)           PIGMENTATION, NOS         1         (2%)         9         9           PIGMENTATION, NOS         3         (6%)         9           PIGMENTATION, NOS         1         (2%)         9           PIGMENTATION, NOS         500 </td <td></td> <td>(50)</td> <td></td> <td></td> <td></td> <td>(49)</td> <td></td>                                                          |                                       | (50)    |          |       |                | (49) |            |
| INFLAMMATION, ACUTE/CHRONIC       1         JRINARY SYSTEM       (50)       (50)       (50)         #KIDNEY       (50)       1       (2%)       1         CALCULUS UNKN GROSS OR MICRO       1       (2%)       1       1         CYST, NOS       1       (2%)       1       1       1         CYST, NOS       1       (2%)       1       1       1       1         INFLAMMATION, SUPPURATIVE       1       (2%)       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1                                                                                                                                                                                                                                                                           | · · · · · · · · · · · · · · · · · · · |         |          |       | (2%)           |      |            |
| JRINARY SYSTEM       (50)       (50)       (50)         #KIDNEY       (50)       (50)       (50)         CALCULUSUNKN GROSS OR MICRO       1 (2%)       1         HYDRONEPHROSIS       1 (2%)       1         CYST, NOS       1 (2%)       1         INFLAMMATION, SUPPURATIVE       1 (2%)       1         INFLAMMATION, CHRONIC       1 (2%)       1         SCAR       1 (2%)       1         NEPHROSIS, NOS       1 (2%)       1         NEPHROSIS, NOS       1 (2%)       1         PIGMENTATION, NOS       1 (2%)       1         PIGMENTATION, NOS       1 (2%)       1         #KIDNEY/CORTEX       (50)       (50)       (50)         CYST, NOS       1 (2%)       1       1         PIGMENTATION, NOS       1 (2%)       1       1         PIGMENTATION, NOS       3 (6%)       9       4         PIGMENTATION, NOS       3 (6%)       9       9         PIGMENTATION, NOS       1 (2%)       1       1         PIGMENTATION, NOS       1 (2%)       1       1         PIGMENTATION, NOS       1 (2%)       1       1         PIGMENTATION, NOS       1 (2%)                                                                                                                                                                                                                     |                                       | (50)    |          | (49)  |                |      |            |
| #KIDNEY         (50)         (50)         (50)           CALCULUS,UNKN GROSS OR MICRO         1 (2%)         1           HYDRONEPHROSIS         1 (2%)         1           CYST, NOS         1 (2%)         1           INFLAMMATION, SUPPURATIVE         1 (2%)         1           INFLAMMATION, CHRONIC         1 (2%)         1           SCAR         1 (2%)         1           NEPHROPATHY         39 (78%)         48 (96%)         39           NEPHROSIS, NOS         1 (2%)         1         1           NECROSIS, MEDULLARY         1 (2%)         1         1           PIGMENTATION, NOS         1 (2%)         1         1           YKIDNEY/CORTEX         (50)         (50)         (50)           CYST, NOS         1 (2%)         1         1           #KIDNEY/DELVILE         (50)         (50)         (50)           DILATATION, NOS         1 (2%)         1         1           #KIDNEY/PELVIS         (50)         (50)         (50)           HEMORRHAGE         1 (2%)         1         1           #URINATION, NOS         1 (2%)         1         1           #UBLADDER/MUCOSA         (50)         (50)                                                                                                                                                  | INFLAMMATION, ACUTE/CHRONIC           |         |          |       |                | 1    | (2%)       |
| #KIDNEY         (50)         (50)         (50)           CALCULUS,UNKN GROSS OR MICRO         1 (2%)         1           HYDRONEPHROSIS         1 (2%)         1           CYST, NOS         1 (2%)         1           INFLAMMATION, SUPPURATIVE         1 (2%)         1           INFLAMMATION, CHRONIC         1 (2%)         1           SCAR         1 (2%)         1           NEPHROPATHY         39 (78%)         48 (96%)         39           NEPHROSIS, NOS         1 (2%)         1         1           NECROSIS, MEDULLARY         1 (2%)         1         1           PIGMENTATION, NOS         1 (2%)         1         1           #KIDNEY/CORTEX         (50)         (50)         (50)           OCYST, NOS         1 (2%)         1         1           #KIDNEY/TUBULE         (50)         (50)         (50)           DILATATION, NOS         3 (6%)         9         9           #KIDNEY/PELVIS         (50)         (50)         (50)           HEMORRHAGE         1 (2%)         1         1           #URINATION, NOS         1 (2%)         1         1           #UBLADDER/MUCOSA         (50)         (50)                                                                                                                                                  | NARY SYSTEM                           |         |          |       |                |      |            |
| CALCULUS, UNKN GROSS OR MICRO       1 (2%)         HYDRONEPHROSIS       1 (2%)         INFLAMMATION, SUPPURATIVE       1 (2%)         INFLAMMATION, SUPPURATIVE       1 (2%)         INFLAMMATION, CHRONIC       1 (2%)         SCAR       1 (2%)         NEPHROPATHY       39 (78%)       48 (96%)       39         NEPHROSIS, NOS       1 (2%)       1       1         NEPHROSIS, NOS       1 (2%)       1       1         PIGMENTATION, NOS       1 (2%)       1       1         #KIDNEY/CORTEX       (50)       (50)       (50)       (50)         OLIATATION, NOS       1 (2%)       1       1       1         #KIDNEY/TUBULE       (50)       (50)       (50)       (50)         DILATATION, NOS       1 (2%)       3       6%)       9         #KIDNEY/PEUVIS       (50)       (50)       (50)       (50)         HEMORRHAGE       1 (2%)       1       1       1         #URINARY BLADDER       (50)       (50)       (50)       (50)         HEMORRHAGE       1 (2%)       1       1       2%)         #UBLADDERSUBMUCOSA       (50)       (50)       (50)       1       2%)                                                                                                                                                                                                      |                                       | (50)    |          | (50)  |                | (50) |            |
| HYDRONEPHROSIS       1 (2%)       1         CYST, NOS       1 (2%)       1 (2%)         INFLAMMATION, SUPPURATIVE       1 (2%)       1 (2%)         INFLAMMATION, CHRONIC       1 (2%)       1 (2%)         SCAR       1 (2%)       1 (2%)         NEPHROPATHY       39 (78%)       48 (96%)       39         NEPHROSIS, NOS       1 (2%)       1 (2%)         PIGMENTATION, NOS       1 (2%)       1 (2%)         #KIDNEY/CORTEX       (50)       (50)       (50)         CYST, NOS       1 (2%)       1 (2%)       1 (2%)         #KIDNEY/TUBULE       (50)       (50)       (50)         DILATATION, NOS       1 (2%)       1 (2%)       1 (2%)         PIGMENTATION, NOS       3 (6%)       9       4         HEMORRHAGE       1 (2%)       (50)       (50)         HEMORRHAGE       1 (2%)       1 (2%)       1 (2%)         #U.BLADDER/MUCOSA       (50)       (50)       (50)         HEMORRHAGE       1 (2%)       1 (2%)       1 (2%)         #U.BLADDER/MUCOSA       (50)       (50)       (50)         HEMORRHAGE       1 (2%)       1 (2%)       1 (2%)         #U.BLADDER/MUCOSA       (5                                                                                                                                                                                     |                                       | (00)    |          |       | (2%)           | (00) |            |
| CYST, NOS         1         (2%)           INFLAMMATION, SUPPURATIVE         1         (2%)           INFLAMMATION, CHRONIC         1         (2%)           SCAR         1         (2%)           NEPHROSIS, NOS         1         (2%)           NEPKROSIS, MEDULLARY         39         (78%)         48         (96%)         39           PIGMENTATION, NOS         1         (2%)         1         (2%)         1           PIGMENTATION, NOS         1         (2%)         1         (2%)         1         (50)         (50)         (50)         (50)         (50)         (50)         (50)         (50)         (50)         (50)         (50)         (50)         (50)         (50)         (50)         (50)         (50)         (50)         (50)         (50)         (50)         (50)         (50)         (50)         (50)         (50)         (50)         (50)         (50)         (50)         (50)         (50)         (50)         (50)         (50)         (50)         (50)         (50)         (50)         (50)         (50)         (50)         (50)         (50)         (50)         (50)         (50)         (50)         (50)         (50)         (50) </td <td></td> <td>1</td> <td>(2%)</td> <td>-</td> <td>/</td> <td>1</td> <td>(2%)</td> |                                       | 1       | (2%)     | -     | /              | 1    | (2%)       |
| INFLAMMATION, SUPPURATIVE       1 (2%)         INFLAMMATION, CHRONIC       1 (2%)         SCAR       1 (2%)         NEPHROPATHY       39 (78%)       48 (96%)       39         NEPHROSIS, NOS       1 (2%)         NEPHROSIS, NOS       1 (2%)         PIGMENTATION, NOS       1 (2%)         #KIDNEY/CORTEX       (50)       (50)         (50)       (50)       (50)         CYST, NOS       1 (2%)         #KIDNEY/CORTEX       (50)       (50)         (50)       (50)       (50)         DILATATION, NOS       1 (2%)         PIGMENTATION, NOS       3 (6%)       9         #KIDNEY/PELVIS       (50)       (50)       (50)         PIGMENTATION, NOS       3 (6%)       9         #KIDNEY/PELVIS       (50)       (50)       (50)         HEMORRHAGE       1 (2%)       1       1         #UBLADDER/MUCOSA       (50)       (50)       (50)       (50)         HEMORRHAGE       1 (2%)       1       2         #UBLADDER/SUBMUCOSA       (50)       (50)       (50)       (50)         INFLAMMATION, CHRONIC       1 (2%)       2       1         #PITUITARY <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td>()</td>                                                                                                                                                |                                       |         |          |       |                | -    | ()         |
| INFLAMMATION, CHRONIC         1         (2%)           SCAR         1         (2%)           NEPHROPATHY         39         (78%)         48         (96%)         39           NEPHROSIS, NOS         1         (2%)         1         1           NECROSIS, MEDULLARY         1         (2%)         1         1           PIGMENTATION, NOS         1         (2%)         (50)         (50)         (50)           VEXTUBULE         (50)         (50)         (50)         (50)         (50)           PIGMENTATION, NOS         1         (2%)         9         (50)         (50)         (50)           PIGMENTATION, NOS         3         (6%)         9         (50)         (50)         (50)         (50)           PIGMENTATION, NOS         1         (2%)         9         (50)         (50)         (50)         (50)         (50)         (50)         (50)         (50)         (50)         (50)         (50)         (50)         (50)         (50)         (50)         (50)         (50)         (50)         (50)         (50)         (50)         (50)         (50)         (50)         (50)         (50)         (50)         (50)         (50)                                                                                                               |                                       | -       | (=)      | 1     | (2%)           |      |            |
| SCAR       1 (2%)         NEPHROPATHY       39 (78%)       48 (96%)       39         NEPROSIS, NOS       1       1       2%)       1         PIGMENTATION, NOS       1 (2%)       1       1       2%)         #KIDNEY/CORTEX       (50)       (50)       (50)       (50)         CYST, NOS       1 (2%)       1       2%)         #KIDNEY/TUBULE       (50)       (50)       (50)         DILATATION, NOS       1 (2%)       1       2%)         PIGMENTATION, NOS       1 (2%)       3       (6%)       9         #KIDNEY/TUBULE       (50)       (50)       (50)       (50)         PIGMENTATION, NOS       3 (6%)       9            PIGMENTATION, NOS       1 (2%)       3       (6%)       9         #KIDNEY/PELVIS       (50)       (50)       (50)       (50)       (50)         HEMORRHAGE       1 (2%)       1       (2%)       1           #U.BLADDER/SUBMUCOSA       (50)       (50)       (50)       (50)       (50)       (50)       (50)          IMBORRHAGE       1 (2%)       1       (2%)       2                                                                                                                                                                                                                                                                         |                                       |         |          |       |                |      |            |
| NEPHROPATHY       39 (78%)       48 (96%)       39         NEPHROSIS, NOS       1       1         NECROSIS, MEDULLARY       1 (2%)       1         PIGMENTATION, NOS       1 (2%)       1         #KIDNEY/CORTEX       (50)       (50)       (50)         CYST, NOS       1 (2%)       1       (2%)         #KIDNEY/CORTEX       (50)       (50)       (50)         DILATATION, NOS       1 (2%)       1       (2%)         PIGMENTATION, NOS       3 (6%)       9         #KIDNEY/DELVIS       (50)       (50)       (50)         PIGMENTATION, NOS       3 (6%)       9         #KIDNEY/PELVIS       (50)       (50)       (50)         HEMORRHAGE       1 (2%)       1       (50)       (50)         HEMORRHAGE       1 (2%)       1       (2%)       1       (2%)         #U.BLADDER/MUCOSA       (50)       (50)       (50)       (50)       (50)         HUBLADDER/MUCOSA       (50)       (50)       (50)       (50)       (50)         #U.BLADDER/MUCOSA       (50)       (50)       (50)       (50)       (50)         INFLAMMATION, CHRONIC       1 (2%)       1       (2%)                                                                                                                                                                                                      |                                       | 1       | (2%)     |       | •              |      |            |
| NEPHROSIS, NOS       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1                                                                                                                                                                                                                                                                                                     |                                       |         |          | 48    | (96%)          | 39   | (78%)      |
| NECROSIS, MEDULLARY       1 (2%)         PIGMENTATION, NOS       1 (2%)         #KIDNE Y/CORTEX       (50)       (50)         OCYST, NOS       1 (2%)         #KIDNE Y/TUBULE       (50)       (50)         pIGMENTATION, NOS       1 (2%)         #KIDNE Y/TUBULE       (50)       (50)         PIGMENTATION, NOS       1 (2%)         PIGMENTATION, NOS       3 (6%)       9         #KIDNE Y/PEUVIS       (50)       (50)       (50)         HEMORRHAGE       1 (2%)       (50)       (50)         #URINARY BLADDER       (50)       (50)       (50)         #UBLADDER/MUCOSA       (50)       (50)       (50)         HYDERPLASIA, EPITHELIAL       1 (2%)       1       (2%)         #UBLADDER/SUBMUCOSA       (50)       (50)       (50)       (50)         HYDERPLASIA, EPITHELIAL       1 (2%)       1       (2%)       1         #UBLADDER/SEROSA       (50)       (50)       (50)       (50)         INFLAMMATION, CHRONIC       1 (2%)       1       2       1         #PITUITARY       (50)       (48)       (49)       3         CYST, NOS       2 (4%)       1 (2%)       1       <                                                                                                                                                                                          |                                       |         |          |       |                |      | (2%)       |
| PIGMENTATION, NOS       1 (2%)         #KIDNEY/CORTEX       (50)       (50)       (50)         CYST, NOS       1 (2%)       (50)       (50)       (50)         #KIDNEY/TUBULE       (50)       (50)       (50)       (50)         DILATATION, NOS       1 (2%)       1 (2%)       9         #KIDNEY/TUBULE       (50)       (50)       (50)       (50)         DILATATION, NOS       3 (6%)       9         #KIDNEY/PELVIS       (50)       (50)       (50)         HEMORRHAGE       1 (2%)       1       1         #URINARY BLADDER       (50)       (50)       (50)         HEMORRHAGE       1 (2%)       1       1         #U.BLADDER/MUCOSA       (50)       (50)       (50)         HEMORRHAGE       1 (2%)       1       1         #U.BLADDER/SUBMUCOSA       (50)       (50)       (50)         HEMORRHAGE       1 (2%)       1       2         #U.BLADDER/SUBMUCOSA       (50)       (50)       (50)         INFLAMMATION, CHRONIC       1 (2%)       2       1         #PITUITARY       (50)       (48)       (49)         CYST, NOS       2 (4%)       1 (2%)                                                                                                                                                                                                                    |                                       |         |          | 1     | (2%)           | -    | <b>,</b> , |
| #KIDNEY/CORTEX       (50)       (50)       (50)         CYST, NOS       1 (2%)         #KIDNEY/TUBULE       (50)       (50)       (50)         DILATATION, NOS       1 (2%)         PIGMENTATION, NOS       3 (6%)       9         #KIDNEY/PELVIS       (50)       (50)       (50)         HEMORRHAGE       1 (2%)       (50)       (50)       (50)         HEMORRHAGE       1 (2%)       (50)       (50)       (50)       (50)         #URINARY BLADDER       (50)       (50)       (50)       (50)       (50)         #UBLADDER/MUCOSA       (50)       (50)       (50)       (50)       (50)         #UBLADDER/SUBMUCOSA       (50)       (50)       (50)       (50)       (50)         HEMORRHAGE       1 (2%)       1 (2%)       (2%)       (50)       (50)       (50)         #UBLADDER/SUBMUCOSA       (50)       (50)       (50)       (50)       (50)       (50)         INFLAMMATION, CHRONIC       1 (2%)       1 (2%)       2       (48)       (49)         CYST, NOS       2 (4%)       1 (2%)       2       1       (2%)       1       (2%)       1       1       1       1       1                                                                                                                                                                                          |                                       |         |          |       |                |      |            |
| CYST, NOS       1 (2%)         #KIDNEY/TUBULE       (50)       (50)       (50)         DILATATION, NOS       1 (2%)       1 (2%)         PIGMENTATION, NOS       3 (6%)       9         #KIDNEY/PELVIS       (50)       (50)       (50)         HEMORRHAGE       1 (2%)       (50)       (50)         #URINARY BLADDER       (50)       (50)       (50)         HEMORRHAGE       1 (2%)       (50)       (50)         #U.BLADDER/MUCOSA       (50)       (50)       (50)         HYPERPLASIA, EPITHELIAL       1 (2%)       (2%)       (50)         #U.BLADDER/SUBMUCOSA       (50)       (50)       (50)       (50)         HEMORRHAGE       1 (2%)       (2%)       (50)       (50)         #U.BLADDER/SEROSA       (50)       (50)       (50)       (50)         INFLAMMATION, CHRONIC       1 (2%)       2       (48)       (49)         CYST, NOS       2 (4%)       1 (2%)       2         HEMOSIDEROSIS       2 (4%)       1 (2%)       3         HYPERPLASIA, NOS       1 (2%)       3       ANGIECTASIS       1 (2%)         HYPERPLASIA, NOS       11 (2%)       12 (25%)       6                                                                                                                                                                                                |                                       | (50)    |          |       | (=,            | (50) |            |
| #KIDNEY/TUBULE       (50)       (50)       (50)         DILATATION, NOS       1       (2%)         PIGMENTATION, NOS       3       (6%)       9         #KIDNEY/PELVIS       (50)       (50)       (50)         HEMORRHAGE       1       (2%)       (50)         #URINARY BLADDER       (50)       (50)       (50)         #URINARY BLADDER/MUCOSA       (50)       (50)       (50)         #UBLADDER/SUBMUCOSA       (50)       (50)       (50)         #UBLADDER/SUBMUCOSA       (50)       (50)       (50)         #UBLADDER/SEROSA       (50)       (50)       (50)         INFLAMMATION, CHRONIC       1       (2%)       2         #PITUITARY       (50)       (48)       (49)         CYST, NOS       1       (2%)       2         HYPERPLASIA, FOCAL       5       (10%)       6       (13%)       3         ANGIECTASIS       11       (22%)       1       (2%)       6         #PI                                                                                                                                                                                                                 |                                       | (00)    |          | • •   | (2%)           | ()   |            |
| DILATATION, NOS       1 (2%)         PIGMENTATION, NOS       3 (6%)       9         #KIDNEY/PELVIS       (50)       (50)       (50)         #URINARY BLADDER       (50)       (50)       (50)         #URINARY BLADDER       (50)       (50)       (50)         #URINARY BLADDER       (50)       (50)       (50)         #U.BLADDER/MUCOSA       (50)       (50)       (50)         #U.BLADDER/SUBMUCOSA       (50)       (50)       (50)         #U.BLADDER/SUBMUCOSA       (50)       (50)       (50)         #U.BLADDER/SUBMUCOSA       (50)       (50)       (50)         #U.BLADDER/SEROSA       (50)       (50)       (50)         #U.BLADDER/SEROSA       (50)       (50)       (50)         INFLAMMATION, CHRONIC       1 (2%)       2         #PITUITARY       (50)       (48)       (49)         CYST, NOS       2 (4%)       2         HEMOSIDEROSIS       2 (4%)       1 (2%)       3         HYPERPLASIA, NOS       1 (2%)       3       3         ANGIECTASIS       11 (22%)       12 (25%)       6         #PITUITARY ACIDOPHIL       (50)       (48)       (49)         HYPE                                                                                                                                                                                              |                                       | (50)    |          |       | (=,            | (50) |            |
| PIGMENTATION, NOS       3 (6%)       9         #KIDNEY/PELVIS       (50)       (50)       (50)         HEMORRHAGE       1 (2%)       7       7         #URINARY BLADDER       (50)       (50)       (50)       (50)         #U.BLADDER/MUCOSA       (50)       (50)       (50)       (50)         #U.BLADDER/MUCOSA       (50)       (50)       (50)       (50)         #U.BLADDER/SUBMUCOSA       (50)       (50)       (50)       (50)         #U.BLADDER/SEROSA       (50)       (50)       (50)       (50)         INFLAMMATION, CHRONIC       1 (2%)       1       (2%)         ENDOCRINE SYSTEM       #PITUITARY       (50)       (48)       (49)         CYST, NOS       2 (4%)       1       (2%)       1       (2%)       1         HYPERPLASIA, NOS       1 (2%)       1 (2%)       3       ANGIECTASIS       1 (2%)       6       6         #PITUITARY ACIDOPHIL       (50) <td></td> <td>(00)</td> <td></td> <td></td> <td>(2%)</td> <td>(,</td> <td></td>                                                                                          |                                       | (00)    |          |       | (2%)           | (,   |            |
| # KIDNE Y/PELVIS       (50)       (50)       (50)         HEMORRHAGE       1 (2%)       (50)       (50)         # URINARY BLADDER       (50)       (50)       (50)         HEMORRHAGE       1 (2%)       (50)       (50)         # U.BLADDER/MUCOSA       (50)       (50)       (50)         # U.BLADDER/MUCOSA       (50)       (50)       (50)         # U.BLADDER/SUBMUCOSA       (50)       (50)       (50)         # PITUITARY       (50)       (48)       (49)         CYST, NOS       1 (2%)       1 (2%)       3         HYPERPLASIA, NOS       1 (2%)       1 (2%)       6                                                                                                                                                                                |                                       |         |          |       |                | 9    | (18%)      |
| HEMORRHAGE       1 (2%)         #URINARY BLADDER       (50)       (50)       (50)         #URINARY BLADDER       1 (2%)       (50)       (50)       (50)         #U.BLADDER/MUCOSA       (50)       (50)       (50)       (50)         #U.BLADDER/SUBMUCOSA       (50)       (50)       (50)       (50)         INFLAMMATION, CHRONIC       1 (2%)       2       2         #PITUITARY       (50)       (48)       (49)         CYST, NOS       1 (2%)       1 (2%)       3         HYPERPLASIA, FOCAL       5 (10%)       6 (13%)       3         ANGIECTASIS       11 (22%)       12                                                                                                                                                                       |                                       | (50)    |          |       | (0,0)          |      | (10,0)     |
| #URINARY BLADDER       (50)       (50)       (50)         HEMORRHAGE       1 (2%)       (50)       (50)         #U. BLADDER/MUCOSA       (50)       (50)       (50)         #U.BLADDER/SUBMUCOSA       (50)       (50)       (50)         #VIDELAMERALE       (50)       (48)       (49)         CYST, NOS       1 (2%)       2       2         HYPERPLASIA, NOS       1 (2%)       2       4         HYPERPLASIA, FOCAL       5 (10%)       6 (13%)       3         ANGIECTASIS       11 (22%)       12 (25%)       6                                                                                                                                                                                       |                                       |         | (296)    | (00)  |                | (00) |            |
| HEMORRHAGE       1 (2%)         #U. BLADDER/MUCOSA       (50)       (50)       (50)         #U.BLADDER/SUBMUCOSA       (50)       (50)       (50)         #U.BLADDER/SUBMUCOSA       (50)       (50)       (50)         #U.BLADDER/SUBMUCOSA       (50)       (50)       (50)         #U.BLADDER/SUBMUCOSA       (50)       (50)       (50)         #U.BLADDER/SEROSA       (50)       (50)       (50)         #U.BLADDER/SEROSA       (50)       (50)       (50)         #U.BLADDER/SEROSA       (50)       (50)       (50)         #U.BLADDER/SEROSA       (50)       (50)       (50)         INFLAMMATION, CHRONIC       1 (2%)       1 (2%)       2         ENDOCRINE SYSTEM       *       *       2         #PITUITARY       (50)       (48)       (49)         CYST, NOS       2 (4%)       1 (2%)       2         HEMOSIDEROSIS       2 (4%)       1 (2%)       2         HYPERPLASIA, FOCAL       5 (10%)       6 (13%)       3         ANGIECTASIS       11 (22%)       12 (25%)       6         #PITUITARY ACIDOPHIL       (50)       (48)       (49)         HYPERPLASIA, NOS       1 (2%)                                                                                                                                                                                      |                                       |         | (2,0)    | (50)  |                | (50) |            |
| #U. BLADDER/MUCOSA       (50)       (50)       (50)         HYPERPLASIA, EPITHELIAL       1 (2%)         #U.BLADDER/SUBMUCOSA       (50)       (50)         INFLAMMATION, CHRONIC       1 (2%)       (2%)         ENDOCRINE SYSTEM       *       2         #PITUITARY       (50)       (48)       (49)         CYST, NOS       2 (4%)       2         HEMOSIDEROSIS       2 (4%)       2         HYPERPLASIA, NOS       1 (2%)       3         ANGIECTASIS       11 (22%)       12 (25%)       6         #PITUITARY ACIDOPHIL       (50)       (48)       (49)         HYPERPLASIA, NOS       1 (2%)       1 (2%)       4         #ADRENAL       (49)       (50)       (50)       <                                                                                                                                                                                |                                       |         | (296)    | (00)  |                | (,   |            |
| HYPERPLASIA, EPITHELIAL       1 (2%)         #U.BLADDER/SUBMUCOSA       (50)       (50)         HEMORRHAGE       1 (2%)         #U.BLADDER/SEROSA       (50)       (50)         Sendocrine SYSTEM       1 (2%)         #PITUITARY       (50)       (48)         CYST, NOS       2 (4%)         HEMOSIDEROSIS       2 (4%)         HYPERPLASIA, NOS       1 (2%)         HYPERPLASIA, FOCAL       5 (10%)       6 (13%)       3         ANGIECTASIS       11 (22%)       12 (25%)       6         #PITUITARY ACIDOPHIL       (50)       (48)       (49)         HYPERPLASIA, NOS       1 (2%)       4         #PITUTARY ACIDOPHIL       (50)       (48)       (49)         HYPERPLASIA, NOS       1 (2%)       1 (2%)       6         #ADRENAL       (49)       (50)       (50)       (50)                                                                                                                                                                                                                                                                                                  |                                       |         | (2,0)    | (50)  |                | (50) |            |
| #U.BLADDER/SUBMUCOSA       (50)       (50)       (50)         HEMORRHAGE       1 (2%)         #U.BLADDER/SEROSA       (50)       (50)         INFLAMMATION, CHRONIC       1 (2%)         ENDOCRINE SYSTEM       1 (2%)         #PITUITARY       (50)       (48)       (49)         CYST, NOS       2 (4%)       2         HEMOSIDEROSIS       2 (4%)       1 (2%)         HYPERPLASIA, NOS       1 (2%)       3         ANGIECTASIS       11 (22%)       12 (25%)       6         #PITUITARY ACIDOPHIL       (50)       (48)       (49)         HYPERPLASIA, NOS       1 (2%)       6       1         #ANGIECTASIS       11 (22%)       12 (25%)       6         #PITUITARY ACIDOPHIL       (50)       (48)       (49)         HYPERPLASIA, NOS       1 (2%)       1       1         #ADRENAL       (49)       (50)       (50)       (50)                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                       | (00)    |          |       | (2%)           | ()   |            |
| HEMORRHAGE       1 (2%)         #U.BLADDER/SEROSA       (50)       (50)         INFLAMMATION, CHRONIC       1 (2%)         ENDOCRINE SYSTEM       1 (2%)         #PITUITARY       (50)       (48)       (49)         CYST, NOS       2 (4%)       2         HEMOSIDEROSIS       2 (4%)       1 (2%)         HYPERPLASIA, NOS       1 (2%)       3         ANGIECTASIS       11 (22%)       12 (25%)       6         #PITUITARY ACIDOPHIL       (50)       (48)       (49)         HYPERPLASIA, NOS       1 (2%)       6         #PITUITARY ACIDOPHIL       (50)       (48)       (49)         HYPERPLASIA, NOS       1 (2%)       4       4         #ADRENAL       (49)       (50)       (50)       (50)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       | (50)    |          |       | (=)            | (50) |            |
| #U.BLADDER/SEROSA       (50)       (50)       (50)         INFLAMMATION, CHRONIC       1       (2%)         ENDOCRINE SYSTEM       (50)       (48)       (49)         CYST, NOS       2       2         HEMOSIDEROSIS       2       (4%)       2         HYPERPLASIA, NOS       1       (2%)       2         ANGIECTASIS       11       (2%)       3         #PITUITARY ACIDOPHIL       (50)       (48)       (49)         HYPERPLASIA, NOS       1       (2%)       6         #PITUITARY ACIDOPHIL       (50)       (48)       (49)         HYPERPLASIA, NOS       1       (2%)       12       (25%)         #ADRENAL       (49)       (50)       (50)       (50)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                       | (00)    |          |       | (2%)           | (00) |            |
| INFLAMMATION, CHRONIC       1 (2%)         ENDOCRINE SYSTEM       (50)       (48)       (49)         CYST, NOS       2       2         HEMOSIDEROSIS       2 (4%)       2         HYPERPLASIA, NOS       1 (2%)       2         HYPERPLASIA, FOCAL       5 (10%)       6 (13%)       3         ANGIECTASIS       11 (22%)       12 (25%)       6         #PITUITARY ACIDOPHIL       (50)       (48)       (49)         HYPERPLASIA, NOS       1 (2%)       12 (25%)       6         #ADRENAL       (49)       (50)       (50)       (50)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       | (50)    |          |       |                | (50) |            |
| #PITUITARY       (50)       (48)       (49)         CYST, NOS       2       2         HEMOSIDEROSIS       2       (4%)       2         HYPERPLASIA, NOS       1       (2%)         HYPERPLASIA, FOCAL       5       (10%)       6       (13%)       3         ANGIECTASIS       11       (22%)       12       (25%)       6         #PITUITARY ACIDOPHIL       (50)       (48)       (49)         HYPERPLASIA, NOS       1       (2%)       4         #ADRENAL       (49)       (50)       (50)       (50)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                       | (       |          |       | (2%)           | (,   |            |
| #PITUITARY       (50)       (48)       (49)         CYST, NOS       2       2         HEMOSIDEROSIS       2       (4%)       2         HYPERPLASIA, NOS       1       (2%)         HYPERPLASIA, FOCAL       5       (10%)       6       (13%)       3         ANGIECTASIS       11       (22%)       12       (25%)       6         #PITUITARY ACIDOPHIL       (50)       (48)       (49)         HYPERPLASIA, NOS       1       (2%)       4         #ADRENAL       (49)       (50)       (50)       (50)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CDINE SYSTEM                          | <u></u> |          |       |                |      |            |
| CYST, NOS       2       2         HEMOSIDEROSIS       2       4%)         HYPERPLASIA, NOS       1       (2%)         HYPERPLASIA, FOCAL       5       (10%)       6       (13%)       3         ANGIECTASIS       11       (22%)       12       (25%)       6         #PITUITARY ACIDOPHIL       (50)       (48)       (49)         HYPERPLASIA, NOS       1       (2%)         #ADRENAL       (49)       (50)       (50)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                       | (50)    |          | (48)  |                | (49) |            |
| HEMOSIDEROSIS       2 (4%)         HYPERPLASIA, NOS       1 (2%)         HYPERPLASIA, FOCAL       5 (10%)       6 (13%)       3         ANGIECTASIS       11 (22%)       12 (25%)       6         #PITUITARY ACIDOPHIL       (50)       (48)       (49)         HYPERPLASIA, NOS       1 (2%)       1 (2%)         #ADRENAL       (49)       (50)       (50)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       | (00)    |          | (-=0) |                |      | (4%)       |
| HYPERPLASIA, NOS       1 (2%)         HYPERPLASIA, FOCAL       5 (10%)       6 (13%)       3         ANGIECTASIS       11 (22%)       12 (25%)       6         #PITUITARY ACIDOPHIL       (50)       (48)       (49)         HYPERPLASIA, NOS       1 (2%)       1 (2%)         #ADRENAL       (49)       (50)       (50)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                       | 9       | (4%)     |       |                | 2    | ( = 10)    |
| HYPERPLASIA, FOCAL       5 (10%)       6 (13%)       3         ANGIECTASIS       11 (22%)       12 (25%)       6         #PITUITARY ACIDOPHIL       (50)       (48)       (49)         HYPERPLASIA, NOS       1 (2%)       1 (2%)       1         #ADRENAL       (49)       (50)       (50)       (50)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       | 4       |          | 1     | (2%)           |      |            |
| ANGIECTASIS       11 (22%)       12 (25%)       6         #PITUITARY ACIDOPHIL       (50)       (48)       (49)         HYPERPLASIA, NOS       1 (2%)       1 (2%)         #ADRENAL       (49)       (50)       (50)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                       | 5       | (10%)    |       |                | 3    | (6%)       |
| #PITUITARY ACIDOPHIL         (50)         (48)         (49)           HYPERPLASIA, NOS         1 (2%)           #ADRENAL         (49)         (50)         (50)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | •                                     |         |          |       |                |      | (12%)      |
| HYPERPLASIA, NOS 1 (2%)<br>#ADRENAL (49) (50) (50)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                       |         | (/       |       | 、 <u></u> ···/ |      | (          |
| #ADRENAL (49) (50) (50)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       | (00)    |          |       | (2%)           | (    |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                       | (49)    |          |       | (              | (50) |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CYTOPLASMIC VACUOLIZATION             | • •     | (296)    |       |                | (00) |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                       | 1       |          | 2     | (6%)           | 1    | (2%)       |

## TABLE C1. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE RATS IN THE<br/>TWO-YEAR GAVAGE STUDY OF HC RED NO. 3 (Continued)

|                                                                              |       |                                        |         |               |           | -                     |
|------------------------------------------------------------------------------|-------|----------------------------------------|---------|---------------|-----------|-----------------------|
| CO                                                                           | ONTRO | L (VEH)                                | LOWI    | DOSE          | HIGH      | DOSE                  |
| ENDOCRINE SYSTEM (Continued)                                                 |       | ······································ |         |               |           |                       |
| #ADRENAL CORTEX                                                              | (49)  |                                        | (50)    |               | (50)      |                       |
| ACCESSORY STRUCTURE                                                          |       |                                        | 1       | (2%)          |           |                       |
| CYST, NOS                                                                    |       |                                        |         |               | 1         | (2%)                  |
| HEMORRHAGE, CHRONIC                                                          |       |                                        | 1       | (2%)          |           |                       |
| DEGENERATION, LIPOID                                                         |       |                                        |         | (2%)          |           |                       |
| PIGMENTATION, NOS                                                            |       |                                        | 1       | (2%)          |           | (8%)                  |
| CYTOPLASMIC VACUOLIZATION                                                    | 2     | (4%)                                   | 7       | (14%)         | 8         | (16%)                 |
| FOCAL CELLULAR CHANGE                                                        | 3     | (6%)                                   | 1       | (2%)          | 1         | (2%)                  |
| CYTOLOGIC ALTERATION, NOS                                                    |       |                                        | 1       | (2%)          |           |                       |
| HYPERPLASIA, FOCAL                                                           |       |                                        |         | (2%)          |           |                       |
| ANGIECTASIS                                                                  |       |                                        | 1       | (2%)          |           |                       |
| #ADRENAL MEDULLA                                                             | (49)  |                                        | (50)    |               | (50)      |                       |
| HYPERPLASIA, FOCAL                                                           | 1     | (2%)                                   | 8       | (16%)         | 2         | (4%)                  |
| HYPERPLASIA, DIFFUSE                                                         |       |                                        | 1       | (2%)          |           |                       |
| ANGIECTASIS                                                                  |       | (2%)                                   |         |               |           |                       |
| #THYROID                                                                     | (49)  | (1~)                                   | (49)    | (0.7)         | (50)      |                       |
| THYROGLOSSAL DUCT CYST                                                       |       | (4%)                                   |         | (2%)          | 1         | (2%)                  |
| CYSTIC FOLLICLES                                                             | 1     | (2%)                                   |         | (2%)          | _         |                       |
| PIGMENTATION, NOS                                                            |       |                                        | 1       | (2%)          |           | (10%)                 |
| HYPERPLASIA, CYSTIC                                                          |       |                                        |         |               |           | (2%)                  |
| HYPERPLASIA, C-CELL                                                          |       | (12%)                                  |         | (14%)         |           | (6%)                  |
| #THYROID FOLLICLE                                                            | (49)  |                                        | (49)    |               | (50)      |                       |
| PIGMENTATION, NOS                                                            |       |                                        | 1       | (2%)          |           | (10%)                 |
| HYPERTROPHY, NOS                                                             |       |                                        |         |               | 1         | (2%)                  |
| HYPERPLASIA, CYSTIC                                                          |       | (2%)                                   |         | <u></u>       | - <u></u> | ····· <u>-</u>        |
| REPRODUCTIVE SYSTEM                                                          | (FO)  |                                        | (50)    |               | (50)      |                       |
| *MAMMARY GLAND                                                               | (50)  | (100)                                  | (50)    | (199)         | (50)      | (001)                 |
| CYSTIC DUCTS                                                                 | 0     | (16%)                                  | 0       | (12%)         |           | (8%)<br>(2%)          |
| HYPERPLASIA, CYSTIC                                                          |       | (90)                                   |         |               | 1         | (2%)                  |
| ADENOSIS                                                                     |       | (2%)                                   | (50)    |               | (50)      |                       |
| *MAMMARY DUCT                                                                | (50)  |                                        | (50)    | (901)         | (50)      |                       |
| HEMORRHAGE                                                                   | (FO)  |                                        |         | (2%)          | (50)      |                       |
| *PREPUTIAL GLAND                                                             | (50)  | (10)                                   | (50)    | (40)          |           | (971)                 |
| CYSTIC DUCTS                                                                 | Z     | (4%)                                   | Z       | (4%)          |           | (2%)                  |
| INFLAMMATION, ACUTE SUPPURATIVE                                              |       |                                        |         | (10)          |           | (2%)                  |
| INFLAMMATION, CHRONIC                                                        |       | (00)                                   | z       | (4%)          | 1         | (2%)                  |
| INFLAMMATION, CHRONIC SUPPURATIVE                                            | 1     | (2%)                                   |         |               |           | (00)                  |
| ATROPHY, NOS                                                                 | 1     | (90)                                   |         |               | 1         | (2%)                  |
| HYPERPLASIA, NOS                                                             |       | (2%)                                   | (50)    |               | (50)      |                       |
| #PROSTATE                                                                    | (50)  |                                        | x = - , | (2%)          | (00)      |                       |
| DILATATION, NOS<br>CYSTIC DUCTS                                              |       |                                        |         | (2%)          |           |                       |
| EDEMA, NOS                                                                   |       |                                        |         | (2%)          |           |                       |
|                                                                              |       |                                        |         | (2%) (2%)     | 1         | (2%)                  |
| HEMORRHAGE                                                                   |       |                                        | T       | (270)         |           | (2%)                  |
| INFLAMMATION, INTERSTITIAL                                                   |       | (90)                                   | c       | (12%)         |           | (270)                 |
| INFLAMMATION, SUPPURATIVE                                                    |       | (8%)<br>(2%)                           | 0       | (1470)        | 3         | (070)                 |
| INFLAMMATION, ACUTE SUPPURATIVE                                              |       | (2%)<br>(4%)                           |         |               |           | (2%)                  |
| INFLAMMATION, ACUTE/CHRONIC                                                  |       | (4%)<br>(2%)                           |         | (906)         |           |                       |
| INFLAMMATION, CHRONIC                                                        |       | (2%)<br>(2%)                           |         | (8%)<br>(4%)  |           | ( <b>4%</b> )<br>(6%) |
| INFLAMMATION, CHRONIC SUPPURATIVE                                            | 1     | (2%)                                   |         | (4%)<br>(9%)  | 3         | (6%)                  |
| NECROSIS, NOS                                                                |       |                                        |         | (2%)<br>(2%)  |           |                       |
| PIGMENTATION, NOS                                                            | ,     | (296)                                  | -       | (2%)<br>(4%)  | 0         | (AGL)                 |
| HYPERPLASIA, EPITHELIAL<br>•SEMINAL VESICLE                                  |       | (2%)                                   |         | (4%)          |           | (4%)                  |
|                                                                              | (50)  |                                        | (50)    |               | (50)      | (2%)                  |
| HEMORRHAGE                                                                   |       |                                        | 9       | (4%)          | 1         | (2.10)                |
| INFLAMMATION, CHRONIC                                                        |       |                                        | 4       | (-270)        | 1         | (2%)                  |
| INFLAMMATION CUDONIC SUDDIDATIVE                                             |       |                                        |         |               |           |                       |
| INFLAMMATION, CHRONIC SUPPURATIVE                                            | 1     | (99)                                   | 10      | (9196)        |           |                       |
| INFLAMMATION, CHRONIC SUPPURATIVE<br>ATROPHY, NOS<br>HYPERPLASIA, EPITHELIAL | 1     | (2%)                                   |         | (24%)<br>(2%) | 13        | (26%)<br>(2%)         |

# TABLE C1. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE RATS IN THE<br/>TWO-YEAR GAVAGE STUDY OF HC RED NO. 3 (Continued)

|                                  | CONTRO | L(VEH)                                 | LOWI | OOSE  | HIGH | DOSE  |
|----------------------------------|--------|----------------------------------------|------|-------|------|-------|
| REPRODUCTIVE SYSTEM (Continued)  |        |                                        |      |       |      |       |
| #TESTIS                          | (50)   |                                        | (50) |       | (50) |       |
| HEMORRHAGIC CYST                 |        |                                        |      |       | 1    | (2%)  |
| FIBROSIS                         |        |                                        |      |       | 1    | (2%)  |
| HEMOSIDEROSIS                    |        |                                        |      |       | 1    | (2%)  |
| ATROPHY, NOS                     | 5      | (10%)                                  | 4    | (8%)  | 8    | (16%) |
| ASPERMATOGENESIS                 | 1      | (2%)                                   |      |       |      |       |
| HYPERPLASIA, INTERSTITIAL CELL   | 3      | (6%)                                   | 1    | (2%)  | 3    | (6%)  |
| *SPERMATIC CORD                  | (50)   |                                        | (50) |       | (50) | . ,   |
| STEATITIS                        | ()     |                                        |      | (2%)  | (=-) |       |
| NERVOUS SYSTEM                   |        |                                        |      |       |      | ·     |
| #BRAIN                           | (50)   |                                        | (50) |       | (50) |       |
| HEMORRHAGE                       | 3      | (6%)                                   |      |       | 1    | (2%)  |
| NECROSIS, NOS                    | 1      | (2%)                                   |      |       |      | (2%)  |
| #MEDULLA OBLONGATA               | (50)   |                                        | (50) |       | (50) |       |
| GLIOSIS                          |        |                                        |      |       | 1    | (2%)  |
| *SPINAL NERVE                    | (50)   |                                        | (50) |       | (50) |       |
| LYMPHOCYTIC INFLAMMATORY INFILT  | R      |                                        | 1    | (2%)  |      |       |
| SPECIAL SENSE ORGANS             |        |                                        |      |       |      |       |
| *EYE                             | (50)   |                                        | (50) |       | (50) |       |
| HEMORRHAGE                       | 1      | (2%)                                   |      |       | 1    | (2%)  |
| RETINOPATHY                      | 2      | (4%)                                   |      |       | 20   | (40%) |
| CATARACT                         | 2      | (4%)                                   |      |       |      | (38%) |
| PHTHISIS BULBI                   |        |                                        |      |       | 2    | (4%)  |
| *MIDDLE EAR                      | (50)   |                                        | (50) |       | (50) |       |
| INFLAMMATION, CHRONIC SUPPURATIV | 'E     |                                        |      |       | 1    | (2%)  |
| MUSCULOSKELETAL SYSTEM           |        |                                        |      |       |      |       |
| *SKULL                           | (50)   |                                        | (50) |       | (50) |       |
| HYPEROSTOSIS                     |        |                                        | 1    | (2%)  |      |       |
| BODY CAVITIES                    |        |                                        |      |       |      |       |
| *MEDIASTINUM                     | (50)   |                                        | (50) |       | (50) |       |
| HEMORRHAGE                       |        | (2%)                                   |      |       |      |       |
| *MEDIASTINAL PLEURA              | (50)   |                                        | (50) |       | (50) |       |
| INFLAMMATION, CHRONIC            |        | (2%)                                   |      |       |      |       |
| *MESENTERY                       | (50)   | (100)                                  | (50) | (00)  | (50) | (100  |
| STEATITIS<br>NECDOSIS FAT        | 5      | (10%)                                  | 4    | (8%)  |      | (10%) |
| NECROSIS, FAT                    |        | ************************************** |      |       | 1    | (2%)  |
| ALL OTHER SYSTEMS                |        |                                        |      |       |      |       |
| *MULTIPLE ORGANS                 | (50)   |                                        | (50) | (000) | (50) |       |
| PIGMENTATION, NOS                |        |                                        | 44   | (88%) | 39   | (78%) |
| OMENTUM                          | -      |                                        |      |       |      |       |
| STEATITIS                        | 1      |                                        |      |       |      |       |

# TABLE C1. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE RATS IN THE TWO-YEAR GAVAGE STUDY OF HC RED NO. 3 (Continued)

#### SPECIAL MORPHOLOGY SUMMARY NONE

# NUMBER OF ANIMALS WITH TISSUE EXAMINED MICROSCOPICALLY \* NUMBER OF ANIMALS NECROPSIED

| CC                                                           | ONTRO     | )L (VEH)      | LOWI | OOSE          | HIGH    | DOSE          |
|--------------------------------------------------------------|-----------|---------------|------|---------------|---------|---------------|
| ANIMALS INITIALLY IN STUDY                                   | 50        |               | 50   |               | 50      |               |
| ANIMALS NECROPSIED                                           | 50        |               | 50   |               | 50      |               |
| ANIMALS EXAMINED HISTOPATHOLOGICALLY                         | 50        |               | 50   |               | 50      |               |
| NTEGUMENTARY SYSTEM                                          |           |               |      |               |         |               |
| *SKIN                                                        | (50)      |               | (50) |               | ارت فيه |               |
| ULCER, NOS                                                   |           |               |      | (4%)          |         |               |
| INFLAMMATION, CHRONIC                                        |           | _             |      | (2%)          |         |               |
| HYPERKERATOSIS                                               |           | (2%)          |      | (2%)          |         | (2%)          |
| *SUBCUT TISSUE                                               | (50)      | (0~)          | (50) |               | (50)    |               |
| EDEMA, NOS                                                   |           | (2%)          |      |               |         |               |
| INFLAMMATION, NOS                                            |           | (2%)          |      | (00)          |         |               |
| INFLAMMATION, CHRONIC                                        |           | (2%)          | 1    | (2%)          |         |               |
| RESPIRATORY SYSTEM                                           |           |               |      |               |         |               |
| *NASAL CAVITY                                                | (50)      |               | (50) |               | (50)    | ( <b>A</b> ~) |
| INFLAMMATION, SUPPURATIVE                                    | /**       |               |      |               |         | (2%)          |
| #LUNG                                                        | (50)      |               | (50) | (97)          | (50)    |               |
| CONGESTION, NOS                                              | · 9       | (90)          | 1    | (2%)          |         |               |
| INFLAMMATION, FOCAL GRANULOMATOU                             |           | (2%)          |      |               |         |               |
| PIGMENTATION, NOS                                            |           | (8%)<br>(4%)  | 9    | (4%)          | 1       | (2%)          |
| HYPERPLASIA, ADENOMATOUS<br>HYPERPLASIA, ALVEOLAR EPITHELIUM | 4         | (4170)        |      | (2%)          | L       | (270)         |
| METAPLASIA, SQUAMOUS                                         |           |               |      | (2%)          |         |               |
| HEMATOPOIETIC SYSTEM                                         |           |               |      | <u></u>       |         |               |
| *MULTIPLE ORGANS                                             | (50)      |               | (50) |               | (50)    |               |
| LEUKOCYTOSIS, NOS                                            | (00)      |               |      | (2%)          | (00)    |               |
| #BONE MARROW                                                 | (49)      |               | (50) | (4 %)         | (50)    |               |
| MYELOFIBROSIS                                                | (40)      | (2%)          | (00) |               | (00)    |               |
| HYPERPLASIA, RETICULUM CELL                                  | ī         | (2%)          |      |               |         |               |
| #SPLEEN                                                      | (50)      | (= ///        | (50) |               | (50)    |               |
| CONGESTION, NOS                                              | (00)      |               |      | (2%)          | (,      |               |
| HEMOSIDEROSIS                                                |           |               |      | (2%)          | 4       | (8%)          |
| HEMATOPOIESIS                                                | 1         | (2%)          |      | (2%)          | 2       | (4%)          |
| <b>#SPLENIC CAPSULE</b>                                      | (50)      |               | (50) |               | (50)    |               |
| FIBROSIS, FOCAL                                              |           |               | 1    | (2%)          |         |               |
| <b>#PANCREATIC L. NODE</b>                                   | (50)      |               | (50) |               | (50)    |               |
| HYPERPLASIA, LYMPHOID                                        |           |               |      |               | 1       | (2%)          |
| CIRCULATORY SYSTEM                                           |           |               |      |               |         |               |
| #MANDIBULAR L. NODE                                          | (50)      |               | (50) |               | (50)    |               |
| LYMPHANGIECTASIS                                             | 1         | (2%)          |      |               |         |               |
| #HEART                                                       | (50)      | (0.0)         | (50) |               | (50)    | (07)          |
| FIBROSIS, FOCAL                                              | 1         | (2%)          |      |               |         | (2%)          |
| #MYOCARDIUM                                                  | (50)      | (800)         | (50) | (790)         | (50)    | 1000          |
| INFLAMMATION, CHRONIC                                        |           | (56%)<br>(2%) |      | (72%)<br>(2%) | 33      | (66%)         |
| INFLAMMATION, CHRONIC FOCAL                                  | 1<br>(50) | (2%)          | (50) | (2%)          | (50)    |               |
| #UTERUS<br>THROMBUS, ORGANIZED                               | (00)      |               |      | (2%)          | (00)    |               |
| #ADRENAL                                                     | (50)      |               | (50) | (2,10)        | (50)    |               |
| THROMBOSIS, NOS                                              | (00)      |               |      | (2%)          | (00)    |               |
| DIGESTIVE SYSTEM                                             |           |               |      |               |         |               |
| DIGESTIVESISIEM                                              |           |               |      |               |         |               |
| #SALIVARY GLAND                                              | (50)      |               | (49) |               | (50)    |               |

# TABLE C2. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN FEMALE RATS IN THE TWO-YEAR GAVAGE STUDY OF HC RED NO.3

|                                             | CONTRO  | L(VEH)         | LOWI | DOSE                        | HIGH     | DOSE                                    |
|---------------------------------------------|---------|----------------|------|-----------------------------|----------|-----------------------------------------|
| DIGESTIVE SYSTEM (Continued)                |         |                |      | · · · · · · · · · · · · · · |          | · • • • • • • • • • • • • • • • • • • • |
| #LIVER                                      | (50)    |                | (50) |                             | (50)     |                                         |
| HEMORRHAGE                                  | 1       | (2%)           |      |                             |          |                                         |
| LYMPHOCYTIC INFLAMMATORY INF                | ILTR 2  | (4%)           |      |                             | 2        | (4%)                                    |
| INFLAMMATION, ACUTE/CHRONIC                 |         |                |      |                             |          | (2%)                                    |
| INFLAMMATION, FOCAL GRANULOM                | ATOUS 1 | (2%)           | 3    | (6%)                        |          | (2%)                                    |
| FIBROSIS, FOCAL                             |         |                |      |                             | 1        | (2%)                                    |
| NECROSIS, NOS                               | 1       | (2%)           |      |                             | -        |                                         |
| NECROSIS, ZONAL                             |         |                |      |                             | 2        | (4%)                                    |
| PIGMENTATION, NOS                           | 1       | (2%)           |      |                             |          |                                         |
| HEMOSIDEROSIS                               |         | (0.21)         |      | (1                          | 1        | (2%)                                    |
| CYTOPLASMIC VACUOLIZATION                   |         | (8%)           | Z    | (4%)                        |          |                                         |
| BASOPHILIC CYTO CHANGE                      |         | (2%)           |      | ( <b>a</b> )                |          |                                         |
| FOCAL CELLULAR CHANGE                       |         | (2%)           |      | (8%)                        |          |                                         |
| #LIVER/CENTRILOBULAR                        | (50)    |                | (50) | ( <b>a a</b> )              | (50)     |                                         |
| CYTOPLASMIC VACUOLIZATION                   |         |                |      | (2%)                        |          |                                         |
| #BILE DUCT                                  | (50)    |                | (50) |                             | (50)     | ( <b>6</b> ~.                           |
| INFLAMMATION, CHRONIC                       |         | (0.0)          |      |                             | 1        | (2%)                                    |
| HYPERPLASIA, NOS                            | 4       | (8%)           |      |                             |          | (00)                                    |
| HYPERPLASIA, FOCAL                          | (       |                | (20) |                             |          | (2%)                                    |
| #PANCREAS                                   | (50)    |                | (50) | (0.0)                       | (50)     |                                         |
| ATROPHY, FOCAL                              |         |                |      | (2%)                        | (20)     |                                         |
| <b>#PANCREATIC ACINUS</b>                   | (50)    | (0.7)          | (50) | (0.0)                       | (50)     | (0.01)                                  |
| ATROPHY, NOS                                | -       | (2%)           |      | (8%)                        | 1        | (2%)                                    |
| ATROPHY, FOCAL                              | 2       | (4%)           | -    | (2%)                        |          | (                                       |
| HYPERPLASIA, NOS                            |         |                |      | (4%)                        | 1        | (2%)                                    |
| HYPERPLASIA, FOCAL                          | 1       | (2%)           |      | (4%)                        |          |                                         |
| HYPERPLASIA, DIFFUSE                        | (       |                |      | (2%)                        |          |                                         |
| #ESOPHAGUS                                  | (50)    |                | (50) | ( <b>A A</b> )              | (50)     |                                         |
| HYPERKERATOSIS                              |         |                |      | (2%)                        |          |                                         |
| #GASTRIC SUBMUCOSA                          | (50)    |                | (50) |                             | (50)     |                                         |
| EDEMA, NOS                                  |         | (2%)           |      |                             |          |                                         |
| INFLAMMATION, CHRONIC                       |         | (2%)           |      |                             |          |                                         |
| #FORESTOMACH                                | (50)    |                | (50) | (97)                        | (50)     |                                         |
| ULCER, NOS                                  |         | (90)           | 1    | (2%)                        |          |                                         |
| INFLAMMATION, CHRONIC                       |         | (2%)           | 1    | (90)                        |          |                                         |
| HYPERPLASIA, EPITHELIAL                     | T       | (2%)           | I    | (2%)                        | 1        | (2%)                                    |
| HYPERPLASIA, PAPILLARY<br>HYPERKERATOSIS    | 1       | (90)           | 1    | (2%)                        | 1        | (270)                                   |
|                                             |         | (2%)           |      | (270)                       | (49)     |                                         |
| #JEJUNUM                                    | (50)    |                | (49) | (90)                        | (49)     |                                         |
| INFLAMMATION, CHRONIC FOCAL                 | (EA)    |                | (50) | (2%)                        | (50)     |                                         |
| *RECTUM<br>PARASITISM                       | (50)    |                |      | (2%)                        | (00)     |                                         |
|                                             | <u></u> |                |      |                             | <u>-</u> |                                         |
| JRINARY SYSTEM                              | (EA)    |                | /EAN |                             | /EA      |                                         |
| #KIDNEY                                     | (50)    |                | (50) | (99)                        | (50)     | (904)                                   |
| CYST, NOS<br>LYMPHOCYTIC INFLAMMATORY INF   | 1 9710  | (9 <b>6</b> L) | T    | (2%)                        | 1        | (2%)                                    |
| SCAR                                        |         | (2%)<br>(2%)   |      |                             |          |                                         |
| NEPHROPATHY                                 |         | (14%)          | 19   | (24%)                       | 90       | (40%)                                   |
| PIGMENTATION, NOS                           |         | $(14\pi)$ (2%) | 12   | (4 <b>-</b> N)              | 20       | (-1070)                                 |
| ATROPHY, NOS                                |         | (2%)           |      |                             |          |                                         |
| #KIDNEY/TUBULE                              | (50)    | (470)          | (50) |                             | (50)     |                                         |
| CALCIFICATION, FOCAL                        |         | (2%)           | (00) |                             | (00)     |                                         |
|                                             |         |                | 9    | (496)                       | A        | (8%)                                    |
| PIGMENTATION, NOS<br>#KIDNEY/PELVIS         |         | (4%)           | (50) | (4%)                        | (50)     | (070)                                   |
| #RIDNE I/PELVIS<br>MINERALIZATION           | (50)    |                |      | (2%)                        | (00)     |                                         |
| MINERALIZATION                              |         |                |      |                             |          |                                         |
| HVDERDIASIA EDITUFITAT                      |         |                |      |                             |          |                                         |
| HYPERPLASIA, EPITHELIAL<br>#URINARY BLADDER | (50)    |                | (50) | (2%)                        | (50)     |                                         |

#### TABLE C2. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN FEMALE RATS IN THE TWO-YEAR GAVAGE STUDY OF HC RED NO. 3 (Continued)

| (                                                   | CONTRO       | L(VEH) | LOWI | DOSE      | HIGH | DOSE         |
|-----------------------------------------------------|--------------|--------|------|-----------|------|--------------|
| JRINARY SYSTEM (Continued)<br>#U. BLADDER/SUBMUCOSA | (50)         |        | (50) |           | (50) |              |
| INFLAMMATION, CHRONIC                               | (00)         |        | (00) |           |      | (2%)         |
| NDOCRINE SYSTEM                                     |              |        |      |           |      |              |
| #PITUITARY                                          | (50)         |        | (50) |           | (50) |              |
| CYST, NOS                                           | -            | (6%)   | 5    | (10%)     |      | (8%)         |
| MULTIPLE CYSTS                                      | 1            | (2%)   |      |           |      | (4%)         |
| HEMORRHAGE                                          |              |        |      |           |      | (2%)         |
| HEMORRHAGIC CYST                                    |              |        |      |           |      | (2%)<br>(2%) |
| NECROSIS, NOS                                       |              |        | 2    | (4%)      |      | (2%)         |
| HEMOSIDEROSIS                                       | 1            | (2%)   |      | (4%)      | +    | (470)        |
| HYPERPLASIA, NOS<br>HYPERPLASIA, FOCAL              |              | (6%)   |      | (6%)      | 1    | (2%)         |
| ANGIECTASIS                                         | -            | (30%)  |      | (32%)     |      | (30%)        |
| #ADRENAL                                            | (50)         | (00 %) | (50) | (02 %)    | (50) | (00,0)       |
| ACCESSORY STRUCTURE                                 |              | (2%)   |      |           | (00) |              |
| PIGMENTATION, NOS                                   |              | (2%)   |      |           |      |              |
| CYTOPLASMIC VACUOLIZATION                           |              | (4%)   |      | (2%)      |      |              |
| ANGIECTASIS                                         |              |        |      | (2%)      |      |              |
| #ADRENAL CORTEX                                     | (50)         |        | (50) |           | (50) |              |
| ACCESSORY STRUCTURE                                 |              |        |      | (2%)      |      |              |
| CYST, NOS                                           | 1            | (2%)   | 1    | (2%)      |      | (0.0)        |
| DEGENERATION, NOS                                   | -            |        |      | (000)     |      | (2%)         |
| CYTOPLASMIC VACUOLIZATION                           |              | (16%)  |      | (22%)     |      | (20%)        |
| FOCAL CELLULAR CHANGE                               |              | (4%)   | 2    | (4%)      | 1    | (2%)         |
| HYPERPLASIA, NODULAR                                | 1            | (2%)   | 1    | (2%)      |      |              |
| HYPERPLASIA, FOCAL<br>ANGIECTASIS                   |              |        |      | (2%) (2%) | 1    | (2%)         |
| #ADRENAL MEDULLA                                    | (50)         |        | (50) | (270)     | (50) | (2 ~)        |
| HYPERPLASIA, FOCAL                                  | (00)         |        | (00) |           |      | (2%)         |
| ANGIECTASIS                                         |              |        |      |           |      | (2%)         |
| #THYROID                                            | (50)         |        | (50) |           | (50) |              |
| THYROGLOSSAL DUCT CYST                              | 1            | (2%)   | 5    | (10%)     | 2    | (4%)         |
| CYSTIC FOLLICLES                                    | 2            | (4%)   |      |           | 1    | (2%)         |
| PIGMENTATION, NOS                                   |              |        |      |           |      | (6%)         |
| HYPERPLASIA, CYSTIC                                 |              |        |      |           |      | (2%)         |
| HYPERPLASIA, C-CELL                                 | 8            | (16%)  |      | (18%)     |      | (6%)         |
| HYPERPLASIA, FOLLICULAR-CELL                        |              |        |      | (2%)      |      | (2%)         |
| #THYROID FOLLICLE                                   | (50)         |        | (50) |           | (50) | (0~~)        |
| PIGMENTATION, NOS                                   |              |        |      | (4%)      |      | (2%)         |
| HYPERPLASIA, CYSTIC                                 | (EA)         |        | (49) | (2%)      |      | (4%)         |
| #PARATHYROID                                        | (50)         |        | (48) | (2%)      | (48) |              |
| ANGIECTASIS                                         |              |        |      | (2 %)     |      |              |
| EPRODUCTIVE SYSTEM                                  | (20)         |        | (50) |           | (50) |              |
| *MAMMARY GLAND                                      | (50)         | (46%)  | (50) | (50%)     |      | (26%)        |
| CYSTIC DUCTS<br>HYPERPLASIA, CYSTIC                 |              | (40%)  |      | (2%)      |      | (2%)         |
| ADENOSIS                                            | T            | (270)  |      | (2%)      | -    | (2,0)        |
| *MAMMARY LOBULE                                     | (5 <b>0)</b> |        | (50) | (2,0)     | (50) |              |
| HYPERPLASIA, NOS                                    |              | (2%)   |      |           |      | (2%)         |
| *CLITORAL GLAND                                     | (50)         |        | (50) |           | (50) | ~_ / • •     |
| CYSTIC DUCTS                                        | (00)         |        |      | (4%)      |      | (2%)         |
| INFLAMMATION, ACUTE SUPPURATIVE                     |              |        |      | (2%)      |      |              |
| INFLAMMATION, CHRONIC                               |              |        |      |           | 1    | (2%)         |
| INFLAMMATION, CHRONIC SUPPURATIV                    | E 1          | (2%)   |      | (4%)      |      |              |
| #UTERUS                                             | (50)         |        | (50) | (8-1)     | (50) |              |
| HYDROMETRA                                          | -            | (19)   |      | (2%)      | 1    | (2%)         |
| HEMORRHAGE                                          | 2            | (4%)   | 1    | (2%)      |      | (2%)         |
| HEMORRHAGE, CHRONIC                                 |              |        |      |           |      |              |

### TABLE C2. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN FEMALE RATS IN THE TWO-YEAR GAVAGE STUDY OF HC RED NO. 3 (Continued)

|                                    | CONTRO | L(VEH) | LOWI  | DOSE  | HIGH | DOSE     |
|------------------------------------|--------|--------|-------|-------|------|----------|
| REPRODUCTIVE SYSTEM (Continued)    |        |        |       |       |      |          |
| #UTERUS/ENDOMETRIUM                | (50)   |        | (50)  |       | (50) |          |
| CYST, NOS                          | (00)   |        |       | (2%)  |      | (4%)     |
| INFLAMMATION, SUPPURATIVE          |        |        | -     | (270) |      | (2%)     |
| HYPERPLASIA, NOS                   | 2      | (4%)   | 2     | (4%)  |      | (4%)     |
| HYPERPLASIA, CYSTIC                |        | (20%)  |       | (34%) |      | (20%     |
| HYPERPLASIA, ADENOMATOUS           |        | (      |       | (6%)  |      | (2%)     |
| #OVARY                             | (50)   |        | (50)  | (0.0) | (50) | (= / • / |
| CYST, NOS                          | (      |        |       | (2%)  |      | (2%)     |
| CYSTIC FOLLICLES                   | 3      | (6%)   |       | (4%)  |      | (4%)     |
| VERVOUS SYSTEM                     |        |        |       |       |      |          |
| #BRAIN                             | (50)   |        | (50)  |       | (50) |          |
| HEMORRHAGE                         | 2      | (4%)   |       |       |      |          |
| NECROSIS, NOS                      | 1      | (2%)   |       |       |      |          |
| #CEREBELLUM                        | (50)   |        | (50)  |       | (50) |          |
| STATUS SPONGIOSUS                  |        |        | 1     | (2%)  |      |          |
| SPECIAL SENSE ORGANS               |        |        |       |       |      |          |
| *EYE                               | (50)   |        | (50)  |       | (50) |          |
| RETINOPATHY                        |        | (2%)   |       | (38%) |      |          |
| CATARACT                           |        | (2%)   |       | (38%) |      |          |
| *EYE/CORNEA                        | (50)   |        | (50)  |       | (50) |          |
| INFLAMMATION, CHRONIC              |        |        |       |       | 1    | (2%)     |
| MUSCULOSKELETAL SYSTEM             |        |        |       |       |      |          |
| *SKULL                             | (50)   |        | (50)  |       | (50) |          |
| HYPEROSTOSIS                       |        |        |       |       |      | (2%)     |
| <b>*TARSAL JOINT</b>               | (50)   |        | (50)  |       | (50) |          |
| OSTEOARTHRITIS                     |        |        | 1     | (2%)  |      |          |
| BODY CAVITIES                      |        |        |       |       |      |          |
| *MESENTERY                         | (50)   |        | (50)  |       | (50) |          |
| STEATITIS                          | 3      | (6%)   | 2     | (4%)  |      |          |
| NECROSIS, FAT<br>PIGMENTATION, NOS |        |        | 1     | (2%)  | 1    | (2%)     |
| ·                                  |        |        | ····· |       |      |          |
| ALL OTHER SYSTEMS                  |        |        |       |       |      |          |
| •MULTIPLE ORGANS                   | (50)   |        | (50)  |       | (50) |          |
| PIGMENTATION, NOS                  |        |        | 46    | (92%) | 44   | (88%)    |
| OMENTUM                            |        |        |       |       |      |          |
| STEATITIS                          | 1      |        |       |       | 1    |          |
| BROAD LIGAMENT                     | -      |        | -     |       | _    |          |
| STEATITIS                          | 4      |        | 3     |       | 3    |          |
| INFLAMMATION, ACUTE/CHRONIC        |        |        |       |       | 1    |          |

## TABLE C2. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN FEMALE RATS IN THE TWO-YEAR GAVAGE STUDY OF HC RED NO. 3 (Continued)

SPECIAL MORPHOLOGY SUMMARY NONE

# NUMBER OF ANIMALS WITH TISSUE EXAMINED MICROSCOPICALLY • NUMBER OF ANIMALS NECROPSIED

#### APPENDIX D

# SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MICE IN THE TWO-YEAR GAVAGE STUDIES OF HC RED NO.3

| CC                                                 | ONTRO        | OL (VEH)     | LOWI | DOSE                       | HIGH     | DOSE   |
|----------------------------------------------------|--------------|--------------|------|----------------------------|----------|--------|
| ANIMALS INITIALLY IN STUDY                         | 50           |              | 50   |                            | 50       | •      |
| ANIMALS NECROPSIED                                 | 50           |              | 50   |                            | 50       |        |
| ANIMALS EXAMINED HISTOPATHOLOGICALLY               | 50           |              | 50   |                            | 50       |        |
| NTEGUMENTARY SYSTEM                                |              |              |      |                            |          |        |
| *SKIN                                              | (50)         |              | (50) |                            | (50)     |        |
| ULCER, NOS                                         |              |              | 1    | (2%)                       |          |        |
| INFLAMMATION, CHRONIC                              |              |              |      | (2%)                       |          | (2%)   |
| ULCER, CHRONIC                                     |              |              |      | (4%)                       | 1        | (2%)   |
| FIBROSIS                                           |              |              |      | (2%)                       |          |        |
| *SUBCUT TISSUE                                     | (50)         |              | (50) |                            | (50)     |        |
| INFLAMMATION, FOCAL<br>INFLAMMATION, GRANULOMATOUS |              | (2%)<br>(2%) |      |                            |          |        |
| INFECTION, FUNGAL                                  |              | (2%)         |      |                            |          |        |
| RESPIRATORY SYSTEM                                 |              |              |      |                            | <u>u</u> |        |
| *NASAL MUCOSA                                      | (50)         |              | (50) |                            | (50)     |        |
| INFLAMMATION, NOS                                  |              | (2%)         | (00) |                            | (00)     |        |
| #LUNG                                              | (50)         | ,            | (49) |                            | (50)     |        |
| CONGESTION, NOS                                    |              | (8%)         |      | (20%)                      |          | (2%)   |
| INFLAMMATION, FOCAL                                |              |              |      | (2%)                       | 5        | (10%)  |
| PNEUMONIA, ASPIRATION                              |              |              |      |                            | 1        | (2%)   |
| INFLAMMATION, SUPPURATIVE                          |              |              |      |                            | 1        | (2%)   |
| INFLAMMATION, CHRONIC FOCAL                        | 1            | (2%)         |      |                            |          |        |
| HYPERPLASIA, ALVEOLAR EPITHELIUM                   |              |              |      | (2%)                       | 1        | (2%)   |
| HISTIOCYTOSIS                                      |              |              |      | (4%)                       |          |        |
| #LUNG/ALVEOLI<br>HISTIOCYTOSIS                     | (50)         | (8%)         | (49) | (2%)                       | (50)     | (2%)   |
|                                                    |              | <u></u>      |      |                            |          |        |
| *MULTIPLE ORGANS                                   | (50)         |              | (50) |                            | (50)     |        |
| HYPERPLASIA, LYMPHOID                              |              | (4%)         |      | (6%)                       | • •      | (2%)   |
| HEMATOPOIESIS                                      |              | (2%)         | Ŭ    | $(\mathbf{U}, \mathbf{U})$ |          | (2%)   |
| #BONE MARROW                                       | (50)         |              | (49) |                            | (50)     |        |
| HYPERPLASIA, GRANULOCYTIC                          | (00)         |              |      | (4%)                       |          | (4%)   |
| #SPLEEN                                            | (50)         |              | (50) | (1))                       | (50)     | ()     |
| ATROPHY, NOS                                       | ()           |              | (00) |                            |          | (2%)   |
| ANGIECTASIS                                        |              |              | 1    | (2%)                       |          | (2%)   |
| HYPERPLASIA, LYMPHOID                              |              | (2%)         |      | (4%)                       |          | (6%)   |
| HEMATOPOIESIS                                      |              | (18%)        |      | (10%)                      |          | (12%)  |
| #MANDIBULAR L. NODE                                | (50)         | (90)         | (49) |                            | (50)     |        |
| CONGESTION, NOS                                    |              | (2%)<br>(2%) | 0    | (4%)                       | 0        | (4%)   |
| HYPERPLASIA, NOS<br>#MESENTERIC L. NODE            | (50)         | (2%)         | (49) | (4870)                     | (50)     | (**70) |
| CONGESTION, NOS                                    |              | (32%)        |      | (14%)                      |          | (8%)   |
| ANGIECTASIS                                        |              | (20%)        |      | (27%)                      |          | (32%)  |
| HYPERPLASIA, LYMPHOID                              |              | (4%)         |      | (2%)                       | 10       | (0-70) |
| HEMATOPOIESIS                                      |              | (2%)         | •    | /                          |          |        |
| <b>#INGUINAL LYMPH NODE</b>                        | (50)         |              | (49) |                            | (50)     |        |
| HYPERPLASIA, NOS                                   |              | (2%)         |      | (2%)                       | ,        |        |
| HYPERPLASIA, LYMPHOID                              |              |              |      | (4%)                       |          |        |
| #LUNG                                              | (50)         |              | (49) |                            | (50)     |        |
| LEUKOCYTOSIS, NOS                                  |              |              |      | (4%)                       |          | (2%)   |
| #LIVER                                             | (50)         | (00)         | (50) | (00)                       | (50)     | (00)   |
|                                                    | 1            | (2%)         | 1    | (2%)                       |          | (2%)   |
| LEUKOCYTOSIS, NOS                                  |              |              |      |                            | 1        | (2%)   |
| LEUKOCYTOSIS, NOS<br>HEMATOPOIESIS                 | (50)         |              | 120  |                            |          |        |
| LEUKOCYTOSIS, NOS<br>HEMATOPOIESIS<br>*GALLBLADDER | (50)         |              | (50) | (90)                       | (50)     |        |
| LEUKOCYTOSIS, NOS<br>HEMATOPOIESIS                 | (50)<br>(50) |              |      | (2%)                       |          |        |

### TABLE D1. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE MICE IN THETWO-YEAR GAVAGE STUDY OF HC RED NO.3

|                                                | CONTRO   | L (VEH)            | LOWI | DOSE       | HIGH  | DOSE           |
|------------------------------------------------|----------|--------------------|------|------------|-------|----------------|
| HEMATOPOIETIC SYSTEM (Continued)               | <u> </u> |                    |      | . <u> </u> |       |                |
| *RECTUM                                        | (50)     |                    | (50) |            | (50)  |                |
| HYPERPLASIA, RETICULUM CELL                    | (,       |                    |      | (2%)       | (***) |                |
| #KIDNEY                                        | (50)     |                    | (50) | (=,        | (50)  |                |
| HYPERPLASIA, LYMPHOID                          |          | (6%)               |      | (12%)      |       | (2%)           |
| MASTOCYTOSIS                                   | -        | (212)              |      | (2%)       | _     | <b>、</b>       |
| URCULATORY SYSTEM                              |          | <u></u>            |      |            |       |                |
| *MULTIPLE ORGANS                               | (50)     |                    | (50) |            | (50)  |                |
| PERIARTERITIS                                  |          | (2%)               |      | (2%)       |       |                |
| <b>#INGUINAL LYMPH NODE</b>                    | (50)     |                    | (49) |            | (50)  |                |
| LYMPHANGIECTASIS                               |          |                    |      | (2%)       |       |                |
| #MYOCARDIUM                                    | (50)     |                    | (49) |            | (50)  |                |
| ANGIECTASIS                                    |          |                    |      | (2%)       |       |                |
| #LIVER                                         | (50)     |                    | (50) |            | (50)  | ( <b>0</b> -1) |
| THROMBOSIS, NOS                                |          |                    | 1    | (2%)       | 1     | (2%)           |
| DIGESTIVE SYSTEM                               |          |                    |      |            |       |                |
| #LIVER                                         | (50)     | ( <b>a a</b> )     | (50) |            | (50)  |                |
| DEFORMITY, NOS                                 | 1        | (2%)               | -    | (07)       |       |                |
| CYST, NOS                                      | ~        | (10)               | 1    | (2%)       |       |                |
| HEMORRHAGE                                     | 2        | (4%)               |      | (00)       |       | (99)           |
| INFLAMMATION, FOCAL                            |          | (90)               | 1    | (2%)       | 1     | (2%)           |
| INFLAMMATION, CHRONIC FOCAL                    | 1        | (2%)               |      | (90)       |       |                |
| FIBROSIS, FOCAL                                | •        | (97)               |      | (2%)       |       |                |
| NECROSIS, FOCAL                                | 1        | (2%)               |      | (4%)       | •     | (90.)          |
| INFARCT, NOS                                   | 0        | (1~)               | 1    | (2%)       |       | (2%)<br>(4%)   |
| METAMORPHOSIS FATTY                            |          | (4%)               |      |            |       | • •            |
| PIGMENTATION, NOS                              |          | (6%)               |      | (00)       |       | (2%)           |
| FOCAL CELLULAR CHANGE                          |          | (4%)               |      | (2%)       | 2     | (4%)           |
| ANGIECTASIS                                    |          | (4%)               |      | (2%)       | (50)  |                |
| #LIVER/HEPATOCYTES                             | (50)     |                    | (50) | (901)      | (50)  |                |
| NUCLEAR ALTERATION                             | (50)     |                    |      | (2%)       | (60)  |                |
| *GALLBLADDER                                   | (50)     |                    | (50) | (40)       | (50)  |                |
| HYPERPLASIA, ADENOMATOUS                       | (50)     |                    |      | (4%)       | (50)  |                |
| *MUCOSA OF GALLBLADDER                         | (50)     | (90)               | (50) |            | (00)  |                |
| CYST, NOS                                      | (50)     | (2%)               | (50) |            | (50)  |                |
| #BILE DUCT                                     |          | (90)               | (50) |            | (00)  |                |
| DILATATION, NOS                                | 1        | (2%)<br>(2%)       |      |            |       |                |
| CYST, NOS<br>HYPERPLASIA, NOS                  |          | (2%)               | 1    | (2%)       | 1     | (2%)           |
|                                                | (50)     | (470)              | (50) | (2 10)     | (50)  | (              |
| #PANCREAS<br>CYSTIC DUCTS                      | (00)     |                    | (00) |            |       | (4%)           |
|                                                | 1        | (2%)               |      |            | 2     | ( = //)        |
| CONGESTION, NOS                                | 1        | (470)              |      |            | 1     | (2%)           |
| ATROPHY, NOS                                   |          |                    | 1    | (2%)       |       | (6%)           |
| ATROPHY, FOCAL<br>#GASTRIC FUNDAL GLAND        | (50)     |                    | (50) | (20)       | (50)  | (0.00)         |
| <b>"</b> = = = = = = = = = = = = = = = = = = = | (00)     |                    |      | (2%)       | (00)  |                |
| CYST, NOS<br>#STOMACH WALL                     | (50)     |                    | (50) | ~~~        | (50)  |                |
| #SIOMACH WALL<br>INFLAMMATION, NOS             | (00)     |                    |      | (2%)       | (00)  |                |
| #FORESTOMACH                                   | (50)     |                    | (50) |            | (50)  |                |
| INFLAMMATION, FOCAL                            | (00)     |                    |      | (2%)       | (00)  |                |
| HYPERPLASIA, EPITHELIAL                        | 1        | (2%)               |      | (6%)       |       |                |
| #COLONIC SUBMUCOSA                             | (50)     | (                  | (50) | ,          | (50)  |                |
| EDEMA, NOS                                     |          | (2%)               | (00) |            | (23)  |                |
| #CECUM                                         | (50)     |                    | (50) |            | (50)  |                |
| ANGIECTASIS                                    |          | (2%)               | (00) |            |       |                |
| 2117 VILLY X22010                              |          | ( <b>- / / / /</b> |      |            |       |                |

### TABLE D1. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE MICE IN THE<br/>TWO-YEAR GAVAGE STUDY OF HC RED NO. 3 (Continued)

|                                      | CONTRO | OL (VEH) | LOWI | DOSE           | HIGH | DOSE         |
|--------------------------------------|--------|----------|------|----------------|------|--------------|
| URINARY SYSTEM                       |        |          |      |                |      |              |
| #KIDNEY                              | (50)   | )        | (50) |                | (50) |              |
| INFLAMMATION, FOCAL                  |        |          | (    |                |      | (2%)         |
| INFLAMMATION, CHRONIC                | 1      | (2%)     |      |                |      | (,           |
| INFLAMMATION, CHRONIC FOCAL          |        |          |      |                | 1    | (2%)         |
| NEPHROSIS, NOS                       | 25     | (50%)    | 32   | (64%)          |      | (54%)        |
| GLOMERULOSCLEROSIS, NOS              |        |          |      |                |      | (2%)         |
| ATROPHY, FOCAL                       |        |          |      |                |      | (4%)         |
| #KIDNEY/MEDULLA                      | (50)   | 1        | (50) |                | (50) | <b>, . ,</b> |
| CALCIFICATION, NOS                   |        |          | (    |                |      | (2%)         |
| #BOWMAN'S CAPSULE                    | (50)   | •        | (50) |                | (50) | (=,          |
| <b>BASEMENT MEMBRANE, ALTERATION</b> |        | (4%)     | (00) |                | (,   |              |
| #KIDNEY/TUBULE                       | (50)   | . ,      | (50) |                | (50) |              |
| CYST, NOS                            | (00)   |          |      | (4%)           | (00) |              |
| DEGENERATION, HYALINE                |        |          |      | (2%)           |      |              |
| CYTOPLASMIC VACUOLIZATION            | 1      | (2%)     | -    | (2,0)          |      |              |
| #URINARY BLADDER                     | (49)   |          | (49) |                | (50) |              |
| HEMORRHAGE                           | (43)   |          | (43) |                |      | (2%)         |
| HYPERPLASIA, EPITHELIAL              | 1      | (2%)     |      |                |      | (2%) (2%)    |
|                                      | *<br>  | (270)    |      |                | 1    | (270)        |
| NDOCRINE SYSTEM                      |        |          |      |                |      |              |
| #PITUITARY                           | (46)   |          | (47) |                | (44) |              |
| EMBRYONAL DUCT CYST                  | 1      | (2%)     | 1    | (2%)           |      |              |
| FOCAL CELLULAR CHANGE                |        |          | 1    | (2%)           | 3    | (7%)         |
| #ADRENAL                             | (50)   |          | (50) |                | (50) |              |
| ACCESSORY STRUCTURE                  |        | (2%)     | ()   |                | (,   |              |
| #ADRENAL CORTEX                      | (50)   |          | (50) |                | (50) |              |
| CYST, NOS                            | (00)   |          |      | (2%)           | (00) |              |
| FIBROSIS, FOCAL                      |        |          |      | (2%)           |      |              |
| HYPERPLASIA, NODULAR                 | 1      | (2%)     |      | (6%)           |      |              |
| HYPERPLASIA, FOCAL                   | -      | (2.10)   | J    | (0,0)          | 1    | (2%)         |
| #ADRENAL MEDULLA                     | (50)   |          | (50) |                | (50) | (270)        |
| FIBROSIS, FOCAL                      | (00)   |          | (50) |                |      | (2%)         |
| HYPERPLASIA, FOCAL                   |        |          |      |                |      | (2%)         |
| #THYROID                             | (48)   |          | (50) |                |      | (270)        |
| CYSTIC FOLLICLES                     | (40)   |          |      | (99)           | (50) |              |
|                                      |        | (000)    |      | (2%)           | 10   | (000)        |
| DEGENERATION, CYSTIC                 |        | (29%)    |      | (30%)          |      | (26%)        |
| PIGMENTATION, NOS                    |        | (2%)     | 38   | (76%)          |      | (94%)        |
| HYPERPLASIA, CYSTIC                  | 1      | (2%)     |      |                | 1    | (2%)         |
| HYPERPLASIA, FOLLICULAR-CELL         |        |          |      | (2%)           |      |              |
| #THYROID FOLLICLE                    | (48)   |          | (50) |                | (50) |              |
| CRYSTALS, NOS                        |        | (6%)     | -    | (2%)           |      | (4%)         |
| HYPERPLASIA, CYSTIC                  | 3      | (6%)     | 9    | (18%)          | 12   | (24%)        |
| EPRODUCTIVE SYSTEM                   |        |          |      |                |      |              |
| *PREPUTIAL GLAND                     | (50)   |          | (50) |                | (50) |              |
| MULTIPLE CYSTS                       |        |          |      | (6%)           | (00) |              |
| CYSTIC DUCTS                         | 3      | (6%)     |      | (6%)           | ĸ    | (10%)        |
| INFLAMMATION, NOS                    |        | (2%)     |      | (4%)           |      | (10%)        |
| INFLAMMATION, SUPPURATIVE            |        | (2%)     |      | (4.70)<br>(6%) |      |              |
| DEGENERATION, SUPPORATIVE            | 1      | (470)    | 3    | (070)          |      | (2%)         |
| *SEMINAL VESICLE                     | /=^    |          | /# ~ |                |      | (2%)         |
|                                      | (50)   | (400)    | (50) | (0.0)          | (50) |              |
| DILATATION, NOS                      |        | (4%)     |      | (2%)           |      | (10%)        |
| *COAGULATING GLAND                   | (50)   |          | (50) |                | (50) |              |
| DILATATION, NOS                      | 2      | (4%)     | 1    | (2%)           |      | (8%)         |
| COLLOID CYST                         |        |          |      |                |      | (2%)         |
| #TESTIS                              | (50)   |          | (50) |                | (50) |              |
|                                      |        |          | 1    | (2%)           |      | (2%)         |
| ATROPHY, NOS                         |        |          | *    |                | ÷    |              |

## TABLE D1. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE MICE IN THE<br/>TWO-YEAR GAVAGE STUDY OF HC RED NO. 3 (Continued)

|                                     | CONTRO | L (VEH) | LOWI | DOSE  | HIGH     | DOSE  |
|-------------------------------------|--------|---------|------|-------|----------|-------|
| REPRODUCTIVE SYSTEM (Continued)     |        |         |      |       |          |       |
| *EPIDIDYMIS                         | (50)   |         | (50) |       | (50)     |       |
| GRANULOMA, SPERMATIC                |        | (2%)    | 2    | (4%)  | 1        | (2%)  |
| *SPERMATIC CORD                     | (50)   |         | (50) |       | (50)     |       |
| NECROSIS, FAT                       | 1      | (2%)    | 1    | (2%)  | 2        | (4%)  |
| NERVOUS SYSTEM                      |        |         |      |       |          |       |
| <b>#BRAIN/THALAMUS</b>              | (50)   |         | (50) |       | (50)     |       |
| PSAMMOMA BODIES                     | 17     | (34%)   | 28   | (56%) | 20       | (40%) |
| SPECIAL SENSE ORGANS                |        |         |      |       |          |       |
| *EYE                                | (50)   |         | (50) |       | (50)     |       |
| CATARACT                            |        | (2%)    | (13) |       | ·/       | (2%)  |
| PHTHISIS BULBI                      |        |         |      |       |          | (4%)  |
| *EYE/CORNEA                         | (50)   |         | (50) |       | (50)     |       |
| INFLAMMATION, NOS                   | 1      | (2%)    |      |       |          |       |
| ULCER, NOS                          |        |         |      |       | 1        | (2%)  |
| MUSCULOSKELETAL SYSTEM              |        |         |      |       |          |       |
| *SKULL                              | (50)   |         | (50) |       | (50)     |       |
| HYPEROSTOSIS                        | 1      | (2%)    |      |       |          |       |
| BODY CAVITIES                       |        |         |      |       | <u> </u> |       |
| *THORACIC CAVITY                    | (50)   |         | (50) |       | (50)     |       |
| REACTION, FOREIGN BODY              | (      |         | (,   |       | (/       | (2%)  |
| *ABDOMINAL WALL                     | (50)   |         | (50) |       | (50)     | (=)   |
| ANGIECTASIS                         |        |         | 1    | (2%)  |          |       |
| *PERITONEUM                         | (50)   |         | (50) |       | (50)     |       |
| INFLAMMATION, NOS                   |        |         |      |       |          | (2%)  |
| *MESENTERY                          | (50)   |         | (50) |       | (50)     |       |
| INFLAMMATION, FOCAL                 |        | (2%)    |      |       | _        |       |
| NECROSIS, FAT                       | 2      | (4%)    | 3    | (6%)  | 5        | (10%) |
| ALL OTHER SYSTEMS                   |        |         |      |       |          |       |
| *MULTIPLE ORGANS                    | (50)   |         | (50) |       | (50)     |       |
| DILATATION, NOS                     |        |         |      |       | 1        | (2%)  |
| INFLAMMATION, SUPPURATIVE           |        |         |      |       | 2        | (4%)  |
| REACTION, FOREIGN BODY              |        |         |      |       | 1        | (2%)  |
| OMENTUM                             |        |         |      |       | -        |       |
| NECROSIS, FAT<br>CALCIFICATION, NOS |        |         |      |       | 1        |       |

#### TABLE D1. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE MICE IN THE<br/>TWO-YEAR GAVAGE STUDY OF HC RED NO. 3 (Continued)

SPECIAL MORPHOLOGY SUMMARY NONE

# NUMBER OF ANIMALS WITH TISSUE EXAMINED MICROSCOPICALLY
\* NUMBER OF ANIMALS NECROPSIED

| С                                                    | ONTRO     | L (VEH)  | LOWI | DOSE          | HIGH     | DOSE   |
|------------------------------------------------------|-----------|----------|------|---------------|----------|--------|
| ANIMALS INITIALLY IN STUDY                           | 50        |          | 50   | <u></u>       | 50       |        |
| ANIMALS NECROPSIED                                   | 50        |          | 50   |               | 50       |        |
| ANIMALS EXAMINED HISTOPATHOLOGICALLY                 | 50        |          | 50   |               | 50       |        |
| NTEGUMENTARY SYSTEM                                  |           | <u> </u> |      |               | <u> </u> |        |
| *SKIN                                                | (50)      | (0.27)   | (50) |               | (50)     |        |
| INFLAMMATION, NOS<br>INFLAMMATION, CHRONIC           | 1         | (2%)     |      |               | 2        | (4%)   |
| RESPIRATORY SYSTEM                                   |           |          |      |               |          |        |
| #LUNG                                                | (50)      |          | (49) |               | (50)     |        |
| CONGESTION, NOS                                      |           |          | 2    | (4%)          |          | (6%)   |
| INFLAMMATION, FOCAL                                  |           |          |      |               | 1        | (2%)   |
| INFLAMMATION, INTERSTITIAL                           | 1         | (2%)     |      | (2%)          |          |        |
| HISTIOCYTOSIS                                        |           |          |      | (2%)          |          | (2%)   |
| #LUNG/ALVEOLI                                        | (50)      |          | (49) | (0))          | (50)     | (1~)   |
| HISTIOCYTOSIS                                        |           |          | 1    | (2%)          | 2        | (4%)   |
| HEMATOPOIETIC SYSTEM                                 |           |          |      |               |          |        |
| *MULTIPLE ORGANS                                     | (50)      | (1991)   | (50) | (200)         | (50)     | (10%)  |
| LEUKOCYTOSIS, NOS                                    |           | (18%)    |      | (30%)         |          | (18%)  |
| HYPERPLASIA, LYMPHOID                                |           | (8%)     |      | (6%)<br>(99%) |          | (10%)  |
| HEMATOPOIESIS<br>*MEDIASTINUM                        |           | (22%)    |      | (22%)         |          | (18%)  |
| HYPERPLASIA, LYMPHOID                                | (50)      |          | (50) | (2%)          | (50)     |        |
| #BONE MARROW                                         | (50)      |          | (49) | (470)         | (49)     |        |
| MYELOFIBROSIS                                        | (00)      |          |      | (2%)          | (40)     |        |
| HYPERPLASIA, GRANULOCYTIC                            | 7         | (14%)    |      | (14%)         | 5        | (10%)  |
| #SPLEEN                                              | (50)      | (14,20)  | (50) | (14%)         | (50)     | (10,0) |
| PIGMENTATION, NOS                                    | (00)      |          | (00) |               |          | (2%)   |
| HYPERPLASIA, LYMPHOID                                |           |          | 1    | (2%)          | -        | ()     |
| HEMATOPOIESIS                                        | 19        | (38%)    | 19   | (38%)         | 19       | (38%)  |
| #LYMPH NODE                                          | (50)      |          | (49) |               | (50)     |        |
| HYPERPLASIA, NOS                                     | 3         | (6%)     | 1    | (2%)          |          |        |
| HYPERPLASIA, LYMPHOID                                |           |          |      |               | 1        | (2%)   |
| <b>#MANDIBULAR</b> L. NODE                           | (50)      |          | (49) |               | (50)     |        |
| HYPERPLASIA, NOS                                     |           |          |      |               |          | (2%)   |
| #MEDIASTINAL L.NODE                                  | (50)      |          | (49) |               | (50)     | (0~)   |
| HYPERPLASIA, NOS                                     |           | (4%)     |      |               | 1        | (2%)   |
| HYPERPLASIA, PLASMA CELL<br>#ABDOMINAL LYMPH NODE    | (50)      | (2%)     | (49) |               | (50)     |        |
| #ABDOMINALLIMPH NODE<br>HYPERPLASIA, NOS             |           | (90)     |      | (2%)          | (60)     |        |
| #MESENTERIC L. NODE                                  | 1<br>(50) | (2%)     | (49) | (270)         | (50)     |        |
| CONGESTION, NOS                                      | (00)      |          | (40) |               |          | (4%)   |
| INFLAMMATION, NOS                                    |           |          |      |               |          | (2%)   |
| LYMPHOID DEPLETION                                   |           |          | 1    | (2%)          | -        | ,      |
| HYPERPLASIA, NOS                                     |           |          |      | (2%)          |          |        |
| ANGIECTASIS                                          | 1         | (2%)     |      | (4%)          |          |        |
| HYPERPLASIA, LYMPHOID                                |           |          |      | (2%)          |          | (2%)   |
| #RENAL LYMPH NODE                                    | (50)      |          | (49) |               | (50)     | (0~)   |
| CONGESTION, NOS                                      |           | (100)    |      | (99)          |          | (2%)   |
| HYPERPLASIA, NOS<br>#ILIAC LYMPH NODE                |           | (10%)    |      | (2%)          |          | (10%)  |
| #ILIAC LYMPH NODE<br>HYPERPLASIA, NOS                | (50)      | (40)     | (49) | (994)         | (50)     | (9a)   |
|                                                      |           | (4%)     |      | (2%)          | (50)     | (2%)   |
| <b>#INGUINAL LYMPH NODE</b><br>HYPERPLASIA, LYMPHOID | (50)      | (2%)     | (49) |               | (00)     |        |
| III FERFLADIA, LI MERVID                             |           | (470)    | (40) |               | (50)     |        |
| #LIINC                                               | (50)      |          |      |               |          |        |
| #LUNG<br>LEUKOCYTOSIS, NOS                           | (50)      | (2%)     | (49) |               | (50)     | (6%)   |

## TABLE D2.SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN FEMALE MICE IN<br/>THE TWO-YEAR GAVAGE STUDY OF HC RED NO.3

|                                         | CONTRO      | L(VEH) | LOWI  | DOSE       | HIGH | DOSE        |
|-----------------------------------------|-------------|--------|-------|------------|------|-------------|
| HEMATOPOIETIC SYSTEM (Continued)        |             |        |       |            |      |             |
| #LIVER                                  | (50)        |        | (50)  |            | (50) |             |
| LEUKOCYTOSIS, NOS                       |             | (34%)  |       | (26%)      |      | (22%)       |
| HEMATOPOIESIS                           |             | (      |       | (2%)       |      | (==,        |
| #KIDNEY                                 | (50)        |        | (50)  |            | (50) |             |
| HYPERPLASIA, LYMPHOID                   | 1           | (2%)   |       |            |      |             |
| CIRCULATORY SYSTEM                      |             |        |       |            |      |             |
| #LUNG                                   | (50)        |        | (49)  |            | (50) |             |
| EMBOLUS, SEPTIC                         |             | (2%)   | (,    |            |      |             |
| #HEART                                  | (50)        |        | (50)  |            | (50) |             |
| INFLAMMATION, FOCAL                     |             |        | 1     | (2%)       | 1    | (2%)        |
| #MYOCARDIUM                             | (50)        |        | (50)  |            | (50) |             |
| PERIARTERITIS                           |             |        |       |            | 1    | (2%)        |
| #LIVER                                  | (50)        |        | (50)  |            | (50) |             |
| THROMBOSIS, NOS                         |             | (2%)   |       |            |      |             |
| *MESENTERY                              | (50)        |        | (50)  |            | (50) |             |
| PERIARTERITIS                           |             |        | 1     | (2%)       |      |             |
| DIGESTIVE SYSTEM                        |             |        |       |            |      |             |
| #LIVER                                  | (50)        |        | (50)  |            | (50) |             |
| NECROSIS, FOCAL                         |             | (2%)   |       | (2%)       | • •  | (2%)        |
| METAMORPHOSIS FATTY                     | _           | (,     |       | (4%)       |      | (2%)        |
| PIGMENTATION, NOS                       | · 1         | (2%)   |       | (,         |      | <b>x</b> =, |
| CYTOPLASMIC VACUOLIZATION               |             | ~~~~~  |       |            | 2    | (4%)        |
| ANGIECTASIS                             |             |        |       |            |      | (2%)        |
| #LIVER/KUPFFER CELL                     | (50)        |        | (50)  |            | (50) | •           |
| PIGMENTATION, NOS                       | (/          |        |       |            |      | (2%)        |
| #LIVER/HEPATOCYTES                      | (50)        |        | (50)  |            | (50) |             |
| NUCLEAR ALTERATION                      | <b>x</b> ,  | (2%)   |       | (2%)       |      |             |
| *GALLBLADDER                            | (50)        |        | (50)  | <b>(</b> , | (50) |             |
| EDEMA, NOS                              |             | (2%)   | (•••) |            | (    |             |
| #PANCREAS                               | (50)        | (,     | (50)  |            | (50) |             |
| INFLAMMATION, NOS                       | (0.07)      |        | (     |            |      | (2%)        |
| ATROPHY, NOS                            | 1           | (2%)   |       |            |      | (2%)        |
| ATROPHY, FOCAL                          | -           | (= /*) | 1     | (2%)       |      | (2%)        |
| #STOMACH                                | (50)        |        | (50)  | (=)        | (48) | (=,         |
| INFLAMMATION, NOS                       | (,          |        |       | (2%)       | (/   |             |
| #GASTRIC MUCOSA                         | (50)        |        | (50)  |            | (48) |             |
| INFLAMMATION, FOCAL                     | ()          |        |       | (2%)       |      |             |
| #FORESTOMACH                            | (50)        |        | (50)  |            | (48) |             |
| ULCER, NOS                              | • •         | (4%)   | //    |            |      |             |
| INFLAMMATION, FOCAL                     |             | (2%)   |       |            |      |             |
| HYPERPLASIA, EPITHELIAL                 |             | (6%)   | 2     | (4%)       | 1    | (2%)        |
| #COLON                                  | (49)        |        | (49)  | -          | (49) |             |
| INFLAMMATION, NOS                       | \$ <b>/</b> |        |       |            |      | (2%)        |
| URINARY SYSTEM                          |             |        |       |            |      |             |
| #KIDNEY                                 | (50)        |        | (50)  |            | (50) |             |
| HYDRONEPHROSIS                          | (00)        |        | (23)  |            |      | (4%)        |
| INFLAMMATION, FOCAL                     |             |        | 1     | (2%)       | -    | ,           |
| LYMPHOCYTIC INFLAMMATORY INFILT         | R           |        | -     |            | 1    | (2%)        |
| INFLAMMATION, CHRONIC                   |             |        |       |            |      | (2%)        |
| PYELONEPHRITIS, CHRONIC                 |             |        | 1     | (2%)       | -    |             |
| INFLAMMATION, CHRONIC FOCAL             |             |        | -     |            | 2    | (4%)        |
| FIBROSIS, FOCAL                         |             |        |       |            |      | (2%)        |
| NEPHROSIS, NOS                          | 1           | (2%)   | 5     | (10%)      |      | (20%)       |
|                                         |             | (2%)   |       | (2%)       |      | (2%)        |
| GLOMERULOSCLEROSIS NOS                  | 1           | 12701  |       |            |      |             |
| GLOMERULOSCLEROSIS, NOS<br>ATROPHY, NOS | 1           | (270)  |       | (2%)       | -    | (2,10)      |

#### TABLE D2.SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN FEMALE MICE IN<br/>THE TWO-YEAR GAVAGE STUDY OF HC RED NO. 3 (Continued)

|                                 | contine | OL (VEH) | LOWI | DOSE  | HIGH | DOSI  |
|---------------------------------|---------|----------|------|-------|------|-------|
| URINARY SYSTEM (Continued)      |         | <u> </u> |      |       |      |       |
| #KIDNEY/TUBULE                  | (50)    |          | (50) |       | (50) |       |
| PIGMENTATION, NOS               | ,       |          | (/   |       |      | (2%)  |
| <b>#URINARY BLADDER</b>         | (50)    |          | (50) |       | (49) | (=)   |
| INFLAMMATION, NOS               |         |          | 1    | (2%)  |      |       |
| HYPERPLASIA, EPITHELIAL         |         |          | 1    | (2%)  |      |       |
| #U. BLADDER/MUCOSA              | (50)    |          | (50) |       | (49) |       |
| CYTOPLASMIC VACUOLIZATION       |         |          | 1    | (2%)  |      |       |
| ENDOCRINE SYSTEM                |         |          |      |       |      |       |
| #PITUITARY                      | (47)    |          | (45) |       | (43) |       |
| FOCAL CELLULAR CHANGE           |         | (2%)     | (    |       |      | (2%)  |
| HYPERPLASIA, FOCAL              |         | (11%)    | 3    | (7%)  |      | (2%)  |
| ANGIECTASIS                     |         | (2%)     |      | (2%)  |      | (2%)  |
| #ADRENAL                        | (50)    | ,        | (49) |       | (49) | (= /  |
| INFLAMMATION, FOCAL             |         |          | (    |       |      | (2%)  |
| NECROSIS, FOCAL                 | 1       | (2%)     |      |       | _    |       |
| #ADRENAL/CAPSULE                | (50)    |          | (49) |       | (49) |       |
| HYPERPLASIA, FOCAL              |         |          |      | (2%)  | ,    |       |
| #ADRENAL CORTEX                 | (50)    |          | (49) |       | (49) |       |
| INFLAMMATION, FOCAL             |         | (2%)     |      |       |      |       |
| #THYROID                        | (49)    |          | (48) |       | (49) |       |
| CYSTIC FOLLICLES                |         |          | 1    | (2%)  | 3    | (6%)  |
| INFLAMMATION, FOCAL             |         |          |      |       | 4    | (8%)  |
| DEGENERATION, CYSTIC            | 11      | (22%)    | 12   | (25%) | 11   | (22%) |
| PIGMENTATION, NOS               | 2       | (4%)     | 13   | (27%) | 24   | (49%) |
| HYPERPLASIA, CYSTIC             |         |          |      |       | 1    | (2%)  |
| HYPERPLASIA, FOLLICULAR-CELL    |         |          | 1    | (2%)  |      |       |
| <b>#THYROID FOLLICLE</b>        | (49)    |          | (48) |       | (49) |       |
| INFLAMMATION, FOCAL             |         | (2%)     |      |       |      |       |
| HYPERPLASIA, CYSTIC             | 5       | (10%)    | 5    | (10%) | 3    | (6%)  |
| REPRODUCTIVE SYSTEM             |         |          |      |       |      |       |
| *MAMMARY GLAND                  | (50)    |          | (50) |       | (50) |       |
| CYSTIC DISEASE                  | 6       | (12%)    | 3    | (6%)  | 8    | (16%) |
| *CLITORAL GLAND                 | (50)    |          | (50) |       | (50) |       |
| CYSTIC DUCTS                    |         |          | 1    | (2%)  |      |       |
| *VAGINAL MUCOSA                 | (50)    |          | (50) |       | (50) |       |
| HYPERPLASIA, EPITHELIAL         | 1       | (2%)     |      |       |      |       |
| #UTERUS                         | (50)    |          | (50) |       | (50) |       |
| HEMATOMA, NOS                   |         |          |      |       |      | (2%)  |
| INFLAMMATION, SUPPURATIVE       | 3       | (6%)     | 2    | (4%)  |      | (2%)  |
| #UTERUS/ENDOMETRIUM             | (50)    |          | (50) |       | (50) |       |
| HYPERPLASIA, CYSTIC             |         | (30%)    |      | (34%) |      | (36%  |
| #OVARY                          | (45)    |          | (48) | (***) | (48) |       |
| CYST, NOS                       |         | (2%)     |      | (2%)  | -    |       |
| FOLLICULAR CYST, NOS            | 8       | (18%)    | 5    | (10%) |      | (13%) |
| PAROVARIAN CYST                 |         |          |      |       |      | (2%)  |
| INFLAMMATION, SUPPURATIVE       |         |          |      | (2%)  |      | (6%)  |
| ABSCESS, CHRONIC                |         |          |      | (2%)  | 1    | (2%)  |
| HYPERPLASIA, NOS<br>ANGIECTASIS |         |          | 1    | (2%)  | 1    | (2%)  |
| NERVOUS SYSTEM                  | <u></u> |          |      |       |      |       |
| ARMA OOD DIDIEM                 | (50)    |          | (50) |       | (50) |       |
| <b>#BRAIN/THALAMUS</b>          |         |          |      |       |      |       |

### TABLE D2. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN FEMALE MICE IN<br/>THE TWO-YEAR GAVAGE STUDY OF HC RED NO. 3 (Continued)

| (                                      | CONTROL (VEH) | LOWI | DOSE  | HIGH      | DOSE           |
|----------------------------------------|---------------|------|-------|-----------|----------------|
| SPECIAL SENSE ORGANS<br>NONE           |               |      |       |           |                |
| MUSCULOSKELETAL SYSTEM<br>NONE         |               |      |       |           |                |
| BODY CAVITIES                          |               |      |       |           |                |
| *BODY CAVITIES<br>INFECTION, BACTERIAL | (50)          | (50) |       | (50)<br>1 | (2%)           |
| *ABDOMINAL CAVITY                      | (50)          | (50) |       | (50)      |                |
| HEMORRHAGIC CYST                       |               |      |       | 1         | (2%)           |
| HEMORRHAGE, CHRONIC                    |               |      | (2%)  |           |                |
| *PERITONEUM                            | (50)          | (50) |       | (50)      | ( <b>A A</b> ) |
| INFLAMMATION, NOS                      |               |      |       |           | (2%)           |
| NECROSIS, FAT                          |               |      |       |           | (2%)<br>(2%)   |
| CALCIFICATION, FOCAL                   | (50)          | (50) |       | (50)      | (270)          |
| *MESENTERY<br>INFLAMMATION, NOS        | (50)          |      | (2%)  | (30)      |                |
| NECROSIS, FAT                          | 1 (2%)        | -    | (2 %) | 1         | (2%)           |
| ALL OTHER SYSTEMS                      |               |      |       |           |                |
| *MULTIPLE ORGANS                       | (50)          | (50) |       | (50)      |                |
| INFLAMMATION, NOS                      |               |      |       |           | (2%)           |
| INFLAMMATION, SUPPURATIVE              | 33 (66%)      | 32   | (64%) |           | (58%           |
| INFLAMMATION, CHRONIC SUPPURATIV       | E             |      | (0.7) | 1         | (2%)           |
| AMYLOIDOSIS                            |               | 1    | (2%)  |           |                |
| BROAD LIGAMENT                         | 9             | 1    |       | 1         |                |
| NECROSIS, FAT                          | 2             | 1    |       | 1         |                |

#### TABLE D2. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN FEMALE MICE IN<br/>THE TWO-YEAR GAVAGE STUDY OF HC RED NO. 3 (Continued)

SPECIAL MORPHOLOGY SUMMARY NONE

# NUMBER OF ANIMALS WITH TISSUE EXAMINED MICROSCOPICALLY \* NUMBER OF ANIMALS NECROPSIED

HC Red No. 3, NTP TR 281

#### **APPENDIX E**

# ANALYSES OF PRIMARY TUMORS IN RATS AND MICE IN THE TWO-YEAR GAVAGE STUDIES OF HC RED NO.3

|                                                               | Vehicle Control          | 250 mg/kg                | 500 mg/kg                |
|---------------------------------------------------------------|--------------------------|--------------------------|--------------------------|
| Skin: Basal Cell Carcinoma                                    |                          |                          |                          |
| Overall Rates (a)                                             | 0/50 (0%)                | 3/50 (6%)                | 1/50 (2%)                |
| Adjusted Rates (b)                                            | 0.0%                     | 8.5%                     | 3.1%                     |
| Terminal Rates (c)                                            | 0/34(0%)                 | 2/34 (6%)                | 1/32 (3%)                |
| Life Table Tests (d)                                          | P = 0.355                | P = 0.121                | P = 0.488                |
| Incidental Tumor Tests (d)                                    | P=0.293                  | P = 0.138                | P = 0.488                |
| Cochran-Armitage Trend Test (d)                               | P = 0.378                |                          |                          |
| Fisher Exact Tests                                            |                          | P = 0.121                | P = 0.500                |
| kin: Keratoacanthoma                                          |                          |                          |                          |
| Overall Rates (a)                                             | 2/50 (4%)                | 3/50 (6%)                | 2/50 (4%)                |
| Adjusted Rates (b)                                            | 5.9%                     | 7.8%                     | 5.3%                     |
| Terminal Rates (c)                                            | 2/34 (6%)                | 2/34 (6%)                | 1/32 (3%)                |
| Life Table Tests (d)                                          | P = 0.564                | P = 0.500                | P = 0.669                |
| Incidental Tumor Tests (d)                                    | P = 0.450N               | P = 0.561                | P = 0.603 N              |
| Cochran-Armitage Trend Test (d)                               | P = 0.594                |                          |                          |
| Fisher Exact Tests                                            |                          | P = 0.500                | P = 0.691                |
| Subcutaneous Tissue: Fibroma                                  | 0/50 (00)                | 7/EO (149)               | 0/50 (4/2)               |
| Overall Rates (a)                                             | 3/50 (6%)                | 7/50 (14%)               | 2/50 (4%)                |
| Adjusted Rates (b)                                            | 8.8%                     | 18.4%                    | 6.3%                     |
| Terminal Rates (c)                                            | 3/34 (9%)                | 5/34 (15%)               | 2/32 (6%)                |
| Life Table Tests (d)                                          | P = 0.467N               | P = 0.164                | P = 0.528N               |
| Incidental Tumor Tests (d)                                    | P = 0.394N               | P=0.138                  | P = 0.528N               |
| Cochran-Armitage Trend Test (d)<br>Fisher Exact Tests         | P = 0.427 N              | P=0.159                  | P = 0.500 N              |
| ntegumentary System: Fibroma                                  |                          |                          |                          |
| Overall Rates (a)                                             | 4/50 (8%)                | 7/50 (14%)               | 2/50 (4%)                |
| Adjusted Rates (b)                                            | 11.8%                    | 18.4%                    | 6.3%                     |
| Terminal Rates (c)                                            | 4/34 (12%)               | 5/34 (15%)               | 2/32 (6%)                |
| Life Table Tests (d)                                          | P = 0.334N               | P = 0.266                | P = 0.364N               |
| Incidental Tumor Tests (d)                                    | P = 0.272N               | P = 0.236                | P = 0.364N               |
| Cochran-Armitage Trend Test (d)                               | P = 0.297N               | 1 0,200                  |                          |
| Fisher Exact Tests                                            | 1 - 0.2011               | P = 0.262                | P=0.339N                 |
| ntegumentary System: Fibroma or Neuro                         | ofibrosarcoma            |                          |                          |
| Overall Rates (a)                                             | 5/50 (10%)               | 7/50 (14%)               | 2/50 (4%)                |
| Adjusted Rates (b)                                            | 14.7%                    | 18.4%                    | 6.3%                     |
| Terminal Rates (c)                                            | 5/34 (15%)               | 5/34 (15%)               | 2/32 (6%)                |
| Life Table Tests (d)                                          | P = 0.225N               | P=0.384                  | P = 0.239 N              |
| Incidental Tumor Tests (d)                                    | P = 0.177 N              | P = 0.351                | P = 0.239N               |
| Cochran-Armitage Trend Test (d)                               | P = 0.195N               | <b>D</b> 0.000           | D 0 01037                |
| Fisher Exact Tests                                            |                          | P = 0.380                | P=0.218N                 |
| Iematopoietic System: Mononuclear Cell                        |                          | 0/50 (00)                | 0/50 (00)                |
| Overall Rates (a)                                             | 9/50 (18%)               | 3/50 (6%)                | 3/50 (6%)                |
| Adjusted Rates (b)                                            | 22.2%                    | 7.9%                     | 8.2%                     |
| Terminal Rates (c)                                            | 4/34(12%)                | 1/34 (3%)<br>R=0.075N    | 1/32 (3%)<br>P=0.105N    |
| Life Table Tests (d)                                          | P = 0.057N<br>P = 0.081N | P = 0.075N<br>P = 0.072N | P = 0.105N<br>P = 0.149N |
| Incidental Tumor Tests (d)<br>Cochran-Armitage Trend Test (d) | P = 0.081N<br>P = 0.033N | P = 0.072N               | r - 0.14711              |
| Fisher Exact Tests                                            | P=0.0331                 | P = 0.061 N              | P = 0.061 N              |
| iver: Neoplastic Nodule                                       |                          |                          |                          |
| Overall Rates (a)                                             | 3/50 (6%)                | 0/50 (0%)                | 1/50 (2%)                |
| Adjusted Rates (b)                                            | 8.8%                     | 0.0%                     | 3.1%                     |
| Terminal Rates (c)                                            | 3/34 (9%)                | 0/34 (0%)                | 1/32 (3%)                |
| Life Table Tests (d)                                          | P = 0.187N               | P = 0.121N               | P = 0.326N               |
| Incidental Tumor Tests (d)                                    | P = 0.187 N              | P = 0.121N               | P = 0.326N               |
| Cochran-Armitage Trend Test (d)                               | P = 0.176N               |                          |                          |
| Fisher Exact Tests                                            | ·                        | P = 0.121N               | P = 0.309N               |

## TABLE E1. ANALYSIS OF PRIMARY TUMORS IN MALE RATS IN THE TWO-YEAR GAVAGE STUDY OF HC RED NO. 3

|                                                              | Vehicle Control             | 250 mg/kg            | 500 mg/kg                              |
|--------------------------------------------------------------|-----------------------------|----------------------|----------------------------------------|
| <u></u>                                                      |                             |                      |                                        |
| Liver: Neoplastic Nodule or Hepatocellu<br>Overall Rates (a) | llar Carcinoma<br>4/50 (8%) | 1/50 (2%)            | 3/50 (6%)                              |
|                                                              | 11.0%                       |                      | 9.4%                                   |
| Adjusted Rates (b)                                           |                             | 2.9%                 |                                        |
| Terminal Rates (c)                                           | 3/34 (9%)                   | 1/34 (3%)            | 3/32 (9%)                              |
| Life Table Tests (d)                                         | P = 0.448N                  | P = 0.181N           | P = 0.545N                             |
| Incidental Tumor Tests (d)                                   | P = 0.485N                  | P = 0.166N           | P = 0.616N                             |
| Cochran-Armitage Trend Test (d)<br>Fisher Exact Tests        | P = 0.412N                  | P=0.181N             | P=0.500N                               |
|                                                              |                             |                      |                                        |
| Pancreas: Acinar Cell Adenoma                                |                             |                      |                                        |
| Overall Rates (a)                                            | 11/50 (22%) (e)             | 6/49 (12%)           | 11/50 (22%)                            |
| Adjusted Rates (b)                                           | 31.2%                       | 17.6%                | 34.4%                                  |
| Terminal Rates (c)                                           | 10/34 (29%)                 | 6/34 (18%)           | 11/32 (34%)                            |
| Life Table Tests (d)                                         | P = 0.490                   | P = 0.139N           | P = 0.528                              |
| Incidental Tumor Tests (d)                                   | P = 0.464                   | P = 0.133N           | P = 0.480                              |
| Cochran-Armitage Trend Test (d)                              | P = 0.551                   |                      |                                        |
| Fisher Exact Tests                                           | 1 -0.001                    | P = 0.154N           | P=0.595                                |
| Piduitanu Adapama                                            |                             |                      |                                        |
| Pituitary: Adenoma                                           | 10/50 (90%)                 | 0/40 (100)           | 9/40 (167)                             |
| Overall Rates (a)                                            | 10/50 (20%)                 | 9/48 (19%)           | 8/49 (16%)                             |
| Adjusted Rates (b)                                           | 26.3%                       | 24.2%                | 21.7%                                  |
| Terminal Rates (c)                                           | 7/34 (21%)                  | 6/33 (18%)           | 4/31 (13%)                             |
| Life Table Tests (d)                                         | P = 0.446N                  | P = 0.515N           | P = 0.494N                             |
| Incidental Tumor Tests (d)                                   | P = 0.475N                  | P = 0.582N           | P = 0.497N                             |
| Cochran-Armitage Trend Test (d)                              | P=0.366N                    |                      | ······································ |
| Fisher Exact Tests                                           |                             | P = 0.540N           | P=0.416N                               |
| Pituitary: Carcinoma                                         |                             |                      |                                        |
| Overall Rates (a)                                            | 3/50 (6%)                   | 2/48 (4%)            | 1/49 (2%)                              |
| Adjusted Rates (b)                                           | 7.4%                        | 4.2%                 | 3.2%                                   |
|                                                              |                             |                      |                                        |
| Terminal Rates (c)                                           | 1/34 (3%)                   | 0/33 (0%)            | 1/31 (3%)                              |
| Life Table Tests (d)                                         | P = 0.265N                  | P = 0.503 N          | P = 0.355N                             |
| Incidental Tumor Tests (d)                                   | P = 0.175N                  | P = 0.609            | P = 0.321 N                            |
| Cochran-Armitage Trend Test (d)                              | P = 0.229N                  |                      |                                        |
| Fisher Exact Tests                                           |                             | P = 0.520N           | P = 0.316N                             |
| Pituitary: Adenoma or Carcinoma                              |                             |                      |                                        |
| Overall Rates (a)                                            | 13/50 (26%)                 | 11/48 (23%)          | 9/49 (18%)                             |
| Adjusted Rates (b)                                           | 32.2%                       | 27.4%                | 24.6%                                  |
| Terminal Rates (c)                                           | 8/34 (24%)                  | 6/33 (18%)           | 5/31 (16%)                             |
| Life Table Tests (d)                                         | P = 0.302N                  | P = 0.428N           | P = 0.342N                             |
| Incidental Tumor Tests (d)                                   | P = 0.259N                  | P = 0.569            | P = 0.316N                             |
| Cochran-Armitage Trend Test (d)                              | P = 0.215N                  | 0.000                |                                        |
| Fisher Exact Tests                                           | r -0.21011                  | P = 0.453N           | P=0.251N                               |
| Advenal Phone have sentence                                  |                             |                      |                                        |
| Adrenal: Pheochromocytoma                                    | 00/40 (41 71)               | 10/60 (000)          | 10/50 (90%)                            |
| Overall Rates (a)                                            | 20/49 (41%)                 | 13/50 (26%)          | 10/50 (20%)                            |
| Adjusted Rates (b)                                           | 52.2%                       | 37.1%                | 30.2%                                  |
| Terminal Rates (c)                                           | 15/33 (45%)                 | 12/34 (35%)          | 9/32 (28%)                             |
| Life Table Tests (d)                                         | P = 0.024N                  | P = 0.090 N          | P = 0.038N                             |
| Incidental Tumor Tests (d)                                   | P=0.039N                    | P = 0.056N           | P=0.084N                               |
| Cochran-Armitage Trend Test (d)                              | P = 0.015N                  |                      |                                        |
| Fisher Exact Tests                                           |                             | P = 0.088N           | P = 0.021 N                            |
| Adrenal: Pheochromocytoma or Pheoch                          | romocytoma. Malignani       |                      |                                        |
| Overall Rates (a)                                            | 20/49 (41%)                 | 13/50 (26%)          | 11/50 (22%)                            |
| Adjusted Rates (b)                                           | 52.2%                       | 37.1%                | 33.2%                                  |
| Adjusted Rates (b)<br>Terminal Rates (c)                     |                             |                      |                                        |
|                                                              | 15/33 (45%)                 | 12/34 (35%)          | 10/32 (31%)                            |
|                                                              |                             |                      |                                        |
| Life Table Tests (d)                                         | P = 0.040N                  | P = 0.090N           | P = 0.062N                             |
| Life Table Tests (d)<br>Incidental Tumor Tests (d)           | P = 0.064N                  | P=0.090N<br>P=0.056N | P = 0.062N<br>P = 0.129N               |
| Life Table Tests (d)                                         |                             |                      |                                        |

### TABLE E1. ANALYSIS OF PRIMARY TUMORS IN MALE RATS IN THE TWO- YEAR GAVAGE STUDYOF HC RED NO. 3 (Continued)

|                                                       | Vehicle Control | 250 mg/kg    | 500 mg/kg   |
|-------------------------------------------------------|-----------------|--------------|-------------|
| Thyroid: Follicular Cell Adenoma or Ca                | arcinoma        |              |             |
| Overall Rates (a)                                     | 2/49 (4%)       | 3/49 (6%)    | 2/50 (4%)   |
| Adjusted Rates (b)                                    | 5.9%            | 8.8%         | 6.0%        |
| Terminal Rates (c)                                    | 2/34 (6%)       | 3/34 (9%)    | 1/32 (3%)   |
| Life Table Tests (d)                                  | P = 0.561       | P = 0.500    | P = 0.660   |
| Incidental Tumor Tests (d)                            | P = 0.528       | P = 0.500    | P=0.585     |
| Cochran-Armitage Trend Test (d)                       | P = 0.585N      | - 0.000      | 1 01000     |
| Fisher Exact Tests                                    |                 | P = 0.500    | P = 0.684N  |
| Thyroid: C-Cell Adenoma                               |                 |              |             |
| Overall Rates (a)                                     | 7/49 (14%)      | 5/49 (10%)   | 3/50 (6%)   |
| Adjusted Rates (b)                                    | 19.8%           | 13.7%        | 9.4%        |
| Terminal Rates (c)                                    | 6/34 (18%)      | 4/34 (12%)   | 3/32 (9%)   |
| Life Table Tests (d)                                  | P = 0.146N      | P = 0.381N   | P = 0.186N  |
| Incidental Tumor Tests (d)                            | P = 0.156N      | P = 0.420N   | P = 0.224N  |
| Cochran-Armitage Trend Test (d)                       | P = 0.115N      | 1 - 0.42011  | 1 - 0.22411 |
| Fisher Exact Tests                                    | 1 -0.1101       | P = 0.380N   | P = 0.151N  |
| Thyroid: C-Cell Carcinoma                             |                 |              |             |
| Overall Rates (a)                                     | 5/49 (10%)      | 0/49 (0%)    | 1/50 (2%)   |
| Adjusted Rates (b)                                    | 14.1%           | 0.0%         | 3.1%        |
| Terminal Rates (c)                                    | 4/34 (12%)      | 0/34 (0%)    | 1/32 (3%)   |
| Life Table Tests (d)                                  | P = 0.043N      | P = 0.035N   | P = 0.121N  |
| Incidental Tumor Tests (d)                            | P = 0.047N      | P = 0.027 N  | P = 0.157N  |
|                                                       |                 | F = 0.0271N  | F=0.1571    |
| Cochran-Armitage Trend Test (d)<br>Fisher Exact Tests | P = 0.036N      | P = 0.028N   | P=0.098N    |
| Thyroid: C-Cell Adenoma or Carcinoma                  |                 |              |             |
| Overall Rates (a)                                     |                 | E (40 (10g)) | 4/ED (00)   |
|                                                       | 12/49 (24%)     | 5/49 (10%)   | 4/50 (8%)   |
| Adjusted Rates (b)                                    | 33.1%           | 13.7%        | 12.5%       |
| Terminal Rates (c)                                    | 10/34 (29%)     | 4/34 (12%)   | 4/32 (13%)  |
| Life Table Tests (d)                                  | P = 0.021 N     | P = 0.057N   | P = 0.038N  |
| Incidental Tumor Tests (d)                            | P = 0.025N      | P = 0.058N   | P = 0.057 N |
| Cochran-Armitage Trend Test (d)<br>Fisher Exact Tests | P = 0.014N      | P = 0.054N   | P = 0.024N  |
|                                                       |                 | 1 -0.00411   | 1 -0.02411  |
| Pancreatic Islets: Islet Cell Adenoma                 |                 |              |             |
| Overall Rates (a)                                     | 3/50 (6%)       | 2/49 (4%)    | 3/50 (6%)   |
| Adjusted Rates (b)                                    | 8.6%            | 5.9%         | 8.7%        |
| Terminal Rates (c)                                    | 2/34 (6%)       | 2/34 (6%)    | 2/32 (6%)   |
| Life Table Tests (d)                                  | P = 0.552       | P = 0.503N   | P = 0.622   |
| Incidental Tumor Tests (d)                            | P = 0.515       | P = 0.488N   | P=0.555     |
| Cochran-Armitage Trend Test (d)                       | P = 0.588       |              |             |
| Fisher Exact Tests                                    |                 | P = 0.510N   | P = 0.661   |
| Pancreatic Islets: Islet Cell Carcinoma               | 1 / 0 / 0 / 1   | 1/10/075     |             |
| Overall Rates (a)                                     | 1/50 (2%)       | 1/49 (2%)    | 3/50 (6%)   |
| Adjusted Rates (b)                                    | 2.6%            | 2.9%         | 8.9%        |
| Terminal Rates (c)                                    | 0/34 (0%)       | 1/34 (3%)    | 2/32 (6%)   |
| Life Table Tests (d)                                  | P = 0.178       | P = 0.754    | P = 0.272   |
| Incidental Tumor Tests (d)                            | P = 0.152       | P = 0.746N   | P=0.199     |
| Cochran-Armitage Trend Test (d)<br>Fisher Exact Tests | P=0.202         | P = 0.747    | P=0.309     |
| Pancreatic Islets: Islet Cell Adenoma o               | Carainama       |              |             |
|                                                       | 4/50 (8%)       | 3/40 (60)    | £/50 (199)  |
| Overall Rates (a)                                     |                 | 3/49 (6%)    | 6/50 (12%)  |
| Adjusted Rates (b)                                    | 10.9%           | 8.8%         | 17.1%       |
| Terminal Rates (c)                                    | 2/34 (6%)       | 3/34 (9%)    | 4/32 (13%)  |
| Life Table Tests (d)                                  | P = 0.256       | P = 0.506N   | P = 0.318   |
| Incidental Tumor Tests (d)                            | P=0.210         | P = 0.479N   | P = 0.217   |
| Cochran-Armitage Trend Test (d)                       | P = 0.298       | <b>.</b>     |             |
| Fisher Exact Tests                                    |                 | P = 0.511N   | P = 0.370   |

### TABLE E1. ANALYSIS OF PRIMARY TUMORS IN MALE RATS IN THE TWO-YEAR GAVAGE STUDY OF HC RED NO. 3 (Continued)

#### TABLE E1. ANALYSIS OF PRIMARY TUMORS IN MALE RATS IN THE TWO-YEAR GAVAGE STUDY OF HC RED NO. 3 (Continued)

|                                 | Vehicle Control | 250 mg/kg   | 500 mg/kg    |
|---------------------------------|-----------------|-------------|--------------|
| Mammary Gland: Fibroadenoma     | 56447 e         |             |              |
| Overall Rates (a)               | 8/50 (16%)      | 2/50 (4%)   | 2/50 (4%)    |
| Adjusted Rates (b)              | 21.0%           | 5.9%        | 6.2%         |
| Terminal Rates (c)              | 6/34 (18%)      | 2/34 (6%)   | 2/32 (6%)    |
| Life Table Tests (d)            | P = 0.027 N     | P = 0.050N  | P = 0.062N   |
| Incidental Tumor Tests (d)      | P = 0.018N      | P = 0.053N  | P = 0.035 N  |
| Cochran-Armitage Trend Test (d) | P = 0.021 N     |             |              |
| Fisher Exact Tests              |                 | P = 0.046N  | P = 0.046N   |
| Testis: Interstitial Cell Tumor |                 |             |              |
| Overall Rates (a)               | 46/50 (92%)     | 42/50 (84%) | 42/50 (84%)  |
| Adjusted Rates (b)              | 97.9%           | 97.6%       | 100.0%       |
| Terminal Rates (c)              | 33/34 (97%)     | 33/34 (97%) | 32/32 (100%) |
| Life Table Tests (d)            | P = 0.510N      | P = 0.278N  | P = 0.565N   |
| Incidental Tumor Tests (d)      | P = 0.514       | P = 0.300N  | P = 0.350    |
| Cochran-Armitage Trend Test (d) | P = 0.152N      |             | - 0.000      |
| Fisher Exact Tests              |                 | P = 0.179N  | P = 0.179N   |

(a) Number of tumor-bearing animals/number of animals examined at the site

(b) Kaplan-Meier estimated tumor incidence at the end of the study after adjusting for intercurrent mortality

(c) Observed tumor incidence at terminal kill

(d) Beneath the vehicle control incidence are the P values associated with the trend test. Beneath the dosed group incidence are the P values corresponding to pairwise comparisons between that dosed group and the vehicle controls. The life table analysis regards tumors in animals dying prior to terminal kill as being (directly or indirectly) the cause of death. The incidental tumor test regards these lesions as nonfatal. The Cochran-Armitage and Fisher exact test compare directly the overall incidence rates. A negative trend or lower incidence in a dosed group is indicated by (N).

(e) An acinar cell carcinoma was also present in one animal.

| FABLE E2. ANALYSIS OF PRIMARY TUMORS IN FEMALE RATS IN THE TWO-YEAR GAVAGE STUDY         OF HC RED NO. 3 |                      |             |             |  |
|----------------------------------------------------------------------------------------------------------|----------------------|-------------|-------------|--|
|                                                                                                          | Vehicle Control      | 250 mg/kg   | 500 mg/kg   |  |
| Hematopoietic System: Mononuclear C                                                                      | ell Leukemia         |             |             |  |
| Overall Rates (a)                                                                                        | 10/50 (20%)          | 6/50 (12%)  | 3/50 (6%)   |  |
| Adjusted Rates (b)                                                                                       | 21.7%                | 14.0%       | 7.8%        |  |
| Terminal Rates (c)                                                                                       | 5/39 (13%)           | 3/38 (8%)   | 2/34 (6%)   |  |
| Life Table Tests (d)                                                                                     | P = 0.046N           | P = 0.236N  | P = 0.065N  |  |
| Incidental Tumor Tests (d)                                                                               | P = 0.014N           | P = 0.206N  | P = 0.018N  |  |
| Cochran-Armitage Trend Test (d)                                                                          | P = 0.025N           |             |             |  |
| Fisher Exact Tests                                                                                       |                      | P = 0.207 N | P=0.036N    |  |
| Pituitary: Adenoma                                                                                       |                      |             |             |  |
| Overall Rates (a)                                                                                        | 18/50 (36%)          | 17/50 (34%) | 15/50 (30%) |  |
| Adjusted Rates (b)                                                                                       | 40.7%                | 39.9%       | 40.0%       |  |
| Terminal Rates (c)                                                                                       | 13/39 (33%)          | 13/38 (34%) | 12/34 (35%) |  |
| Life Table Tests (d)                                                                                     | P = 0.466N           | P = 0.533N  | P = 0.511N  |  |
| Incidental Tumor Tests (d)<br>Cochran-Armitage Trend Test (d)                                            | P=0.309N<br>P=0.298N | P = 0.495N  | P=0.380N    |  |
| Fisher Exact Tests                                                                                       |                      | P = 0.500 N | P=0.336N    |  |

## TARIE FO ANALVER OF DRIMARY THMORS IN FEMALE RATS IN THE TWO, VEAR CAVACE STUDY

| Pituitary: Carcinoma                  |             |             |                 |
|---------------------------------------|-------------|-------------|-----------------|
| Overall Rates (a)                     | 4/50 (8%)   | 1/50 (2%)   | 2/50 (4%)       |
| Adjusted Rates (b)                    | 9.8%        | 2.2%        | 5.1%            |
| Terminal Rates (c)                    | 3/39 (8%)   | 0/38 (0%)   | 1/34 (3%)       |
| Life Table Tests (d)                  | P = 0.285N  | P = 0.191N  | P = 0.402N      |
| Incidental Tumor Tests (d)            | P = 0.245N  | P = 0.213N  | P = 0.345N      |
| Cochran-Armitage Trend Test (d)       | P = 0.238N  |             |                 |
| Fisher Exact Tests                    |             | P = 0.181N  | P=0.339N        |
| Pituitary: Adenoma or Carcinoma       |             |             |                 |
| Overall Rates (a)                     | 22/50 (44%) | 18/50 (36%) | 17/50 (34%)     |
| Adjusted Rates (b)                    | 48.7%       | 41.2%       | 44.0%           |
| Terminal Rates (c)                    | 16/39 (41%) | 13/38 (34%) | 13/34 (38%)     |
| Life Table Tests (d)                  | P = 0.341N  | P = 0.321N  | P=0.390N        |
| Incidental Tumor Tests (d)            | P = 0.187N  | P = 0.280N  | P = 0.243N      |
| Cochran-Armitage Trend Test (d)       | P = 0.177N  |             |                 |
| Fisher Exact Tests                    |             | P = 0.270N  | P=0.206N        |
| Adrenal: Cortical Adenoma             |             |             |                 |
| Overall Rates (a)                     | 2/50 (4%)   | 3/50 (6%)   | 0/50 (0%)       |
| Adjusted Rates (b)                    | 5.1%        | 7.9%        | 0.0%            |
| Terminal Rates (c)                    | 2/39 (5%)   | 3/38 (8%)   | 0/34 (0%)       |
| Life Table Tests (d)                  | P = 0.237N  | P = 0.488   | P=0.269N        |
| Incidental Tumor Tests (d)            | P = 0.237 N | P = 0.488   | P = 0.269N      |
| Cochran-Armitage Trend Test (d)       | P = 0.202N  |             |                 |
| Fisher Exact Tests                    |             | P = 0.500   | P = 0.247N      |
| Adrenal: Cortical Adenoma or Carcinom | a           |             |                 |
| Overall Rates (a)                     | 3/50 (6%)   | 3/50 (6%)   | 0/50 (0%)       |
| Adjusted Rates (b)                    | 7.7%        | 7.9%        | 0.0%            |
| Terminal Rates (c)                    | 3/39 (8%)   | 3/38 (8%)   | 0/34 (0%)       |
| Life Table Tests (d)                  | P = 0.125N  | P = 0.652   | P = 0.146N      |
| Incidental Tumor Tests (d)            | P = 0.125N  | P = 0.652   | P = 0.146N      |
| Cochran-Armitage Trend Test (d)       | P = 0.101 N |             |                 |
| Fisher Exact Tests                    |             | P = 0.661   | P = 0.121N      |
| Adrenal: Pheochromocytoma             |             |             |                 |
| Overall Rates (a)                     | 4/50 (8%)   | 3/50 (6%)   | 1/50 (2%)       |
| Adjusted Rates (b)                    | 10.3%       | 7.3%        | 2.9%            |
| Terminal Rates (c)                    | 4/39 (10%)  | 2/38 (5%)   | 1/34 (3%)       |
| Life Table Tests (d)                  | P = 0.168N  | P = 0.517N  | P = 0.222N      |
| Incidental Tumor Tests (d)            | P = 0.166N  | P = 0.543N  | P = 0.222N      |
| Cochran-Armitage Trend Test (d)       | P = 0.133N  | D 0 50000   | D 0 0 0 0 0 0 0 |
| Fisher Exact Tests                    |             | P = 0.500N  | P = 0.181N      |

|                                                          | Vehicle Control                   | 250 mg/kg      | 500 mg/kg              |
|----------------------------------------------------------|-----------------------------------|----------------|------------------------|
|                                                          | <u> </u>                          |                |                        |
| Adrenal: Pheochromocytoma or Pheoch<br>Overall Rates (a) | romocytoma, Malignan<br>4/50 (8%) | t<br>3/50 (6%) | 2/50 (4%)              |
| Adjusted Rates (b)                                       | 10.3%                             | 7.3%           | 5.1%                   |
| Terminal Rates (c)                                       | 4/39 (10%)                        | 2/38 (5%)      | 1/34(3%)               |
| Life Table Tests (d)                                     | P = 0.318N                        | P = 0.517N     | P = 0.398N             |
| Incidental Tumor Tests (d)                               | P = 0.310N                        | P = 0.543N     | P = 0.392N             |
| Cochran-Armitage Trend Test (d)                          | P = 0.264N                        | 1-0,04011      | 1 -0.00211             |
| Fisher Exact Tests                                       | 1 -0.20411                        | P=0.500N       | P=0.339N               |
| Thyroid: Follicular Cell Adenoma or Car                  | cinoma                            |                |                        |
| Overall Rates (a)                                        | 1/50 (2%)                         | 2/50 (4%)      | 3/50 (6%)              |
| Adjusted Rates (b)                                       | 2.6%                              | 5.3%           | 7.8%                   |
| Terminal Rates (c)                                       | 1/39 (3%)                         | 2/38 (5%)      | 2/34 (6%)              |
| Life Table Tests (d)                                     | P=0.188                           | P=0.491        | P = 0.269              |
| Incidental Tumor Tests (d)                               | P=0.236                           | P=0.491        | P = 0.452              |
| Cochran-Armitage Trend Test (d)                          | P = 0.222                         |                |                        |
| Fisher Exact Tests                                       |                                   | P=0.500        | P=0.309                |
| Fhyroid: C-Cell Adenoma                                  |                                   |                |                        |
| Overall Rates (a)                                        | 5/50 (10%)                        | 4/50 (8%)      | 4/50 (8%)              |
| Adjusted Rates (b)                                       | 12.0%                             | 10.5%          | 10.8%                  |
| Terminal Rates (c)                                       | 3/39 (8%)                         | 4/38 (11%)     | 3/34 (9%)              |
| Life Table Tests (d)                                     | P = 0.507 N                       | P = 0.514N     | P = 0.576N             |
| Incidental Tumor Tests (d)                               | P = 0.470N                        | P = 0.540N     | P = 0.525N             |
| Cochran-Armitage Trend Test (d)                          | P = 0.429N                        |                |                        |
| Fisher Exact Tests                                       |                                   | P = 0.500N     | P = 0.500N             |
| lbyroid: C-Cell Adenoma or Carcinoma                     |                                   |                |                        |
| Overall Rates (a)                                        | 5/50(10%)                         | 6/50 (12%)     | 6/50 (12%)             |
| Adjusted Rates (b)                                       | 12.0%                             | 15.3%          | 16.5%                  |
| Terminal Rates (c)                                       | 3/39 (8%)                         | 5/38 (13%)     | 5/34 (15%)             |
| Life Table Tests (d)                                     | P = 0.350                         | P = 0.485      | P = 0.414              |
| Incidental Tumor Tests (d)                               | P = 0.407                         | P = 0.462      | P = 0.460              |
| Cochran-Armitage Trend Test (d)                          | P = 0.437                         |                |                        |
| Fisher Exact Tests                                       |                                   | P = 0.500      | P = 0.500              |
| Pancreatic Islets: Islet Cell Adenoma or                 |                                   |                |                        |
| Overall Rates (a)                                        | 0/50 (0%)                         | 4/50 (8%)      | 1/50 (2%)              |
| Adjusted Rates (b)                                       | 0.0%                              | 10.1%          | 2.1%                   |
| Terminal Rates (c)                                       | 0/39 (0%)                         | 3/38 (8%)      | 0/34 (0%)              |
| Life Table Tests (d)                                     | P=0.348                           | P = 0.062      | P=0.488                |
| Incidental Tumor Tests (d)                               | P=0.399                           | P = 0.062      | P = 0.500              |
| Cochran-Armitage Trend Test (d)<br>Fisher Exact Tests    | P = 0.390                         | P=0.059        | P = 0.500              |
| Mammary Gland: Fibroadenoma                              |                                   |                |                        |
| Overall Rates (a)                                        | 14/50 (28%)                       | 24/50 (50%)    | 11/50 (22%)            |
| Adjusted Rates (b)                                       | 34.8%                             | 55.5%          | 30.1%                  |
| Terminal Rates (c)                                       | 13/39 (33%)                       | 19/38 (50%)    | 9/34 (26%)             |
| Life Table Tests (d)                                     | P = 0.469N                        | P = 0.020      | P = 0.465N             |
| Incidental Tumor Tests (d)                               | P = 0.389N                        | P = 0.019      | P = 0.433N             |
| Cochran-Armitage Trend Test (d)                          | P = 0.389 N<br>P = 0.297 N        | r = 0.019      | r=0.43314              |
| Fisher Exact Tests                                       | F = 0.2371                        | P = 0.032      | P=0.323N               |
| Mammary Gland: Cystadenoma or Fibro                      | adenoma                           |                |                        |
| Overall Rates (a)                                        | 14/50 (28%)                       | 25/50 (50%)    | 11/50 (22%)            |
|                                                          | 34.8%                             | 56.6%          | 30.1%                  |
| Adjusted Rates (b)                                       |                                   |                |                        |
| Adjusted Rates (b)<br>Terminal Rates (c)                 | 13/39 (33%)                       | 19/38 (50%)    | 9/34 (26%)             |
|                                                          | 13/39 (33%)<br>P=0.470N           | P = 0.029      | 9/34 (26%)<br>P=0.465N |
| Terminal Rates (c)                                       |                                   |                |                        |
| Terminal Rates (c)<br>Life Table Tests (d)               | P = 0.470N                        | P=0.029        | P = 0.465N             |

## TABLE E2. ANALYSIS OF PRIMARY TUMORS IN FEMALE RATS IN THE TWO-YEAR GAVAGE STUDY OF HC RED NO. 3 (Continued)

|                                      | Vehicle Control | 250 mg/kg   | 500 mg/kg      |
|--------------------------------------|-----------------|-------------|----------------|
| Clitoral Gland: Carcinoma            |                 |             |                |
| Overall Rates (a)                    | 1/50 (2%)       | 4/50 (8%)   | 2/50 (4%)      |
| Adjusted Rates (b)                   | 2.6%            | 9.4%        | 5.9%           |
| Terminal Rates (c)                   | 1/39 (3%)       | 2/38 (5%)   | 2/34 (6%)      |
| Life Table Tests (d)                 | P = 0.358       | P = 0.175   | P = 0.452      |
| Incidental Tumor Tests (d)           | P = 0.367       | P = 0.128   | P = 0.452      |
| Cochran-Armitage Trend Test (d)      | P = 0.406       |             |                |
| Fisher Exact Tests                   |                 | P=0.181     | P = 0.500      |
| Clitoral Gland: Adenoma or Carcinoma | 4               |             |                |
| Overall Rates (a)                    | 1/50 (2%)       | 5/50 (10%)  | 2/50 (4%)      |
| Adjusted Rates (b)                   | 2.6%            | 11.9%       | 5.9%           |
| Terminal Rates (c)                   | 1/39 (3%)       | 3/38 (8%)   | 2/34 (6%)      |
| Life Table Tests (d)                 | P = 0.359       | P = 0.101   | P = 0.452      |
| Incidental Tumor Tests (d)           | P = 0.367       | P = 0.071   | P = 0.452      |
| Cochran-Armitage Trend Test (d)      | P = 0.412       |             |                |
| Fisher Exact Tests                   |                 | P = 0.102   | P=0.500        |
| Uterus: Endometrial Stromal Polyp    |                 |             |                |
| Overall Rates (a)                    | 10/50 (20%)     | 6/50 (12%)  | 9/50 (18%)     |
| Adjusted Rates (b)                   | 23.4%           | 15.8%       | 22.9%          |
| Terminal Rates (c)                   | 7/39 (18%)      | 6/38 (16%)  | 6/34 (18%)     |
| Life Table Tests (d)                 | P=0.549         | P = 0.228N  | P = 0.581      |
| Incidental Tumor Tests (d)           | P = 0.442N      | P = 0.238N  | P = 0.418N     |
| Cochran-Armitage Trend Test (d)      | P = 0.447N      |             |                |
| Fisher Exact Tests                   |                 | P = 0.207 N | P = 0.500 N    |
| Uterus: Endometrial Stromal Sarcoma  |                 |             |                |
| Overall Rates (a)                    | 3/50 (6%)       | 0/50 (0%)   | 0/50 (0%)      |
| Adjusted Rates (b)                   | 7.0%            | 0.0%        | 0.0%           |
| Terminal Rates (c)                   | 1/39 (3%)       | 0/38 (0%)   | 0/34 (0%)      |
| Life Table Tests (d)                 | P = 0.047N      | P = 0.130N  | P = 0.153N     |
| Incidental Tumor Tests (d)           | P = 0.023N      | P = 0.117N  | P = 0.074N     |
| Cochran-Armitage Trend Test (d)      | P = 0.037N      |             | 1 - 0.01 - 1.1 |
| Fisher Exact Tests                   |                 | P = 0.121N  | P = 0.121N     |

#### TABLE E2. ANALYSIS OF PRIMARY TUMORS IN FEMALE RATS IN THE TWO-YEAR GAVAGE STUDY OF HC RED NO. 3 (Continued)

(a) Number of tumor-bearing animals/number of animals examined at the site

(b) Kaplan-Meier estimated tumor incidence at the end of the study after adjusting for intercurrent mortality

(c) Observed tumor incidence at terminal kill

(d) Beneath the vehicle control incidence are the P values associated with the trend test. Beneath the dosed group incidence are the P values corresponding to pairwise comparisons between that dosed group and the vehicle controls. The life table analysis regards tumors in animals dying prior to terminal kill as being (directly or indirectly) the cause of death. The incidental tumor test regards these lesions as nonfatal. The Cochran-Armitage and Fisher exact test compare directly the overall incidence rates. A negative trend or lower incidence in a dosed group is indicated by (N).

| Skin: Fibroma or Neurofibroma $0^{50} (0\%)$ $3/50 (6\%)$ Overall Rates (a) $0.0\%$ $7.3\%$ Adjusted Rates (b) $0.0\%$ $7.3\%$ Terminal Rates (c) $0/30 (0\%)$ $3/41 (7\%)$ Life Table Tests (d)         P=0.361         P=0.181           Cochran-Armitage Trend Test (d)         P=0.378         P=0.121           Lung: Alveolar/Bronchiolar Adenoma $0'50 (12\%)$ $7/49 (14\%)$ Overall Rates (a) $6/50 (12\%)$ $7/49 (14\%)$ Adjusted Rates (b) $17.2\%$ $17.1\%$ Terminal Rates (c) $4/30 (13\%)$ $7/41 (17\%)$ Life Table Tests (d)         P=0.431         P=0.528N           Incidental Tumor Tests (d)         P=0.442         P=0.618           Cochran-Armitage Trend Test (d)         P=0.442         P=0.484           Lung: Alveolar/Bronchiolar Carcinoma $0'749 (14\%)$ $7/41 (17\%)$ Verail Rates (b) $19.3\%$ $17.1\%$ Terminal Rates (c) $5/30 (17\%)$ $7/41 (17\%)$ Adjusted Rates (b) $15.3\%$ $17.9\%$ Cochran-Armitage Trend Test (d)         P=0.426         P=0.501N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 250 mg/kg              |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|--|
| Overall Rates (a) $0/50 (0\%)$ $3/50 (6\%)$ Adjusted Rates (b) $0.0\%$ $7.3\%$ Terminal Rates (c) $0/30 (0\%)$ $3/41 (7\%)$ Life Table Tests (d) $P=0.361$ $P=0.181$ Cochran-Armitage Trend Test (d) $P=0.361$ $P=0.121$ Jung: Alveolar/Bronchiolar AdenomaOverall Rates (a) $6/50 (12\%)$ $7/49 (14\%)$ Adjusted Rates (b) $17.2\%$ $17.1\%$ Arrintage Trend Test (d) $P=0.431$ $P=0.526N$ Incidental Tumor Tests (d) $P=0.431$ $P=0.526N$ Incidental Tumor Tests (d) $P=0.431$ $P=0.526N$ Incidental Tumor Tests (d) $P=0.432$ $P=0.618$ Cochran-Armitage Trend Test (d) $P=0.432$ $P=0.618$ Cochran-Armitage Trend Test (d) $P=0.432$ $P=0.618$ Adjusted Rates (b) $19.3\%$ $17.1\%$ Terminal Rates (c) $5/30 (17\%)$ $7/49 (14\%)$ Adjusted Rates (b) $19.3\%$ $17.1\%$ Terminal Rates (c) $5/30 (17\%)$ $7/49 (14\%)$ Adjusted Rates (b) $19.3\%$ $17.1\%$ Terminal Rates (c) $5/30 (17\%)$ $7/49 (14\%)$ Adjusted Rates (b) $11/50 (12\%)$ $7/49 (14\%)$ Adjusted Rates (b) $19.3\%$ $17.1\%$ Terminal Rates (c) $8/30 (27\%)$ $13/49 (27\%)$ Adjusted Rates (b) $32.1\%$ $31/49 (27\%)$ Adjusted Rates (b) $32.1\%$ $31/49 (27\%)$ Adjusted Rates (b) $32.1\%$ $31/49 (27\%)$ Incidental Tumor Tests (d) $P=0.287$ $P=0.584$ Cochran-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                        |  |
| Adjusted Rates (b) $0.0\%$ $7.3\%$ Terminal Rates (c) $0/30(0\%)$ $3/41(7\%)$ Life Table Tests (d) $P=0.361$ $P=0.181$ Cochran-Armitage Trend Test (d) $P=0.361$ $P=0.181$ Cochran-Armitage Trend Test (d) $P=0.378$ $P=0.121$ ung: Alveolar/Bronchiolar Adenoma $6/50(12\%)$ $7/49(14\%)$ Overall Rates (a) $6/50(12\%)$ $7/49(14\%)$ Adjusted Rates (b) $17.2\%$ $7.1\%$ Terminal Rates (c) $4/30(13\%)$ $7/41(17\%)$ Incidental Tumor Tests (d) $P=0.431$ $P=0.526N$ Incidental Tumor Tests (d) $P=0.442$ $P=0.484$ Cochran-Armitage Trend Test (d) $P=0.442$ $P=0.484$ Adjusted Rates (b) $19.3\%$ $17.1\%$ Cortan-Armitage Trend Test (d) $P=0.426$ $P=0.501N$ Incidental Rates (c) $5/30(17\%)$ $7/41(17\%)$ Life Table Tests (d) $P=0.426$ $P=0.501N$ Incidental Tumor Tests (d) $P=0.426$ $P=0.599N$ Cochran-Armitage Trend Test (d) $P=0.426$ $P=0.599N$ Cochran-Armitage Trend Test (d) $P=0.287$ $P=0.484$ Fisher Exact Tests $P=0.348$ $P=0.456N$ Incidental Tumor Tests (d) $P=0.328$ $P=0.359$ Cochran-Armitage Trend Test (d) $P=0.387$ $P=0.385$ Ifer Table Tests (d) $P=0.387$ $P=0.385$ Ifer Table Tests (d) $P=0.379$ $P=0.385$ Incidental Tumor Tests (d) $P=0.379$ $P=0.385$ Incidental Tumor Tests (d) $P=0.379$ $P=0.385$ <td>1/50 (2%)</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1/50 (2%)              |  |
| $T_{errinal Rates} (c) 0/30 (0\%) 3/41 (7\%)  Life Table Tests (d) P=0.361 P=0.181  Incidental Tumor Tests (d) P=0.378 P=0.121  Cochran-Armitage Trend Test (d) P=0.378 P=0.121  Aug: Alveolar/Bronchiolar Adenoma Overall Rates (a) 6/50 (12%) 7/49 (14%)  Adjusted Rates (b) 17.2% 17.1% Terminal Rates (c) 4/30 (13%) 7/41 (17%)  Life Table Tests (d) P=0.431 P=0.526N  Incidental Tumor Tests (d) P=0.431 P=0.526N  Incidental Tumor Tests (d) P=0.421 P=0.618  Cochran-Armitage Trend Test (d) P=0.422 P=0.618  Cochran-Armitage Trend Test (d) P=0.442 P=0.618  Cochran-Armitage Trend Test (d) P=0.442 P=0.618  Cochran-Armitage Trend Test (d) P=0.426 P=0.618  Cochran-Armitage Trend Test (d) P=0.442 P=0.618  Cochran-Armitage Trend Test (d) P=0.426 P=0.508  Cochran-Armitage Trend Test (d) P=0.428  Terminal Rates (c) 3/20 (27%) 13/41 (32%)  Life Table Tests (d) P=0.287 P=0.584  Cochran-Armitage Trend Test (d) P=0.287 P=0.584  Cochran-Armitage Trend Test (d) P=0.287 P=0.584  Cochran-Armitage Trend Test (d) P=0.385  Hematopoietic System: Malignant Lymphoma, Lymphocytic Type  Overall Rates (a) 0/50 (0%) 3/50 (6%)  Adjusted Rates (b) 0.0% 6.4%  Terminal Rates (c) 0/30 (0%) 1/41 (2%)  Life Table Tests (d) P=0.378 P=0.584  Cochran-Armitage Trend Test (d) P=0.378 P=0.584  Cochran-Armitage Trend Test (d) P=0.378 P=0.584  Cochran-Armitage Trend Test (d) P=0.378 P=0.155  Incidental Tumor Tests (d) P=0.378 P=0.619N  Cochran-Armitage Trend Test (d) P=0.378 P=0.619N  Cochran-Armitage Trend Test (d) P=0.378 P=0.619N  Cochran-Armitage Trend Test (d) P=0.195N  Fisher Exact Tests P=0.105N  Fisher Exact Tests P=0.106N  Fisher Exact Tests P=0.109N  Fisher Exact Tests P=0.619N  Cochran-Armitage Trend Test (d) P=0.195N  Fisher Exact Tests P=0.619N  Cochran-Armitage Trend Test (d) P=0.195N  Fisher Exact Tests P=0.500N $                                                                                                                                                      | 3.4%                   |  |
| Life Table Tests (d) $P = 0.361$ $P = 0.181$<br>Incidental Tumor Tests (d) $P = 0.361$ $P = 0.181$<br>Cochran-Armitage Trend Test (d) $P = 0.378$<br>Fisher Exact Tests $P = 0.121$<br>ang: Alveolar/Bronchiolar Adenoma<br>Overall Rates (a) $6/50 (12\%)$ $7/49 (14\%)$<br>Adjusted Rates (b) $17.2\%$ $17.1\%$<br>Terminal Rates (c) $4/30 (13\%)$ $7/41 (17\%)$<br>Life Table Tests (d) $P = 0.431$ $P = 0.528$<br>Cochran-Armitage Trend Test (d) $P = 0.432$ $P = 0.618$<br>Cochran-Armitage Trend Test (d) $P = 0.442$<br>Fisher Exact Tests $P = 0.431$ $P = 0.434$<br>Adjusted Rates (b) $19.3\%$ $17.1\%$<br>Terminal Rates (c) $5/30 (17\%)$ $7/41 (17\%)$<br>Life Table Tests (d) $P = 0.426$ $P = 0.501N$<br>Nicidental Tumor Tests (d) $P = 0.426$ $P = 0.501N$<br>Incidental Tumor Tests (d) $P = 0.426$ $P = 0.501N$<br>Incidental Tumor Tests (d) $P = 0.426$ $P = 0.501N$<br>Incidental Tumor Tests (d) $P = 0.426$ $P = 0.501N$<br>Incidental Tumor Tests (d) $P = 0.426$ $P = 0.501N$<br>Cochran-Armitage Trend Test (d) $P = 0.442$<br>Fisher Exact Tests $P = 0.484$<br>Adjusted Rates (b) $32.1\%$ $31.7\%$<br>Terminal Rates (c) $3/30 (27\%)$ $13/41 (32\%)$<br>Life Table Tests (d) $P = 0.348$ $P = 0.456N$<br>Incidental Tumor Tests (d) $P = 0.348$ $P = 0.456N$<br>Incidental Tumor Tests (d) $P = 0.348$ $P = 0.456N$<br>Incidental Tumor Tests (d) $P = 0.379$ $P = 0.584$<br>Cochran-Armitage Trend Test (d) $P = 0.379$ $P = 0.584$<br>Fisher Exact Tests $P = 0.379$ $P = 0.584$<br>Fisher Exact Tests $P = 0.379$ $P = 0.584$<br>Fisher Exact Tests $P = 0.379$ $P = 0.153$<br>Incidental Tumor Tests (d) $P = 0.379$ $P = 0.153$<br>Incidental Tumor Tests (d) $P = 0.378$ $P = 0.121$<br>Hematopoletic System: Malignant Lymphoma, Mixed Type<br>Overall Rates (a) $6/50 (12\%)$ $5/50 (10\%)$<br>Adjusted Rates (b) $15.5\%$ $11.9\%$<br>Fisher Exact Tests $P = 0.121N$ $P = 0.619N$<br>Cochran-Armitage Trend Test (d) $P = 0.19N$ $P = 0.352N$<br>Incidental Tumor Tests (d) $P = 0.19N$ $P = 0.352N$<br>Incidental Tumor Tests (d) $P = 0.19N$ $P = 0.50N$<br>Fisher Exact Tests $P = $ | 1/29 (3%)              |  |
| Incidental Tumor Tests (d) $P = 0.361$ $P = 0.181$ Cochran-Armitage Trend Test (d) $P = 0.378$ $P = 0.121$ Jung: Alveolar/Bronchiolar AdenomaOverall Rates (a) $6/50 (12\%)$ $7/49 (14\%)$ Overall Rates (a) $6/50 (12\%)$ $7/49 (14\%)$ Adjusted Rates (b) $17.2\%$ $17.1\%$ Terminal Rates (c) $4/30 (13\%)$ $7/41 (17\%)$ Life Table Tests (d) $P = 0.431$ $P = 0.526N$ Cochran-Armitage Trend Test (d) $P = 0.432$ $P = 0.618$ Cochran-Armitage Trend Test (d) $P = 0.422$ $P = 0.484$ Fisher Exact Tests $P = 0.484$ Overall Rates (a) $6/50 (12\%)$ $7/49 (14\%)$ Adjusted Rates (b) $19.3\%$ $17.1\%$ Terminal Rates (c) $5/30 (17\%)$ $7/41 (17\%)$ Life Table Tests (d) $P = 0.426$ $P = 0.501N$ Nincidental Tumor Tests (d) $P = 0.451$ $P = 0.599N$ Cochran-Armitage Trend Test (d) $P = 0.422$ $P = 0.484$ ung: Alveolar/Bronchiolar Adenoma or Carcinoma $Overall Rates (a)$ $11/50 (22\%)$ $13/49 (27\%)$ Adjusted Rates (b) $32.1\%$ $31.7\%$ $31.7\%$ Terminal Rates (c) $8/30 (27\%)$ $30/41 (32\%)$ $13/41 (32\%)$ Life Table Tests (d) $P = 0.384$ $P = 0.384$ Cochran-Armitage Trend Test (d) $P = 0.379$ $P = 0.584$ Cochran-Armitage Trend Test (d) $P = 0.379$ $P = 0.584$ Cochran-Armitage Trend Test (d) $P = 0.379$ $P = 0.584$ Cochran-Armitage Trend Test (d) $P = 0.376$ <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | P = 0.493              |  |
| Cochran-Armitage Trend Test (d) $P = 0.378$ Fisher Exact Tests $P = 0.121$ <b>Jung: Alveolar/Bronchiolar Adenoma</b> $6/50 (12\%)$ $7/49 (14\%)$ Overall Rates (a) $6/50 (12\%)$ $7/49 (14\%)$ Adjusted Rates (b) $17.2\%$ $17.1\%$ Terminal Rates (c) $4/30 (13\%)$ $7/41 (17\%)$ Life Table Tests (d) $P = 0.431$ $P = 0.526N$ Incidental Tumor Tests (d) $P = 0.432$ $P = 0.618$ Cochran-Armitage Trend Test (d) $P = 0.426$ $P = 0.484$ Jung: Alveolar/Bronchiolar CarcinomaOverall Rates (a) $6/50 (12\%)$ $7/49 (14\%)$ Adjusted Rates (b) $19.3\%$ $17.1\%$ Terminal Rates (c) $5/30 (17\%)$ $7/41 (17\%)$ Life Table Tests (d) $P = 0.426$ $P = 0.599N$ Cochran-Armitage Trend Test (d) $P = 0.426$ $P = 0.599N$ Cochran-Armitage Trend Test (d) $P = 0.421$ $P = 0.484$ Fisher Exact Tests $P = 0.484$ $11/50 (22\%)$ $13/49 (27\%)$ Adjusted Rates (b) $32.1\%$ $31.7\%$ $31.7\%$ Adjusted Rates (c) $3/30 (27\%)$ $13/41 (32\%)$ $11/50 (22\%)$ $13/49 (27\%)$ Life Table Tests (d) $P = 0.387$ $P = 0.385$ $P = 0.484$ Cochran-Armitage Trend Test (d) $P = 0.387$ $P = 0.385$ Verall Rates (a) $0/50 (0\%)$ $3/50 (6\%)$ $3/50 (6\%)$ Adjusted Rates (b) $0.0\%$ $6.4\%$ $P = 0.378$ Fisher Exact Tests $P = 0.378$ $P = 0.121$ Hematopoietic System: Malignant Lymphoma, Lymphocytic Typ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | P=0.493                |  |
| Fisher Exact Tests $P=0.121$ ung: Alveolar/Bronchiolar Adenoma $7/49 (14\%)$ Overall Rates (a) $6/50 (12\%)$ $7/49 (14\%)$ Adjusted Rates (b) $17.2\%$ $17.1\%$ Terminal Rates (c) $4/30 (13\%)$ $7/41 (17\%)$ Life Table Tests (d) $P=0.431$ $P=0.526N$ Incidental Tumor Tests (d) $P=0.432$ $P=0.618$ Cochran-Armitage Trend Test (d) $P=0.442$ $P=0.442$ Fisher Exact Tests $P=0.442$ $P=0.431$ Overall Rates (a) $6/50 (12\%)$ $7/49 (14\%)$ Adjusted Rates (b) $19.3\%$ $17.1\%$ Terminal Rates (c) $5/30 (17\%)$ $7/41 (17\%)$ Life Table Tests (d) $P=0.426$ $P=0.501N$ Incidental Tumor Tests (d) $P=0.451$ $P=0.599N$ Cochran-Armitage Trend Test (d) $P=0.451$ $P=0.599N$ Cochran-Armitage Trend Test (d) $P=0.426$ $P=0.484$ ung: Alveolar/Bronchiolar Adenoma or Carcinoma $Overall Rates (a)$ $11/50 (22\%)$ $13/49 (27\%)$ Adjusted Rates (b) $32.1\%$ $31.7\%$ $31.7\%$ Terminal Rates (c) $8/30 (27\%)$ $33/41 (32\%)$ Life Table Tests (d) $P=0.386$ $P=0.385$ Pematopoietic System: Malignant Lymphoma, Lymphocytic Type $Overall Rates (b)$ $0.5\% (10\%)$ Overall Rates (b) $0.7\% (12\%)$ $441 (10\%)$ Life Table Tests (d) $P=0.335$ $P=0.020$ Pendient Tumor Tests (d) $P=0.379$ $P=0.325$ Perminal Rates (c) $2/30 (7\%)$ $4/41 (10\%)$ Life Table Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                        |  |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | P = 0.500              |  |
| Adjusted Rates (b)17.2%17.1%Terminal Rates (c)4/30 (13%)7/41 (17%)Life Table Tests (d)P=0.421P=0.526NIncidental Tumor Tests (d)P=0.323P=0.618Cochran-Armitage Trend Test (d)P=0.442P=0.484Jung: Alveolar/Bronchiolar CarcinomaOverall Rates (a)6/50 (12%)7/49 (14%)Adjusted Rates (b)19.3%17.1%Terminal Rates (c)5/30 (17%)7/44 (17%)Life Table Tests (d)P=0.426P=0.501NIncidental Tumor Tests (d)P=0.451P=0.599NCochran-Armitage Trend Test (d)P=0.442P=0.484Fisher Exact TestsP=0.48411/50 (22%)13/49 (27%)Adjusted Rates (b)32.1%31.7%31.7%Terminal Rates (c)8/30 (27%)13/41 (32%)Life Table Tests (d)P=0.384Cochran-Armitage Trend Test (d)P=0.384P=0.456NIncidental Tumor Tests (d)P=0.384Cochran-Armitage Trend Test (d)P=0.364Fisher Exact TestsP=0.385Iematopoietic System: Malignant Lymphoma, Lymphocytic TypeOverall Rates (a)0/50 (0%)3/50 (6%)Adjusted Rates (b)0.0%6.4%11.9%Terminal Rates (c)2/30 (7%)1/41 (10%)Life Table Tests (d)P=0.335P=0.060Cochran-Armitage Trend Test (d)P=0.335P=0.0121Incidental Tumor Tests (d)P=0.335P=0.060Cochran-Armitage Trend Test (d)P=0.335P=0.060Cochran-Armitage Trend Test (d)P=0.335P=0.060P=0.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                        |  |
| $T_{erminal Rates (c)} 4/30 (13\%) 7/41 (17\%) 1. Life Table Tests (d) P=0.431 P=0.526N I. Cohran-Armitage Trend Test (d) P=0.431 P=0.526N I. Cohran-Armitage Trend Test (d) P=0.442 Fisher Exact Tests P=0.618 Cohran-Armitage Trend Test (d) P=0.442 Fisher Exact Tests P=0.618 Cohran-Armitage Trend Test (d) P=0.442 Fisher Exact Tests P=0.618 Cohran-Armitage Trend Test (d) P=0.442 Fisher Exact Tests P=0.618 Cohran-Armitage Trend Test (d) P=0.442 Fisher Exact Tests P=0.618 Cohran-Armitage Trend Test (d) P=0.442 Fisher Exact Tests (d) P=0.451 P=0.599N Cohran-Armitage Trend Test (d) P=0.451 P=0.599N Cohran-Armitage Trend Test (d) P=0.442 Fisher Exact Tests P=0.648ung: Alveolar/Bronchiolar Adenoma or Carcinoma Overall Rates (a) 11/50 (22%) 13/49 (27%) Adjusted Rates (b) 32.1% 31.7% Terminal Rates (c) 8/30 (27%) 13/41 (32%) Life Table Tests (d) P=0.387 P=0.584 Cohran-Armitage Trend Test (d) P=0.387 P=0.584 Cohran-Armitage Trend Test (d) P=0.387 P=0.584 Cohran-Armitage Trend Test (d) P=0.364 Fisher Exact Tests P=0.335 Incidental Tumor Tests (d) P=0.379 P=0.355 Incidental Tumor Tests (d) P=0.379 P=0.155 Incidental Tumor Tests (d) P=0.379 P=0.155 Incidental Tumor Tests (d) P=0.378 P=0.121 Hematopoietic System: Malignant Lymphoma, Lymphocytic Type Overall Rates (c) 2/30 (07%) 4/41 (10%) Life Table Tests (d) P=0.378 P=0.121 Hematopoietic System: Malignant Lymphoma, Mixed Type Overall Rates (c) 2/30 (07%) 4/41 (10%) Life Table Tests (d) P=0.378 P=0.151 Incidental Tumor Tests (d) P=0.155N Terminal Rates (c) 2/30 (07%) 4/41 (10%) Life Table Tests (d) P=0.196N P=0.352N Incidental Tumor Tests (d) P=0.424 P=0.196N P=0.352N Incident$                                                                                                             | 7/50 (14%)             |  |
| Life Table Tests (d) $P = 0.431$ $P = 0.526N$ Incidental Tumor Tests (d) $P = 0.323$ $P = 0.618$ Cochran-Armitage Trend Test (d) $P = 0.422$ Fisher Exact Tests $P = 0.442$ ung: Alveolar/Bronchiolar Carcinoma $Overall Rates (a)$ $6/50 (12\%)$ Overall Rates (a) $6/50 (12\%)$ $7/49 (14\%)$ Adjusted Rates (b) $19.3\%$ $17.1\%$ Terminal Rates (c) $5/30 (17\%)$ $7/41 (17\%)$ Life Table Tests (d) $P = 0.426$ $P = 0.501N$ Incidental Tumor Tests (d) $P = 0.426$ $P = 0.599N$ Cochran-Armitage Trend Test (d) $P = 0.442$ $P = 0.484$ ung: Alveolar/Bronchiolar Adenoma or Carcinoma $Overall Rates (a)$ $11/50 (22\%)$ $13/49 (27\%)$ Adjusted Rates (a) $11/50 (22\%)$ $13/41 (32\%)$ $13/41 (32\%)$ Life Table Tests (d) $P = 0.348$ $P = 0.456N$ Incidental Tumor Tests (d) $P = 0.327$ $P = 0.584$ Cochran-Armitage Trend Test (d) $P = 0.379$ $P = 0.335$ Hematopoietic System: Malignant Lymphoma, Lymphocytic Type $Overall Rates (a)$ $0/50 (0\%)$ $3/50 (6\%)$ Adjusted Rates (b) $0.0\%$ $6.4\%$ $P = 0.378$ $P = 0.121$ Hematopoietic System: Malignant Lymphoma, Mixed Type $Overall Rates (a)$ $6/50 (12\%)$ $5/50 (10\%)$ Adjusted Rates (b) $15.5\%$ $11.9\%$ $11.9\%$ Terminal Rates (c) $2/30 (7\%)$ $4/41 (10\%)$ Life Table Tests (d) $P = 0.195N$ $P = 0.302N$ Incidental Tumor Tests (d) $P = 0.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 18.4%                  |  |
| Incidental Tumor Tests (d) $P = 0.323$ $P = 0.618$ Cochran-Armitage Trend Test (d) $P = 0.442$ $P = 0.442$ Fisher Exact Tests $P = 0.484$ Aung: Alveolar/Bronchiolar CarcinomaOverall Rates (a) $6/50$ (12%) $7/49$ (14%)Adjusted Rates (b) $19.3\%$ $17.1\%$ Terminal Rates (a) $P = 0.426$ $P = 0.501N$ Incidental Tumor Tests (d) $P = 0.426$ $P = 0.599N$ Cochran-Armitage Trend Test (d) $P = 0.422$ $P = 0.484$ Aung: Alveolar/Bronchiolar Adenoma or CarcinomaOverall Rates (a) $11/50$ (22%) $13/49$ (27%)Adjusted Rates (b) $32.1\%$ $31.7\%$ $31.7\%$ Terminal Rates (c) $8/30$ (27%) $13/41$ (32%) $11/43$ (32%)Life Table Tests (d) $P = 0.348$ $P = 0.484$ Noreall Rates (a) $11/50$ (22%) $13/49$ (27%)Adjusted Rates (b) $32.1\%$ $31.7\%$ Terminal Rates (c) $8/30$ (27%) $13/41$ (32%)Life Table Tests (d) $P = 0.348$ $P = 0.456N$ Incidental Tumor Tests (d) $P = 0.378$ $P = 0.379$ Fisher Exact Tests $P = 0.379$ $P = 0.155$ Incidental Tumor Tests (d) $P = 0.378$ $P = 0.121$ Hematopoietic System: Malignant Lymphoma, Mixed Type $Overall Rates (a)$ $6/50$ (12%) $5/50$ (10%)Adjusted Rates (b) $15.5\%$ $11.9\%$ $11.9\%$ Terminal Rates (c) $2/30$ (7%) $4/41$ (10%)Life Table Tests (d) $P = 0.196N$ $P = 0.352N$ Terminal Rates (c) $2/3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3/29 (10%)             |  |
| Cochran-Armitage Trend Test (d) $P = 0.442$ Fisher Exact Tests $P = 0.442$ Fisher Exact Tests $P = 0.484$ aug: Alveolar/Bronchiolar Carcinoma $7/49 (14\%)$ Overall Rates (a) $6/50 (12\%)$ $7/49 (14\%)$ Adjusted Rates (b) $19.3\%$ $17.1\%$ Terminal Rates (c) $5/30 (17\%)$ $7/41 (17\%)$ Life Table Tests (d) $P = 0.426$ $P = 0.501N$ Incidental Tumor Tests (d) $P = 0.421$ $P = 0.599N$ Cochran-Armitage Trend Test (d) $P = 0.422$ $P = 0.484$ Fisher Exact Tests $P = 0.422$ $P = 0.484$ Aug: Alveolar/Bronchiolar Adenoma or Carcinoma $Overall Rates (a)$ $11/50 (22\%)$ $13/49 (27\%)$ Adjusted Rates (b) $32.1\%$ $31.7\%$ $31/41 (32\%)$ Life Table Tests (d) $P = 0.348$ $P = 0.456N$ Incidental Tumor Tests (d) $P = 0.384$ $P = 0.456N$ Incidental Tumor Tests (d) $P = 0.384$ $P = 0.385$ Iematopoietic System: Malignant Lymphoma, Lymphocytic Type $Overall Rates (a)$ $0/50 (0\%)$ $3/50 (6\%)$ Adjusted Rates (b) $0.0\%$ $6.4\%$ $11/41 (2\%)$ Life Table Tests (d) $P = 0.378$ $P = 0.121$ Iematopoietic System: Malignant Lymphoma, Mixed Type $Overall Rates (a)$ $6/50 (12\%)$ $5/50 (10\%)$ Adjusted Rates (b) $15.5\%$ $11.9\%$ $P = 0.619N$ Cochran-Armitage Trend Test (d) $P = 0.196N$ $P = 0.322N$ Incidental Tumor Tests (d) $P = 0.196N$ $P = 0.352N$ Incidental Tumor Tests (d) <t< td=""><td>P=0.497</td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | P=0.497                |  |
| Fisher Exact Tests $P=0.484$ Uurg: Alveolar/Bronchiolar CarcinomaOverall Rates (a) $6/50 (12\%)$ $7/49 (14\%)$ Adjusted Rates (b) $19.3\%$ $17.1\%$ Terminal Rates (c) $5/30 (17\%)$ $7/41 (17\%)$ Life Table Tests (d) $P=0.426$ $P=0.501N$ Incidental Tumor Tests (d) $P=0.426$ $P=0.599N$ Cochran-Armitage Trend Test (d) $P=0.442$ $P=0.484$ Fisher Exact Tests $P=0.484$ $ang:$ Alveolar/Bronchiolar Adenoma or CarcinomaOverall Rates (a) $11/50 (22\%)$ $13/49 (27\%)$ Adjusted Rates (b) $32.1\%$ $31.7\%$ Terminal Rates (c) $8/30 (27\%)$ $13/41 (32\%)$ Life Table Tests (d) $P=0.348$ $P=0.456N$ Incidental Tumor Tests (d) $P=0.364$ $P=0.364$ Fisher Exact Tests $P=0.364$ $P=0.364$ Fisher Exact Tests $P=0.379$ $P=0.355$ Iematopoietic System: Malignant Lymphoma, Lymphocytic Type $Oycerall Rates (a)$ $0/50 (0\%)$ Adjusted Rates (b) $0.0\%$ $6.4\%$ Terminal Rates (c) $0/30 (0\%)$ $1/41 (2\%)$ Life Table Tests (d) $P=0.379$ $P=0.155$ Incidental Tumor Tests (d) $P=0.379$ $P=0.1651$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | P=0.351                |  |
| Lung: Alveolar/Bronchiolar CarcinomaOverall Rates (a) $6/50 (12\%)$ $7/49 (14\%)$ Adjusted Rates (b) $19.3\%$ $17.1\%$ Terminal Rates (c) $5/30 (17\%)$ $7/41 (17\%)$ Life Table Tests (d) $P = 0.426$ $P = 0.501N$ Incidental Tumor Tests (d) $P = 0.426$ $P = 0.599N$ Cochran-Armitage Trend Test (d) $P = 0.422$ $P = 0.426$ Fisher Exact Tests $P = 0.422$ $P = 0.484$ ung: Alveolar/Bronchiolar Adenoma or Carcinoma $Overall Rates (a)$ $11/50 (22\%)$ Adjusted Rates (b) $32.1\%$ $31.7\%$ Terminal Rates (c) $8/30 (27\%)$ $13/41 (32\%)$ Life Table Tests (d) $P = 0.348$ $P = 0.484$ Incidental Tumor Tests (d) $P = 0.287$ $P = 0.584$ Cochran-Armitage Trend Test (d) $P = 0.364$ $P = 0.385$ Verall Rates (a) $0/50 (0\%)$ $3/50 (6\%)$ Adjusted Rates (b) $0.0\%$ $6.4\%$ Terminal Rates (c) $0/30 (0\%)$ $1/41 (2\%)$ Life Table Tests (d) $P = 0.379$ $P = 0.125$ Incidental Tumor Tests (d) $P = 0.378$ $P = 0.121$ Hematopoietic System: Malignant Lymphoma, Mixed Type $Overall Rates (a)$ $6/50 (12\%)$ $5/50 (10\%)$ Adjusted Rates (b) $15.5\%$ $11.9\%$ $11.9\%$ Terminal Rates (c) $2/30 (7\%)$ $4/41 (10\%)$ $10/50 (20\%)$ Incidental Tumor Tests (d) $P = 0.195N$ $P = 0.500N$ Hematopoietic System: Malignant Lymphoma, All Malignant $Overall Rates (a)$ $7/50 (14\%)$ $10/50 (20\%$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>_</b>               |  |
| Overall Rates (a) $6/50 (12\%)$ $7/49 (14\%)$ Adjusted Rates (b) $19.3\%$ $77.1\%$ Terminal Rates (c) $5/30 (17\%)$ $7/41 (17\%)$ Life Table Tests (d)P = 0.426P = 0.501NIncidental Tumor Tests (d)P = 0.421P = 0.599NCochran-Armitage Trend Test (d)P = 0.442Fisher Exact TestsOverall Rates (a) $11/50 (22\%)$ $13/49 (27\%)$ Adjusted Rates (b) $32.1\%$ $31.7\%$ Terminal Rates (c) $8/30 (27\%)$ $13/41 (32\%)$ Life Table Tests (d)P = 0.348P = 0.484Fisher Exact TestsP = 0.364P = 0.364Fisher Exact TestsP = 0.364P = 0.385Imatopoietic System: Malignant Lymphoma, Lymphocytic TypeOverall Rates (a) $0/50 (0\%)$ Overall Rates (a) $0.0\%$ $6.4\%$ Terminal Rates (c) $0/30 (0\%)$ $1/41 (2\%)$ Life Table Tests (d)P = 0.379P = 0.155Incidental Tumor Tests (d)P = 0.379P = 0.155Incidental Tumor Tests (d)P = 0.378Fisher Exact TestsVerall Rates (a) $6/50 (12\%)$ $5/50 (10\%)$ Adjusted Rates (b) $15.5\%$ $11.9\%$ Terminal Rates (c) $2/30 (7\%)$ $4/41 (10\%)$ Life Table Tests (d)P = 0.196NP = 0.352NIncidental Tumor Tests (d)P = 0.196NP = 0.352NIncidental Tumor Tests (d)P = 0.196NP = 0.352NIncidental Tumor Tests (d)P = 0.196NP = 0.500NFisher Exact TestsP = 0.196NP = 0.500N <td>P = 0.500</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | P = 0.500              |  |
| Adjusted Rates (b)19.3%17.1%Terminal Rates (c)5/30 (17%)7/41 (17%)Life Table Tests (d) $P = 0.426$ $P = 0.501N$ Incidental Tumor Tests (d) $P = 0.426$ $P = 0.599N$ Cochran-Armitage Trend Test (d) $P = 0.442$ $P = 0.484$ Fisher Exact Tests $P = 0.442$ $P = 0.484$ Jung: Alveolar/Bronchiolar Adenoma or Carcinoma $Overall Rates (a)$ $11/50 (22\%)$ Adjusted Rates (b) $32.1\%$ $31.7\%$ Terminal Rates (c) $8/30 (27\%)$ $13/41 (32\%)$ Life Table Tests (d) $P = 0.348$ $P = 0.456N$ Incidental Tumor Tests (d) $P = 0.387$ $P = 0.584$ Cochran-Armitage Trend Test (d) $P = 0.364$ $P = 0.385$ Hematopoietic System: Malignant Lymphoma, Lymphocytic Type $O/50 (0\%)$ $3/50 (6\%)$ Adjusted Rates (b) $0.0\%$ $6.4\%$ Terminal Rates (c) $0/30 (0\%)$ $1/41 (2\%)$ Life Table Tests (d) $P = 0.379$ $P = 0.155$ Incidental Tumor Tests (d) $P = 0.378$ $P = 0.121$ Hematopoietic System: Malignant Lymphoma, Mixed Type $Overall Rates (a)$ $6/50 (12\%)$ $5/50 (10\%)$ Adjusted Rates (b) $15.5\%$ $11.9\%$ Terminal Rates (c) $2/30 (7\%)$ $4/41 (10\%)$ Life Table Tests (d) $P = 0.121$ $P = 0.352N$ Incidental Tumor Tests (d) $P = 0.196N$ $P = 0.352N$ Fisher Exact Tests $P = 0.196N$ $P = 0.352N$ Incidental Tumor Tests (d) $P = 0.195N$ $P = 0.500N$ Hematopoietic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | MED (140)              |  |
| Terminal Rates (c) $5/30(17\%)$ $7/41(17\%)$ Life Table Tests (d) $P=0.426$ $P=0.501N$ Incidental Tumor Tests (d) $P=0.426$ $P=0.599N$ Cochran-Armitage Trend Test (d) $P=0.442$ $P=0.484$ Fisher Exact Tests $P=0.442$ $P=0.484$ <b>.ung: Alveolar/Bronchiolar Adenoma or Carcinoma</b> Overall Rates (a) $11/50(22\%)$ $Overall Rates (a)$ $11/50(22\%)$ $13/49(27\%)$ $Adjusted Rates (b)$ $32.1\%$ $31.7\%$ Terminal Rates (c) $8/30(27\%)$ $13/41(32\%)$ Life Table Tests (d) $P=0.348$ $P=0.456N$ Incidental Tumor Tests (d) $P=0.287$ $P=0.584$ Cochran-Armitage Trend Test (d) $P=0.364$ $P=0.385$ Fisher Exact Tests $P=0.385$ $P=0.385$ <b>Iematopoietic System: Malignant Lymphoma, Lymphocytic Type</b> $0/50(0\%)$ $3/50(6\%)$ Overall Rates (a) $0/50(0\%)$ $1/41(2\%)$ Life Table Tests (d) $P=0.379$ $P=0.155$ Incidental Tumor Tests (d) $P=0.379$ $P=0.060$ Cochran-Armitage Trend Test (d) $P=0.378$ $P=0.121$ Hematopoietic System: Malignant Lymphoma, Mixed Type $Overall Rates (a)$ $6/50(12\%)$ $5/50(10\%)$ Adjusted Rates (b) $15.5\%$ $11.9\%$ Terminal Rates (c) $2/30(7\%)$ $4/41(10\%)$ Life Table Tests (d) $P=0.212N$ $P=0.352N$ Terminal Rates (c) $2/30(7\%)$ $P=0.500N$ Hematopoietic System: Lymphoma, All Malignant $Overall Rates (a)$ $7/50(14\%)$ $10/50(20\%)$ <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7/50 (14%)<br>20.5%    |  |
| Life Table Tests (d) $P=0.426$ $P=0.501N$ Incidental Tumor Tests (d) $P=0.451$ $P=0.599N$ Cochran-Armitage Trend Test (d) $P=0.442$ $P=0.484$ Fisher Exact Tests $P=0.442$ $P=0.484$ Jung: Alveolar/Bronchiolar Adenoma or CarcinomaOverall Rates (a) $11/50$ (22%) $13/49$ (27%)Adjusted Rates (b) $32.1\%$ $31.7\%$ Terminal Rates (c) $8/30$ (27%) $13/41$ (32%)Life Table Tests (d) $P=0.348$ $P=0.456N$ Incidental Tumor Tests (d) $P=0.384$ $P=0.456N$ Fisher Exact Tests $P=0.384$ $P=0.456N$ Hematopoietic System: Malignant Lymphoma, Lymphocytic Type<br>Overall Rates (a) $0/50$ (0%) $3/50$ (6%)Adjusted Rates (b) $0.0\%$ $6.4\%$ $P=0.379$ P=0.121Fisher Exact Tests $P=0.379$ $P=0.155$ Incidental Tumor Tests (d) $P=0.378$ $P=0.060$ Cochran-Armitage Trend Test (d) $P=0.378$ $P=0.121$ Fisher Exact Tests $P=0.121$ $P=0.321$ $P=0.321$ Idematopoietic System: Malignant Lymphoma, Mixed Type $Overall Rates (a)$ $6/50$ (12%) $5/50$ (10%)Adjusted Rates (b) $15.5\%$ $11.9\%$ $P=0.321$ Idematopoietic System: Malignant Lymphoma, Mixed Type $Overall Rates (a)$ $P=0.121$ Idematopoietic System: Malignant Lymphoma, Mixed Type $Overall Rates (a)$ $P=0.121$ Idematopoietic System: Malignant Lymphoma, Mixed Type $Overall Rates (a)$ $P=0.120$ Incidental Tumor Tests (d) $P=0.212N$ $P=0.619$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 20.5%<br>4/29 (14%)    |  |
| Incidental Tumor Tests (d) $P = 0.451$ $P = 0.599N$ Cochran-Armitage Trend Test (d) $P = 0.442$ $P = 0.442$ Fisher Exact Tests $P = 0.442$ Fisher Exact Tests $P = 0.484$ Lung: Alveolar/Bronchiolar Adenoma or Carcinoma $Overall Rates (a)$ $11/50 (22\%)$ Adjusted Rates (b) $32.1\%$ $31.7\%$ Adjusted Rates (c) $8/30 (27\%)$ $13/41 (32\%)$ Life Table Tests (d) $P = 0.348$ $P = 0.456N$ Incidental Tumor Tests (d) $P = 0.287$ $P = 0.584$ Cochran-Armitage Trend Test (d) $P = 0.364$ $P = 0.385$ Hematopoietic System: Malignant Lymphoma, Lymphocytic Type $Overall Rates (a)$ $0/50 (0\%)$ Adjusted Rates (b) $0.0\%$ $6.4\%$ Terminal Rates (c) $0/30 (0\%)$ $1/41 (2\%)$ Life Table Tests (d) $P = 0.379$ $P = 0.155$ Incidental Tumor Tests (d) $P = 0.379$ $P = 0.155$ Incidental Tumor Tests (d) $P = 0.378$ $P = 0.121$ Hematopoietic System: Malignant Lymphoma, Mixed Type $Overall Rates (a)$ $6/50 (12\%)$ Overall Rates (a) $6/50 (12\%)$ $5/50 (10\%)$ Adjusted Rates (b) $15.5\%$ $11.9\%$ Terminal Rates (c) $2/30 (7\%)$ $4/41 (10\%)$ Life Table Tests (d) $P = 0.121N$ $P = 0.50N$ Hematopoietic System: Malignant Lymphoma, Mixed Type $Overall Rates (a)$ $P = 0.196N$ P = 0.50N $P = 0.196N$ $P = 0.352N$ $P = 0.619N$ Cochran-Armitage Trend Test (d) $P = 0.195N$ $P = 0.619N$ <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | P = 0.492              |  |
| Cochran-Armitage Trend Test (d) $P = 0.442$ Fisher Exact Tests $P = 0.484$ Aung: Alveolar/Bronchiolar Adenoma or Carcinoma<br>Overall Rates (a) $11/50 (22\%)$ $13/49 (27\%)$ Adjusted Rates (a) $11/50 (22\%)$ $13/49 (27\%)$ Adjusted Rates (a) $21.1\%$ $31.7\%$ Terminal Rates (c) $8/30 (27\%)$ $13/41 (32\%)$ Life Table Tests (d) $P = 0.348$ $P = 0.456N$ Incidental Tumor Tests (d) $P = 0.287$ $P = 0.584$ Cochran-Armitage Trend Test (d) $P = 0.364$ $P = 0.385$ Hematopoietic System: Malignant Lymphoma, Lymphocytic Type<br>Overall Rates (a) $0/50 (0\%)$ $3/50 (6\%)$ Adjusted Rates (b) $0.0\%$ $6.4\%$ Terminal Rates (c) $0/30 (0\%)$ $1/41 (2\%)$ Life Table Tests (d) $P = 0.379$ $P = 0.155$ Incidental Tumor Tests (d) $P = 0.376$ $P = 0.121$ Hematopoietic System: Malignant Lymphoma, Mixed Type<br>Overall Rates (a) $6/50 (12\%)$ $5/50 (10\%)$ Adjusted Rates (b) $15.5\%$ $11.9\%$ Terminal Rates (c) $2/30 (7\%)$ $4/41 (10\%)$ Life Table Tests (d) $P = 0.121N$ $P = 0.619N$ Cochran-Armitage Trend Test (d) $P = 0.195N$ $P = 0.52N$ Terminal Rates (c) $2/30 (7\%)$ $4/41 (10\%)$ Life Table Tests (d) $P = 0.195N$ $P = 0.500N$ Hematopoietic System: Lymphoma, All Malignant<br>Overall Rates (a) $7/50 (14\%)$ $10/50 (20\%)$ Adjusted Rates (b) $17.6\%$ $21.9\%$ Terminal Rates (c) $2/30 (7\%)$ $6/$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | P = 0.492<br>P = 0.516 |  |
| Fisher Exact Tests $P=0.484$ Jung: Alveolar/Bronchiolar Adenoma or CarcinomaOverall Rates (a) $11/50$ (22%) $13/49$ (27%)Adjusted Rates (b) $32.1\%$ $31.7\%$ Terminal Rates (c) $8/30$ (27%) $13/41$ (32%)Life Table Tests (d) $P=0.348$ $P=0.456N$ Incidental Tumor Tests (d) $P=0.384$ $P=0.584$ Cochran-Armitage Trend Test (d) $P=0.364$ $P=0.385$ Fisher Exact Tests $P=0.364$ $P=0.385$ Hematopoietic System: Malignant Lymphoma, Lymphocytic Type $Overall Rates (a)$ $0/50$ (0%)Adjusted Rates (b) $0.0\%$ $6.4\%$ Terminal Rates (c) $0/30$ (0%) $1/41$ (2%)Life Table Tests (d) $P=0.335$ $P=0.155$ Incidental Tumor Tests (d) $P=0.379$ $P=0.155$ Incidental Tumor Tests (d) $P=0.378$ $P=0.121$ Hematopoietic System: Malignant Lymphoma, Mixed Type $Overall Rates (a)$ $6/50$ (12%)Overall Rates (a) $6/50$ (12%) $5/50$ (10%)Adjusted Rates (b) $15.5\%$ $11.9\%$ Terminal Rates (c) $2/30$ (7%) $4/41$ (10%)Life Table Tests (d) $P=0.195N$ $P=0.500N$ Fisher Exact Tests $P=0.500N$ $P=0.500N$ Hematopoietic System: Lymphoma, All Malignant $Overall Rates (a)$ $7/50$ (14%) $10/50$ (20%)Adjusted Rates (b) $17.6\%$ $21.9\%$ Fisher Exact Tests $P=0.484$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | F = 0.010              |  |
| Overall Rates (a) $11/50 (22\%)$ $13/49 (27\%)$ Adjusted Rates (b) $32.1\%$ $31.7\%$ Terminal Rates (c) $8/30 (27\%)$ $13/41 (32\%)$ Life Table Tests (d)       P=0.348       P=0.456N         Incidental Tumor Tests (d)       P=0.287       P=0.584         Cochran-Armitage Trend Test (d)       P=0.364       P=0.364         Fisher Exact Tests       P=0.3064       P=0.385         Iematopoietic System: Malignant Lymphoma, Lymphocytic Type       Overall Rates (a) $0/50 (0\%)$ $3/50 (6\%)$ Adjusted Rates (b) $0.0\%$ $6.4\%$ $P=0.379$ $P=0.155$ Incidental Tumor Tests (d)       P=0.379 $P=0.155$ $P=0.060$ Cochran-Armitage Trend Test (d)       P=0.378 $P=0.121$ Fisher Exact Tests       P=0.121 $P=0.121$ Iematopoietic System: Malignant Lymphoma, Mixed Type $Overall Rates (a)$ $6/50 (12\%)$ $5/50 (10\%)$ Adjusted Rates (b) $15.5\%$ $11.9\%$ $P=0.322N$ $P=0.619N$ Cochran-Armitage Trend Test (d)       P=0.196N $P=0.322N$ $P=0.619N$ Cochran-Armitage Trend Test (d)       P=0.196N $P=0.352N$ $P=0.619N$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | P = 0.500              |  |
| Overall Rates (a) $11/50 (22\%)$ $13/49 (27\%)$ Adjusted Rates (b) $32.1\%$ $31.7\%$ Terminal Rates (c) $8/30 (27\%)$ $13/41 (32\%)$ Life Table Tests (d) $P = 0.348$ $P = 0.456N$ Incidental Tumor Tests (d) $P = 0.387$ $P = 0.584$ Cochran-Armitage Trend Test (d) $P = 0.364$ $P = 0.385$ Fisher Exact Tests $P = 0.364$ $P = 0.379$ Hematopoietic System: Malignant Lymphoma, Lymphocytic Type $0.0\%$ $6.4\%$ Overall Rates (a) $0.0\%$ $6.4\%$ Adjusted Rates (b) $0.0\%$ $6.4\%$ Terminal Rates (c) $0/30 (0\%)$ $1/41 (2\%)$ Life Table Tests (d) $P = 0.379$ $P = 0.155$ Incidental Tumor Tests (d) $P = 0.378$ $P = 0.060$ Cochran-Armitage Trend Test (d) $P = 0.378$ $P = 0.121$ Hematopoietic System: Malignant Lymphoma, Mixed Type $Overall Rates (a)$ $6/50 (12\%)$ Overall Rates (a) $6/50 (12\%)$ $5/50 (10\%)$ Adjusted Rates (b) $15.5\%$ $11.9\%$ Terminal Rates (c) $2/30 (7\%)$ $4/41 (10\%)$ Life Table Tests (d) $P = 0.212N$ $P = 0.619N$ Cochran-Armitage Trend Test (d) $P = 0.196N$ $P = 0.352N$ Incidental Tumor Tests (d) $P = 0.195N$ $P = 0.500N$ Fisher Exact Tests $P = 0.196N$ $P = 0.500N$ Hematopoietic System: Lymphoma, All Malignant $Overall Rates (a)$ $7/50 (14\%)$ Overall Rates (a) $7/50 (14\%)$ $10/50 (20\%)$ Adjusted Rates (b) $17.6\%$ $2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                        |  |
| Terminal Rates (c) $8/30 (27\%)$ $13/41 (32\%)$ Life Table Tests (d)P=0.348P=0.456NIncidental Tumor Tests (d)P=0.287P=0.584Cochran-Armitage Trend Test (d)P=0.364P=0.364Fisher Exact TestsP=0.364P=0.385Hematopoietic System: Malignant Lymphoma, Lymphocytic Type $0/50 (0\%)$ $3/50 (6\%)$ Adjusted Rates (a) $0/50 (0\%)$ $3/50 (6\%)$ Adjusted Rates (b) $0.0\%$ $6.4\%$ Terminal Rates (c) $0/30 (0\%)$ $1/41 (2\%)$ Life Table Tests (d)P=0.379P=0.155Incidental Tumor Tests (d)P=0.378P=0.060Cochran-Armitage Trend Test (d)P=0.378P=0.121Hematopoietic System: Malignant Lymphoma, Mixed Type $0/50 (10\%)$ $4/41 (10\%)$ Life Table Tests (d)P=0.196NP=0.352NTerminal Rates (c) $2/30 (7\%)$ $4/41 (10\%)$ Life Table Tests (d)P=0.196NP=0.352NIncidental Tumor Tests (d)P=0.196NP=0.352NIncidental Tumor Tests (d)P=0.196NP=0.352NIncidental Tumor Tests (d)P=0.195NFisher Exact TestsFisher Exact TestsP=0.500NHematopoietic System: Lymphoma, All Malignant $0/50 (12\%)$ Overall Rates (a) $7/50 (14\%)$ $10/50 (20\%)$ Adjusted Rates (b) $17.6\%$ $21.9\%$ Terminal Rates (c) $2/30 (7\%)$ $6/41 (15\%)$ Life Table Tests (d)P=0.451NP=0.484                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 13/50 (26%)            |  |
| Terminal Rates (c) $8/30 (27\%)$ $13/41 (32\%)$ Life Table Tests (d) $P = 0.348$ $P = 0.456N$ Incidental Tumor Tests (d) $P = 0.287$ $P = 0.584$ Cochran-Armitage Trend Test (d) $P = 0.364$ $P = 0.364$ Fisher Exact Tests $P = 0.364$ $P = 0.385$ Hematopoietic System: Malignant Lymphoma, Lymphocytic Type $0/50 (0\%)$ $3/50 (6\%)$ Adjusted Rates (a) $0/50 (0\%)$ $3/50 (6\%)$ Adjusted Rates (b) $0.0\%$ $6.4\%$ Terminal Rates (c) $0/30 (0\%)$ $1/41 (2\%)$ Life Table Tests (d) $P = 0.379$ $P = 0.155$ Incidental Tumor Tests (d) $P = 0.378$ $P = 0.060$ Cochran-Armitage Trend Test (d) $P = 0.378$ $P = 0.121$ Hematopoietic System: Malignant Lymphoma, Mixed Type $Overall Rates (a)$ $6/50 (12\%)$ Overall Rates (a) $6/50 (12\%)$ $5/50 (10\%)$ Adjusted Rates (b) $15.5\%$ $11.9\%$ Terminal Rates (c) $2/30 (7\%)$ $4/41 (10\%)$ Life Table Tests (d) $P = 0.196N$ $P = 0.352N$ Incidental Tumor Tests (d) $P = 0.195N$ $P = 0.500N$ Fisher Exact Tests $P = 0.195N$ $P = 0.500N$ Hematopoietic System: Lymphoma, All Malignant $Overall Rates (a)$ $7/50 (14\%)$ Overall Rates (b) $17.6\%$ $21.9\%$ Terminal Rates (c) $2/30 (7\%)$ $6/41 (15\%)$ Life Table Tests (d) $P = 0.451N$ $P = 0.484$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 33.5%                  |  |
| Incidental Tumor Tests (d) $P = 0.287$ $P = 0.584$ Cochran-Armitage Trend Test (d) $P = 0.364$ $P = 0.364$ Fisher Exact Tests $P = 0.364$ Hematopoietic System: Malignant Lymphoma, Lymphocytic Type $0 \sqrt{50} (0\%)$ Overall Rates (a) $0/50 (0\%)$ $3/50 (6\%)$ Adjusted Rates (b) $0.0\%$ $6.4\%$ Terminal Rates (c) $0/30 (0\%)$ $1/41 (2\%)$ Life Table Tests (d) $P = 0.379$ $P = 0.155$ Incidental Tumor Tests (d) $P = 0.335$ $P = 0.060$ Cochran-Armitage Trend Test (d) $P = 0.378$ $P = 0.121$ Hematopoietic System: Malignant Lymphoma, Mixed Type $0 \sqrt{50} (10\%)$ $4/41 (10\%)$ Overall Rates (a) $6/50 (12\%)$ $5/50 (10\%)$ Adjusted Rates (b) $15.5\%$ $11.9\%$ Terminal Rates (c) $2/30 (7\%)$ $4/41 (10\%)$ Life Table Tests (d) $P = 0.196N$ $P = 0.352N$ Incidental Tumor Tests (d) $P = 0.196N$ $P = 0.619N$ Cochran-Armitage Trend Test (d) $P = 0.195N$ $P = 0.500N$ Fisher Exact Tests $P = 0.195N$ $P = 0.500N$ Itematopoietic System: Lymphoma, All Malignant $0 \sqrt{50} (20\%)$ Adjusted Rates (b) $17.6\%$ $21.9\%$ Terminal Rates (c) $2/30 (7\%)$ $6/41 (15\%)$ Life Table Tests (d) $P = 0.451N$ $P = 0.484$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6/29 (21%)             |  |
| Cochran-Armitage Trend Test (d) $P=0.364$ Fisher Exact Tests $P=0.385$ Hematopoietic System: Malignant Lymphoma, Lymphocytic Type<br>Overall Rates (a) $0/50 (0\%)$ Adjusted Rates (b) $0.0\%$ Adjusted Rates (c) $0/30 (0\%)$ Life Table Tests (d) $P=0.379$ P=0.125Incidental Tumor Tests (d)Cochran-Armitage Trend Test (d) $P=0.378$ Fisher Exact Tests $P=0.378$ Fisher Exact Tests $P=0.121$ Hematopoietic System: Malignant Lymphoma, Mixed Type<br>Overall Rates (a) $6/50 (12\%)$ Overall Rates (a) $6/50 (12\%)$ Adjusted Rates (b) $15.5\%$ Incidental Tumor Tests (d) $P=0.121$ Hematopoietic System: Malignant Lymphoma, Mixed Type<br>Overall Rates (a) $2/30 (7\%)$ Adjusted Rates (b) $15.5\%$ Incidental Tumor Tests (d) $P=0.196N$ P=0.352NIncidental Tumor Tests (d)P=0.196N $P=0.352N$ Incidental Tumor Tests (d) $P=0.195N$ Fisher Exact Tests $P=0.500N$ Hematopoietic System: Lymphoma, All MalignantOverall Rates (a) $7/50 (14\%)$ Overall Rates (b) $17.6\%$ Cochran-Armitage Trend Test (d) $P=0.39\%$ Fisher Exact Tests $P=0.500N$ Hematopoietic System: Lymphoma, All MalignantOverall Rates (a) $7/50 (14\%)$ Indicates (a) $7/50 (14\%)$ Interface (a) $7/50 (14\%)$ Interface (a) $P=0.451N$ P=0.484                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | P = 0.408              |  |
| Fisher Exact Tests $P = 0.385$ Hematopoietic System: Malignant Lymphoma, Lymphocytic Type<br>Overall Rates (a) $0/50 (0\%)$ $3/50 (6\%)$ Adjusted Rates (b) $0.0\%$ $6.4\%$ Terminal Rates (c) $0/30 (0\%)$ $1/41 (2\%)$ Life Table Tests (d) $P = 0.379$ $P = 0.155$ Incidental Tumor Tests (d) $P = 0.335$ $P = 0.060$ Cochran-Armitage Trend Test (d) $P = 0.378$ $P = 0.121$ Hematopoietic System: Malignant Lymphoma, Mixed Type $P = 0.121$ Overall Rates (a) $6/50 (12\%)$ $5/50 (10\%)$ Adjusted Rates (b) $15.5\%$ $11.9\%$ Terminal Rates (c) $2/30 (7\%)$ $4/41 (10\%)$ Life Table Tests (d) $P = 0.121$ Nordental Tumor Tests (d) $P = 0.126$ P = 0.196N $P = 0.352N$ Incidental Tumor Tests (d) $P = 0.196N$ P = 0.500N $P = 0.500N$ Hematopoietic System: Lymphoma, All MalignantOverall Rates (a) $7/50 (14\%)$ Overall Rates (b) $17.6\%$ Signet Exact Tests $P = 0.195N$ Fisher Exact Tests $P = 0.300N$ Hematopoietic System: Lymphoma, All MalignantOverall Rates (a) $7/50 (14\%)$ Overall Rates (b) $17.6\%$ Life Table Tests (d) $P = 0.451N$ P = 0.484                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | P=0.313                |  |
| Iematopoietic System: Malignant Lymphoma, Lymphocytic Type<br>Overall Rates (a)0/50 (0%)3/50 (6%)Adjusted Rates (b)0.0%6.4%Terminal Rates (c)0/30 (0%)1/41 (2%)Life Table Tests (d) $P=0.379$ $P=0.155$ Incidental Tumor Tests (d) $P=0.335$ $P=0.060$ Cochran-Armitage Trend Test (d) $P=0.378$ $P=0.121$ Iematopoietic System: Malignant Lymphoma, Mixed TypeOverall Rates (a)6/50 (12%)5/50 (10%)Adjusted Rates (b)15.5%11.9%Terminal Rates (c)2/30 (7%)4/41 (10%)Life Table Tests (d) $P=0.212N$ $P=0.619N$ Cochran-Armitage Trend Test (d) $P=0.196N$ $P=0.500N$ Hematopoietic System: Lymphoma, All Malignant $Overall Rates (a)$ $7/50 (14\%)$ Overall Rates (a) $7/50 (14\%)$ $10/50 (20\%)$ Adjusted Rates (b) $17.6\%$ $21.9\%$ Terminal Rates (c) $2/30 (7\%)$ $6/41 (15\%)$ Life Table Tests (d) $P=0.451N$ $P=0.484$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                        |  |
| Overall Rates (a) $0/50 (0\%)$ $3/50 (6\%)$ Adjusted Rates (b) $0.0\%$ $6.4\%$ Terminal Rates (c) $0/30 (0\%)$ $1/41 (2\%)$ Life Table Tests (d) $P=0.379$ $P=0.155$ Incidental Tumor Tests (d) $P=0.335$ $P=0.060$ Cochran-Armitage Trend Test (d) $P=0.378$ $P=0.121$ Hematopoietic System: Malignant Lymphoma, Mixed Type $P=0.121$ Overall Rates (a) $6/50 (12\%)$ $5/50 (10\%)$ Adjusted Rates (b) $15.5\%$ $11.9\%$ Terminal Rates (c) $2/30 (7\%)$ $4/41 (10\%)$ Life Table Tests (d) $P=0.1212N$ $P=0.352N$ Incidental Tumor Tests (d) $P=0.212N$ $P=0.352N$ Incidental Tumor Tests (d) $P=0.196N$ $P=0.619N$ Cochran-Armitage Trend Test (d) $P=0.195N$ $P=0.500N$ Fisher Exact Tests $P=0.500N$ $P=0.500N$ Idematopoietic System: Lymphoma, All Malignant $Overall Rates (a)$ $7/50 (14\%)$ $10/50 (20\%)$ Adjusted Rates (b) $17.6\%$ $21.9\%$ $10/50 (20\%)$ $10/50 (20\%)$ Life Table Tests (d) $P=0.451N$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | P = 0.408              |  |
| Adjusted Rates (b) $0.0\%$ $6.4\%$ Terminal Rates (c) $0/30 (0\%)$ $1/41 (2\%)$ Life Table Tests (d) $P=0.379$ $P=0.155$ Incidental Tumor Tests (d) $P=0.335$ $P=0.060$ Cochran-Armitage Trend Test (d) $P=0.378$ $P=0.121$ Hematopoietic System: Malignant Lymphoma, Mixed TypeOverall Rates (a) $6/50 (12\%)$ $5/50 (10\%)$ Adjusted Rates (b) $15.5\%$ $11.9\%$ Terminal Rates (c) $2/30 (7\%)$ $4/41 (10\%)$ Life Table Tests (d) $P=0.121$ $P=0.352N$ Incidental Tumor Tests (d) $P=0.212N$ $P=0.619N$ Cochran-Armitage Trend Test (d) $P=0.195N$ $P=0.500N$ Fisher Exact Tests $P=0.195N$ $P=0.500N$ Hematopoietic System: Lymphoma, All MalignantOverall Rates (a) $7/50 (14\%)$ $10/50 (20\%)$ Adjusted Rates (b) $17.6\%$ $21.9\%$ Terminal Rates (c) $2/30 (7\%)$ $6/41 (15\%)$ Life Table Tests (d) $P=0.451N$ $P=0.484$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                        |  |
| Terminal Rates (c) $0/30 (0\%)$ $1/41 (2\%)$ Life Table Tests (d) $P=0.379$ $P=0.155$ Incidental Tumor Tests (d) $P=0.335$ $P=0.060$ Cochran-Armitage Trend Test (d) $P=0.378$ $P=0.121$ Hematopoietic System: Malignant Lymphoma, Mixed Type $Overall Rates (a)$ $6/50 (12\%)$ Overall Rates (a) $6/50 (12\%)$ $5/50 (10\%)$ Adjusted Rates (b) $15.5\%$ $11.9\%$ Terminal Rates (c) $2/30 (7\%)$ $4/41 (10\%)$ Life Table Tests (d) $P=0.121$ Nordental Tumor Tests (d) $P=0.212N$ Fisher Exact Tests $P=0.619N$ Cochran-Armitage Trend Test (d) $P=0.195N$ Fisher Exact Tests $P=0.500N$ Hematopoietic System: Lymphoma, All Malignant $Overall Rates (a)$ Overall Rates (b) $17.6\%$ $21.9\%$ Terminal Rates (c) $2/30 (7\%)$ $6/41 (15\%)$ Life Table Tests (d) $P=0.451N$ $P=0.484$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1/50 (2%)              |  |
| Life Table Tests (d) $P=0.379$ $P=0.155$ Incidental Tumor Tests (d) $P=0.335$ $P=0.060$ Cochran-Armitage Trend Test (d) $P=0.378$ $P=0.121$ Fisher Exact Tests $P=0.378$ $P=0.121$ Hematopoietic System: Malignant Lymphoma, Mixed Type $Overall Rates (a)$ $6/50 (12\%)$ Overall Rates (a) $6/50 (12\%)$ $5/50 (10\%)$ Adjusted Rates (b) $15.5\%$ $11.9\%$ Terminal Rates (c) $2/30 (7\%)$ $4/41 (10\%)$ Life Table Tests (d) $P=0.196N$ $P=0.352N$ Incidental Tumor Tests (d) $P=0.195N$ $P=0.619N$ Cochran-Armitage Trend Test (d) $P=0.195N$ $P=0.500N$ Hematopoietic System: Lymphoma, All Malignant $Overall Rates (a)$ $7/50 (14\%)$ Overall Rates (a) $7/50 (14\%)$ $10/50 (20\%)$ Adjusted Rates (b) $17.6\%$ $21.9\%$ Terminal Rates (c) $2/30 (7\%)$ $6/41 (15\%)$ Life Table Tests (d) $P=0.451N$ $P=0.484$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.9%                   |  |
| Incidental Tumor Tests (d) $P=0.335$ $P=0.060$ Cochran-Armitage Trend Test (d) $P=0.378$ $P=0.121$ Fisher Exact Tests $P=0.120$ Hematopoietic System: Malignant Lymphoma, Mixed Type $Verall Rates (a)$ $6/50 (12\%)$ Overall Rates (a) $6/50 (12\%)$ $5/50 (10\%)$ Adjusted Rates (b) $15.5\%$ $11.9\%$ Terminal Rates (c) $2/30 (7\%)$ $4/41 (10\%)$ Life Table Tests (d) $P=0.196N$ $P=0.352N$ Incidental Tumor Tests (d) $P=0.212N$ $P=0.619N$ Cochran-Armitage Trend Test (d) $P=0.195N$ $P=0.500N$ Fisher Exact Tests $P=0.500N$ $P=0.500N$ Hematopoietic System: Lymphoma, All Malignant $0/50 (20\%)$ Adjusted Rates (b) $17.6\%$ $21.9\%$ Terminal Rates (c) $2/30 (7\%)$ $6/41 (15\%)$ Life Table Tests (d) $P=0.451N$ $P=0.484$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0/29(0%)<br>P=0.500    |  |
| Cochran-Armitage Trend Test (d) $P=0.378$ Fisher Exact Tests $P=0.121$ Hematopoletic System: Malignant Lymphoma, Mixed Type<br>Overall Rates (a) $6/50 (12\%)$ Overall Rates (a) $6/50 (12\%)$ Adjusted Rates (b) $15.5\%$ Terminal Rates (c) $2/30 (7\%)$ Life Table Tests (d) $P=0.196N$ De 0.196N $P=0.352N$ Incidental Tumor Tests (d) $P=0.212N$ Fisher Exact Tests $P=0.619N$ Fisher Exact Tests $P=0.500N$ Hematopoletic System: Lymphoma, All Malignant $0verall Rates (a)$ Overall Rates (a) $7/50 (14\%)$ $10/50 (20\%)$ Adjusted Rates (b) $17.6\%$ $21.9\%$ Terminal Rates (c) $2/30 (7\%)$ $6/41 (15\%)$ Life Table Tests (d) $P=0.451N$ $P=0.484$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | P = 0.536              |  |
| Fisher Exact Tests $P = 0.121$ Hematopoletic System: Malignant Lymphoma, Mixed Type<br>Overall Rates (a) $6/50 (12\%)$ $5/50 (10\%)$ Adjusted Rates (b) $15.5\%$ $11.9\%$ Terminal Rates (c) $2/30 (7\%)$ $4/41 (10\%)$ Life Table Tests (d) $P = 0.196N$ $P = 0.352N$ Incidental Tumor Tests (d) $P = 0.212N$ $P = 0.619N$ Cochran-Armitage Trend Test (d) $P = 0.195N$ $P = 0.500N$ Fisher Exact Tests $P = 0.500N$ $P = 0.500N$ Hematopoletic System: Lymphoma, All Malignant<br>Overall Rates (a) $7/50 (14\%)$ $10/50 (20\%)$ Adjusted Rates (b) $17.6\%$ $21.9\%$ Terminal Rates (c) $2/30 (7\%)$ $6/41 (15\%)$ Life Table Tests (d) $P = 0.451N$ $P = 0.484$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1 = 0.000              |  |
| Overall Rates (a) $6/50 (12\%)$ $5/50 (10\%)$ Adjusted Rates (b) $15.5\%$ $11.9\%$ Terminal Rates (c) $2/30 (7\%)$ $4/41 (10\%)$ Life Table Tests (d) $P = 0.196N$ $P = 0.352N$ Incidental Tumor Tests (d) $P = 0.212N$ $P = 0.619N$ Cochran-Armitage Trend Test (d) $P = 0.195N$ $P = 0.500N$ Fisher Exact Tests $P = 0.500N$ $P = 0.500N$ Hematopoietic System: Lymphoma, All Malignant $Overall Rates (a)$ $7/50 (14\%)$ $10/50 (20\%)$ Adjusted Rates (b) $17.6\%$ $21.9\%$ $21.9\%$ $Terminal Rates (c)$ $2/30 (7\%)$ $6/41 (15\%)$ Life Table Tests (d) $P = 0.451N$ $P = 0.484$ $P = 0.484$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | P = 0.500              |  |
| Overall Rates (a) $6/50 (12\%)$ $5/50 (10\%)$ Adjusted Rates (b) $15.5\%$ $11.9\%$ Terminal Rates (c) $2/30 (7\%)$ $4/41 (10\%)$ Life Table Tests (d) $P = 0.196N$ $P = 0.352N$ Incidental Tumor Tests (d) $P = 0.212N$ $P = 0.619N$ Cochran-Armitage Trend Test (d) $P = 0.195N$ $P = 0.500N$ Fisher Exact Tests $P = 0.500N$ $P = 0.500N$ Imatopoietic System: Lymphoma, All Malignant $Overall Rates (a)$ $7/50 (14\%)$ $10/50 (20\%)$ Adjusted Rates (b) $17.6\%$ $21.9\%$ $21.9\%$ $Terminal Rates (c)$ $2/30 (7\%)$ $6/41 (15\%)$ Life Table Tests (d) $P = 0.451N$ $P = 0.484$ $P = 0.484$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                        |  |
| Adjusted Rates (b)       15.5%       11.9%         Terminal Rates (c)       2/30 (7%)       4/41 (10%)         Life Table Tests (d)       P=0.196N       P=0.352N         Incidental Tumor Tests (d)       P=0.212N       P=0.619N         Cochran-Armitage Trend Test (d)       P=0.195N       Fisher Exact Tests         Fisher Exact Tests       P=0.500N       P=0.500N         Imatopoietic System: Lymphoma, All Malignant       Overall Rates (a)       7/50 (14%)       10/50 (20%)         Adjusted Rates (b)       17.6%       21.9%       Terminal Rates (c)       2/30 (7%)       6/41 (15%)         Life Table Tests (d)       P=0.451N       P=0.484       Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3/50 (6%)              |  |
| Terminal Rates (c) $2/30 (7\%)$ $4/41 (10\%)$ Life Table Tests (d) $P = 0.196N$ $P = 0.352N$ Incidental Tumor Tests (d) $P = 0.212N$ $P = 0.619N$ Cochran-Armitage Trend Test (d) $P = 0.195N$ $P = 0.500N$ Fisher Exact Tests $P = 0.195N$ $P = 0.500N$ Hematopoietic System: Lymphoma, All MalignantOverall Rates (a) $7/50 (14\%)$ $10/50 (20\%)$ Adjusted Rates (b) $17.6\%$ $21.9\%$ Terminal Rates (c) $2/30 (7\%)$ $6/41 (15\%)$ Life Table Tests (d) $P = 0.451N$ $P = 0.484$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9.1%                   |  |
| Life Table Tests (d) $P = 0.196N$ $P = 0.352N$ Incidental Tumor Tests (d) $P = 0.212N$ $P = 0.619N$ Cochran-Armitage Trend Test (d) $P = 0.195N$ $P = 0.619N$ Fisher Exact Tests $P = 0.195N$ $P = 0.500N$ Iematopoietic System: Lymphoma, All MalignantOverall Rates (a) $7/50 (14\%)$ $10/50 (20\%)$ Adjusted Rates (b) $17.6\%$ $21.9\%$ Terminal Rates (c) $2/30 (7\%)$ $6/41 (15\%)$ Life Table Tests (d) $P = 0.451N$ $P = 0.484$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2/29 (7%)              |  |
| Incidental Tumor Tests (d) $P = 0.212N$ $P = 0.619N$ Cochran-Armitage Trend Test (d) $P = 0.195N$ $P = 0.500N$ Fisher Exact Tests $P = 0.500N$ Idematopoietic System: Lymphoma, All Malignant $0 \times 17.6\%$ Overall Rates (a) $7/50 (14\%)$ $10/50 (20\%)$ Adjusted Rates (b) $17.6\%$ $21.9\%$ Terminal Rates (c) $2/30 (7\%)$ $6/41 (15\%)$ Life Table Tests (d) $P = 0.451N$ $P = 0.484$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | P = 0.252N             |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | P = 0.271 N            |  |
| Fisher Exact Tests         P=0.500N           Iematopoietic System: Lymphoma, All Malignant         0verall Rates (a)         7/50 (14%)         10/50 (20%)           Adjusted Rates (b)         17.6%         21.9%           Terminal Rates (c)         2/30 (7%)         6/41 (15%)           Life Table Tests (d)         P=0.451N         P=0.484                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                        |  |
| Overall Rates (a)         7/50 (14%)         10/50 (20%)           Adjusted Rates (b)         17.6%         21.9%           Terminal Rates (c)         2/30 (7%)         6/41 (15%)           Life Table Tests (d)         P=0.451N         P=0.484                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | P = 0.244N             |  |
| Adjusted Rates (b)         17.6%         21.9%           Terminal Rates (c)         2/30 (7%)         6/41 (15%)           Life Table Tests (d)         P=0.451N         P=0.484                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                        |  |
| Terminal Rates (c)         2/30 (7%)         6/41 (15%)           Life Table Tests (d)         P=0.451N         P=0.484                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6/50 (12%)             |  |
| Life Table Tests (d) $P=0.451N$ $P=0.484$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 18.2%                  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4/29 (14%)             |  |
| Incidental Tumor Tests (d) $P=0.475N$ $P=0.129$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | P = 0.504N             |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | P = 0.516N             |  |
| Cochran-Armitage Trend Test (d) P=0.445N<br>Fisher Exact Tests P=0.298                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | P = 0.500N             |  |

### TABLE E3. ANALYSIS OF PRIMARY TUMORS IN MALE MICE IN THE TWO-YEAR GAVAGE STUDYOF HC RED NO. 3

|                                                          | Vehicle Control          | 125 mg/kg                | 250 mg/kg                  |
|----------------------------------------------------------|--------------------------|--------------------------|----------------------------|
| Hamatanaiatia Suatana Tanan kasa an T                    |                          |                          |                            |
| Hematopoietic System: Lymphoma or L<br>Overall Rates (a) |                          | 11 (50 (990))            | 6/50 (190)                 |
|                                                          | 7/50 (14%)               | 11/50 (22%)              | 6/50 (12%)<br>18 90        |
| Adjusted Rates (b)<br>Terminal Rates (c)                 | 17.6%                    | 24.2%                    | 18.2%                      |
|                                                          | 2/30 (7%)                | 7/41 (17%)               | 4/29 (14%)                 |
| Life Table Tests (d)<br>Incidental Tumor Tests (d)       | P = 0.453N               | P = 0.403                | P = 0.504N                 |
|                                                          | P = 0.476N               | P=0.092                  | P = 0.516N                 |
| Cochran-Armitage Trend Test (d)<br>Fisher Exact Tests    | P = 0.446N               | P=0.218                  | P = 0.500N                 |
| Circulatory System: Hemangiosarcoma                      | L                        |                          |                            |
| Overall Rates (a)                                        | 7/50 (14%)               | 2/50 (4%)                | 3/50 (6%)                  |
| Adjusted Rates (b)                                       | 19.1%                    | 4.9%                     | 8.8%                       |
| Terminal Rates (c)                                       | 3/30 (10%)               | 2/41 (5%)                | 0/29 (0%)                  |
| Life Table Tests (d)                                     | P = 0.097N               | P = 0.041 N              | P = 0.171N                 |
| Incidental Tumor Tests (d)                               |                          |                          |                            |
|                                                          | P = 0.092N               | P = 0.124N               | P = 0.137N                 |
| Cochran-Armitage Trend Test (d)                          | P = 0.099N               | D-0.0001                 | D-01501                    |
| Fisher Exact Tests                                       |                          | P=0.080N                 | P = 0.159N                 |
| Liver: Hepatocellular Adenoma                            |                          |                          |                            |
| Overall Rates (a)                                        | 11/50 (22%)              | 6/50 (12%)               | 16/50 (32%)                |
| Adjusted Rates (b)                                       | 33.5%                    | 13.9%                    | 49.4%                      |
| Terminal Rates (c)                                       | 9/30 (30%)               | 4/41 (10%)               | 13/29 (45%)                |
| Life Table Tests (d)                                     | P = 0.118                | P = 0.048N               | P = 0.162                  |
| Incidental Tumor Tests (d)                               | P = 0.140                | P = 0.100N               | P = 0.174                  |
| Cochran-Armitage Trend Test (d)                          | P = 0.139                |                          |                            |
| Fisher Exact Tests                                       |                          | P = 0.144N               | P=0.184                    |
| Liver: Hepatocellular Carcinoma                          |                          |                          |                            |
| Overall Rates (a)                                        | 17/50 (34%)              | 9/50 (18%)               | 21/50 (42%)                |
| Adjusted Rates (b)                                       | 40.3%                    | 20.6%                    | 50.2%                      |
| Terminal Rates (c)                                       | 7/30 (23%)               | 7/41 (17%)               | 10/29 (34%)                |
| Life Table Tests (d)                                     | P = 0.240                | P = 0.020N               | P = 0.298                  |
| Incidental Tumor Tests (d)                               | P = 0.160                | P = 0.112N               | P = 0.192                  |
| Cochran-Armitage Trend Test (d)                          | P = 0.225                | 1 = 0.11210              | 1 -0.102                   |
| Fisher Exact Tests                                       | 1 - 0.220                | P = 0.055N               | P=0.268                    |
| Liver: Hepatocellular Adenoma or Carc                    | vinoma                   |                          |                            |
| Overall Rates (a)                                        | 25/50 (50%)              | 15/50 (30%)              | 35/50 (70%)                |
| Adjusted Rates (b)                                       | 59.5%                    | 33.1%                    | 82.7%                      |
| Terminal Rates (c)                                       | 14/30 (47%)              | 11/41 (27%)              | 22/29 (76%)                |
| Life Table Tests (d)                                     | P=0.044                  |                          |                            |
| Incidental Tumor Tests (d)                               |                          | P = 0.007N<br>P = 0.050N | P = 0.066                  |
|                                                          | P = 0.017                | P = 0.050N               | P = 0.017                  |
| Cochran-Armitage Trend Test (d)<br>Fisher Exact Tests    | P=0.029                  | P = 0.033N               | P=0.033                    |
| Adrenal Capsule: Adenoma                                 |                          |                          |                            |
| Overall Rates (a)                                        | 2/50 (4%)                | 4/50 (8%)                | 3/50 (6%)                  |
| Adjusted Rates (b)                                       | 6.7%                     | 9.8%                     | 10.3%                      |
| Terminal Rates (c)                                       | 2/30 (7%)                | 4/41 (10%)               | 3/29 (10%)                 |
| Life Table Tests (d)                                     | P = 0.395                | P=0.488                  | P=0.484                    |
| Incidental Tumor Tests (d)                               |                          |                          |                            |
|                                                          | P = 0.395<br>P = 0.417   | P = 0.488                | P=0.484                    |
| Cochran-Armitage Trend Test (d)<br>Fisher Exact Tests    | P=0.417                  | P=0.339                  | P=0.500                    |
| Thyroid: Follicular Cell Adenoma                         |                          |                          |                            |
| Overall Rates (a)                                        | 8/48 (17%)               | 3/50 (6%)                | 5/50 (10%)                 |
| Adjusted Rates (b)                                       | 27.6%                    | 7.3%                     | 15.1%                      |
| Terminal Rates (c)                                       | 8/29 (28%)               | 3/41 (7%)                | 3/29 (10%)                 |
| Life Table Tests (d)                                     | P = 0.193N               | P = 0.026N               | P = 0.273N                 |
| Incidental Tumor Tests (d)                               | P = 0.193N<br>P = 0.190N | P = 0.026N<br>P = 0.026N | P = 0.273 N<br>P = 0.262 N |
| Cochran-Armitage Trend Test (d)                          |                          | F = 0.0201               | F = 0.2021                 |
|                                                          | P = 0.188N               |                          | D-0.95031                  |
| Fisher Exact Tests                                       |                          | P = 0.087 N              | P = 0.250N                 |
|                                                          |                          |                          |                            |

#### TABLE E3. ANALYSIS OF PRIMARY TUMORS IN MALE MICE IN THE TWO-YEAR GAVAGE STUDY OF HC RED NO. 3 (Continued)

|                                       | Vehicle Control | 125 mg/kg   | 250 mg/kg |  |
|---------------------------------------|-----------------|-------------|-----------|--|
| Pancreatic Islets: Islet Cell Adenoma | <u></u>         |             |           |  |
| Overall Rates (a)                     | 1/50 (2%)       | 0/50 (0%)   | 4/50 (8%) |  |
| Adjusted Rates (b)                    | 3.3%            | 0.0%        | 11.5%     |  |
| Terminal Rates (c)                    | 1/30 (3%)       | 0/41 (0%)   | 1/29 (3%) |  |
| Life Table Tests (d)                  | P = 0.078       | P=0.438N    | P=0.190   |  |
| Incidental Tumor Tests (d)            | P = 0.107       | P=0.438N    | P = 0.204 |  |
| Cochran-Armitage Trend Test (d)       | P = 0.082       |             |           |  |
| Fisher Exact Tests                    |                 | P = 0.500 N | P = 0.181 |  |
| Harderian Gland: Adenoma              |                 |             |           |  |
| Overall Rates (a)                     | 2/50 (4%)       | 0/50 (0%)   | 3/50 (6%) |  |
| Adjusted Rates (b)                    | 6.7%            | 0.0%        | 9.1%      |  |
| Terminal Rates (c)                    | 2/30 (7%)       | 0/41 (0%)   | 2/29 (7%) |  |
| Life Table Tests (d)                  | P = 0.382       | P = 0.173N  | P=0.494   |  |
| Incidental Tumor Tests (d)            | P = 0.388       | P = 0.173N  | P=0.497   |  |
| Cochran-Armitage Trend Test (d)       | P = 0.390       |             |           |  |
| Fisher Exact Tests                    |                 | P = 0.247 N | P = 0.500 |  |
| All Sites: Neurofibrosarcoma          |                 |             |           |  |
| Overall Rates (a)                     | 0/50 (0%)       | 3/50 (6%)   | 0/50 (0%) |  |
| Adjusted Rates (b)                    | 0.0%            | 6.7%        | 0.0%      |  |
| Terminal Rates (c)                    | 0/30 (0%)       | 1/41 (2%)   | 0/29 (0%) |  |
| Life Table Tests (d)                  | P = 0.639N      | P = 0.162   | (e)       |  |
| Incidental Tumor Tests (d)            | P = 0.616N      | P = 0.070   | (e)       |  |
| Cochran-Armitage Trend Test (d)       | P = 0.640       |             |           |  |
| Fisher Exact Tests                    |                 | P = 0.121   | (e)       |  |

#### TABLE E3. ANALYSIS OF PRIMARY TUMORS IN MALE MICE IN THE TWO-YEAR GAVAGE STUDY OF HC RED NO. 3 (Continued)

(a) Number of tumor-bearing animals/number of animals examined at the site

(b) Kaplan-Meier estimated tumor incidence at the end of the study after adjusting for intercurrent mortality

(c) Observed tumor incidence at terminal kill

(d) Beneath the vehicle control incidence are the P values associated with the trend test. Beneath the dosed group incidence are the P values corresponding to pairwise comparisons between that dosed group and the vehicle controls. The life table analysis regards tumors in animals dying prior to terminal kill as being (directly or indirectly) the cause of death. The incidental tumor test regards these lesions as nonfatal. The Cochran-Armitage and Fisher exact test compare directly the overall incidence rates. A negative trend or lower incidence in a dosed group is indicated by (N).

(e) No P value is reported because no tumors were observed in the 250 mg/kg and vehicle control groups.

#### TABLE E4. ANALYSIS OF PRIMARY TUMORS IN FEMALE MICE IN THE TWO-YEAR GAVAGE STUDY OF HC RED NO. 3

|                                                       | Vehicle Control        | 125 mg/kg                  | 250 mg/kg              |
|-------------------------------------------------------|------------------------|----------------------------|------------------------|
|                                                       |                        |                            |                        |
| Hematopoietic System: Malignant Lym                   |                        | 0/50 (40)                  | 0/50 (100)             |
| Overall Rates (a)                                     | 3/50 (6%)              | 2/50 (4%)                  | 6/50 (12%)             |
| Adjusted Rates (b)<br>Terminal Rates (c)              | 23.1%                  | 19.8%                      | 41.5%                  |
| Life Table Tests (d)                                  | 2/12 (17%)<br>P=0.107  | 1/8(13%)<br>P=0.641N       | 3/9 (33%)<br>D = 0.160 |
| Incidental Tumor Tests (d)                            | P = 0.107<br>P = 0.135 | P = 0.641 N<br>P = 0.511 N | P = 0.160<br>P = 0.195 |
| Cochran-Armitage Trend Test (d)                       | P = 0.155<br>P = 0.169 | F = 0.5111N                | F = 0.195              |
| Fisher Exact Tests                                    | r - 0.109              | P=0.500N                   | P = 0.243              |
| <b>Jematopoietic System: Lymphoma, All</b>            | Malignant              |                            |                        |
| Overall Rates (a)                                     | 4/50 (8%)              | 5/50 (10%)                 | 6/50 (12%)             |
| Adjusted Rates (b)                                    | 24.6%                  | 27.7%                      | 41.5%                  |
| Terminal Rates (c)                                    | 2/12 (17%)             | 1/8 (13%)                  | 3/9 (33%)              |
| Life Table Tests (d)                                  | P = 0.223              | P = 0.428                  | P = 0.271              |
| Incidental Tumor Tests (d)                            | P=0.299                | P = 0.539                  | P = 0.362              |
| Cochran-Armitage Trend Test (d)                       | P = 0.309              |                            |                        |
| Fisher Exact Tests                                    |                        | P = 0.500                  | P = 0.370              |
| iver: Hepatocellular Adenoma                          |                        |                            |                        |
| Overall Rates (a)                                     | 4/50 (8%)              | 1/50 (2%)                  | 0/50 (0%)              |
| Adjusted Rates (b)                                    | 29.7%                  | 12.5%                      | 0.0%                   |
| Terminal Rates (c)                                    | 3/12 (25%)             | 1/8 (13%)                  | 0/9 (0%)               |
| Life Table Tests (d)                                  | P = 0.044N             | P = 0.285N                 | P = 0.092N             |
| Incidental Tumor Tests (d)                            | P = 0.035N             | P = 0.235N                 | P = 0.072N             |
| Cochran-Armitage Trend Test (d)                       | P = 0.026 N            |                            |                        |
| Fisher Exact Tests                                    |                        | P = 0.181N                 | P = 0.059N             |
| Liver: Hepatocellular Adenoma or Carc                 | inoma                  |                            |                        |
| Overall Rates (a)                                     | 4/50 (8%)              | 1/50 (2%)                  | 2/50 (4%)              |
| Adjusted Rates (b)                                    | 29.7%                  | 12.5%                      | 14.1%                  |
| Terminal Rates (c)                                    | 3/12 (25%)             | 1/8 (13%)                  | 1/9 (11%)              |
| Life Table Tests (d)                                  | P = 0.321 N            | P = 0.285N                 | P = 0.429N             |
| Incidental Tumor Tests (d)                            | P = 0.302N             | P = 0.235N                 | P=0.396N               |
| Cochran-Armitage Trend Test (d)                       | P = 0.238N             |                            |                        |
| Fisher Exact Tests                                    |                        | P = 0.181N                 | P = 0.339N             |
| Forestomach: Squamous Cell Papilloma                  |                        |                            |                        |
| Overall Rates (a)                                     | 0/50 (0%)              | 0/50 (0%)                  | 3/48 (6%)              |
| Adjusted Rates (b)                                    | 0.0%                   | 0.0%                       | 22.8%                  |
| Terminal Rates (c)                                    | 0/12 (0%)              | 0/8 (0%)                   | 1/9 (11%)              |
| Life Table Tests (d)                                  | P = 0.030              | (e)                        | P = 0.092              |
| Incidental Tumor Tests (d)                            | P = 0.031              | (e)                        | P = 0.123              |
| Cochran-Armitage Trend Test (d)<br>Fisher Exact Tests | P = 0.034              | (e)                        | P = 0.114              |
| Pituitary: Adenoma                                    |                        |                            |                        |
| Overall Rates (a)                                     | 4/47 (9%)              | 2/45 (4%)                  | 6/43 (14%)             |
| Adjusted Rates (b)                                    | 30.8%                  | 18.3%                      | 40.5%                  |
| Terminal Rates (c)                                    | 3/12 (25%)             | 1/8 (13%)                  | 2/9 (22%)              |
| Life Table Tests (d)                                  | P = 0.203              | P = 0.488N                 | P = 0.256              |
| Incidental Tumor Tests (d)                            | P = 0.291              | P = 0.346N                 | P = 0.385              |
| Cochran-Armitage Trend Test (d)                       | P = 0.246              |                            | 1 - 01000              |
| Fisher Exact Tests                                    |                        | P = 0.359 N                | P=0.314                |
| 'hyroid: Follicular Cell Adenoma or Ca                | rcinoma                |                            |                        |
| Overall Rates (a)                                     | 2/49 (4%)              | 1/48 (2%)                  | 3/49 (6%)              |
| Adjusted Rates (b)                                    | 14.1%                  | 4.5%                       | 33.3%                  |
| Terminal Rates (c)                                    | 1/12 (8%)              | 0/8 (0%)                   | <b>3/9 (33%</b> )      |
| Life Table Tests (d)                                  | P = 0.308              | P = 0.548N                 | P=0.386                |
| Incidental Tumor Tests (d)                            | P=0.339                | P = 0.420N                 | P = 0.429              |
| Cochran-Armitage Trend Test (d)                       | P = 0.400              |                            |                        |
| Fisher Exact Tests                                    | r -0.400               |                            |                        |

#### TABLE E4. ANALYSIS OF PRIMARY TUMORS IN FEMALE MICE IN THE TWO-YEAR GAVAGE STUDY OF HC RED NO. 3 (Continued)

(a) Number of tumor-bearing animals/number of animals examined at the site

(b) Kaplan-Meier estimated tumor incidence at the end of the study after adjusting for intercurrent mortality

(c) Observed tumor incidence at terminal kill

(d) Beneath the vehicle control incidence are the P values associated with the trend test. Beneath the dosed group incidence are the P values corresponding to pairwise comparisons between that dosed group and the vehicle controls. The life table analysis regards tumors in animals dying prior to terminal kill as being (directly or indirectly) the cause of death. The incidental tumor test regards these lesions as nonfatal. The Cochran-Armitage and Fisher exact test compare directly the overall incidence rates. A negative trend or lower incidence in a dosed group is indicated by (N).

(e) No P value is reported because no tumors were observed in the 125 mg/kg and vehicle control groups.

#### **APPENDIX F**

# HISTORICAL INCIDENCES OF TUMORS IN F344/N RATS AND B6C3F1 MICE RECEIVING CORN OIL BY GAVAGE

#### TABLE F1. HISTORICAL INCIDENCE OF URINARY BLADDER TRANSITIONAL CELL TUMORS IN F344/NRATS RECEIVING CORN OIL BY GAVAGE (a)

#### MALE

**Historical Incidence at Southern Research Institute** 

No tumors observed in 299 vehicle controls No tumors observed in 1,092 vehicle controls

Overall Historical Incidence

#### FEMALE

Historical Incidence at Southern Research Institute

|         | <u>Study</u>            | No. of Animals<br><u>Examined</u> | No. of Tumors<br>in Vehicle Controls | Diagnosis                   |
|---------|-------------------------|-----------------------------------|--------------------------------------|-----------------------------|
|         | l isovalerate<br>others | 49<br>247                         | 1                                    | Transitional cell papilloma |
| All     | otners                  | 241                               | U                                    |                             |
| TOT     | <b>TAL</b>              | 296                               | 1 (0.3%)                             |                             |
| Overall | Historical In           | cidence                           |                                      |                             |
|         |                         |                                   | 1                                    | Papilloma, NOS              |
|         |                         |                                   | 1                                    | Transitional cell papilloma |
|         |                         |                                   | - 1                                  | Transitional cell carcinoma |
| TOT     | [AL                     | 1,084                             | 3 (0.3%)                             |                             |

(a) Data as of March 16, 1983. No more than one tumor was observed in any vehicle control group.

| Study                                 | Incidence of<br>Fibroadenoma in<br>Vehicle Controls |  |
|---------------------------------------|-----------------------------------------------------|--|
| Historical Incidence at Southern Rese | earch Institute                                     |  |
| HC Red No. 3                          | 14/50                                               |  |
| Ethyl acrylate                        | 13/50                                               |  |
| Benzyl acetate                        | 16/50                                               |  |
| Allyl isovalerate                     | 17/50                                               |  |
| Allyl isothiocyanate                  | 8/50                                                |  |
| Geranyl acetate                       | 12/50                                               |  |
| TOTAL                                 | 80/300 (26.7%)                                      |  |
| SD (b)                                | 6.41%                                               |  |
| Range (c)                             |                                                     |  |
| High                                  | 17/50                                               |  |
| Low                                   | 8/50                                                |  |
| Overall Historical Incidence          |                                                     |  |
| TOTAL                                 | 269/1,147 (23.5%)                                   |  |
| SD (b)                                | 9.38%                                               |  |
| Range (c)                             |                                                     |  |
| High                                  | 18/50                                               |  |
| Low                                   | 1/48                                                |  |

## TABLE F2. HISTORICAL INCIDENCE OF MAMMARY GLAND TUMORS IN FEMALE F344/N RATS RECEIVING CORN OIL BY GAVAGE (a)

(a) Data as of March 16, 1983, for studies of at least 104 weeks
(b) Standard deviation
(c) Range and SD are presented for groups of 35 or more animals.

| Study                     | No. of Animals<br>Examined | No. of Tumors<br>in Vehicle Controls | Site           | Diagnosis               |
|---------------------------|----------------------------|--------------------------------------|----------------|-------------------------|
| Incidence at Southern R   | esearch Institute          |                                      |                |                         |
| HC Red No. 3              | 50                         | 0                                    |                |                         |
| Ethyl acrylate            | 50                         | 1                                    | Forestomach    | Squamous cell papilloma |
| Benzyl acetate            | 50                         | ō                                    |                |                         |
| Allyl isovalerate         | 50                         | í                                    | Gastric mucosa | Squamous cell papilloma |
|                           |                            | ī                                    | Gastric mucosa | Adenoma, NOS            |
| Allyl isothiocyanate      | 47                         | Ō                                    |                |                         |
| Geranyl acetate           | 50                         | 1                                    | Gastric mucosa | Adenomatous polyp, NOS  |
| TOTAL                     | 297                        | 4 (1.3%)                             |                |                         |
| Overall Historical Incide | ence (b)                   |                                      |                |                         |
|                           | 1.077                      | 2                                    | Stomach, NOS   | Squamous cell papilloma |
|                           | 2,011                      | 1                                    | Stomach, NOS   | Adenocarcinoma, NOS     |
|                           |                            | ī                                    | Gastric mucosa | Squamous cell papilloma |
|                           |                            | î                                    | Gastric mucosa | Adenoma, NOS            |
|                           |                            | î                                    | Gastric mucosa | Adenomatous polyp, NOS  |
|                           |                            | ī                                    | Forestomach    | Squamous cell papilloma |
| TOTAL                     |                            | 7 (0.6%)                             |                |                         |

### TABLE F3. HISTORICAL INCIDENCE OF STOMACH TUMORS IN FEMALE $B6C3F_1$ MICE RECEIVING CORN OIL BY GAVAGE (a)

(a) Data as of March 16, 1983, for studies of at least 104 weeks(b) No more than two tumors were observed in any vehicle control group.

|                                    | Incidence in Vehicle Controls |                       |                      |  |
|------------------------------------|-------------------------------|-----------------------|----------------------|--|
| Study                              | Adenoma                       | Carcinoma             | Adenoma or Carcinoma |  |
| Historical Incidence at Southern R | esearch Institute             |                       |                      |  |
| HC Red No. 3                       | 11/50                         | 17/50                 | 25/50                |  |
| Ethyl acrylate                     | 6/49                          | 12/49                 | 17/49                |  |
| Benzyl acetate                     | 0/50                          | 10/50                 | 10/50                |  |
| Allyl isovalerate                  | 7/50                          | 18/50                 | 23/50                |  |
| Allyl isothiocyanate               | 9/49                          | 13/49                 | 21/49                |  |
| Geranyl acetate                    | 3/50                          | 11/50                 | 13/50                |  |
| TOTAL                              | 36/298 (12.1%)                | 81/298 (27.2%)        | 109/298 (36.6%)      |  |
| SD (b)                             | 8.06%                         | 6.49%                 | 11.82%               |  |
| Range (c)                          |                               |                       |                      |  |
| ligh                               | 11/50                         | 18/50                 | 25/50                |  |
| ww.                                | 0/50                          | 10/50                 | 10/50                |  |
| Overall Historical Incidence       |                               |                       |                      |  |
| TOTAL                              | 133/1,084 (12.3%)             | (d) 222/1,084 (20.5%) | 340/1,084 (31.4%)    |  |
| SD (b)                             | 6.7%                          | 7.9%                  | 10.3%                |  |
| Range (c)                          |                               |                       |                      |  |
| ligh                               | 13/50                         | 18/50                 | 25/50                |  |
|                                    | 0/50                          | 4/50                  | 5/50                 |  |

### TABLE F4. HISTORICAL INCIDENCE OF LIVER TUMORS IN MALE B6C3F1 MICE RECEIVING<br/>CORN OIL BY GAVAGE (a)

(a) Data as of March 16, 1983, for studies of at least 104 weeks
(b) Standard deviation
(c) Range and SD are presented for groups of 35 or more animals.
(d) One hepatoblastoma was also observed.

HC Red No. 3, NTP TR 281

#### APPENDIX G

#### CHEMICAL CHARACTERIZATION

#### OF HC RED NO. 3

#### I. Identity and Purity Determinations Performed by the Analytical Chemistry Laboratory

- A. Lot No. 5890377
  - **1. Physical Properties**

| a. Appearance:                | Fine dark maroon crystals                                                                  |                                                                                                                         |
|-------------------------------|--------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
| b. Melting Point:             | Determined                                                                                 | Literature Values                                                                                                       |
|                               | 126.8°-128°C (visual<br>melting point, capillary)                                          | 124°-126°C (Clairol<br>Research Labs, personal<br>communication)                                                        |
| 2. Spectral Data              |                                                                                            |                                                                                                                         |
| a. Infrared                   | <b>Determined</b>                                                                          | Literature Values                                                                                                       |
| (1) Instrument:               | Beckman IR-12                                                                              |                                                                                                                         |
| (2) Phase:                    | 1% Potassium<br>bromide pellet                                                             |                                                                                                                         |
| (3) Results:                  | See Figure 6                                                                               | Consistent with that<br>expected for the<br>structure and with<br>the spectra<br>obtained from Clairol<br>Research Labs |
| <b>b.</b> Ultraviolet/Visible | Determined                                                                                 | Literature Values                                                                                                       |
| (1) Instrument:               | Cary 118                                                                                   |                                                                                                                         |
| (2) Solvent:                  | Water                                                                                      | Water                                                                                                                   |
| (3) Results:                  | $\frac{\lambda_{\max}}{2}$ (nm) $\epsilon \times 10^{-3}$                                  | $\frac{\lambda_{\max}(nm)}{\epsilon \times 10^{-3}}$                                                                    |
|                               | 506 $4.76 \pm 0.04 (\delta)$ 298 (sh) $4.95 \pm 0.15 (\delta)$ 245 $19.0 \pm 0.4 (\delta)$ | 500<br>Purified 5.127<br>Commercial 4.831<br>(Clairol Research Labs)                                                    |

| 25 2 35                            |                                    | WAYELENGTH IN MICHONE |
|------------------------------------|------------------------------------|-----------------------|
|                                    |                                    |                       |
|                                    |                                    |                       |
|                                    |                                    |                       |
|                                    |                                    |                       |
|                                    |                                    |                       |
|                                    |                                    |                       |
|                                    |                                    |                       |
|                                    |                                    |                       |
|                                    |                                    |                       |
|                                    |                                    |                       |
| 4000 Jaka 2446 J400 J200 2000 2000 | 2400 2400 2200 page 1400 1400 1700 | WAVERAMER CM-1        |

FIGURE 6. INFRARED ABSORPTION SPECTRUM OF HC RED NO. 3 (LOT NO. 5890377)

#### c. Nuclear Magnetic Resonance

|                         | Determined                                                                                                                                                                                                                                                                | Literature Values                                                                                                                                                                                                                                                                                                                                                                 |
|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (1) Instrument:         | Varian EM-360 A                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                   |
| (2) Solvent:            | Deuterated acetone<br>with internal<br>tetramethylsilane                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                   |
| (3) Assignments:        | See Figure 7                                                                                                                                                                                                                                                              | No literature reference<br>found. Spectrum is<br>consistent with that<br>expected for structure<br>and with spectra ob-<br>tained from the manu-<br>facturer, except the<br>manufacturer's run in<br>dimethyl sulfoxide-d <sub>6</sub><br>indicates a different<br>pattern for the ex-<br>changeable protons,<br>and the splitting pat-<br>tern of the (b) proton is<br>obscured. |
| (4) Chemical Shift (δ): | <ul> <li>a t, 3.47 ppm</li> <li>b t, 3.84 ppm</li> <li>c d, 6.87 ppm</li> <li>d of d, 7.09 ppm</li> <li>e d, 7.42 ppm</li> <li>f s, 4.08 ppm</li> <li>g s, 4.43 ppm</li> <li>h s, 7.94 ppm</li> <li>i s, (impurity) 2.89 ppm</li> <li>j s, (impurity) 3.30 ppm</li> </ul> |                                                                                                                                                                                                                                                                                                                                                                                   |
| (5) Coupling Constant:  | $J_{ab} = 5 Hz$<br>$J_{cd} = 9 Hz$<br>$J_{de} = 2 Hz$                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                   |
| (6) Integration Ratios: | a+j       2.01         b       1.94         c+d       2.08         e       0.97         f+g       2.76         h       1.04         i       (impurity) 0.37         j       impurity, integration                                                                         | ated with (a)                                                                                                                                                                                                                                                                                                                                                                     |

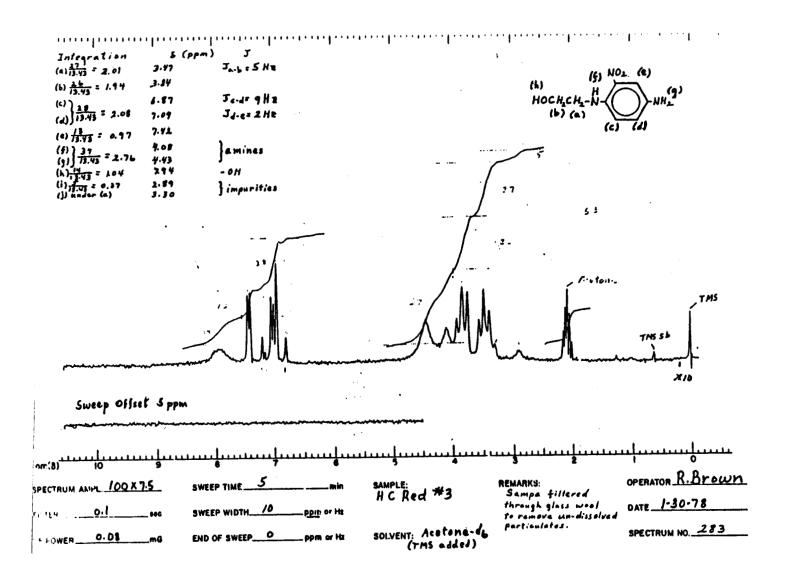



FIGURE 7. NUCLEAR MAGNETIC RESONANCE SPECTRUM OF HC RED NO. 3 (LOT NO. 5890377)

#### 3. Titration:

Titration of one amine function with perchloric acid:  $98.1\% \pm 0.7(\delta)\%$ 

#### 4. Water Analysis (Karl Fischer): $0.22\% \pm 0.03(\delta)\%$

#### 5. Elemental Analysis

| Element        | С              | Н            | N              | _ |
|----------------|----------------|--------------|----------------|---|
| Theory (T)     | 48.73          | 5.62         | 21.31          |   |
| Determined (D) | 48.73<br>48.90 | 5.55<br>5.69 | 21.14<br>21.23 |   |
| Percent D/T    | 100.17         | 100.00       | 99.41          |   |

#### 6. Chromatographic Analysis

#### a. Thin-Layer Chromatography

(1) Plates: Silica Gel F-60(2) Reference Standard: 2.6-diaminotoluene

(3) Amount Spotted: 50, 100, and 300 µg, 10 mg/ml in methanol

(4) Visualization: Ultraviolet light (254 and 366 nm);

furfural:glacial acetic acid (10 drops:10 ml) (Feigl, 1966)

Spot <u>R</u>f <u>R</u>st

System 1: Chloroform:methanol (78:22)

| Trace | 0.76   | 1.05   |
|-------|--------|--------|
| Minor | 0.71   | 0.98   |
| Major | 0.62   | 0.86   |
| Trace | Origin | Origin |

#### System 2: Ethyl acetate:ethanol (90:10)

| Trace | 0.60   | 1.04   |
|-------|--------|--------|
| Major | 0.54   | 0.94   |
| Minor | 0.45   | 0.78   |
| Trace | 0.14   | 0.24   |
| Trace | Origin | Origin |

#### b. High-Performance Liquid Chromatography

(1) Instrument: Waters Programmable Component System

- (2) Column:  $\mu$ Bondapak C<sub>18</sub>, 300 mm  $\times$  4 mm, ID
- (3) Detection: Ultraviolet, 254 nm

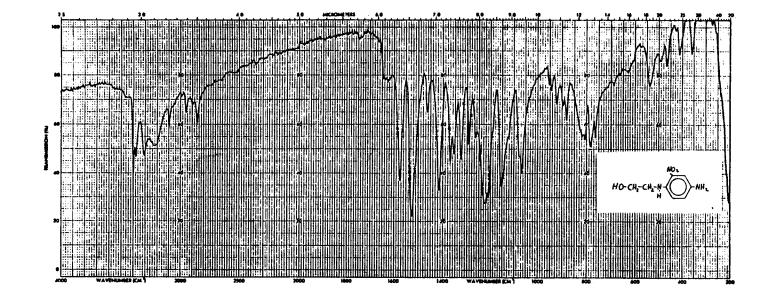
(4) Flow Rate: 1.0 ml/min

(5) Sample Injected: 10 µl of 0.56 mg/ml in methanol

(6) Solvent Program: Acetonitrile:water (25:75), isocratic

#### (7) Results

| <u>Peak No.</u> | Retention<br><u>Time (min)</u> | Retention Time<br>Relative to<br><u>Major Peak</u> | Area<br>(percent of<br><u>major peak)</u> |
|-----------------|--------------------------------|----------------------------------------------------|-------------------------------------------|
| 1               | 3.5                            | 0.61                                               | 0.03                                      |
| 2               | 4.2                            | 0.74                                               | 0.02                                      |
| 3               | 4.7                            | 0.82                                               | 1.2                                       |
| 4               | 5.7                            | 1.00                                               | 100                                       |
| 5               | 8.9                            | 1.56                                               | 0.03                                      |
| 6               | 15.2                           | 2.67                                               | 0.11                                      |
| 7               | 16.3                           | 2.86                                               | 0.03                                      |
| 8               | 45.0                           | 7.89                                               | 1.2                                       |


7. Conclusions: Results of elemental analysis for carbon, hydrogen, and nitrogen were in agreement with the theoretical values. Titration of one amine function with perchloric acid indicated a purity of  $98.1\% \pm 0.7(\delta)\%$ . High-performance liquid chromatography indicated seven impurities. Two of these each had areas of 1.2% that of the major peak area. The areas of the other five impurities totaled 0.2% that of the major peak area. Thin-layer chromatography with one system indicated one minor and two trace impurities. A second system indicated one minor and three trace impurities. The infrared, ultraviolet/visible, and nuclear magnetic resonance spectra were consistent with the structure and with the spectra submitted by the manufacturer. However, the ratio of  $\varepsilon$  values at the visible maximum of 500-506 nm indicates this lot to be 93% of the purified dye value, 99% of a typical commercial lot value. The nuclear magnetic resonance spectra also contained two broad impurity peaks.

145

B. Lot No. C080480

| 1. Physical Properties           |                                                                             |                                                                                                                                                     |
|----------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| Appearance:                      | Fine, dark red crystals                                                     |                                                                                                                                                     |
| 2. Spectral Data                 |                                                                             |                                                                                                                                                     |
| a. Infrared                      | Determined                                                                  | Literature Values                                                                                                                                   |
| (1) Instrument:                  | Perkin-Elmer 283                                                            |                                                                                                                                                     |
| (2) Phase:                       | 1% in Potassium<br>bromide pellet                                           |                                                                                                                                                     |
| (3) Results:                     | See Figure 8                                                                | Consistent with spectrum<br>from Clairol Research Labs<br>and with that expected for the<br>structure                                               |
| b. Ultraviolet/Visible           | Determined                                                                  | Literature Values                                                                                                                                   |
| (1) Instrument:                  | Cary 118                                                                    |                                                                                                                                                     |
| (2) Solvent:                     | Water                                                                       |                                                                                                                                                     |
| (3) Results:                     | $\lambda_{\rm max}({\rm nm})$ $\varepsilon \times 10^{-3}$                  |                                                                                                                                                     |
|                                  | 506 $4.68 \pm 0.05$ (8)298 (sh) $4.77 \pm 0.04$ (8)246 $18.63 \pm 0.05$ (8) | Consistent with data supplied by the manufacturer                                                                                                   |
| c. Nuclear Magnetic<br>Resonance | Determined                                                                  | Literature Values                                                                                                                                   |
| (1) Instrument:                  | Varian EM-360A                                                              |                                                                                                                                                     |
| (2) Solvent:                     | Deuterated acetone<br>with internal<br>tetramethylsilane                    |                                                                                                                                                     |
| (3) Assignments:                 | See Figure 9                                                                | No literature reference found.<br>Spectrum is consistent with<br>that expected for structure<br>and with spectra obtained<br>from the manufacturer. |

.





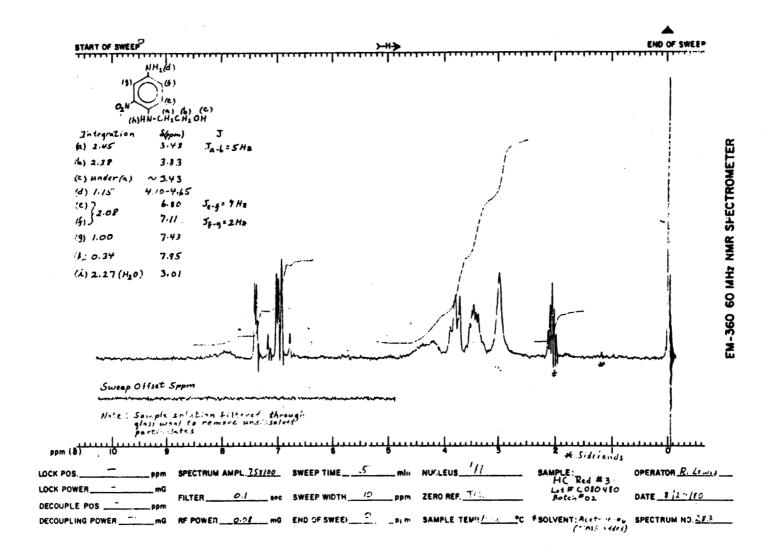



FIGURE 9. NUCLEAR MAGNETIC RESONANCE SPECTRUM OF HC RED NO. 3 (LOT NO. C080480)

| (4) Chemical Shift (8):           | a m,<br>b m,<br>$c^*$<br>d* 4.10-4.65 g<br>e d,<br>f d of d,<br>g d,<br>h* broad s,<br>i* H <sub>2</sub> O,<br>$\overline{}$ | 6.8 ppm<br>7.11 ppm<br>7.43 ppm<br>7.95 ppm<br>3.01 ppm |                                                                       |
|-----------------------------------|------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|-----------------------------------------------------------------------|
| (5) Coupling Constant:            | $\begin{array}{rcl} J_{ab} &=& 5\mathrm{Hz}\\ J_{ef} &=& 9\mathrm{Hz}\\ J_{fg} &=& 2\mathrm{Hz} \end{array}$                 |                                                         |                                                                       |
| (6) Integration Ratios:           | d 1.15<br>e<br>f<br>g 1.00<br>h 0.34                                                                                         | ;<br>er (a)<br>;                                        |                                                                       |
| Titration:                        |                                                                                                                              |                                                         | ction with 0.1N perchloric acid<br>ally: 97.0% $\pm$ 0.5( $\delta$ )% |
| Water Analysis<br>(Karl Fischer): | $0.21\% \pm 0.02(4)$                                                                                                         | δ)%                                                     |                                                                       |
| Elemental Analysis                |                                                                                                                              |                                                         |                                                                       |
| Element                           | С н                                                                                                                          | ł                                                       | N                                                                     |
| Theory (T)                        | 48.73 5                                                                                                                      | .62 2                                                   | 1.31                                                                  |
| Determined (D)<br>48.93           |                                                                                                                              | .58 2<br>.26                                            | 1.16                                                                  |
| Percent D/T                       | 100.24 100                                                                                                                   | .44 9                                                   | 9.53                                                                  |

#### 6. Chromatographic Analysis

3.

4.

5.

#### a. Thin-Layer Chromatography

(1) Plates: Silica Gel 60, F-254

(2) Reference Standard: 2,6-Diaminotoluene, 1 µl of a 10 mg/ml solution in methanol
(3) Amount Spotted: 1, 10, and 30 µl of a solution (10 mg/ml) in methanol
(4) Visualization: Ultraviolet light (254 nm and 366 nm), visible light; furfural:glacial acetic acid (1 drop:1 ml)

Spot <u>R</u>f <u>R</u>st

System 1: Chloroform: methanol (78:22)

| Minor | 0.58   | 1.07 |
|-------|--------|------|
| Major | 0.42   | 0.78 |
| Minor | Origin |      |

System 2: Ethyl acetate:ethanol (95%) (90:10)

| Minor        | 0.46   | 1.09 |
|--------------|--------|------|
| Major        | 0.40   | 0.94 |
| Trace        | 0.32   | 0.75 |
| Slight Trace | 0.14   | 0.34 |
| Minor        | Origin |      |

b. High-Performance Liquid Chromatography

(1) Instrument System: Pump(s): Waters 6000A Programmer: Waters 660 Detector: Waters 440 Injector: Waters U6K
(2) Column: μBondapak C<sub>18</sub>, 300 mm × 3.9 mm ID
(3) Detection: Ultraviolet, 254 nm
(4) Guard Column: Whatman CO:Pell ODS 72 mm × 2.3 mm ID
(5) Solvent System: 85% Water:15% acetonitrile
(6) Flow Rate: 1.0 ml/min
(7) Samples Injected: 20 µl of a solution (0.1 mg/ml) of HC Red No. 3 in methanol, filtered
(8) Results

| <u>Peak No.</u> | Retention<br><u>Time (min)</u> | Retention Time<br>Relative to<br><u>Major Peak</u> | Area<br>(percent of<br><u>major peak)</u> |  |
|-----------------|--------------------------------|----------------------------------------------------|-------------------------------------------|--|
| 1               | 6.0                            | 0.82                                               | 0.41                                      |  |
| 2               | 7.3                            | 1.00                                               | 100                                       |  |
| 3               | 61.3                           | 8.40                                               | 2.8                                       |  |

No additional impurities greater than 0.2% of the major peak area were observed with solvent systems of 100%, 80%, 60%, 40%, 20%, 18%, and 16% acetonitrile. At 60% acetonitrile, an impurity was observed eluting after the major peak with an area less than 0.2% that of the major peak area.

The chromatographic profiles indicated the two observed impurities were common to both lots of HC Red No. 3. The impurity eluting before the major peak (retention time = 6 min) was at a concentration approximately one-third as great in lot no. C080480 than in lot no. 5890377, whereas the impurity eluting after the major peak (retention time = 61.3 min) was observed to be nearly three times as large.

7. Conclusion: The compound was identified as HC Red No. 3 by spectroscopy. Karl Fischer titration indicated  $0.21\% \pm 0.02(\delta)\%$  water. Titration of the amine function indicated 97.0%  $\pm 0.5(\delta)\%$  (as compared with a value of 98.1%  $\pm 0.7(\delta)\%$  for lot no. 5890377. High-performance liquid chromatography indicated two impurities with a combined area of 3.2% of the major peak area. This lot of HC Red No. 3 is comparable in purity with lot no. 5890377.

#### II. Test Chemical Stability Study Performed by the Analytical Chemistry Laboratory

- A. Sample Storage: HC Red No. 3 samples were stored for 2 weeks at 20°, 5°, 25°, and 65°C.
- **B.** Analytical Method: Duplicate aliquots of each of the above stability samples were accurately weighed into glass-stoppered 100-ml volumetric flasks and diluted to volume with methanol. Then 1.00 ml of this solution was pipetted into a 25-ml volumetric flask and diluted to volume. The solutions then were analyzed by high-performance liquid chromatography.

#### C. Results

The areas of HC Red No. 3 were compared with the areas of the sample stored at  $-20^{\circ}$  C. The areas were adjusted for the weight of the sample.

| Storage Temperature | Percent Purity      |  |
|---------------------|---------------------|--|
| –20° C              | 100.0 ± 6.6 (8)     |  |
| 5° C                | $100.7 \pm 3.2$ (8) |  |
| 25° C               | $101.1 \pm 3.0$ (8) |  |
| 65° C               | $104.4 \pm 1.0$ (8) |  |

**D.** Conclusion: HC Red No. 3 is stable as the bulk chemical when stored for 2 weeks at temperatures of up to 65°C.

#### III. Test Chemical Stability at the Testing Laboratory

A. Storage Conditions: The chemical was stored at 22°C.

#### **B.** Analytical Method

- 1. Purity Determination: The absorbances of the bulk sample and reference aliquot were determined through the use of a Cary 17 spectrophotometer.
- 2. Identity Determination: The infrared absorption spectra of the samples were obtained as potassium bromide disks by a Perkin-Elmer 621.

#### C. Results

1. Purity

| Date of         |                | Molar Absorptivity (a) |           | Percent of |  |
|-----------------|----------------|------------------------|-----------|------------|--|
| <u>Analysis</u> | <u>Lot No.</u> | Bulk                   | Reference | Purity (b) |  |
| 04/24/78 (c)    | 54890377       | 4.00                   |           |            |  |
| 07/17/78        | 54890377       | 4.26                   | 4.13      | 103        |  |
| 12/20/78        | 54890377       | 4.31                   | 4.58      | 94         |  |
| 03/05/79        | 54890377       | 4.76                   | 4.91      | 97         |  |
| 07/09/79        | 54890377       | 4.39                   | 4.66      | 94         |  |
| 11/11/79        | 54890377       | 4.34                   | (d) 3.73  | (e) 116    |  |
| 03/04/80        | 54890377       | 4.43                   | 4.45      | 99         |  |
| 07/15/80        | 54890377       | 4.58                   | 4.49      | 102        |  |
| 11/05/80 (c)    | C080480        | 4.24                   |           |            |  |
| 11/11/80        | C080480        | 4.77                   | 4.49      | 106        |  |
| 12/07/81        | C080480        | 4.54                   | 4.55      | 100        |  |
|                 | Mean percen    | t purity               |           |            |  |
|                 | Lot no. 54     | 890377                 |           | 98.2 ± 3.9 |  |
|                 | Lot no. CO     | 80480                  |           | 103        |  |
|                 |                |                        |           |            |  |

(a) Molar absorptivity ( $\epsilon \times 10^{-3}$ ) for the observed  $\lambda_{max}$ , unless otherwise noted at 505 nm

(b) Compared with frozen reference

(c) Initial analysis for lot

(d)  $\lambda_{max}$  at 460 nm (e) Value not used for delineation of mean

- 2. Identity: All spectra were consistent with the original spectra supplied by the analytical laboratory.
- D. Conclusion: No notable degradation occurred during the preliminary or 2-year studies.

### APPENDIX H

# **RECOVERY OF HC RED NO. 3 FROM**

### FORMULATED DIETS

#### I. Sample Mixing and Storage

A stock solution of HC Red No. 3 in methanol (1.12 mg/ml) was prepared, and 5 ml of this solution was added to individual 5-g samples of Wayne Lab-Blox<sup>®</sup> Rodent Feed. The methanol was then removed from the samples on a rotary evaporator for 20 minutes at 35° C. Duplicate dried samples were thoroughly mixed with a vortex mixer and were immediately placed in storage for 2 weeks at  $-20^{\circ}$ , 5°, 25°, and 45° C, respectively.

#### II. Extraction and Analysis

The four pairs (duplicates) of storage samples were equilibrated at room temperature for a minimum of 45 minutes ( $-20^{\circ}$  C samples), up to a maximum of 75 min (45° C samples) before extraction. Each sample was quantitatively transferred to a 200-ml centrifuge bottle and triturated with 50 ml of methanol for 1 minute using a Brinkmann Polytron<sup>®</sup> high-speed blender. The mixture was then placed in an ultrasonic vibratory bath for 30 seconds and centrifuged for 10 minutes. The supernatant solution was decanted into a 100-ml volumetric flask. The feed residue was mixed with an additional 50 ml of methanol and extracted again as described above. The combined supernatant solutions were brought to volume with additional methanol. A 10-ml aliquot of each extract solution was filtered through a 0.5- $\mu$  Millipore filter and analyzed by high-performance liquid chromatography.

Instrument: Waters Programmable Component System Column:  $\mu$ -Bondapak C<sub>18</sub>, 300  $\times$  4 mm, ID Detector: Ultraviolet, 254 nm Solvent: Water:acetonitrile (75:25), isocratic Solvent flow rate: 1.0 ml/min Retention time of the compound: 5.5 min

#### **III.** Quality Control Procedures

Analyses were performed in duplicate for each storage temperature. Room temperature recovery studies were performed in duplicate at the 0.11% concentration for each of three different chemical/ feed contact time periods: 0, 1, and 3 hours. Blank (undosed) feed samples were extracted and prepared for analysis in the same manner described above for the test samples. Blanks showed no interference from feed at the retention time of the major component.

#### IV. Results

A variable time, room-temperature recovery study was performed on HC Red No. 3/feed mixtures in addition to the standard variable temperature, constant time stability study. The timed room temperature results are presented in Table H1; the standard stability test results are in Table H2.

| Temperature | Contact Time of<br>Chemical on Feed (hours) | Chemical Recovery<br>(percent)(a) |
|-------------|---------------------------------------------|-----------------------------------|
| 25° C       | 0                                           | 100 ± 4                           |
| 25° C       | 1                                           | 90 ± 3                            |
| 25° C       | 3                                           | 79 ± 4                            |

#### TABLE H1. CONSTANT TEMPERATURE/VARIABLE TIME STUDY OF HC RED NO. 3

(a) Corrected for the determined value of the  $-20^{\circ}$  C storage sample; 58%  $\pm$  4% of the target concentration (0.11% in the diet); assumed to represent 100% stability

#### TABLE H2. CONSTANT TIME/VARIABLE TEMPERATURE STUDY OF HC RED NO. 3

| Temperature | Storage<br>Time (weeks) | Target<br>Concentration<br>(percent, w/w) | Average Concentration (percent w/w<br>Found in Chemical/Vehicle Mixture<br>Relative to – 20°C Samples (a) |
|-------------|-------------------------|-------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| – 20° C     | 2                       | $0.111 \pm 0.002$                         | $0.111 \pm 0.008$ (b)                                                                                     |
| 5° C        | 2                       | $0.111 \pm 0.002$                         | $0.088 \pm 0.006$                                                                                         |
| 25° C       | 2                       | $0.113 \pm 0.002$                         | $0.041 \pm 0.006$                                                                                         |
| 45° C       | 2                       | $0.112 \pm 0.002$                         | $0.016 \pm 0.006$                                                                                         |

(a) Corrected for the determined value of the  $-20^{\circ}$  C storage sample; 58%  $\pm$  4% of the target concentration (0.11% in the diet), assumed to represent 100% stability

(b) Mean  $\pm$  standard deviation

#### V. Discussion

Table H1 shows a considerable loss of recoverable chemical from spiked feed mixtures over a period of 3 hours at room temperature. Because of this loss, considered primarily due to physical phenomena rather than chemical transformation, the results reported in Table H2 represent a comparison between the samples stored at the four temperatures, rather than absolute stability data. The entries in Table H2 for the average sample determinations have been corrected for the determined average value of the  $-20^{\circ}$  C storage samples, 58%  $\pm$  4% of the target value.

#### VI. Conclusion

Samples of HC Red No. 3 mixed with stock rodent feed at a concentration of 0.11% and stored for a 2week period at temperatures of  $-20^{\circ}$ , 5°, 25°, and 45° C, respectively, showed a significant analytical loss of chemical relative to identical chemical/feed samples stored at  $-20^{\circ}$  C. The losses increased with increasing storage temperature and thus are attributed at least in part to chemical instability of HC Red No. 3 at storage temperatures of 5° C and above.

### **APPENDIX I**

# STABILITY AND HOMOGENEITY OF HC RED NO. 3 SUSPENDED IN AQUEOUS METHYL CELLULOSE OR CORN OIL

# I. Seven-Day Room Temperature Stability Studies of HC Red No. 3 in 1% Aqueous Methyl Cellulose

A. Preparation and Storage: HC Red No. 3 (550.0  $\pm$  0.1 mg) was weighed into a 60-ml septum vial. Aqueous methyl cellulose (1%; 50 ml) was added, and the septum vial was reweighed. The mixture was shaken vigorously for 2 minutes and sonicated for 5 minutes, producing a suspension that was visually stable for 10 minutes.

As soon as the suspension was prepared, eight accurately weighed 1.6-g aliquots were removed and transferred to individual 50-ml volumetric flasks. Duplicate aliquots were stored for 1, 3, 5, and 7 days, respectively.

**B.** Sample Extraction and Analysis: To each 50-ml volumetric flask, methanol was added to the mark. The flask was shaken for 60 seconds and sonicated for 2 minutes. An aliquot (approximately 12 ml) was transferred to a 12-ml centrifuge tube, and the solution was centrifuged for 5 minutes. A 5-ml aliquot was accurately transferred to a second 50-ml volumetric flask and diluted to the mark with methanol. Approximately 2 ml of the above solution was filtered through a 0.5- $\mu$  Millipore filter and 18  $\mu$ l was injected into the high-performance liquid chromatographic system described below.

Instrument: Waters Associates Programmable Component System Column: µBondapak  $C_{18}$ ; 300 mm  $\times$  4 mm ID Detector: Ultraviolet, 254 nm Solvent: Water:Acetonitrile (68:32) Retention time: 5.6 min

**C.** Quality Control: Analysis was performed in duplicate. High-performance liquid chromatographic linearity was determined with standard solutions in methanol. Recovery studies at zero time were performed in duplicate at the same concentration level as the test samples.

#### **D.** Results and Conclusion

#### 1. Seven-Day Stability Results

| Storage<br><u>Time (days)</u> | Average Percent Chemical<br>Found in Chemical/Vehicle<br><u>Mixture (a,b)</u> |
|-------------------------------|-------------------------------------------------------------------------------|
| 1                             | $1.12 \pm 0.02$                                                               |
| 3                             | $1.11 \pm 0.02$                                                               |
| 5                             | $1.08 \pm 0.02$                                                               |
| 7                             | $1.12 \pm 0.02$                                                               |

(a)  $100 \pm 1\%$  recovery yield

(b) Target concentration of chemical in methyl cellulose, 1.11%

**2.** Conclusion: HC Red No. 3 is stable when suspended in an aqueous methyl celullose solution at a 1.1% concentration and stored at room temperature for 7 days.

#### II. Midwest Research Institute Seven-Day Room Temperature Stability Studies of HC Red No. 3 in Corn Oil

#### A. Preparation Procedure

**1. Sample Preparation and Storage:** A suspension of HC Red No. 3 in corn oil was prepared by vigorously shaking for 1 min 553.5 mg of the chemical with 50 ml of corn oil in a 60-ml septum vial. Concentration of HC Red No. 3 in the suspension was 11.07 mg/ml.

A magnetic stirring bar was placed in the vial, and, during the stirring process, 17 aliquots of approximately 1.7 g were transferred to individual 60-ml septum vials and weighed to the nearest 0.1 mg. After being sealed,<sup>(a)</sup> triplicate vials were set aside for room temperature stability testing after 1, 2, 5, and 7 days' storage. The remaining five vials were used for zero time assays and to confirm homogeneity of the suspension.

2. Extraction and Analysis: Storage samples were extracted by pipetting 50 ml of HPLCgrade methanol into each septum vial and shaking vigorously by hand for 1 minute. About 10 ml of each corn oil suspension was transferred to 12-ml centrifuge tubes and clarified by centrifuging for 5 minutes.

A 5-ml aliquot from each upper methanolic layer was pipetted into individual 50-ml volumetric flasks and diluted to volume with methanol. After being mixed, about 5 ml of solution was filtered through a 0.5  $\mu$  Millipore filter and then analyzed for HC Red No. 3 content by the high-performance liquid chromatographic system below:

Instrument: Waters Associates Liquid Chromatograph Column:  $\mu$ Bondapak C<sub>18</sub>, 300 mm × 4 mm ID Detector: Ultraviolet, 254 nm Solvent system: Water:acetonitrile (72:28) Volume injected: 12  $\mu$ l Retention time: 5.6 min

**B.** Quality Control: Analyses were carried out by making duplicate injections of duplicate extractions on all samples and recovery determinations. Zero-time recovery studies were conducted with test material at the same concentration as the samples. High-performance liquid chromatographic linearity was determined with standard solutions of HC Red No. 3 at 24.1, 40.2, and 48.2 µg/ml concentrations. Homogeneity of the suspension, determined on five weighings similiar in size as were used for samples, showed a maximum deviation from the mean concentration of only 1.1%.

<sup>(</sup>a) Vial seals were Microsep F-138 gas chromatography septa with Teflon® film facing, from Canton Biomedical Products, Inc.; the aluminum crimp seals were obtained from Wheaton Scientific Company, Inc.

#### C. Results and Conclusion

#### 1. Seven-Day Stability Data

| Average Chemical<br>Determined (mg) (a) | Target Milligrams<br>of Chemical                                                                                                | Percent<br><u>Chemical (b)</u>                                                                                                                                                                                                                                                                                                                                                                                  |
|-----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 20.5 <del>9</del>                       | 20.66                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 21.31                                   | 21.21                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 20.57                                   | 20.69                                                                                                                           | $100 \pm 1.1$                                                                                                                                                                                                                                                                                                                                                                                                   |
| 21.08                                   | 20.86                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 20.60                                   | 20.72                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 19.23                                   | 20.58                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 20.23                                   | 20.70                                                                                                                           | $95.6 \pm 2.1$                                                                                                                                                                                                                                                                                                                                                                                                  |
| 22.06                                   | 21.15                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 21.76                                   | 20.85                                                                                                                           | $104.4 \pm 0.1$                                                                                                                                                                                                                                                                                                                                                                                                 |
| 19.83                                   | 20.57                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 20.34                                   | 20.60                                                                                                                           | $97.6 \pm 1.2$                                                                                                                                                                                                                                                                                                                                                                                                  |
| 20.63                                   | 20.99                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 19.73                                   | 20.40                                                                                                                           | $97.5 \pm 0.8$                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                         | Determined (mg) (a)<br>20.59<br>21.31<br>20.57<br>21.08<br>20.60<br>19.23<br>20.23<br>22.06<br>21.76<br>19.83<br>20.34<br>20.63 | Determined (mg) (a)         of Chemical           20.59         20.66           21.31         21.21           20.57         20.69           21.08         20.86           20.60         20.72           19.23         20.58           20.23         20.70           22.06         21.15           21.76         20.85           19.83         20.57           20.34         20.60           20.63         20.99 |

(a) Results are the average of duplicate injections and were corrected for a zero-time recovery yield of  $88.8\% \pm 0.69$  (SD).

(b) Calculated from the assay data corrected for 88.8% recovery yield

**2.** Conclusion: HC Red No. 3 was found to be stable within the limits of analytical variability of the test in a corn oil gavage suspension at a concentration of 1% after storage for 7 days at room temperature. Excellent homogeneity of suspension was obtained.

#### II. Studies at the Testing Laboratory

#### A. Principle of the Method

A weighed quantity of HC Red No. 3 was suspended in a measured volume of corn oil. The resulting suspension was stirred with a magnetic stirring bar and samples were removed for dosing and for analysis. The concentration of HC Red No. 3 in the suspension was determined by spectrophotometric measurement.

#### **B.** Procedure

A 1-ml aliquot of the prepared suspension was transferred to a 200-ml volumetric flask. Approximately 150 ml of methanol was added to each flask. These flasks were then shaken, ultrasonicated, and diluted to volume. Aliquots of these solutions were diluted to 50 ml with methanol, and the absorbance of the resulting solutions measured at 492 nm against methanol.

The concentration of HC Red No. 3 in the prepared suspension was determined by comparing the absorbance of the prepared sample with the absorbance of the pure compound. A standard calibration curve of HC Red No. 3 was prepared for this purpose.

#### C. Results and Conclusions

#### 1. Fourteen-Day Stability Data

| Storage<br><u>Time (days)</u> | Target Milligrams<br><u>Chemical</u> | Average Milligrams Chemical<br>Found in Sample<br>(individual determinations) | Found/Target<br>(percent) |
|-------------------------------|--------------------------------------|-------------------------------------------------------------------------------|---------------------------|
| 0                             | 5.00                                 | 4.92 (4.85, 5.00)                                                             | 98.4                      |
| 7                             | 5.00                                 | 4.21 (4.42, 4.00)                                                             | 84.2                      |
| 14                            | 5.00                                 | 4.74 (4.61, 4.88)                                                             | 94.8                      |
| 0                             | 1.25                                 | 1.33 (1.30, 1.35)                                                             | 106.4                     |
| 7                             | 1.25                                 | 1.15 (1.14, 1.16)                                                             | 92.0                      |
| 14                            | 1.25                                 | 1.19 (1.24, 1.13)                                                             | 95.2                      |

#### 2. Conclusions

HC Red No. 3 was found to be stable within the limits of the analytical variability of the test in corn oil at the 0.125% and 0.5% concentrations after storage for 14 days at room temperature.

HC Red No. 3, NTP TR 281

## **APPENDIX J**

# METHODS OF ANALYSIS OF DOSE MIXTURES

The analytical procedures used by the testing and referee laboratories were similar. Both employed a methanolic extraction procedure and spectrophotometric quantitation.

#### I. Testing Laboratory

#### Procedure

A weighed quantity of HC Red No. 3 was suspended in a measured volume of corn oil. The resulting suspension was stirred with a magnetic stirring bar, and samples were removed for dosing and for analysis. The samples were shaken on a wrist-action shaker for 1 hour and then stirred for an additional 15 minutes on a magnetic stirrer.

While being stirred, a 1-ml aliquot of the prepared suspension was transferred to a 200-ml volumetric flask. Approximately 150 ml of the methanol was added to each flask. These flasks were then shaken, ultrasonicated, and diluted to volume. Aliquots of these solutions were diluted to 50 ml with methanol, and the absorbance of the resulting solutions was measured at 492 nm against methanol.

The concentration of HC Red No. 3 in the prepared suspension was determined by comparing the absorbance of the prepared sample with the absorbance of the pure compound. A standard calibration curve of HC Red No. 3 was prepared for this purpose.

#### II. Analytical Chemistry Laboratory

#### Procedure

A. Preparation of Standard Spiked Corn Oil: One 40-ml aliquot of each of six standard solutions of HC Red No. 3 in methanol was pipetted into individual 60-ml septum vials containing 2 g of undosed corn oil to make spiked corn oil standards bracketing the dose range. One 60-ml septum vial containing 2 g of undosed corn oil was prepared for use as a blank. The spiked corn oil and the corn oil blank were extracted immediately and were analyzed by the procedure below.

**B.** Preparation of Referee Sample: Three portions (approximately 2 g each) of the referee corn oil suspension sample were transferred to tared 60-ml septum vials and were weighed to the nearest 0.001 g. The samples were extracted immediately and analyzed by the procedure below.

C. Analysis: Forty milliliters of methanol was pipetted into each referee sample, spiked standard, and blank sample vial. After being sealed,<sup>(a)</sup> the vials were agitated for 60 seconds on a Vortex mixer; then they were vigorously shaken on a Burrell<sup>®</sup> Model 75 Wrist-Action shaker for 15 minutes. The vials were centrifuged for 5 minutes, and 4-ml aliquots of each upper methanol layer were diluted to 25 ml in methanol. Five-milliliter aliquots were further diluted to 25 ml with methanol. The HC Red No. 3 content of the samples was determined by comparing the absorbance at 493 nm of the solutions and of methanol in 1-cm quartz cells with a Cary 219 spectrophotometer.

**D.** Quality Assurance: The referee corn oil suspension sample was analyzed in triplicate and the corn oil blank sample was analyzed once. Individually spiked portions of undosed corn oil (six levels) prepared from six independently weighed standards were used to obtain standard curve data.

Results were computed from the linear regression equation obtained for the absorbance of each spiked corn oil sample versus the amount of chemical in the respective spiked corn oil sample. The linearity of the standard curve data was evaluated by the regression equation.

<sup>(</sup>a) Vial seals were Microsep F-138 gas chromatography septa with Teflon Film facing obtained from Canton Biomedical Products, Inc., Boulder, Colorado 80302; the aluminum crimp seals and vials were available from Wheaton Scientific Company, Inc., Millville, New Jersey.

HC Red No. 3, NTP TR 271

## APPENDIX K

# **RESULTS OF ANALYSIS OF DOSE MIXTURES**

I. Thirteen-Week Studies: Dose mixtures were analyzed twice during the 13-week studies. The results ranged from 65% to 113% of the target concentrations.

| Date         | Concentrati                              | on (percent w/v) | Percent of Target |
|--------------|------------------------------------------|------------------|-------------------|
| Mixed        | Target                                   | Actual           | Concentration     |
| )4/10/79 (a) | 7979-9-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1 |                  |                   |
| Rats         |                                          |                  |                   |
|              | 1.24                                     | 1.40             | 112.9             |
|              | 2.50                                     | 1.95             | 78.0              |
|              | 5.00                                     | 2.59             | 51.8              |
|              | 10.00                                    | 3.10             | 31.0              |
|              | 20.00                                    | 7.60             | 38.0              |
| Mice         |                                          |                  |                   |
|              | 0.15                                     | 0.10             | 66.7              |
|              | 0.31                                     | 0.20             | 65.0              |
|              | 0.62                                     | 0.52             | 83.9              |
|              | 1.25                                     | 1.18             | 94.4              |
|              | 2.50                                     | 1.70             | 68.0              |
| 04/24/79     |                                          |                  |                   |
| Rats         |                                          |                  |                   |
|              | 1.24                                     | 1.16             | 93.6              |
|              | 2.50                                     | 2.14             | 85.6              |
|              | 5.00                                     | 4.98             | 99.6              |
|              | 10.00                                    | (b) 8.55         | 85.5              |
|              | 20.00                                    | (b) 17.7         | 88.5              |
| Mice         |                                          |                  |                   |
|              | 0.15                                     | (c) 0.16         | 104               |
|              | 0.31                                     | 0.35             | 113               |
|              | 0.62                                     | 0.59             | 94.7              |
|              | 1.25                                     | 1.14             | 91.2              |
|              | 2.50                                     | 2.47             | 98.8              |

| TABLE K1. CONCENTRATIONS OF HC RED NO.3 IN THE THIRTEEN-WEEK GAVAGE STUDIE |
|----------------------------------------------------------------------------|
|----------------------------------------------------------------------------|

(a) The poor results of analysis of the 4/10/79 mix were attributed to poor sampling technique. The method was improved and used for all subsequent dose analyses.

(b) Mean of triplicate samples(c) Mean of duplicate samples except as noted

II. Two-Year Studies: To estimate the accuracy of dose preparations during the 2-year studies, samples from the dose preparation room were analyzed monthly (Table K2). It is assumed that the number of remixes that were required for the analyzed preparations reflects the total number of mixes that were out of specifications ( $\pm$  10% of the target concentration).

| Date                          | Determ          | ined Concentrati | on for Target Concen | tration of  |
|-------------------------------|-----------------|------------------|----------------------|-------------|
| Mixed                         | 1.25%(w/v)      | 2.50%(w/v)       | 5.00%(w/v)           | 10.00%(w/v) |
| 12/14/79                      | 1.16            |                  | 5.50                 |             |
| 01/11/80                      |                 | 2.52             |                      | 9.80        |
| <b>02/08</b> /80              | (b) <b>1.39</b> |                  | 4.81                 |             |
| 02/11/80                      | (c) 1.28        |                  |                      |             |
| <b>03/0</b> 7/80              |                 | 2.38             |                      | 10.4        |
| 04/04/80                      | 1.32            |                  | 4.92                 |             |
| 05/02/80                      |                 | (d) 2.22         |                      | 9.42        |
| <b>05/</b> 30/80              | 1.19            |                  | 4.57                 |             |
| 06/27/80                      |                 | 2.56             |                      | 10.3        |
| 07/25/80                      | 1.30            |                  | 4.74                 |             |
| <b>08/2</b> 2/80              |                 | 2.48             |                      | 9.77        |
| <b>09/19/8</b> 0              | 1.30            |                  | 5.15                 |             |
| <b>10/</b> 17/80              |                 | 2.48             |                      | 9.33        |
| 11/14/80                      | (e)             |                  | (e)                  |             |
| 11/19/80                      | (c) 1.29        |                  | (f) 5.62             |             |
| 12/12/80                      |                 | 2.72             |                      | 10.8        |
| 01/09/81                      | (b) 0.97        |                  | 5.44                 |             |
| 01/15/81                      | (c) 1.21        |                  |                      |             |
| 02/06/81                      |                 | 2.37             |                      | 9.70        |
| 03/06/81                      | 1.13            |                  | 5.04                 |             |
| 04/03/81                      |                 | 2.35             | 4.88                 | 9.99        |
| 05/01/81                      | 1.19            |                  | 5.14                 |             |
| 05/29/81                      |                 | (b) 2.82         |                      | (b) 12.7    |
| <b>06/</b> 05/81              |                 | (c) 1,93         |                      |             |
| 06/26/81                      | 1.25            |                  | (b) <b>4.2</b> 7     |             |
| <b>06/2</b> 9/81              |                 |                  | (c) <b>4.83</b>      |             |
| 07/24/81                      |                 | 2.55             |                      | 9.68        |
| 08/21/81                      | 1.22            |                  | 4.82                 |             |
| 09/18/81                      |                 | 2.28             |                      | 9.31        |
| 10/16/81                      | 1.18            |                  | 4.86                 |             |
| Mean (percent w/v)            | 1.22            | 2.48             | 4.93                 | 10.10       |
| Standard deviation            | 0.109           | 0.174            | 0.332                | 0.935       |
| Coefficient of variation (per |                 | 7.0              | 6.7                  | 9.3         |
| Range (percent w/v)           | 0.97.1.39       | 2.22-2.82        | 4.27-5.50            | 9.33-12.7   |
| Number of samples             | 12              | 12               | 13                   | 12          |

#### TABLE K2. CONCENTRATIONS OF HC RED NO. 3 IN THE TWO-YEAR GAVAGE STUDIES (4)

(a) The data presented are the results of duplicate analyses.

(b) Out of specifications and not used for dosing. Included in the mean.

(c) Remix. Not included in the mean.

(d) Out of specifications but not remixed. Included in the mean.

(e) Probably sample numbering error. Samples remixed.

(f) Remix out of specifications, used in study; not included in the mean.

To confirm the accuracy of dose preparation, aliquots taken from the animal room dosing vials were analyzed by the testing laboratory and Midwest Research Institute for referee analysis. All six samples from the animal room were within 10% of the reported dose preparation room samples (Table K3).

The initial two referee analyses gave poor agreement with the testing laboratory. After what appeared to be a sampling problem was resolved, all subsequent data showed agreement between the laboratories (Table K4).

# TABLE K3. RESULTS OF ANALYSIS OF DOSE PREPARATION ROOM SAMPLES AND ANIMAL ROOMSAMPLES IN THE TWO-YEAR GAVAGE STUDIES OF HC RED NO. 3 (a)

|            | Target                             | <b>Determined</b> Concentration  | of HC Red No. 3 in Corr |
|------------|------------------------------------|----------------------------------|-------------------------|
| Date Mixed | Concentration<br>(percent, wt/vol) | Dose Preparation<br>Room Samples | Animal<br>Room Samples  |
| 07/25/80   | 1.25                               | 1.30                             | 1.30                    |
|            | 5.00                               | 4.74                             | 4.74                    |
| 07/24/81   | 2.50                               | 2.43                             | 2.56                    |
|            | 10.00                              | 9.78                             | 9.68                    |
| 08/21/81   | 1.25                               | 1.22                             | 1.13                    |
|            | 5.00                               | 4.82                             | 5.28                    |

(a) Southern Research Institute data

#### TABLE K4. RESULTS OF REFEREE ANALYSIS OF DOSE MIXTURES OF HC RED NO.3 IN CORN OIL IN THE TWO-YEAR GAVAGE STUDIES

|            | Target                             | Determined Concentration  |                              |
|------------|------------------------------------|---------------------------|------------------------------|
| Date Mixed | Concentration<br>(percent, wt/vol) | Testing<br>Laboratory (a) | Analytical<br>Laboratory (b) |
| 03/07/80   | 2.5                                | 2.38                      | 1.86                         |
| 04/04/80   | 5.0                                | 4.92                      | 3.87                         |
| 08/22/80   | 10.0                               | 9.78                      | 9.30                         |
| 01/09/81   | 5.0                                | 5.44                      | 5.31                         |
| 07/24/81   | 2.5                                | 2.44                      | 2.54                         |
| 10/16/81   | 1.25                               | 1.18                      | 1.15                         |

(a) Results of duplicate analysis

(b) Results of triplicate analysis

# APPENDIX L

# SENTINEL ANIMAL PROGRAM

#### I. Methods

Rodents used in the Carcinogenesis Program of the National Toxicology Program are produced in optimally clean facilities to eliminate potential pathogens that may affect test results. The Sentinel Animal Program is part of the periodic monitoring of animal health that occurs during the toxicologic evaluation of chemical compounds. Under this program, the disease state of the rodents is monitored via viral serology on sera from extra (sentinel) animals in the test rooms. These animals are untreated, and these animals and the test animals are both subject to identical environmental conditions. The sentinel animals come from the same production source and weanling groups as the animals used for the studies of chemical compounds.

Fifteen  $B6C3F_1$  mice and 15 F344/N rats of each sex are selected at the time of randomization and allocation of the animals to the various study groups. Five animals of each designated sentinel group are killed at 6, 12, and 18 months on study. Data from animals surviving 24 months are collected from 5/50 randomly selected control animals of each sex and species. The blood from each animal is collected and clotted, and the serum is separated. The serum is cooled on ice and shipped to Microbiological Associates' Comprehensive Animal Diagnostic Service for determination of the viral antibody titers. The following tests are performed:

|         | Hemagglutination<br><u>Inhibition</u>                                                                                                                                                                     | Complement<br><u>Fixation</u>                                                             | <u>ELISA</u>                   |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|--------------------------------|
| Mice    | PVM (pneumonia virus of mice)<br>Reo 3 (reovirus type 3)<br>GDVII (Theiler's<br>encephalomyelitis virus)<br>Poly (polyoma virus)<br>MVM (minute virus of mice)<br>Ectro (infectious ectromelia)<br>Sendai | M.Ad. (mouse adenovirus)<br>LCM (lymphocytic<br>choriomeningitis virus)<br>Sendai (24 mo) | MHV (mouse<br>hepatitis virus) |
| Rats    | PVM<br>KRV (Kilham rat virus)<br>H-1 (Toolan's H-1 virus)<br>Sendai                                                                                                                                       | RCV (rat coronavirus)<br>Sendai (24 mo)                                                   |                                |
| II. Res | ults                                                                                                                                                                                                      |                                                                                           |                                |

Results are presented in Table L1.

|      | Interval<br>(months) | No. of<br>Animals | Positive Serologic<br>Reaction for |
|------|----------------------|-------------------|------------------------------------|
| RATS |                      | ,,                |                                    |
|      | 6                    |                   | None positive                      |
|      | 12                   |                   | None positive                      |
|      | 18                   |                   | None positive                      |
|      | 24                   |                   | None positive                      |
| MICE |                      |                   |                                    |
|      | 6                    |                   | None positive                      |
|      | 12                   |                   | None positive                      |
|      | 18                   |                   | None positive                      |
|      | 24                   | 2/10              | MHV                                |

#### TABLE L1. MURINE VIRUS ANTIBODY DETERMINATIONS FOR RATS AND MICE IN THE TWO-YEAR GAVAGE STUDIES OF HC RED NO. 3 (a)

(a) Blood samples were taken from sentinel animals at approximately 6, 12, and 18 months after the start of dosing and from the vehicle control animals just before they were killed; samples were sent to Microbiological Associates, Inc. (Bethesda, MD) for the Animal Disease Screening Program.

HC Red No. 3, NTP TR 281

# APPENDIX M

# GENETIC TOXICOLOGY OF

## HC RED NO. 3

|        |                    |                 | Revertants/Plate (a, | b)                |
|--------|--------------------|-----------------|----------------------|-------------------|
| Strain | Dose<br>(µg/plate) | - 59            | + S9 (rat)           | + S9 (hamster)    |
| TA100  | 0                  | 139 ± 14.8      | 99 ± 3.5             | 105 ± 10.7        |
|        | 33                 | $138 \pm 7.9$   | $118 \pm 5.8$        | $158 \pm 9.0$     |
|        | 100                | $144 \pm 2.9$   | $223 \pm 19.1$       | $251 \pm 8.4$     |
|        | 333                | 191 ± 7.8       | $534 \pm 16.6$       | $454 \pm 6.6$     |
|        | 1,000              | $272 \pm 5.6$   | $1,030 \pm 17.9$     | $967 \pm 14.4$    |
|        | 3,333              | $354 \pm 4.8$   | $841 \pm 26.6$       | $931 \pm 22.7$    |
| FA1535 | 0                  | $34 \pm 4.5$    | $12 \pm 1.3$         | $11 \pm 2.0$      |
|        | 33                 | $34 \pm 3.5$    | $12 \pm 0.9$         | $11 \pm 3.2$      |
|        | 100                | $33 \pm 5.6$    | $12 \pm 1.5$         | $15 \pm 1.5$      |
|        | 333                | <b>29 ± 4.2</b> | $16 \pm 1.8$         | $13 \pm 1.5$      |
|        | 1,000              | $28 \pm 3.9$    | 16 ± 0.9             | $18 \pm 0.9$      |
|        | 3,333              | $27 \pm 3.9$    | $9 \pm 1.2$          | $13 \pm 2.1$      |
| A97    | 0                  | $108 \pm 9.3$   | $128 \pm 4.5$        | $153 \pm 3.8$     |
|        | 3.3                |                 | $207 \pm 3.0$        | $213 \pm 11.7$    |
|        | 10                 |                 | $323 \pm 13.9$       | $314 \pm 1.0$     |
|        | 33                 | $148 \pm 4.8$   | $939 \pm 4.9$        | $819 \pm 26.0$    |
|        | 100                | $186 \pm 11.7$  | $2,171 \pm 60.6$     | $1.637 \pm 33.2$  |
|        | 333                | $248 \pm 2.3$   | $3,947 \pm 159.8$    | $3,565 \pm 180.6$ |
|        | 1,000              | $391 \pm 9.5$   | ••                   | **                |
|        | 3,333              | $401 \pm 10.4$  |                      |                   |
| ra98   | 0                  | 26 ± 3.9        | $36 \pm 3.2$         | $37 \pm 3.0$      |
|        | 3.3                |                 | $131 \pm 0.9$        | $105 \pm 10.9$    |
|        | 10                 |                 | $326 \pm 5.5$        | $300 \pm 17.0$    |
|        | 33                 | $45 \pm 6.7$    | $1,220 \pm 13.4$     | $1,105 \pm 23.3$  |
|        | 100                | 68 ± 5.9        | $2,764 \pm 33.5$     | $2,723 \pm 83.1$  |
|        | 333                | $160 \pm 4.2$   | $4,212 \pm 67.2$     | $4,366 \pm 40.1$  |
|        | 1,000              | $307 \pm 3.9$   |                      | -,                |
|        | 3,333              | $383 \pm 28.0$  |                      |                   |

#### TABLE M1. MUTAGENICITY OF HC RED NO. 3 IN SALMONELLA TYPHIMURIUM

(a) The S9 fractions were prepared from the livers of Aroclor 1254-induced male Sprague-Dawley rats and male Syrian hamsters. Cells and test compound or solvent (DMSO) were incubated for 20 min at 37° C in the presence of either S9 or buffer. After the addition of soft agar, the contents of each tube were poured onto minimal medium, and the plates were incubated at 37° C for 48 h (Haworth et al., 1983). The experiment was performed twice, each in triplicate; because the results were similar, data from only one experiment are shown.

(b) Mean  $\pm$  standard error

### APPENDIX N

# INGREDIENTS, NUTRIENT COMPOSITION, AND CONTAMINANT LEVELS OF THE NIH 07 DIET

Pelleted Diet: December 1979 to January 1982 (Manufactured by Zeigler Bros., Inc., Gardners, PA)

#### TABLE N1. INGREDIENTS OF THE NIH 07 DIET(a)

| Ingredients (b)                        | Percent by Weight |          |
|----------------------------------------|-------------------|----------|
| Ground #2 yellow shelled corn          | 24.50             | <u> </u> |
| Ground hard winter wheat               | 23.00             |          |
| Soybean meal (49% protein)             | 12.00             |          |
| Fish meal (60% protein)                | 10.00             |          |
| Wheat middlings                        | 10.00             |          |
| Dried skim milk                        | 5.00              |          |
| Alfalfa meal (dehydrated, 17% protein) | 4.00              |          |
| Corn gluten meal (60% protein)         | 3.00              |          |
| Soy oil                                | 2.50              |          |
| Brewer's dried yeast                   | 2.00              |          |
| Dry molasses                           | 1.50              |          |
| Dicalcium phosphate                    | 1.25              |          |
| Ground limestone                       | 0.50              |          |
| Salt                                   | 0.50              |          |
| Premixes (vitamin and mineral)         | 0.25              |          |

(a) NIH, 1978; NCI, 1976

(b) Ingredients should be ground to pass through a U.S. Standard Screen #16 before mixing.

#### TABLE N2. VITAMINS AND MINERALS IN THE NIH 07 DIET (a)

|                        | Amount       | Source                   |
|------------------------|--------------|--------------------------|
| Vitamins               |              | <u> </u>                 |
| A                      | 5,500,000 IU | Stabilized vitamin A     |
|                        |              | palmitate or acetate     |
| D <sub>3</sub>         | 4,600,000 IU | D activated animal stero |
| l-A-tocopheryl acetate | 20,000 IU    |                          |
| Riboflavin             | 3.4 g        |                          |
| Thiamine               | 10.0 g       | Thiamine mononitrate     |
| Niacin                 | 30.0 g       |                          |
| I-Pantothenic acid     | 18.0 g       | d-Calcium pantothenate   |
| Folic acid             | 2.2 g        | •                        |
| Pyridoxine             | 1.7 g        | Pyridoxine hydrochloride |
| B <sub>12</sub>        | 4000 µg      |                          |
| Biotin                 | 140.0 mg     | d-Biotin                 |
| Ka                     | 2.8 g        | Menadione activity       |
| Choline                | 560.0 g      | Choline chloride         |
| Minerals               |              |                          |
| iron                   | 120.0 g      | Iron sulfate             |
| Manganese              | 60.0 g       | Manganous oxide          |
| linc                   | 16.0 g       | Zinc oxide               |
| Copper                 | 4.0 g        | Copper sulfate           |
| odine                  | 1.4 g        | Calcium iodate           |
| Cobalt                 | 0.4 g        | Cobalt carbonate         |

(a) Per ton (2,000 lb) of finished product

| Nutrient                            | Mean $\pm$ Standard Deviation | Range         | Number of Sample |
|-------------------------------------|-------------------------------|---------------|------------------|
| Crude protein (percent by weight)   | 24.29 ± 0.81                  | 22.7-26.1     | 24               |
| Crude fat (percent by weight)       | $4.81 \pm 0.38$               | 4.1-5.5       | 24               |
| Crude fiber (percent by weight)     | $3.31 \pm 0.50$               | 1.4-4.3       | 24               |
| sh (percent by weight)              | $6.76 \pm 0.44$               | 5.83-7.43     | 24               |
| litamins                            |                               |               |                  |
| /itamin A (IU/kg)                   | $10,192 \pm 2,534$            | 6,700-17,000  | 24               |
| 'itamin D (IU/kg)                   | 6,300                         |               | 1                |
| -tocopherol (ppm)                   | 37.6                          | 31.1-44.0     | 2                |
| hiamine (ppm) (b)                   | $16.2 \pm 4.5$                | 7.4-27.0      | 24               |
| iboflavin (ppm)                     | _6.9                          | 6.1-7.4       | 2                |
| iacin (ppm)                         | 75                            | 65-85         | 2                |
| antothenic acid (ppm)               | 30.2                          | 29.8-30.5     | 2                |
| yridoxine (ppm)                     | 7.2                           | 5.6-8.8       | 2                |
| olic acid (ppm)                     | 2.1                           | 1.8-2.4       | 2                |
| iotin (ppm)                         | 0.24                          | 0.21-0.27     | 2                |
| itamin B <sub>12</sub> (ppb)        | 12.8                          | 10.6-15.0     | 2                |
| holine (ppm)                        | 3,315                         | 3,200-3,430   | 2                |
| linerals                            |                               |               |                  |
| alcium (percent)                    | $1.34 \pm 0.20$               | 0.81-1.69     | 24               |
| hosphorous (percent)                | $1.01 \pm 0.08$               | 0.82-1.10     | 24               |
| otassium (percent)                  | 0.809                         | 0.772-0.846   | . 2              |
| hloride (percent)                   | 0.557                         | 0.479-0.635   | 2                |
| odium (percent)                     | 0.304                         | 0.258-0.349   | 2                |
| lagnesium (percent)                 | 0.172                         | 0.166-0.177   | 2                |
| ulfur (percent)                     | 0.278                         | 0.270-0.285   | 2                |
| ron (ppm)                           | 418                           | 409-426       | 2                |
| langanese (ppm)                     | 90.8                          | 86.0-95.5     | 2                |
| inc (ppm)                           | 55.1                          | 54.2-56.0     | 2                |
| opper (ppm)                         | 12.68                         | 9.65-15.70    | 2                |
| odine (ppm)                         | 2.58                          | 1.52-3.64     | 2                |
| hromium (ppm)                       | 1.86                          | 1.79-1.93     | 2                |
| obalt (ppm)                         | 0.57                          | 0.49-0.65     | 2                |
| ssential Fatty Acids (percent of to |                               |               |                  |
| inoleic                             | 2.37                          |               | 1                |
| inolenic                            | 0.308                         |               | 1                |
| rachidonic                          | 0.008                         |               | 1                |
| ssential Amino Acids (percent of    |                               |               |                  |
| rginine                             | 1.260                         | 1.21-1.31     | 2                |
| ystine                              | 0.395                         | 0.39-0.40     | 2                |
| lycine                              | 1.175                         | 1.15-1.20     | 2                |
| listidine                           | 0.553                         | 0.530-0.576   | 2                |
| pleucine                            | 0.908                         | 0.881-0.934   | 2                |
| eucine                              | 1.905                         | 1.85-1.96     | 2                |
| ysine                               | 1.250                         | 1.20-1.30     | 2                |
| lethionine                          | 0.310                         | 0.306-0.314   | 2                |
| henylalanine                        | 0.967                         | 0.960-0.974   | 2                |
| hreonine                            | 0.834                         | 0.840 - 0.827 | 2                |
| ryptophan                           | 0.175                         | 0.171-0.178   | 2                |
| yrosine                             | 0.587                         | 0.566-0.607   | 2                |
| aline                               | 1.085                         | 1.05-1.12     | 2                |

#### TABLE N3. NUTRIENT COMPOSITION OF THE NIH 07 DIET (a)

(a) One or two of the analyzed feed batches came from diet manufactured in January and/or April 1983.
(b) One batch (7/22/81) was not analyzed for thiamine.

| Contaminant                     | Mean ± Standard Deviation | Range                      | Number of Sample |
|---------------------------------|---------------------------|----------------------------|------------------|
| Arsenic (ppm)                   | 0.39 ± 0.23               | <0.05-1.06                 | 24               |
| Cadmium (ppm)                   | $0.11 \pm 0.07$           | (a) < 0.05-0.40            | 24               |
| Lead (ppm)                      | $0.91 \pm 0.51$           | 0.50-2.65                  | 24               |
| fercury (ppm)                   | (b) < 0.05                | 0.00-2.00                  | 23               |
| Selenium (ppm)                  | $0.29 \pm 0.09$           | 0.10-0.52                  | 24               |
| Aflatoxins (ppb)                | (b)(c) <10                |                            | 24               |
| Nitrate nitrogen (ppm) (d)      | $7.00 \pm 3.70$           | (e) <0.1-13.0              | 24               |
| Nitrite nitrogen (ppm) (d)      | $1.45 \pm 1.02$           | (e) <0.1-4.0               | 24               |
| BHA (ppm) (f)                   | $3.83 \pm 3.88$           | $(g) < 0.2 \cdot 13.0$     | 24               |
| 3HT (ppm) (f)                   | $2.97 \pm 1.74$           | 0.8-7.6                    | 24               |
| Aerobic plate count (CFU/g)     | 48,786 ± 32,701           | (h) 5,500-120,000          | 22               |
|                                 | $70,970 \pm 81,410$       | (i) 5,500-320,000          | 24               |
| Coliform (MPN/g)                | 39 ± 57                   | (j) <b>&lt;3-240</b>       | 20               |
|                                 | $270 \pm 580$             | (k) < 3-2,400              | 20               |
| E. Coli (MPN/g)                 | (1)<3                     | (x) <0-2,400               | 24               |
| fotal nitrosamines (ppb)        | $7.63 \pm 6.67$           | (m, n) 2.2-24.5            | 21               |
| ····· (FF-)                     | $29.77 \pm 64.59$         | (m, o) 2.2-273             | 24               |
| N-Nitrosodimethylamine (ppb)    | $5.81 \pm 6.30$           | (m, n) 1.1-20.0            | 21               |
| ( I'll oboarnoarf lanning (ppb) | $27.79 \pm 64.31$         | (m, o) 1.1-272             | 24               |
| V-Nitrosopyrrolidine (ppb)      | $1.44 \pm 0.89$           | 0.5-3.5                    | 24               |
| Pesticides (ppm)                |                           |                            |                  |
| Alpha BHC (p)                   | (b) <0.01                 |                            | 24               |
| Beta BHC                        | (b) <0.02                 |                            | 24               |
| amma BHC-Lindane                | (b) < 0.01                |                            | 24               |
| Pelta BHC                       | (b) < 0.01                |                            | 24               |
| Ieptachlor                      | (b) < 0.01                |                            | 24               |
| ldrin                           | (b) < 0.01<br>(b) < 0.01  |                            | 24               |
| leptachlor epoxide              | (b) < 0.01<br>(b) < 0.01  |                            | 24               |
| DE                              | (b) < 0.01<br>(b) < 0.01  |                            | 24               |
|                                 | (b) <0.01<br>(b) <0.01    |                            | 24               |
| ICB                             | (b) <0.01<br>(b) <0.01    |                            |                  |
| firex                           |                           |                            | 24               |
|                                 | (b) <0.01                 |                            | 24               |
| fethoxychlor                    | (b) <0.05                 | (q) 0.09 (8/26/81)         | 24               |
| Dieldrin                        | (b) <0.01                 |                            | 24               |
| Indrin                          | (b) <0.01                 |                            | 24               |
| elodrin                         | (b) < 0.01                |                            | 24               |
| hlordane                        | (b) < 0.05                |                            | 24               |
| oxaphene                        | (b) < 0.1                 |                            | 24               |
| stimated PCB's                  | (b) <0.2                  |                            | 24               |
| onnel                           | (b) < 0.01                |                            | 24               |
| thion                           | (b) <0.02                 |                            | 24               |
| rithion                         | (b) <0.05                 |                            | 24               |
| liazinon                        | (b) <0.1                  | (q) 0.2 ( <b>4/</b> 27/81) | 24               |
| lethyl parathion                | (b) < 0.02                |                            | 24               |
| thyl parathion                  | (b) <0.02                 |                            | 24               |
| falathion                       | $0.10 \pm 0.07$           | (r) <0.05 · 0.27           | 24               |
| ndosulfan I                     | (b) <0.01                 |                            | 24               |
| Indosulfan II                   | (b) <0.01                 |                            | 24               |
| ndosulfan sulfate               | (b) <0.03                 |                            | 24               |

#### TABLE N4. CONTAMINANT LEVELS OF THE NIH 07 DIET

#### TABLE N4. CONTAMINANT LEVELS OF THE NIH 07 DIET (Continued)

- (b) All values less than detection limit, which is given in the table as the mean
- (c) Detection limit reduced from 10 ppb to 5 ppb after 7/81
- (d) Source of contamination--alfalfa, grains, and fish meal
- (e) Two batches contained less than 0.1 ppm.
- (f) Source of contamination--soy oil and fish meal
- (g) Six batches contained less than 0.5 ppm.

(h) Mean, standard deviation (SD), and range excludes two extreme values (300,0000 and 320,000) obtained in batches produced on 12/21/79 and 2/26/80; CFU = colony-forming units.

- (i) Mean, SD, and range includes the two extreme values given in (h).

(i) Excludes four very high values in the range of 1,100-2,400 obtained in batches produced on 2/4/80, 2/26/80, 5/29/80, and

- 12/16/80
- (k) Includes the high values listed in (j)

(1) All values were less than 3 MPN/g (MPN = most probable number).

(m) All values were corrected for percent recovery.

(n) Mean, SD, and range excludes three very high values in the range of 115-280 ppb in batches produced on 1/26/81, 2/23/81, and 4/27/81.

(o) Mean, SD, and range includes the very high values given in (n).

(p) BHC is hexachlorocyclohexane or benzene hexachloride.

(q) One observation was above the detection limit. The value and the date it was obtained are given under the range.

(r) Nine batches contained more than 0.05 ppm.

<sup>(</sup>a) Three batches contained more than 0.1 ppm.

#### HC Red No. 3, NTP TR 281

182

## **APPENDIX O**

### DATA AUDIT SUMMARY

.

HC Red No. 3, NTP TR 281

# APPENDIX O. DATA AUDIT SUMMARY

The experimental data and tables of the NTP Technical Report on the toxicology and carcinogenesis studies of HC Red No. 3 in F344/N rats and  $B6C3F_1$  mice were examined for completeness, consistency, and accuracy and for procedures consistent with Good Laboratory Practice guidelines. The audit was conducted by ImmuQuest Laboratories, Inc. The following people were involved in the audit: P.H. Errico, M.A.; C.S. Reese, M.S.; K.M. Witkin, Ph.D.; L.H. Brennecke, D.V.M.; and D.C. Haynes, H.T. The 2-year studies in rats and mice were conducted between November 1979 and December 1981 at Southern Research Institute, Birmingham, Alabama, under a subcontract with Tracor Jitco, Inc.

The full report of the audit is on file at the National Toxicology Program, NIEHS. The audit included a review of the records of the in-life portion of the studies for 10% of the animals, 100% of the analytical chemistry data, and a random 50% sample of the chemical mix calculations. All Individual Animal Data Records were examined for correspondence between necropsy observations and histopathologic findings. All wet tissue bags were counted, and 10% were reviewed for animal identification and the presence of untrimmed lesions. A complete slide-block match for both sexes of both species in the vehicle control and high dose groups was performed.

The audit revealed no major problems with the conduct of the studies or with collection and documentation of the experimental data. It was not possible to confirm the identification of one rat that had a portion of one ear missing, and some discrepancies between gross and microscopic diagnoses in nontarget organs were noted. Minor problems or discrepancies, considered inconsequential for the interpretation of the studies, were not necessarily pursued to final resolution but are identified in the NTP audit report. In conclusion, the data examined during this audit are considered adequate to support the conclusions presented in the Technical Report.

**<u>AU.S. GOVERNMENT PRINTING OFFICE:</u>** 1986491 292 21326

184