National Cancer Institute **CARCINOGENESIS** Technical Report Series No. 173 1979

BIOASSAY OF CARBROMAL FOR POSSIBLE CARCINOGENICITY

CAS No. 77-65-6

NCI-CG-TR-173

U.S. DEPARTMENT OF HEALTH, EDUCATION, AND WELFARE Public Health Service National Institutes of Health

BIOASSAY OF

CARBROMAL

FOR POSSIBLE CARCINOGENICITY

Carcinogenesis Testing Program Division of Cancer Cause and Prevention National Cancer Institute National Institutes of Health Bethesda, Maryland 20014

U.S. DEPARTMENT OF HEALTH, EDUCATION, AND WELFARE Public Health Service National Institutes of Health

DHEW Publication No. (NIH) 79-1729

.

REPORT ON THE BIOASSAY OF CARBROMAL FOR POSSIBLE CARCINOGENICITY

CARCINOGENESIS TESTING PROGRAM DIVISION OF CANCER CAUSE AND PREVENTION NATIONAL CANCER INSTITUTE, NATIONAL INSTITUTES OF HEALTH

FOREWORD: This report presents the results of the bioassay of carbromal conducted for the Carcinogenesis Testing Program, Division of Cancer Cause and Prevention, National Cancer Institute (NCI), National Institutes of Health, Bethesda, Maryland. This is one of a series of experiments designed to determine whether selected chemicals have the capacity to produce cancer in animals. Negative results, in which the test animals do not have a significantly greater incidence of cancer than control animals, do not necessarily mean the test chemical is not a carcinogen because the experiments are conducted under a limited set of circumstances. Positive results demonstrate that the test and indicate a potential risk to man. The actual determination of the risk to man from animal carcinogens requires a wider analysis.

CONTRIBUTORS: This bioassay of carbromal was conducted by Litton Bionetics, Inc., Kensington, Maryland, initially under direct contract to the NCI and currently under a subcontract to Tracor Jitco, Inc., prime contractor for the NCI Carcinogenesis Testing Program.

The experimental design was determined by the NCI Project Officers, Dr. N. P. Page (1,2), Dr. E. K. Weisburger (1) and Dr. J. H. Weisburger (1,3). The principal investigators for the contract were Dr. F. M. Garner (4) and Dr. B. M. Ulland (4,5). Mr. S. Johnson (4) was the coprincipal investigator for the contract. Animal treatment and observation were supervised by Mr. R. Cypher (4), Mr. D. S. Howard (4) and Mr. H. D. Thornett (4); Mr. H. Paulin (4) analyzed dosed feed mixtures. Ms. J. Blalock (4) was responsible for data collection and assembly. Chemical analysis was performed by Midwest Research Institute (6) and the analytical results were reviewed by Dr. N. Zimmerman (7).

Histopathologic examinations were performed by Dr. P. K. Hildebrandt (4) at Litton Bionetics, Inc., the pathology narratives were written by Dr. P. K Hildebrandt (4), and the diagnoses included in this report represent the interpretation of this pathologist. Histopathology findings and reports were reviewed by Dr. R. L. Schueler (8). Compilation of individual animal survival, pathology, and summary tables was performed by EG&G Mason Research Institute (9); the statistical analysis was performed by Mr. R. M. Helfand (7) and Dr. J. P. Dirkse, III (10) using methods selected for the Carcinogenesis Testing Program by Dr. J. J. Gart (11).

This report was prepared at METREK, a Division of The MITRE Corporation (7) under the direction of the NCI. Those responsible for this report at METREK are the project coordinator, Dr. L. W. Thomas (7), task leader Ms. P. Walker (7), senior biologist Mr. M. Morse (7), biochemist Mr. S. C. Drill (7), and technical editor Ms. P. A. Miller (7). The final report was reviewed by members of the participating organizations.

The following other scientists at the National Cancer Institute were responsible for evaluating the bioassay experiment, interpreting the results, and reporting the findings: Dr. K. C. Chu (1), Dr. C. Cueto, Jr. (1), Dr. J. F. Douglas (1), Dr. R. A. Griesemer (1), Dr. T. E. Hamm (1), Dr. W. V. Hartwell (1), Dr. M. H. Levitt (1), Dr. H. A. Milman (1), Dr. T. W. Orme (1), Dr. R. A. Squire (1,12), Dr. S. F. Stinson (1), Dr. J. M. Ward (1), and Dr. C. E. Whitmire (1).

- 1. Carcinogenesis Testing Program, Division of Cancer Cause and Prevention, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.
- 2. Now with the U.S. Environmental Protection Agency, 401 M Street, S.W., Washington, D.C.
- 3. Now with the Naylor Dana Institute for Disease Prevention, American Health Foundation, Hammon House Road, Valhalla, New York.
- Litton Bionetics, Inc., 5516 Nicholson Lane, Kensington, Maryland.
- 5. Now with Hazleton Laboratories America, Inc., 9200 Leesburg Turnpike, Vienna, Virginia.
- 6. Midwest Research Institute, 425 Volker Boulevard, Kansas City, Missouri.
- 7. The MITRE Corporation, METREK Division, 1820 Dolley Madison Boulevard, McLean, Virginia.
- 8. Tracor Jitco, Inc., 1776 East Jefferson Street, Rockville, Maryland.

- 9. EG&G Mason Research Institute, 1530 East Jefferson Street, Rockville, Maryland.
- 10. Consultant to The MITRE Corporation, currently a professor in the Department of Statistics at The George Washington University, 2100 Eye Street, N.W., Washington, D.C.
- 11. Mathematical Statistics and Applied Mathematics Section, Biometry Branch, Field Studies and Statistics Program, Division of Cancer Cause and Prevention, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.
- Now with the Division of Comparative Medicine, Johns Hopkins University, School of Medicine, Traylor Building, Baltimore, Maryland.

SUMMARY

A bioassay for the possible carcinogenicity of carbromal was conducted using Fischer 344 rats and B6C3F1 mice. Carbromal was administered in the feed, at either of two concentrations, to groups of 50 male and 50 female animals of each species with the exception of 49 low dose male mice and high dose female mice. Twenty animals of each sex and species were placed on test as controls. The high and low dietary concentrations of carbromal were, respectively, 2500 and 1250 ppm for rats and 2500 and 1250 ppm for mice. The compound was administered for 103 weeks to rats and for 78 weeks to mice. The period of compound administration was followed by an observation period of 1 week for rats and 26 weeks for mice.

There were no significant positive associations between the concentrations of carbromal administered and mortality in rats or mice of either sex. Adequate numbers of animals in all groups survived sufficiently long to be at risk from late-developing tumors. Slight dose-related mean body weight depression was observed for male rats and for females of both species and the mean body weight among dosed male mice was lower than that for controls, indicating that the concentrations of carbromal administered to the animals in this bioassay may have approximated the maximum tolerated concentrations.

None of the statistical tests for any site in female rats or in mice of either sex indicated a significant positive association between compound administration and tumor incidence. There was a significant positive association between the concentrations administered and the incidences of adrenal pheochromocytomas in male rats; however, the Fisher exact comparisons were not significant.

Under the conditions of this bioassay, dietary administration of carbromal was not carcinogenic in Fischer 344 rats or B6C3Fl mice.

TABLE OF CONTENTS

I.	INTRO	DUCTION	1
II.	MATER	IALS AND METHODS	4
	 B. D C. A D. A E. S F. E G. C 	hemicals ietary Preparation nimals election of Initial Concentrations xperimental Design linical and Histopathologic Examinations ata Recording and Statistical Analyses	4 5 6 8 10 13 14
111.	CHRON	IC TESTING RESULTS: RATS	19
	B. S C. P	ody Weights and Clinical Observations urvival athology tatistical Analyses of Results	19 19 22 22
IV.	CHRON	IC TESTING RESULTS: MICE	29
	B. S C. P	ody Weights and Clinical Observations urvival athology tatistical Analyses of Results	29 29 32 32
۷.	DISCU	SSION	38
VI.	BIBLI	OGRAPHY	40
APPEN	DIX A	SUMMARY OF THE INCIDENCE OF NEOPLASMS IN RATS TREATED WITH CARBROMAL	A-1
APPEN	DIX B	SUMMARY OF THE INCIDENCE OF NEOPLASMS IN MICE TREATED WITH CARBROMAL	B-1
APPEN	DIX C	SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN RATS TREATED WITH CARBROMAL	C-1
APPENI	DIX D	SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MICE TREATED WITH CARBROMAL	D-1

ix

LIST OF ILLUSTRATIONS

Figure Number		Page
1	CHEMICAL STRUCTURE OF CARBROMAL	2
2	GROWTH CURVES FOR CARBROMAL CHRONIC STUDY RATS	20
3	SURVIVAL COMPARISONS OF CARBROMAL CHRONIC STUDY RATS	21
4	GROWTH CURVES FOR CARBROMAL CHRONIC STUDY MICE	30
5	SURVIVAL COMPARISONS OF CARBROMAL CHRONIC STUDY MICE	31
	LIST OF TABLES	
Table Number		Page
1	DESIGN SUMMARY FOR FISCHER 344 RATS CARBROMAL FEEDING EXPERIMENT	11
2	DESIGN SUMMARY FOR B6C3F1 MICECARBROMAL FEEDING EXPERIMENT	1.2
3	ANALYSES OF THE INCIDENCE OF PRIMARY TUMORS AT SPECIFIC SITES IN MALE RATS TREATED WITH CARBROMAL	23
4	ANALYSES OF THE INCIDENCE OF PRIMARY TUMORS AT SPECIFIC SITES IN FEMALE RATS TREATED WITH CARBROMAL	26
5	ANALYSES OF THE INCIDENCE OF PRIMARY TUMORS AT SPECIFIC SITES IN MALE MICE TREATED WITH CARBROMAL	33
6	ANALYSES OF THE INCIDENCE OF PRIMARY TUMORS AT SPECIFIC SITES IN FEMALE MICE TREATED WITH CARBROMAL	35
A 1	SUMMARY OF THE INCIDENCE OF NEOPLASMS IN MALE RATS TREATED WITH CARBROMAL	A-3

LIST OF TABLES (Concluded)

Table	Number		Page
	A2	SUMMARY OF THE INCIDENCE OF NEOPLASMS IN FEMALE RATS TREATED WITH CARBROMAL	A-7
	B1	SUMMARY OF THE INCIDENCE OF NEOPLASMS IN MALE MICE TREATED WITH CARBROMAL	B-3
	B2	SUMMARY OF THE INCIDENCE OF NEOPLASMS IN FEMALE MICE TREATED WITH CARBROMAL	B-6
	C1	SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE RATS TREATED WITH CARBROMAL	C-3
	C2	SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN FEMALE RATS TREATED WITH CAR- BROMAL	C-8
	D1	SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE MICE TREATED WITH CARBROMAL	D-3
	D2	SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN FEMALE MICE TREATED WITH CAR- BROMAL	D-8

• •

I. INTRODUCTION

Carbromal (Figure 1) (NCI No. CO3805), a mild central nervous system depressant, was selected for bioassay by the National Cancer Institute because of the similarity of the biological activity of this compound to that of urethan, which is known to induce leukemia in mice (Vesselinovitch, 1968) and is an initiator of skin carcinogenesis in mice (Roe and Salaman, 1955), and the widespread exposure to this compound among the general population via deliberate ingestion for medicinal purposes.

The Chemical Abstracts Service (CAS) Ninth Collective Index (1977) name for this compound is N-(aminocarbonyl)-2-bromo-2-ethylbutanamide.* It is also known as (2-bromo-2-ethylbutyryl)urea, bromodiethylacetylcarbamide, bromodiethylacetylurea and (α -bromo- α ethylbutyryl)carbamide.

Carbromal is a mild sedative and hypnotic drug, similar in its biological action to both urethan (Roe and Salaman, 1955) and the barbiturates (Gosselin et al., 1976). The usual prescribed dosage is 0.3 to 0.6 grams (Gosselin et al., 1976). Carbromal is at least partially decomposed to release the bromide ion in the body, but the sedative action of the compound is presumably due to the intact molecule (Gosselin et al., 1976).

Specific production data for carbromal are not available; however, one U.S. company currently manufactures carbromal in commercial *The CAS registry number is 77-65-6.

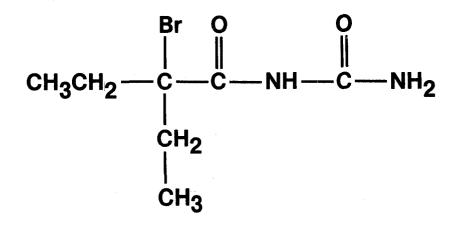


FIGURE 1 CHEMICAL STRUCTURE OF CARBROMAL

quantities (in excess of 1000 pounds or \$1000 in value annually) (Stanford Research Institute, 1977).

Acute carbromal poisoning leads to progressive depression of the central nervous system, manifested as drowsiness, stupor, coma, and death due to respiratory failure (Gosselin et al., 1976). Recovery is probable after ingestion of as much as 3 grams (Gosselin et al., 1976).

II. MATERIALS AND METHODS

A. Chemicals

Carbromal was purchased from Pfaltz & Bauer, Inc., Stamford, Connecticut. Chemical analysis was performed by Midwest Research Institute, Kansas City, Missouri. The experimentally determined melting point of 118° to 119°C compared favorably to that found in the literature (117° to 118°C) (Rosenmund and Herrmann, 1912). The results of infrared (IR) and nuclear magnetic resonance (NMR) analyses were consistent with those found in the literature (<u>Sadtler</u> <u>Standard Spectra</u>). Thin-layer chromatography (TLC) was performed utilizing two solvent systems (i.e., benzene:acetone and ethyl acetate). Each plate was visualized with 254 and 367 nm light, dichromate, and heat. In each case one major spot and one less motile impurity were observed. Elemental analysis was consistent with that expected based on the molecular formula of the compound, $C_7H_{13}BrN_2O_2$. One homogeneous peak was observed using high pressure liquid chromatography (HPLC).

A second batch of the compound was received from the same company approximately one year later. The experimentally determined melting point of this batch was 116.5° to 119°C. The results of IR and NMR analyses were consistent with those found in the literature. TLC, performed utilizing the same solvent systems and method of visualization used previously, revealed one major spot on each plate.

The results of elemental analysis and HPLC were consistent with those reported for the first batch.

Throughout this report, the term carbromal is used to represent this material.

B. Dietary Preparation

The basal laboratory diet for both dosed and control animals consisted of Wayne Lab-Blox® meal (Allied Mills, Inc., Chicago, Illinois). Carbromal was administered to the dosed animals as a component of the diet.

The chemical was removed from its container and a proper amount was blended with an aliquot of the feed using a mortar and pestle. Once visual homogeneity was attained, the mixture was placed in a 6 kg capacity Patterson-Kelley standard model twin-shell stainless steel V-blender along with the remainder of the feed to be prepared. After 20 minutes of blending, the mixtures were placed in double plastic bags and stored in the dark at 4°C. The mixture was prepared once weekly.

Dosed feed preparations containing 1250 and 2500 ppm of carbromal were analyzed spectrophotometrically. The mean result immediately after preparation was 100 percent of theoretical (ranging from 96 to 104 percent). After 10 days at ambient room temperature, the mean result was 94 percent of theoretical.

C. Animals

The two animal species, Fischer 344 rats and B6C3F1 mice, used in the carcinogenicity bioassay were obtained through contracts of the Division of Cancer Treatment, National Cancer Institute. All rats were supplied by A. R. Schmidt, Madison, Wisconsin. All mice were supplied by Charles River Breeding Laboratories, Inc., Wilmington, Massachusetts.

Rats and mice were approximately 4 weeks old when received. Upon receipt, animals were examined and any obviously ill or runted animals were killed. The remaining animals were quarantined for 2 weeks prior to initiation of test. Animals which did not manifest clinical signs of disease were placed on test at this time. Animals were assigned to groups and distributed among cages so that the average body weight per cage was approximately equal for a given species and sex.

D. Animal Maintenance

All animals were housed by species in rooms with a temperature range of 22° to 26°C and a range in relative humidity of 45 to 55 percent. Incoming air was filtered through HEPA filters (Flanders Filters, McLean, Virginia) at a rate of 12 to 15 complete changes of room air per hour. Fluorescent lighting was provided 8 hours per day (9:00 a.m. to 5:00 p.m.).

All rats were housed four per cage by sex and all mice were housed five per cage by sex. Throughout the study dosed and control

animals of both species were housed in polycarbonate cages (Lab Products, Inc., Garfield, New Jersey) suspended from aluminum racks. Racks were fitted with a continuous piece of stainless steel mesh over which a sheet of filter paper was firmly secured. Filter paper was changed at 2-week intervals, when the racks were sanitized. Clean cages and bedding were provided twice weekly. Ab-sorb-dri® hardwood chip bedding (Wilner Wood Products Company, Norway, Maine) was used in polycarbonate cages for the entire bioassay.

Acidulated water (pH 2.5) was supplied to animals in water bottles. Water bottles were changed and washed twice weekly, and sipper tubes were washed at weekly intervals. During the period of chemical administration, dosed and control animals received treated or untreated Wayne Lab-Blox® meal as appropriate. The feed was supplied in hanging stainless steel hoppers which were refilled three times per week and sanitized weekly. Food and water were available <u>ad</u> libitum for both species.

All dosed and control rats were housed in a room with other rats receiving diets containing* triphenyltin hydroxide (76-87-9) and diaminozide (1596-84-5); and other rats intubated with β -nitrostyrene (102-96-5).

All dosed and control mice were housed in a room with mice receiving diets containing EDTA trisodium salt (150-38-9); 3,3'-dimethoxybenzidine-4,4'-diisocyanate (91-93-0); triphenyltin hydroxide

^{*}CAS registry numbers are given in parentheses.

(76-87-9); N,N'-diethylthiourea (105-55-5); diaminozide (1596-84-5); p-quinone dioxime (105-11-3); 4-amino-2-nitrophenol (119-34-6); other mice intubated with lithocholic acid (434-13-9); and with other mice receiving I.P. injections of methiodal sodium (126-31-8).

E. Selection of Initial Concentrations

To establish the concentrations of carbromal for administration to dosed animals in the chronic studies, subchronic toxicity tests were conducted with both rats and mice. Animals of each species were distributed among nine groups, each consisting of five males and five females. Carbromal was incorporated into the basal laboratory diet and supplied <u>ad libitum</u> to seven of the nine groups of each species in concentrations of 1470, 2160, 3150, 4600, 6800, 10,000 and 14,700 ppm. The two remaining groups of each species served as control groups, receiving only the basal laboratory diet.

The dosed dietary preparations were administered for a period of 7 weeks, followed by a 1-week observation period during which all animals were fed the basal laboratory diet. Individual body weights and food consumption data were recorded twice weekly throughout the study. Upon termination of the study all survivors were sacrificed and necropsied.

The following table indicates the mean body weight gain, relative to controls, survival and incidence of abnormal clinical signs observed in each of the dosed rat groups at the end of the subchronic test.

Mean Body <u>Weight Gain (%)</u> ^a ppm <u>Males Females</u>			<u>Survival</u> b Males Females		Observation of <u>Abnormal Clinical Signs</u> Males Females		
PP	<u></u>		<u></u>				
14,700	-47	-18	5/5	5/5	5/5°,d	5/5°,d	
10,000	-46	-14	5/5	5/5	5/5c,d	5/5c,d	
6,800	-36	- 5	5/5	5/5	5/5 ^d	5/5d	
4,600	-40	+ 2	5/5	5/5	5/5 ^d	5/5 ^d	
3,150	+ 1	0	5/5	5/5	5/5 ^d	5/5 ^d	
2,160	-16	0	5/5	5/5	0/5	0/5	
1,470	- 4	+ 9	5/5	5/5	0/5	0/5	
0			5/5	5/5	0/5	0/5	

RAT SUBCHRONIC STUDY RESULTS

The high concentration selected for administration to dosed rats in the chronic bioassay was 2500 ppm.

The following table indicates the mean body weight gain, relative to controls, and survival observed in each of the dosed mouse groups at the end of the subchronic test.

	<u>Mean Body Weight Gain (%)^a</u>	Survival ^b		
ppm	Males Females	Males	Females	
14,700	-26 -14	5/5	2/5	
10,000	-14 -11	5/5	2/5	
6,800	- 4 - 8	5/5	5/5	
4,600	0 - 4	5/5	4/5	
3,150	- 7 + 7	5/5	5/5	
2,160	+11 - 2	5/5	5/5	
1,470	+ 2 + 2	5/5	5/5	
0		5/5	5/5	

MOUSE SUBCHRONIC STUDY RESULTS

a+ is indicative of mean body weight gain greater than that of controls

- is indicative of mean body weight gain less than that of controls. ^bNumber of animals observed/number of animals originally in group. ^cThese rats exhibited rough coats and lack of coordination. ^dThese rats had mottled livers. No abnormal clinical signs were recorded. The high concentration selected for administration to dosed mice in the chronic bioassay was 2500 ppm.

F. Experimental Design

The experimental design parameters for the chronic study (species, sex, group size, concentrations administered, and duration of treated and untreated observation periods) are summarized in Tables 1 and 2.

All rats were approximately 6 weeks old at the time the test was initiated and were placed on test simultaneously. The dietary concentrations of carbromal administered to rats were 2500 and 1250 ppm. Throughout this report those rats receiving the former concentration are referred to as the high dose groups and those receiving the latter concentration are referred to as the low dose groups. Dosed rats were supplied with feed containing carbromal for 103 weeks followed by a 1-week observation period.

All mice were approximately 6 weeks old at the time the test was initiated and were placed on test simultaneously. The dietary concentrations of carbromal administered were 2500 and 1250 ppm. Throughout this report those mice receiving the former concentration are referred to as the high dose groups and those receiving the latter concentration are referred to as the low dose groups. Dosed mice were supplied with feed containing carbromal for 78 weeks followed by a 26-week observation period.

TABLE 1

DESIGN SUMMARY FOR FISCHER 344 RATS CARBROMAL FEEDING EXPERIMENT

	INITIAL GROUP SIZE	CARBROMAL CONCENTRATION ^a	OBSERVAT TREATED (WEEKS)	ION PERIOD UNTREATED (WEEKS)
MALE				
CONTROL	20	0	0	104
LOW DOSE	50	1250 0	103	1
HIGH DOSE	50	2500 0	103	1
FEMALE				
CONTROL	20	0	0	104
LOW DOSE	50	1250 0	103	1
HIGH DOSE	50	2500 0	103	1

^aConcentrations given in parts per million.

TABLE 2

DESIGN SUMMARY FOR B6C3F1 MICE CARBROMAL FEEDING EXPERIMENT

	INITIAL GROUP SIZE	CARBROMAL CONCENTRATION ^a	OBSERVAT TREATED (WEEKS)	ION PERIOD UNTREATED (WEEKS)
MALE				
CONTROL	20	0	0	104
LOW DOSE	49	1250 0	78	26
HIGH DOSE	50	2500 0	78	26
FEMALE				
CONTROL	20	0	0	104
LOW DOSE	50	1250 0	78.	26
HIGH DOSE	49	2500 0	78	26

^aConcentrations given in parts per million.

G. Clinical and Histopathologic Examinations

Animals were weighed immediately prior to initiation of the experiment. Body weights of rats were recorded once a week for the first 3 weeks and at monthly intervals thereafter. Body weights of mice were recorded once a week for the first 6 weeks, once every 2 weeks for the next 6 weeks, and at monthly intervals thereafter. All animals were inspected twice daily. Food consumption data were collected at monthly intervals from 20 percent of the animals in each group.

All moribund animals or animals that developed large, palpable masses that jeopardized their health were sacrificed. A necropsy was performed on each animal regardless of whether it died, was sacrificed when moribund, or was sacrificed at the end of the bioassay. The animals were euthanized by carbon dioxide asphyxiation, and were immediately necropsied. The histopathologic examination consisted of gross and microscopic examination of all major tissues, organs, and gross lesions taken from sacrificed animals and, whenever possible, from animals found dead.

Tissues were preserved in a 10 percent neutral buffered formalin solution, embedded in paraffin, sectioned, and stained with hematoxylin and eosin prior to microscopic examination.

Slides were prepared from the following tissues: skin, subcutaneous tissue, lungs and bronchi, trachea, bone marrow, spleen, lymph nodes, thymus, heart, salivary gland, liver, gallbladder (mice),

pancreas, esophagus, stomach, small intestine, large intestine, kidney, urinary bladder, pituitary, adrenal, thyroid, parathyroid, testis, prostate, brain, uterus, mammary gland, and ovary.

A few tissues were not examined for some animals, particularly for those that died early. Also, some animals were missing, cannibalized, or judged to be in such an advanced state of autolysis as to preclude histopathologic interpretation. Thus, the number of animals for which particular organs, tissues, or lesions were examined microscopically varies and does not necessarily represent the number of animals that were recorded in each group at the time that the test was initiated.

H. Data Recording and Statistical Analyses

Pertinent data on this experiment have been recorded in an automatic data processing system, the Carcinogenesis Bioassay Data System (Linhart et al., 1974). The data elements include descriptive information on the chemicals, animals, experimental design, clinical observations, survival, body weight, and individual pathologic results, as recommended by the International Union Against Cancer (Berenblum, 1969). Data tables were generated for verification of data transcription and for statistical review.

These data were analyzed using the statistical techniques described in this section. Those analyses of the experimental results that bear on the possibility of carcinogenicity are discussed in the statistical narrative sections.

Probabilities of survival were estimated by the product-limit procedure of Kaplan and Meier (1958) and are presented in this report in the form of graphs. Animals were statistically censored as of the time that they died of other than natural causes or were found to be missing; animals dying from natural causes were not statistically censored. Statistical analyses for a possible dose-related effect on survival used the method of Cox (1972) when testing two groups for equality and used Tarone's (1975) extensions of Cox's methods when testing a dose-related trend. One-tailed P-values have been reported for all tests except the departure from linearity test, which is only reported when its two-tailed P-value is less than 0.05.

The incidence of neoplastic or nonneoplastic lesions has been given as the ratio of the number of animals bearing such lesions at a specific anatomic site (numerator) to the number of animals in which that site was examined (denominator). In most instances, the denominators included only those animals for which that site was examined histologically. However, when macroscopic examination was required to detect lesions prior to histologic sampling (e.g., skin or mammary tumors), or when lesions could have appeared at multiple sites (e.g., lymphomas), the denominators consist of the numbers of animals necropsied.

The purpose of the statistical analyses of tumor incidence is to determine whether animals receiving the test chemical developed

a significantly higher proportion of tumors than did the control animals. As a part of these analyses, the one-tailed Fisher exact test (Cox, 1970, pp. 48-52) was used to compare the tumor incidence of a control group to that of a group of treated animals at each dose level. When results for a number of treated groups, k, are compared simultaneously with those for a control group, a correction to ensure an overall significance level of 0.05 may be made. The Bonferroni inequality (Miller, 1966, pp. 6-10) requires that the P-value for any comparison be less than or equal to 0.05/k. In cases where this correction was used, it is discussed in the narrative section. It is not, however, presented in the tables, where the Fisher exact P-values are shown.

The Cochran-Armitage test for linear trend in proportions, with continuity correction (Armitage, 1971, pp. 362-365), was also used when appropriate. Under the assumption of a linear trend, this test determined if the slope of the dose-response curve is different from zero at the one-tailed 0.05 level of significance. Unless otherwise noted, the direction of the significant trend was a positive dose relationship. This method also provides a two-tailed test of departure from linear trend.

A time-adjusted analysis was applied when numerous early deaths resulted from causes that were not associated with the formation of tumors. In this analysis, deaths that occurred before the first tumor was observed were excluded by basing the statistical tests on

animals that survived at least 52 weeks, unless a tumor was found at the anatomic site of interest before week 52. When such an early tumor was found, comparisons were based exclusively on animals that survived at least as long as the animal in which the first tumor was found. Once this reduced set of data was obtained, the standard procedures for analyses of the incidence of tumors (Fisher exact tests, Cochran-Armitage tests, etc.) were followed.

When appropriate, life-table methods were used to analyze the incidence of tumors. Curves of the proportions surviving without an observed tumor were computed as in Saffiotti et al. (1972). The week during which animals died naturally or were sacrificed was entered as the time point of tumor observation. Cox's methods of comparing these curves were used for two groups; Tarone's extension to testing for linear trend was used for three groups. The statistical tests for the incidence of tumors which used life-table methods were one-tailed and, unless otherwise noted, in the direction of a positive dose relationship. Significant departures from linearity (P < 0.05, two-tailed test) were also noted.

The approximate 95 percent confidence interval for the relative risk of each dosed group compared to its control was calculated from the exact interval on the odds ratio (Gart, 1971). The relative risk is defined as p_t/p_c where p_t is the true binomial probability of the incidence of a specific type of tumor in a treated group of animals and p_c is the true probability of the spontaneous incidence

of the same type of tumor in a control group. The hypothesis of equality between the true proportion of a specific tumor in a treated group and the proportion in a control group corresponds to a relative risk of unity. Values in excess of unity represent the condition of a larger proportion in the treated group than in the control.

The lower and upper limits of the confidence interval of the relative risk have been included in the tables of statistical analy-The interpretation of the limits is that in approximately 95 ses. percent of a large number of identical experiments, the true ratio of the risk in a treated group of animals to that in a control group would be within the interval calculated from the experiment. When the lower limit of the confidence interval is greater than one, it can be inferred that a statistically significant result (a P < 0.025one-tailed test when the control incidence is not zero, P < 0.050when the control incidence is zero) has occurred. When the lower limit is less than unity but the upper limit is greater than unity, the lower limit indicates the absence of a significant result while the upper limit indicates that there is a theoretical possibility of the induction of tumors by the test chemical which could not be detected under the conditions of this test.

III. CHRONIC TESTING RESULTS: RATS

A. Body Weights and Clinical Observations

Distinct and consistent dose-related mean body weight depression was apparent in both male and female rats (Figure 2).

No other abnormal clinical signs were recorded.

B. Survival

The estimated probabilities of survival for male and female rats in the control and carbromal-dosed groups are shown in Figure 3. The Tarone test did not indicate a significant positive association between dosage and mortality for rats of either sex. The individual Cox tests also indicated no significant positive associations for male or female rats. The Tarone test for male rats, however, did indicate a significant negative association, as did the Cox test comparing the high dose group to the control group.

There were adequate numbers of male rats at risk from latedeveloping tumors as 90 percent (45/50) of the high dose, 86 percent (43/50) of the low dose, and 65 percent (13/20) of the controls survived on test for at least 104 weeks.

There were also adequate numbers of female rats at risk from late-developing tumors, as 90 percent (45/50) of the high dose, 82 percent (41/50) of the low dose, and 85 percent (17/20) of the controls survived on test until the termination of the study.

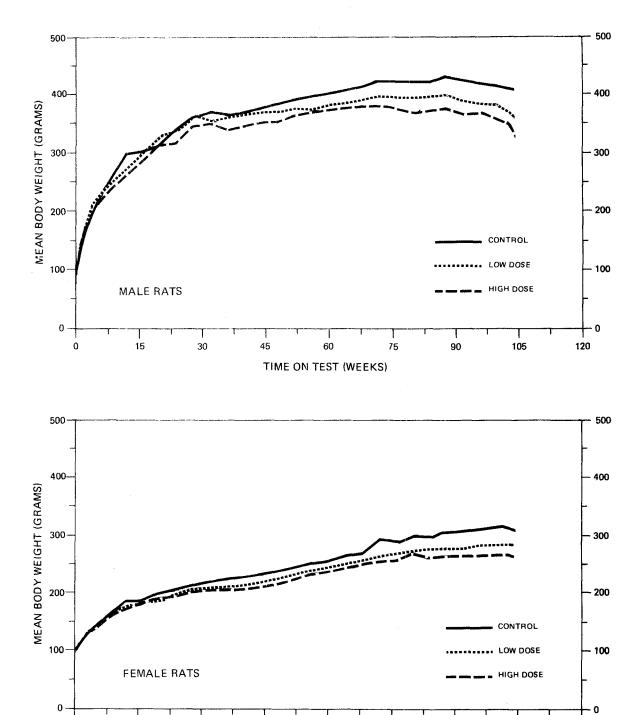


FIGURE 2 GROWTH CURVES FOR CARBROMAL CHRONIC RATS

TIME ON TEST (WEEKS)

Τ

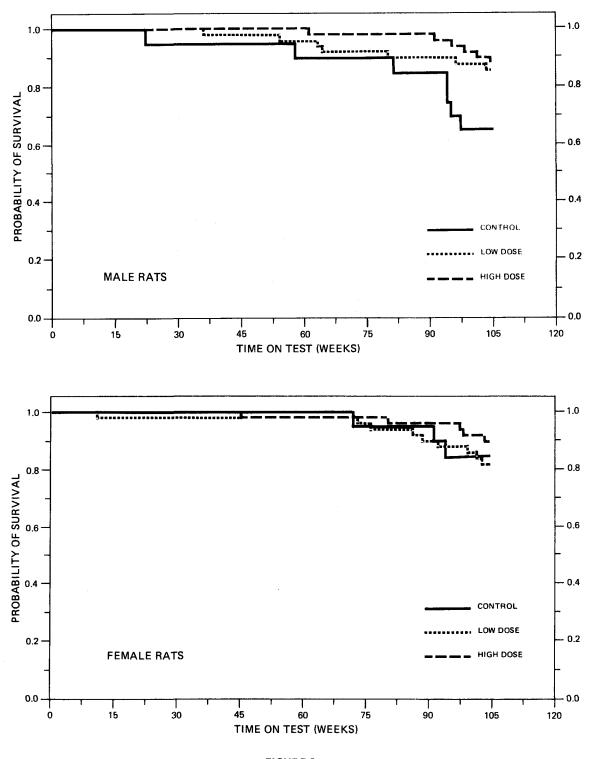


FIGURE 3 SURVIVAL COMPARISONS OF CARBROMAL CHRONIC STUDY RATS

C. Pathology

Histopathologic findings on neoplasms in rats are summarized in Appendix A (Tables Al and A2); findings on nonneoplastic lesions are summarized in Appendix C (Tables Cl and C2).

There was an increased incidence of pheochromocytoma of the adrenal in the male high dose group (1/19 [5 percent] controls, 2/49 [4 percent] low dose, 8/46 [17 percent] high dose).

With the exception of the lesion referred to above, the pathologic changes observed occurred in nearly equal numbers among control and dosed animals, and for each sex appeared to be within the range commonly observed in aging Fischer 344 rats. These lesions were, therefore, considered to be spontaneous.

Based upon the results of this pathologic examination, carbromal was not considered to be carcinogenic to Fischer 344 rats under the conditions of this bioassay.

D. Statistical Analyses of Results

The results of the statistical analyses of tumor incidence in rats are summarized in Tables 3 and 4. The analysis is included for every type of malignant tumor in either sex where at least two such tumors were observed in at least one of the control or carbromaldosed groups and where such tumors were observed in at least 5 percent of the group.

The Cochran-Armitage test indicated a significant (P = 0.043) positive association between dose and the incidence of pheochromocytomas of the adrenal in male rats. However, the Fisher exact tests

SPECIFIC SITES IN	ECIFIC SITES IN MALE RATS TREATED WITH CARBROMAL ^a	WITH CARBROMAL ^a	
TOPOGRAPHY:MORPHOLOGY	CONTROL	LOW DOSE	HIGH DOSE
Hematopoietic System: Leukemia or Malignant Lymphoma ^b	3/20(0.15)	5/50(0.10)	3/50(0.06)
P Values ^c	N.S.	N.S.	N.S.
Relative Risk (Control) ^d Lower Limit		0.667 0.147	0.400
upper LIMIC Weeks to First Observed Tumor	81	4.UI4 64	2.802
Pituitary: Chromophobe Adenoma ^b	0/17(0.00)	2/41(0.05)	3/40(0.07)
P Values ^c	N.S.	N.S.	N.S.
Relative Risk (Control) ^d		Infinite	Infinite
Lower Limit Upper Limit		0.129 Infinite	0.269 Infinite
Weeks to First Observed Tumor	20 JU	104	104
Adrenal: Pheochromocytoma ^b	1/19(0.05)	2/49(0.04)	8/46(0.17)
P Values ^C	P = 0.043	N.S.	N.S.
Relative Risk (Control) ^d	-	0.776	3.304
Upper Limit		0.044 44.838	u.jui 142.909
Weeks to First Observed Tumor	95	103	61

TABLE 3

ANALYSES OF THE INCIDENCE OF PRIMARY TUMORS AT

TAB	TABLE 3 (CONTINUED)		
		TOW	HIGH
TOPOGRAPHY : MORPHOLOGY	CONTROL	DOSE	DOSE
Pancreatic Islets: Islet-Cell Carcinoma			
or Islet-Cell Adenoma	0/18(0.00)	0/45(0.00)	3/44(0.07)
P Values ^c	N.S.	N.S.	N.S.
Relative Risk (Control) ^d			Infinite
Lower Limit	1	-	0.258
Upper Limit			Infinite
Weeks to First Observed Tumor		-	104
Testis: Interstitial-Cell Tumor ^b	18/20(0.90)	45/49(0.92)	47/49(0.96)
P Values ^c	N.S.	N.S.	N.S.
Relative Risk (Control) ^d		1.020	1.066
Lower Limit	1	0.895	0.937
Upper Limit		1.256	1.220
Weeks to First Observed Tumor	81	96	91
Body Cavities: Mesothelioma NOS ^b	1/20(0.05)	3/50(0.06)	0/50(0.00)
P Values ^C	N.S.	N.S.	N.S.
Relative Risk (Control) ^d		1.200	0.000
Lower Limit	L 	0.106	0.000
Upper Limit		61.724	7.475
Weeks to First Observed Tumor	104	96	

TARTE 3 (CONTINUED)

TABLE 3 (CONCLUDED)

^aTreated groups received doses of 1250 or 2500 ppm in feed.

^bNumber of tumor-bearing animals/number of animals examined at site (proportion).

level for the Fisher exact test for the comparison of a treated group with the control group is given beneath the incidence of tumors in the treated group when P < 0.05; otherwise, not signifithe control group when P < 0.05; otherwise, not significant (N.S.) is indicated. The probability ^cThe probability level for the Cochran-Armitage test is given beneath the incidence of tumors in cant (N.S.) is indicated. For both Cochran-Armitage and Fisher exact tests a negative designa-tion (N) indicates a lower incidence in the treated group(s) than in the control group.

 $^{
m d}{
m The}$ 95% confidence interval on the relative risk of the treated group to the control group.

		TOW	HIGH	
TUPOGRAPHY: MORPHOLOGY	CONTROL	DOSE	DOSE	
Hematopoietic System: Leukemia or Malignant Lymphoma ^b	3/20(0.15)	4/50(0.08)	4/50(0.08)	
P Values ^c	N.S.	N.S.	N.S.	
Relative Risk (Control) ^d Lover Limit		0.533	0.533	
		3.410	3.410	
Weeks to First Observed Tumor	16	76	80	
Pituitary: Chromophobe Adenoma or Acidophil Adenoma ^b	4/19(0.21)	11/46(0.24)	16/49(0.33)	
P Values ^C	N.S.	N.S.	N.S.	
Relative Risk (Control) ^d		1.136	1.551	
Lower Limit	-	0.400	0.599	
Upper Limit		4.428	5.745	
Weeks to First Observed Tumor	104	88	97	
Thyroid: C-Cell Adenoma ^b	1/17(0.06)	1/36(0.03)	2/35(0.06)	
P Values ^C	N.S.	N.S.	N.S.	
Relative Risk (Control) ^d	8	0.472	0.971	
Lower Limit		0.006	0.056	
Upper Limit		36.073	55.675	
Weeks to First Observed Tumor	104	104	104	

TABLE 4 OF THE INCIDENCE OF PRIMA

		TOW	HIGH
TOPOGRAPHY: MORPHOLOGY	CONTROL	DOSE	DOSE
Mammary Gland: Fibroadenoma ^b	3/20(0.15)	3/50(0.06)	2/50(0.04)
P Values ^c	N.S.	N.S.	N.S.
Relative Risk (Control) ^d	1	0.400	0.267
Lower Limit		0.060	0.024
Upper Limit		2.802	2.190
Weeks to First Observed Tumor	104	88	104
Uterus: Endometrial Stromal Polyp ^b	2/20(0.10)	2/47(0.04)	4/47(0.09)
P Values ^c	N.S.	N.S.	N.S.
Relative Risk (Control) ^d	1	0.426	0.851
Lower Limit	1	0.034	0.136
Upper Limit		5.603	8.956
Weeks to First Observed Tumor	104	104	104
^a Treated groups received doses of 1250 or 2500 ppm in feed.	r 2500 ppm in feed.		

TABLE 4 (CONCLUDED)

^bNumber of tumor-bearing animals/number of animals examined at site (proportion).

the control group when P < 0.05; otherwise, not significant (N.S.) is indicated. The probability level for the Fisher exact test for the comparison of a treated group with the control group is given beneath the incidence of tumors in the treated group when P < 0.05; otherwise, not signifi-^cThe probability level for the Cochran-Armitage test is given beneath the incidence of tumors in cant (N.S.) is indicated. For both Cochran-Armitage and Fisher exact tests a negative designation (N) indicates a lower incidence in the treated group(s) than in the control group.

 $^{
m d}{
m The}$ 95% confidence interval on the relative risk of the treated group to the control group.

comparing high dose to control and low dose to control were not significant.

Neither the Cochran-Armitage nor the Fisher exact tests were significant at any site in female rats.

To provide additional insight into the possible carcinogenicity of this compound, 95 percent confidence intervals on the relative risk have been estimated and entered in the tables based upon the observed tumor incidence rates. In many of the intervals shown in Tables 3 and 4, the value one is included; this indicates the absence of statistically significant results. It should also be noted that many of the confidence intervals have an upper limit greater than one, indicating the theoretical possibility of tumor induction in rats by carbromal that could not be established under the conditions of this test.

IV. CHRONIC TESTING RESULTS: MICE

A. Body Weights and Clinical Observations

Dosed male mice evidenced mean body weight depression relative to controls. Distinct and consistent dose-related mean body weight depression was observed in female mice throughout the bioassay (Figure 4).

No other abnormal clinical signs were recorded.

B. Survival

The estimated probabilities of survival for male and female mice in the control and carbromal-dosed groups are shown in Figure 5. Neither the Tarone test for association between dosage and mortality nor the individual Cox tests were significant for either male or female mice.

There were adequate numbers of male mice at risk from latedeveloping tumors, as 84 percent (42/50) of the high dose, 61 percent (30/49) of the low dose and 90 percent (18/20) of the controls survived on test for at least 104 weeks. Fourteen low dose male mice were reported as missing: 5 in week 16, 5 in week 19, and 4 in week 33.

There were also an adequate number of female mice at risk from late-developing tumors, as 84 percent (41/49) of the high dose, 72 percent (36/50) of the low dose and 75 percent (15/20) of the controls survived on test until the termination of the study.

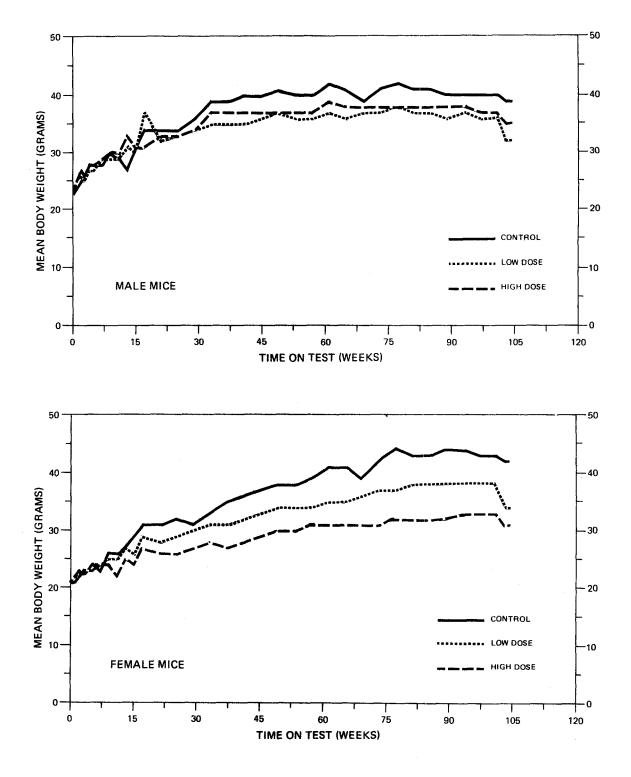


FIGURE 4 GROWTH CURVES FOR CARBROMAL CHRONIC STUDY MICE

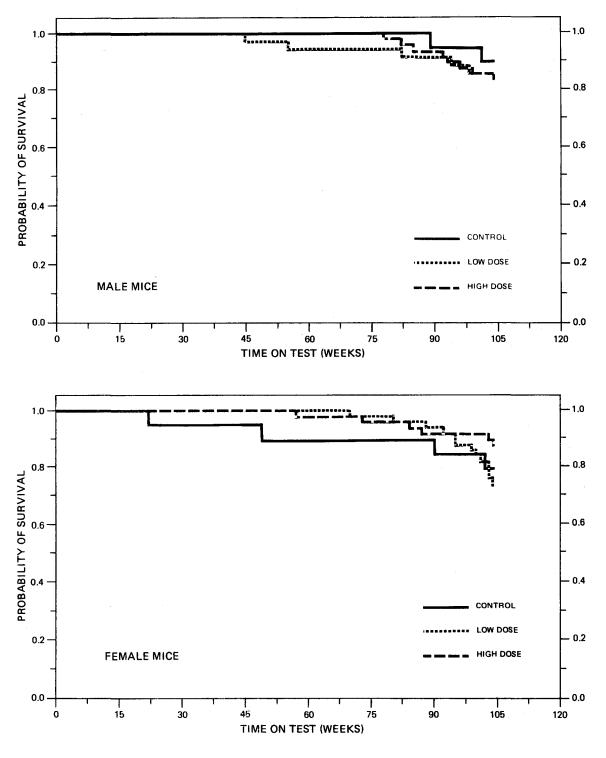


FIGURE 5 SURVIVAL COMPARISONS OF CARBROMAL CHRONIC STUDY MICE

C. Pathology

Histopathologic findings on neoplasms in mice are summarized in Appendix B (Tables Bl and B2); findings on nonneoplastic lesions are summarized in Appendix D (Tables Dl and D2).

A variety of tumors was observed both in the control group and dosed groups. These lesions, however, are not uncommon in this strain of mice independent of any treatment.

In addition to the neoplastic lesions, a large number of degenerative, proliferative, and inflammatory changes were encountered in animals of the dosed and control groups. No differences in the incidence of these lesions were found between dosed mice and control mice.

The results of this pathologic study indicated that carbromal was not carcinogenic in B6C3F1 mice under the conditions of this bioassay.

D. Statistical Analyses of Results

The results of the statistical analyses of tumor incidence in mice are summarized in Tables 5 and 6. The analysis is included for every type of malignant tumor in either sex where at least two such tumors were observed in at least one of the control or carbromaldosed groups and where such tumors were observed in at least 5 percent of the group.

The Cochran-Armitage test was not significant at any site in either male or female mice.

ANALYSES OF THE SPECIFIC SITES IN M	THE INCIDENCE OF PRIMARY TUMORS AT IN MALE MICE TREATED WITH CARBROMAL ^a	MARY TUMORS AT WITH CARBROMAL ^a	
ТОРОСКАРНУ : МОКРНОГОСҮ	CONTROL	LOW DOSE	HIGH DOSE
Lung: Alveolar/Bronchiolar Carcinoma or Alveolar/Bronchiolar Adenoma ^b	7/20(0.35)	4/34(0.12)	8/46(0.17)
P Values ^c	N.S.	P = 0.046(N)	N.S.
Relative Risk (Control) ^d	-	0.336	0.497
Lower Limit Upper Limit		0.085 1.162	0.191
Weeks to First Observed Tumor	101	104	82
Hematopoietic System: Leukemia or Malignant Lymphoma ^b	3/20(0.15)	3/35(0.09)	5/49(0.10)
P Values ^c	N.S.	N.S.	N.S.
Relative Risk (Control) ^d		0.571	0.680
Lower Limit	-	0.086	0.150
Upper Limit		3.941	4.092
Weeks to First Observed Tumor	89	94	93
Liver: Hepatocellular Carcinoma ^b	3/20(0.15)	6/35(0.17)	6/48(0.13)
P Values ^c	N.S.	N.S.	N.S.
Relative Risk (Control) ^d	A A A A	1.143	0.833
Lower Limit		0.281	0.204
Upper Limit		6.470	4.799
Weeks to First Observed Tumor	101	82	104

TABLE 5

		I UII	nJTU	
TOPOGRAPHY: MORPHOLOGY	CONTROL	DOSE	DOSE	
Liver: Hepatocellular Carcinoma or Hepatocellular Adenoma ^b	4/20(0.20)	8/35(0.23)	13/48(0.27)	
P Values ^c	N.S.	N.S.	N.S.	
Relative Risk (Control) ^d		1.143	1.354	
Lower Limit		0.360	0.495	
Upper Limit		4.644	5.170	
Weeks to First Observed Tumor	101	82	85	
^a Treated groups received doses of 1250 or 2500 ppm in feed.	r 2500 ppm in fee	. ba		

TABLE 5 (CONCLUDED)

^bNumber of tumor-bearing animals/number of animals examined at site (proportion).

34

level for the Fisher exact test for the comparison of a treated group with the control group is given beneath the incidence of tumors in the treated group when P < 0.05; otherwise, not significant (N.S.) is indicated. For both Cochran-Armitage and Fisher exact tests a negative designathe control group when P < 0.05; otherwise, not significant (N.S.) is indicated. The probability ^cThe probability level for the Cochran-Armitage test is given beneath the incidence of tumors in tion (N) indicates a lower incidence in the treated group(s) than in the control group.

^dThe 95% confidence interval on the relative risk of the treated group to the control group.

ANALYSES OF THE INCIDENCE OF PRIMARY TUMORS AT SPECIFIC SITES IN FEMALE MICE TREATED WITH CARBROMAL ^a	ANALYSES OF THE INCIDENCE OF PRIMARY TUMORS AT HFIC SITES IN FEMALE MICE TREATED WITH CARBROM	CMARY TUMORS AT ED WITH CARBROMAL ^a	
TOPOGRAPHY: MORPHOLOGY	CONTROL	LOW DOSE	HIGH DOSE
Lung: Alveolar/Bronchiolar Carcinoma or Alveolar/Bronchiolar Adenoma ^b	0/18(0.00)	8/49(0.16)	9/47(0.19)
P Values ^c	N.S.	N.S.	P = 0.043
Relative Risk (Control) ^d		Infinite	Infinite
Lower Limit		0.881	1.058
Upper Limít		Infinite	Infinite
Weeks to First Observed Tumor		66	103
Hematopoietic System: Leukemia or Malignant Lymphoma ^b	6/19(0.32)	17/49(0.35)	13/47(0.28)
P Values ^c	N.S.	N.S.	N.S.
Relative Risk (Control) ^d	Sino dila stat	1.099	0.876
Lower Limit	-	0.509	0.381
Upper Limit	1 1 1	2.974	2.469
Weeks to First Observed Tumor	06	80	57
Liver: Hepatocellular Carcinoma or Hepatocellular Adenoma ^b	0/19(0.00)	1/49(0.02)	4/46(0.09)
P Values ^c	N.S.	N.S.	N.S.
Relative Risk (Control) ^d		Infinite	Infinite
Lower Limit		0.021	0.400
Upper Limit	# 	Infinite	Infinite
Weeks to First Observed Tumor		104	104

TABLE 6

		LOW	HIGH	
TOPOGRAPHY: MORPHOLOGY	CONTROL	DOSE	DOSE	
Pituitary: Chromophobe Adenoma ^b	0/10(0.00)	2/31(0.06)	1/26(0.04)	
P Values ^c	N.S.	N.S.	N.S.	
Relative Risk (Control) ^d	1	Infinite	Infinite	
Lower Limit		0.105	0.022	
Upper Limit	-	Infinite	Infinite	
Weeks to First Observed Tumor		104	104	
Uterus: Endometrial Stromal Polyp ^b	0/18(0.00)	3/48(0.06)	0/44(0.00)	
P Values ^c	N.S.	N.S.	N.S.	
Relative Risk (Control) ^d		Infinite		
Lower Limit		0.236		
Upper Limit		Infinite		
Weeks to First Observed Tumor	-	104		
^a Treated oronne received doses of 1250 or 2500 nnm in feed	or 2500 nnm in fee			

Treated groups received doses of 1250 or 2500 ppm in feed.

^bNumber of tumor-bearing animals/number of animals examined at site (proportion).

given beneath the incidence of tumors in the treated group when P < 0.05; otherwise, not signifithe control group when P < 0.05; otherwise, not significant (N.S.) is indicated. The probability level for the Fisher exact test for the comparison of a treated group with the control group is ^cThe probability level for the Cochran-Armitage test is given beneath the incidence of tumors-in cant (N.S.) is indicated. For both Cochran-Armitage and Fisher exact tests a negative designation (N) indicates a lower incidence in the treated group(s) than in the control group.

 $^{
m d}{
m The}$ 95% confidence interval on the relative risk of the treated group to the control group.

TABLE 6 (CONCLUDED)

In female mice the Fisher exact test comparing high dose to control for the combined incidence of alveolar/bronchiolar carcinomas or alveolar/bronchiolar adenomas had a probability level of P =0.043, a marginal result which was not significant under the Bonferroni criterion.

The Fisher exact test comparing low dose to control in male mice indicated a significant negative association between dosage and the combined incidence of alveolar/bronchiolar carcinomas or alveolar/ bronchiolar adenomas.

To provide additional insight into the possible carcinogenicity of this compound, 95 percent confidence intervals on the relative risk have been estimated and entered in the tables based upon the observed tumor incidence rates. In many of the intervals shown in Tables 5 and 6, the value one is included; this indicates the absence of statistically significant results. It should also be noted that many of the confidence intervals have an upper limit greater than one, indicating the theoretical possibility of tumor induction in mice by carbromal that could not be established under the conditions of this test.

V. DISCUSSION

There were no significant positive associations between the concentrations of carbromal administered and mortality in rats or mice of either sex. Adequate numbers of animals in all groups survived sufficiently long to be at risk from late-developing tumors. Slight dose-related mean body weight depression was observed for male rats and for females of both species and the mean body weight among dosed male mice was lower than that for controls, indicating that the concentrations of carbromal administered to the animals in this bioassay may have approximated the maximum tolerated concentrations.

None of the statistical tests for any site in female rats or in mice of either sex indicated a significant positive association between compound administration and tumor incidence. There was a significant positive association between the concentrations administered and the incidences of adrenal pheochromocytomas in male rats; however, the Fisher exact comparisons were not significant.

Although carbromal is a mild sedative and hypnotic drug in humans, there was no indication that the rats or mice dosed with carbromal during the chronic bioassay manifested any comparable effect.

Carbromal was not carcinogenic and showed no ability to initiate carcinogenesis in a croton oil skin painting study in S strain albino male mice (Roe and Salamon, 1955).

Under the conditions of this bioassay, dietary administration of carbromal was not carcinogenic in Fischer 344 rats or B6C3F1 mice.

VI. BIBLIOGRAPHY

- Armitage, P., <u>Statistical Methods in Medical Research</u>, Chapter 14. J. Wiley & Sons, New York, 1971.
- Berenblum, I., editor, <u>Carcinogenicity Testing</u>. International Union Against Cancer, Technical Report Series, Vol. 2. International Union Against Cancer, Geneva, 1969.
- Chemical Abstracts Service, The Chemical Abstracts Service (CAS) Ninth Collective Index, Volumes 76-85, 1972-1976. American Chemical Society, Washington, D.C., 1977.
- Cox, D.R., <u>Analysis of Binary Data</u>, Chapters 4 and 5. Methuen and Co., Ltd., London, 1970.
- Cox, D.R., "Regression Models and Life-Tables." Journal of the Royal Statistical Society, Series "B" 34:187-220, 1972.
- Gart, J.J., "The Comparison of Proportions: A Review of Significance Tests, Confidence Limits, and Adjustments for Stratification." International Statistical Institute Review 39:148-169, 1971.
- Gosselin, R.E., H.C. Hodge, R.P. Smith, and M.N. Gleason, <u>Clinical</u> <u>Toxicology of Commercial Products</u>, 4th edition. The Williams and Wilkins Company, Baltimore, Maryland, 1976.
- Kaplan, E.L., and P. Meier, "Nonparametric Estimation from Incomplete Observations." Journal of the American Statistical Association 53:457-481, 1958.
- Linhart, M.S., J.A. Cooper, R.L. Martin, N.P. Page, and J.A. Peters, "Carcinogenesis Bioassay Data System." <u>Computers and Biomedical</u> Research 7:230-248, 1974.
- Miller, R.G., <u>Simultaneous Statistical Inference</u>. McGraw-Hill Book Co., New York, 1966.
- Roe, F.J.C., and M.H. Salaman, "Further Studies on Incomplete Carcinogenesis: Triethylene Melamine (T.E.M.), 1,2-Benzanthracene and β -Propiolactone, as Initiators of Skin Tumour Formation in the Mouse." British Journal of Cancer 9(4):177-203, 1955.
- Rosenmund, K.W. and F. Herrmann, "Adaline." <u>Berichte Pharmakologie</u> Gesamte 22:96, 1912.

Sadtler Standard Spectra. Sadtler Research Laboratories, Philadelphia, Pennsylvania. NMR No. 7275M; IR No. 18724.

- Saffiotti, U., R. Montesano, A.R. Sellakumar, F. Cefis, and D.G. Kaufman, "Respiratory Tract Carcinogenesis in Hamsters Induced by Different Numbers of Administration of Benzo (a) Pyrene and Ferric Oxide." Cancer Research 32:1073-1079, 1972.
- Stanford Research Institute, <u>1977 Directory of Chemical Producers</u>, U.S.A. Menlo Park, California, 1977.
- Tarone, R.E., "Tests for Tread in Life-Table Analysis." <u>Biometrika</u> 62:679-682, 1975.
- Vesselinovitch, S.D., "The Strain Difference in the Induction of Leukemia by Urethan." Cancer Research 28:1674-1676, 1968.

Review of the Bioassay of Carbromal* for Carcinogenicity by the Data Evaluation/Risk Assessment Subgroup of the Clearinghouse on Environmental Carcinogens

August 31, 1978

The Clearinghouse on Environmental Carcinogens was established in May, 1976, in compliance with DHEW Committee Regulations and the Provisions of the Federal Advisory Committee Act. The purpose of the Clearinghouse is to advise the Director of the National Cancer Institute (NCI) on its bioassay program to identify and to evaluate chemical carcinogens in the environment to which humans may be exposed. The members of the Clearinghouse have been drawn from academia, industry, organized labor, public interest groups, State health officials, and quasi-public health and research organizations. Members have been selected on the basis of their experience in carcinogenesis or related fields and, collectively, provide expertise in chemistry, biochemistry, biostatistics, toxicology, pathology, and epidemiology. Representatives of various Governmental agencies participate as ad hoc members. The Data Evaluation/Risk Assessment Subgroup of the Clearinghouse is charged with the responsibility of providing a peer review of reports prepared on NCI-sponsored bioassays of chemicals studied for carcinogenicity. It is in this context that the below critique is given on the bioassay of Carbromal for carcinogenicity.

The primary reviewer said that Carbromal was not carcinogenic in rats or mice, under the conditions of test. He indicated that the experimental design was straightforward and that there was no unusual highlights to report. An increased incidence of pheochromocytomas in treated male rats was observed but was not considered significant. Based on the results of the study, the primary reviewer opined that Carbromal would not appear to pose a carcinogenic risk to humans.

The secondary reviewer agreed with the conclusion in the report that Carbromal was not carcinogenic, under the conditions of test. He noted that the mice were housed in the same room in which other compounds were under test and that too few matched cortrol animals were employed. He concluded that Carbromal probably does not pose a hazard to man in its use as a pharmaceutical. He recommended acceptance of the report as written.

A motion was approved unanimously that the report on the bioassay of Carbromal be accepted as written.

Members present were:

Arnold L. Brown (Chairman), University of Wisconsin Medical School Joseph Highland, Environmental Defense Fund (Verald K. Rowe, Dow Chemical USA, submitted a written review) Michael Shimkin, University of California at San Diego Louise Strong, University of Texas Health Sciences Center

* Subsequent to this review, changes may have been made in the bioassay report either as a result of the review or other reasons. Thus, certain comments and criticisms reflected in the review may no longer be appropriate.

APPENDIX A

SUMMARY OF THE INCIDENCE OF NEOPLASMS IN RATS TREATED WITH CARBROMAL

and the second second

TABLE A1 SUMMARY OF THE INCIDENCE OF NEOPLAMS IN MALE RATS TREATED WITH CARBROMAL

	CONTROL(UNTR) 11-1355	LOW DOSE 11-1353	HIGH DOSE 11-1351
ANIMALS INITIALLY IN STUDY	20	50 50	50 50
NIMALS NECROPSIED NIMALS EXAMINED HISTOPATHOLOGICALLY**	20 20	50 50	50
NTEGUMENTARY SYSTEM			
*SUBCUT TISSUE FIBROMA	(20)	1 (2%)	(50)
RESPIRATORY SYSTEM			
#LUNG NEOPLASM, NOS, METASTATIC ALVEOLAR/BRONCHIOLAR ADENOMA ALVEOLAR/BRONCHIOLAR CARCINOMA SARCOMA, NOS	(19)	(50)	(50)
		1 (2%)	1 (2%)
	1 (5%)	1 (2%)	
IEMATOPOIETIC SYSTEM			
	(20)	(50)	
MALIG.LYMPHOMA, UNDIFFER-TYPE Myelomonocytic leukemia			1 (2%) 1 (2%)
GRANULOCYTIC LEUKEMIA	3 (15%)	5 (10%)	1 (2%)
IRCULATORY SYSTEM			
NONE			
IGESTIVE SYSTEM			
#LIVER HEPATOCELLULAR ADENOMA	(20) 1 (5%)	(47)	(4 9) 1 (2%)
#PANCREAS ACINAR-CELL ADENOMA	(18)	(45)	(44)

NUMBER OF ANIMALS WITH TISSUE EXAMINED MICROSCOPICALLY * NUMBER OF ANIMALS NECROPSIED **EXCLUDES PARTIALLY AUTOLYZED ANIMALS

TABLE A1 (CONTINUED)

	CONTROL(UNTR) 11-1355		HIGH DOSE 11-1351
RINARY SYSTEM			
<pre>#KIDNEY CARCINOMA, NOS, METASTATIC ADENOCARCINOMA, NOS, METASTATIC TUBULAR-CELL ADENOMA TUBULAR-CELL ADENOCARCINOMA CYSTADENOCARCINOMA, METASTATIC</pre>	(20)	(50) 1 (2%)	(50) 1 (2%) 1 (2%) 1 (2%) 1 (2%) 1 (2%)
NDOCRINE SYSTEM			
<pre>#PITUITARY CHROMOPHOBE ADENOMA</pre>	(17)	(41) 2 (5%)	(40) 3 (8%)
#ADRENAL CARCINOMA,NOS PHEOCHROMOCYTOMA	(19) 1 (5%)	(49) 1 (2%) 2 (4%)	(46) 8 (17%)
#THYROID FOLLICULAR-CELL CARGINOMA C-CELL ADENOMA PAPILLARY CYSTADENOMA, NOS	(13)	(40) 1 (3%)	(43) 1 (2%) 1 (2%) 1 (2%)
#PARATHYRDID Adenoma, Nos	(9) 1 (11%)	(21)	(24)
#PANCREATIC ISLETS ISLET-CELL ADENOMA ISLET-CELL CARCINOMA	(18)	(45)	(44) 2 (5%) 1 (2%)
EPRODUCTIVE SYSTEM			
*PREPUTIAL GLAND ADENOMA, NOS	(20)	(50)	(50) 1 (2%)
#TESTIS INTERSTITIAL~CELL TUMOR	(20) 18 (90%)	45 (92%)	
IERVOUS SYSTEM			
#BRAIN NEOPLASM, NOS, METASTATIC	(20)	(48)	(48)

NUMBER OF ANIMALS WITH TISSUE EXAMINED MICROSCOPICALLY
* NUMBER OF ANIMALS NECROPSIED

TABLE A1 (CONTINUED)

	CONTROL(UNTR) 11-1355	11-1353	11-1351
MENINGIOMA			1 (2%)
PECIAL SENSE ORGANS			
NONE			
SCULOSKELETAL SYSTEM			
NONE			
DY CAVITIES			
*PERITONEUM Mesothelioma, Nos	(20)	(50) 2 (4%)	(50)
TUNICA VAGINALIS MESOTHELIOMA, NOS	(20) 1 (5%)		(50)
OTHER SYSTEMS			
NONE			
IMAL DISPOSITION SUMMARY			
ANIMALS INITIALLY IN STUDY NATURAL DEATHƏ MORIBUND SACRIFICE	20 5 2	50 5 2	50 3 3
SCHEDULED SACRIFICE ACCIDENTALLY KILLED TERMINAL SACRIFICE ANIMAL MISSING	13	43	44
INCLUDES AUTOLYZED ANIMALS			

NUMBER OF ANIMALS WITH TISSUE EXAMINED MICROSCOPICALLY * NUMBER OF ANIMALS NECROPSIED

TABLE A1 (CONCLUDED)

	CONTROL(UNTR) 11-1355			
UMOR SUMMARY				
TOTAL ANIMALS WITH PRIMARY TUMORS* Total primary tumors	18 27	48 63	50 72	
TOTAL ANIMALS WITH BENIGN TUMORS TOTAL BENIGN TUMORS	18 22	46 52	49 65	
TOTAL ANIMALS WITH MALIGNANT TUMORS TOTAL MALIGNANT TUMORS	4	7 8	7 7	
TOTAL ANIMALS WITH SECONDARY TUMORS TOTAL SECONDARY TUMORS	ŧ		5 5	
TOTAL ANIMALS WITH TUMORS UNCERTAIN- BENIGN OR MALIGNANT TOTAL UNCERTAIN TUMORS	- 1 1	3 3		
TOTAL ANIMALS WITH TUMORS UNCERTAIN- PRIMARY OR METASTATIC TOTAL UNCERTAIN TUMORS	-			
PRIMARY TUMORS: ALL TUMORS EXCEPT SE SECONDARY TUMORS: METASTATIC TUMORS		SIVE INTO AN A	D.LACENT ORGAN	

A-6

TABLE A2 SUMMARY OF THE INCIDENCE OF NEOPLASMS IN FEMALE RATS TREATED WITH CARBROMAL

11-1356	11-1354	
20	50	50
20	50	50
* 20	50	50
(20)	(50)	(50)
	1 (2%)	
(20)	(50)	(50)
		1 (2%)
·	1 (2%)	
(19)	(49)	(49)
	1 (2%)	
	1 (2%)	
(20)	(50)	(50)
1 (5%)	2 (4%)	1 (2%)
	1 (2%)	4 (28)
		1 (2%) 1 (2%)
2 (10%)	1 (2%)	1 (2%)
2 (10%)	1 (2%)	1 (2%)
	20 20 20 20 (20) (20) (19) (19) (20) 1 (5%) 2 (10%)	* 20 50 20 50 (20) (50) (20) (50) (20) (50) (19) (49) (19) (49) 1 (2%) 1 (2%) 1 (2%) 1 (2%) 1 (2%) 1 (2%)

NUMBER OF ANIMALS WITH TISSUE EXAMINED MICROSCOPICALLY * NUMBER OF ANIMALS NECROPSIED

**EXCLUDES PARTIALLY AUTOLYZED ANIMALS

TABLE A2 (CONTINUED)

	CONTROL(UNTR) 11-1356	LOW DOSE 11-1354	HIGH DOSE 11-1352
URINARY SYSTEM			
NONE			
ENDOCRINE SYSTEM			
<pre>#PITUITARY CHROMOPHOBE ADENOMA ACIDOPHIL ADENOMA</pre>	(19) 3 (16%) 1 (5%)	(46) 11 (24%)	(49) 16 (33%)
#ADRENAL Pheochromocytoma Sarcoma, Nos, metastatic	(20) 1 (5%)	(49) 2 (4%) 1 (2%)	(50)
<pre>#THYROID FOLLICULAR-CELL ADENOMA C-CELL ADENOMA</pre>	(17) 1 (6%)	(36) 1 (3%) 1 (3%)	(35) 1 (3%) 2 (6%)
REPRODUCTIVE SYSTEM			
*MAMMARY GLAND FIBROADENOMA	(20) 3 (15%)	(50) 3 (6%)	(50) 2 (4%)
#UTERUS ADENOCARCINOMA, NOS FIBROMA ENDOMETRIAL STROMAL POLYP	1 (5%) 2 (10%)	(47) 2 (4%)	(47) 1 (2%) 1 (2%) 4 (9%)
NERVOUS SYSTEM			
NONE			
SPECIAL SENSE ORGANS			
NONE			
MUSCULOSKELETAL SYSTEM			
NONE			
BODY CAVITIES			
NONE			

NUMBER OF ANIMALS WITH TISSUE EXAMINED MICROSCOPICALLY
* NUMBER OF ANIMALS NECROPSIED

TABLE A2 (CONCLUDED)

	CONTROL(UNTR) 11-1356	LOW DOSE 11-1354	HIGH DOSE 11-1352	
ALL OTHER SYSTEMS				
*MULTIPLE ORGANS UNDIFFERENTIATED CARCINOMA	(20)	(50) 1 (2%)	(50)	
NIMAL DISPOSITION SUMMARY				
ANIMALS INITIALLY IN STUDY NATURAL DEATHƏ Moribund sacrifice Scheduled sacrifice	20 3	50 4 5	50 2 3	
ACCIDENTALLY KILLED TERMINAL SACRIFICE ANIMAL MISSING	17	41	45	
N INCLUDES AUTOLYZED ANIMALS				
TUMOR SUMMARY				
TOTAL ANIMALS WITH PRIMARY TUMORS* TOTAL PRIMARY TUMORS	10 15	23 29	26 32	
TOTAL ANIMALS WITH BENIGN TUMORS TOTAL BENIGN TUMORS	7 1 1	17 21	22 27	
TOTAL ANIMALS WITH MALIGNANT TUMORS TOTAL MALIGNANT TUMORS	4	. 7 8	5 5	
TOTAL ANIMALS WITH SECONDARY TUMORS# Total secondary tumors	:	2 3		
TOTAL ANIMALS WITH TUMORS UNCERTAIN- BENIGN OR MALIGNANT TOTAL UNCERTAIN TUMORS				
TOTAL ANIMALS WITH TUMORS UNCERTAIN- PRIMARY OR METASTATIC TOTAL UNCERTAIN TUMORS				
PRIMARY TUMORS: ALL TUMORS EXCEPT SE SECONDARY TUMORS: METASTATIC TUMORS				

.

A-9

APPENDIX B

SUMMARY OF THE INCIDENCE OF NEOPLASMS IN MICE TREATED WITH CARBROMAL

TABLE B1 SUMMARY OF THE INCIDENCE OF NEOPLASMS IN MALE MICE TREATED WITH CARBROMAL

	CONTROL(UNTR) 22-2355	LOW DOSE 22-2353	HIGH DOSE 22-2351
ANIMALS INITIALLY IN STUDY ANIMALS MISSING	20	50 14	50 1
NIMALS NECROPSIED NIMALS EXAMINED HISTOPATHOLOGICALLY**	20 20	35 35	49 49
INTEGUMENTARY SYSTEM			
*SUBCUT TISSUE LIPOMA	(20)		1 (2%)
RESPIRATORY SYSTEM			
*LUNG HEPATDCELLULAR CARCINOMA, METAST	(20)	(34)	(46) 1 (2%)
ALVEOLAR/BRONCHIOLAR ADENOMA ALVEOLAR/BRONCHIOLAR CARCINOMA	6 (30%) 1 (5%)		8 (17%)
HEMATOPOIETIC SYSTEM			
*MULTIPLE ORGANS Malignant lymphoma, nos	(20) 1 (5%)	(35) 2 (6%)	(49) 1 (2%)
MALIG.LYMPHOMA, UNDIFFER-TYPE MALIG.LYMPHOMA, HISTIOCYTIC TYPE		1 (3%)	1 (2%)
LYMPHOCYTIC LEUKEMIA		, (5,0)	.1 (2%)
#SPLEEN MALIG.LYMPHOMA, UNDIFFER-TYPE	(20)	(35)	(44) 1 (2%)
	(20) _2 (10%)	(33)	(40) 1 (3%)
CIRCULATORY SYSTEM			
NONE			
DIGESTIVE SYSTEM			
#LIVER HEPATOCELLULAR ADENGMA			(48)

* NUMBER OF ANIMALS NECROPSIED

**EXCLUDES PARTIALLY AUTOLYZED ANIMALS

TABLE B1 (CONTINUED)

CONTROL(UNTR) 22-2355	22-2353	22-2351	
3 (15%)	6 (17%)	6 (13%)	
1 (5%)		(47)	
	(33) 1 (3%)	(47)	
	22-2355 3 (15%) (20) 1 (5%) (20) (20)	$\begin{array}{c} 22-2355 \\ 3 (15\%) \\ (20) \\ 1 (5\%) \end{array} (35) \\ (35) \\ (35) \\ (20) \\ (10) \\ (20) \\ (10) \\ (10) \\ (10) \\ (20) \\ (10) \\ ($	$\begin{array}{c} 3 (15\%) & 6 (17\%) & 6 (13\%) \\ (20) & (35) & (47) \\ 1 (5\%) & & & & \\ \end{array}$ $(20) & (33) & (47) \\ 1 (3\%) & & & & \\ \end{array}$

NUMBER OF ANIMALS WITH TISSUE EXAMINED MICROSCOPICALLY
* NUMBER OF ANIMALS NECROPSIED

TABLE B1 (CONCLUDED)

	CONTROL(UNTR) 22-2355	LOW DOSE 22-2353	HIGH DOSE 22-2351	
NIMAL DISPOSITION SUMMARY				
ANIMALS INITIALLY IN STUDY	20	50	50	
NATURAL DEATHƏ	1	2	3	
MORIBUND SACRIFICE	1	3	5	
SCHEDULED SACRIFICE				
ACCIDENTALLY KILLED				
TERMINAL SACRIFICE	18	30	41	
ANIMAL MISSING		14	1	
INCLUDES AUTOLYZED ANIMALS				
UMOR SUMMARY				
TOTAL ANIMALS WITH PRIMARY TUMORS*	12	16	2 t	
TOTAL PRIMARY TUMORS	15	17	27	
TOTAL ANIMALS WITH BENIGN TUMORS	8	7	16	
TOTAL BENIGN TUMORS	8	7	16	
TUTAL BENIGN TUMORS	0	1	16	
TOTAL ANIMALS WITH MALIGNANT TUMORS	6	10	10	
TOTAL MALIGNANT TUMORS	7	10	11	
TOTAL ANIMALS WITH SECONDARY TUMORS	•		1	
TOTAL SECONDARY TUMORS			1	
TOTAL ANTMALO NITE TUNODO UNOCOTARIA				
TOTAL ANIMALS WITH TUMORS UNCERTAIN- BENIGN OR MALIGNANT	•			
TOTAL UNCERTAIN TUMORS				
TOTAL DIGERTATIA TUNUKS				
TOTAL ANIMALS WITH TUMORS UNCERTAIN-				
PRIMARY OR METASTATIC				
TOTAL UNCERTAIN TUMORS				
PRIMARY TUMORS: ALL TUMORS EXCEPT SE SECONDARY TUMORS: METASTATIC TUMORS				

 TABLE B2

 SUMMARY OF THE INCIDENCE OF NEOPLASMS IN FEMALE MICE TREATED WITH CARBROMAL

	CONTROL(UNTR) 22-2356	LOW DOSE 22-2354	HIGH DOSE 22-2352
ANIMALS INITIALLY IN STUDY	20	50	50
NIMALS MISSING	1	1	2
NIMALS NECROPSIED	19	49	47
NIMALS EXAMINED HISTOPATHOLOGICALLY**	19	49	47
NTEGUMENTARY SYSTEM			
NONE			
ESPIRATORY SYSTEM			
#LUNG	(18)	(49)	(47)
ALVEDLAR/BRONCHIOLAR ADENOMA		(49) 7 (14%)	8 (17%)
ALVEOLAR/BRONCHIOLAR CARCINOMA		2 (4%)	1 (2%)
OSTEOSARCOMA, METASTATIC		1 (2%)	
EMATOPOIETIC SYSTEM			
*MULTIPLE ORGANS	(19)	(49)	(47)
MALIGNANT LYMPHOMA, NOS	3 (16%)	10 (20%)	5 (11%)
MALIG.LYMPHOMA, UNDIFFER-TYPE		4 4 3 4 3	1 (2%)
LEUKEMIA,NOS UNDIFFERENTIATED LEUKEMIA		1 (2%) 1 (2%)	1 (2%)
LYMPHOCYTIC LEUKEMIA	1 (5%)	3 (6%)	
GRANULOCYTIC LEUKEMIA			1 (2%)
#SPLEEN	(17)	(47)	(46)
MALIG.LYMPHOMA, HISTIOCYTIC TYPE	1 (6%)		1 (2%)
GRANULOCYTIC LEUKEMIA		1 (2%)	
#LYMPH NODE	(16)	(45)	(37)
MALIGNANT LYMPHOMA, NDS		1 (2%)	
	(16)	(45)	(37)
SARCOMA, NOS		1 (2%)	
MALIGNANT LYMPHOMA, NOS		1 (2%)	2 (5%)
#LIVER	(19)	(49)	(46)
MALIGNANT LYMPHOMA, NOS			1 (2%)

NUMBER OF ANIMALS WITH TISSUE EXAMINED MICROSCOPICALLY
* NUMBER OF ANIMALS NECROPSIED

**EXCLUDES PARTIALLY AUTOLYZED ANIMALS

TABLE B2 (CONTINUED)

(48) (49) (49) 1 (2%)	1 (2%) (46) 2 (4%) 2 (4%)	
(49) 1 (2%)	1 (2%) (46) 2 (4%) 2 (4%)	
(49) 1 (2%)	2 (4%) 2 (4%)	
(49) 1 (2%)	2 (4%) 2 (4%)	
1 (2%)	2 (4%) 2 (4%)	
(74)		
(74)		
(74)		
(74)		
(31) 2 (6%)	(26) 1 (4%)	
(12)		
(48) 3 (6%)	(44) 1 (2%)	
(24) 1 (4%)	(23)	
	(48) 3 (6%) (24)	1 (2%) 3 (6%) (24) (23)

TABLE B2 (CONTINUED)

	CONTROL(UNTR) 22-2356	LOW DOSE 22-2354			
SPECIAL SENSE ORGANS					
NDNE					
MUSCULOSKELETAL SYSTEM					
NONE					
BODY CAVITIES					
*PELVIS OSTEOSARCOMA	(19)	(49)	(47)		
			_ *		
ALL OTHER SYSTEMS					
NONE					
ANIMAL DISPOSITION SUMMARY					
ANIMALS INITIALLY IN STUDY	20	50_	50	•	
NATURAL DEATHƏ Moribund sacrifice	4	7 6	6		
SCHEDULED SACRIFICE ACCIDENTALLY KILLED					
TERMINAL SACRIFICE	15	36	41		
ANIMAL MISSING	1	1	2		
a includes autolyzed animals					

TABLE B2 (CONCLUDED)

	CONTROL(UNTR) 22-2356			
JMOR SUMMARY				
TOTAL ANIMALS WITH PRIMARY TUMORS* Total primary tumors	7 7	30 36	25 28	
TOTAL ANIMALS WITH BENIGN TUMORS Total Benign Tumors	1 1	13 14	12	
TOTAL ANIMALS WITH MALIGNANT TUMORS Total Malignant tumors	6 6	20 22	16 16	
TOTAL ANIMALS WITH SECONDARY TUMORS Total secondary tumors	•	· 1 1		
TOTAL ANIMALS WITH TUMORS UNCERTAIN- Benign or Malignant Total Uncertain Tumors	-			
TOTAL ANIMALS WITH TUMORS UNCERTAIN- PRIMARY OR METASTATIC Total Uncertain Tumors	-			
PRIMARY TUMORS: ALL TUMORS EXCEPT SE SECONDARY TUMORS: METASTATIC TUMORS		SIVE INTO AN A	DJACENT DRGAN	

B-9

APPENDIX C

SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN RATS TREATED WITH CARBROMAL

 TABLE C1

 SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE RATS TREATED WITH CARBROMAL

	CONTROL(UNTR) 11-1355	LOW DOSE 11-1353	HIGH DOSE 11-1351
ANIMALS INITIALLY IN STUDY	20	50	50
ANIMALS NECROPSIED ANIMALS EXAMINED HISTOPATHOLOGICALLY**	20 20	50 50	50 50
INTEGUMENTARY SYSTEM			
*SKIN	(20) 1 (5%)	(50)	(50)
DERMAL INCLUSION CYST	1 (5%)	1 (2%)	
RESPIRATORY SYSTEM			
#LUNG	(19)	(50)	(50)
MINERALIZATION			1 (2%)
MUCOCELE		1 (2%)	1 (2%)
ATELECTASIS Congestion, nos	1 (5%)	1 (2%) 7 (14%)	
HEMORRHAGE	1 (5%)	1 (2%)	8 (16%) 1 (2%)
	11 (58%)		41 (82%)
GRANULOMA, NOS		30 (76%)	1 (2%)
FIBROSIS, FOCAL			1 (2%)
FDAM-CELL	1 (5%)	1 (2%)	4 (8%)
	1 (5%) 2 (11%)	1 (2%)	1 (2%)
	(20)	((7)	(())
#SPLEEN HEMORRHAGE	(20)	(47)	(49) 1 (2%)
#SPLENIC CAPSULE	(20)	(47)	(49)
FIBROSIS			1 (2%)
HYPERPLASIA, RETICULUM CELL			1 (2%)
CIRCULATORY SYSTEM			
#HEART/ATRIUM	(17)	(48)	(50)
THROMBUS, ORGANIZED		1 (2%)	

NUMBER OF ANIMALS WITH TISSUE EXAMINED MICROSCOPICALLY
* NUMBER OF ANIMALS NECROPSIED

**EXCLUDES PARTIALLY AUTOLYZED ANIMALS

TABLE C1 (CONTINUED)

	CONTROL(UNTR) 11-1355	LOW DOSE 11-1353	HIGH DOSE 11-1351	
#MYOCARDIUM	(17)	(48)	(50)	
FIBROSIS	15 (88%)	22 (46%)	32 (64%) 1 (2%)	
FIBROSIS, FOCAL Degeneration, Nos		2 (4%)	1 (2%)	
*PULMONARY ARTERY	(20)	(50)	(50)	
EMBOLISM, NOS		1 (2%)		
IGESTIVE SYSTEM				
#SALIVARY GLAND	(19)	(46)	(47)	
FIBROSIS		1 (2%)		
ATROPHY, FOCAL		1 (2%) 1 (2%)		
HYPERTROPHY, NOS		1 (2%)		
#LIVER	(20)	(47)	(49)	
CONGESTION, NOS	· · · · · · · · · · · · · · · · · · ·	5 (11%)	6 (12%)	
GRANULOMA, NOS			2 (4%)	
DEGENERATION, NOS	1 (5%)	3 (6%)	1 (2%)	
DEGENERATION, GRANULAR	· · · · · · · · · · · · · · · · · · ·		1 (2%)	
METAMORPHOSIS FATTY		1 (2%)	10 (20%)	
LIPDIDOSIS Glycogenic Cell		1 (2%)	1 (2%)	
HYPERPLASIA, FOCAL	10 (50%)	6 (13%)	3 (6%)	
HIFERFLASIA, FUCAL	10 (50%)	8 (1347	5 (64)	
#LIVER/CENTRILOBULAR	(20)	(47)	(49)	
CONGESTION, NOS		1 (2%)	3 (6%)	
METAMORPHOSIS FATTY	1 (5%)	1 (2%)	10 (20%)	
#LIVER/HEPATOCYTES	(20)	(47)	(49)	
HYPERPLASIA, NOS	1 (5%)			
	(28)		(())	
<pre>#BILE DUCT HYPERPLASIA, NOS</pre>	(20) 8 (40%)	(47) 7 (15%)	(49) 8 (16%)	
HITERFEASTA) NUS	0 (704)	7 (134)	0 (104)	
#PANCREAS	(18)	(45)	(44)	
ATROPHY, NOS			1 (2%)	
ATROPHY, FOCAL	2 (11%)	5 (11%)	2 (5%)	
ATROPHY, DIFFUSE	1 (6%)			
#LARGE INTESTINE	(19)	(48)	(47)	
NEMATODIASIS		1 (2%)		
PARASITISM	8 (42%)	16 (33%)	7 (15%)	

NUMBER OF ANIMALS WITH TISSUE EXAMINED MICROSCOPICALLY * NUMBER OF ANIMALS NECROPSIED

C-4

TABLE C1 (CONTINUED)

	CONTROL(UNTR) 11-1355	LOW DOSE 11-1353	HIGH DOSE 11-1351	
RINARY SYSTEM				
#KIDNEY MINERALIZATION Hydronephrosis Inflammation, focal	(20)	(50) 1 (2%) 1 (2%) 1 (2%)	(50) 1 (2%)	
INFLAMMATION, CHRONIC Nephropathy, Toxic	16 (80%)	43 (86%)	42 (84%) 3 (6%)	
NEPHROSIS, NOS Hyperplasia, epithelial Hyperplasia, papillary Lymphocytosis		1 (2%) 1 (2%) 1 (2%)	1 (2%)	
#KIDNEY/MEDULLA MINERALIZATION	(20)	(50)	(50) 4 (8%)	
#RENAL PAPILLA MINERALIZATION	(20)	(50) 1 (2%)	(50)	
#KIDNEY/TUBULE NECROSIS, NOS CALCIFICATION, NOS	(20) 1 (5%)	(50) 1 (2%)	(50) 1 (2%)	
#KIDNEY/PELVIS Calcification, nos Hyperplasia, epithelial	(20)	(50) 1 (2%) 2 (4%)	(50) 7 (14%)	
#URINARY BLADDER INFLAMMATION, NOS	(17)	(32) 1 (3%)	(33)	
INFLAMMATION, HEMORRHAGIC INFLAMMATION, ACUTE	1 (6%)		1 (3%)	
NDOCRINE SYSTEM				
#PITUITARY CYST, NOS	(17)	(41)	(40) 1 (3%)	
#ADRENAL DILATATION/SINUS HEMORRHAGIC CYST	(19)	(49) 1 (2%) 1 (2%)	(46)	
#ADRENAL CORTEX Hyperplasia, focal	(19)	(49)	(46)	

TABLE C1 (CONTINUED)

	CONTROL(UNTR) 11-1355	LOW DOSE 11-1353	HIGH DOSE 11-1351
#THYROID Hyperplasia, C-Cell	(13) 1 (8%)	(40)	(43) 2 (5%)
#THYROID FOLLICLE CYST, NOS	(13) 1 (8%)	(40)	(43)
HYPERTROPHY, NOS Hyperplasia, cystic	1 (0%)	1 (3%) 2 (5%)	1 (2%)
<pre>#PANCREATIC ISLETS Hypertrophy, NOS</pre>	(18)	(45) 1 (2%)	(44)
REPRODUCTIVE SYSTEM			
<pre>#PROSTATE INFLAMMATION, ACUTE</pre>	(18)	(29)	(29) 1 (3%)
*SEMINAL VESICLE Obstruction, nos Inflammation, chronic	(20)	(50) 1 (2%)	(50) 1 (2%) 1 (2%)
<pre>#TESTIS LYMPHOCYTIC INFLAMMATORY INFILTR</pre>	(20)	(49) 1 (2%)	(49)
*EPIDIDYMIS Inflammation, acute	(20)	(50) 1 (2%)	(50)
NERVOUS SYSTEM			
#BRAIN Hemorrhage Abscess, Nos	(20)	(48) 1 (2%) 1 (2%)	(48) 1 (2%) 1 (2%)
#CEREBELLUM HEMORRHAGE MALACIA	(20) 1 (5%) 1 (5%)	(48)	(48)
SPECIAL SENSE ORGANS			
*EYE Abscess, Nos	(20)	(50) 1 (2%)	(50)
*EYE/LACRIMAL GLAND ATROPHY, NOS	(20)	(50)	(50)

TABLE C1 (CONCLUDED)

· · · · · · · · · · · · · · · · · · ·	CONTROL(UNTR) 11-1355	LOW DOSE 11-1353	HIGH DOSE 11-1351	·
*EYE/LACRIMAL DUCT Obstruction, Nos	(20)	(50) 1 (2%)	(50)	
IUSCULOSKELETAL SYSTEM				
NONE				
BODY CAVITIES				
*MESENTERY NECROSIS, FAT	(20)	(50)	(50) 1 (2%)	
ALL OTHER SYSTEMS				
ADIPOSE TISSUE Abscess, nos Necrosis, nos		1	1	
PECIAL MORPHOLOGY SUMMARY				
NO LESION REPORTED Auto/Necropsy/Histo Perf	1			

NUMBER OF ANIMALS NECROPSIED

TABLE C2 SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN FEMALE RATS TREATED WITH CARBROMAL

		LOW DOSE 11-1354	11-1352
ANIMALS INITIALLY IN STUDY	20	50	50
ANIMALS NECROPSIED Animals examined histopathologically**	20	50 50	50 50
INTEGUMENTARY SYSTEM			
*SKIN	(20)	(50)	(50)
DERMAL INCLUSION CYST	1 (5%)		
*SUBCUT TISSUE	(20)	(50)	(50)
CYST, NOS		1 (2%)	
RESPIRATORY SYSTEM			
*NASAL TURBINATE	(20)	(50)	(50)
HEMORRHAGE			1 (2%)
#TRACHEA	(15)	(40)	(44)
INFLAMMATION, NOS		2 (5%)	
INFLAMMATION, CHRONIC		1 (3%)	
	(19)	(49)	(49)
ATELECTASIS		2 (4%)	1 (2%)
CONGESTION, NOS	1 (5%)	3 (6%)	1 (2%)
ABSCESS, NOS Pneumonia, chronic murine	15 (79%)	1 (2%)	43 (88%)
GRANULOMA, FOREIGN BODY	12 (776)	JU (014)	1 (2%)
FOAM-CELL	1 (5%)	7 (14%)	
HYPERPLASIA, ADENOMATOUS	2 (11%)		1 (2%)
HEMATOPOIETIC SYSTEM			
#SPLEEN	(18)	(45)	(50)
INFARCT, NOS	•		1 (2%)
HEMOSIDEROSIS		1 (2%)	1 (2%)
VASCULARIZATION	1 (6%)		
HEMATOPOIESIS		2 (4%)	

NUMBER OF ANIMALS WITH TISSUE EXAMINED MICROSCOPICALLY * NUMBER OF ANIMALS NECROPSIED **EXCLUDES PARTIALLY AUTOLYZED ANIMALS

TABLE C2 (CONTINUED)

	CONTROL(UNTR) 11-1356	LOW DOSE 11-1354	HIGH DOSE 11-1352
#MANDIBULAR L. NODE Mastocytosis	(20)	(45) 1 (2%)	(50)
#MESENTERIC L. NODE Abscess, nos Mastocytosis	(20)	(45) 1 (2%)	(50) 1 (2%)
IRCULATORY SYSTEM			
#MYOCARDIUM MINERALIZATION	(20)	(48) 1 (2%)	(50)
INFLAMMATION, FOCAL INFLAMMATION, CHRONIC FOCAL		1 (2%)	1 (2%)
FIBROSIS, FOCAL	12 (60%)	10 (21%) 1 (2%)	20 (40%) 1 (2%)
#ENDOCARDIUM FIBROSIS	(20)	(48)	(50) 1 (2%)
*BLOOD VESSEL MINERALIZATION	(20)	(50) 1 (2%)	(50)
DIGESTIVE SYSTEM			
<pre>#LIVER GRANULOMA, NOS DEGENERATION, NOS NECROSIS, FOCAL METAMORPHOSIS FATTY CYTOPLASMIC CHANGE, NOS BASOPHILIC CYTO CHANGE HYPERPLASIA, FOCAL</pre>	(20) 15 (75%)	(48) 2 (4%) 16 (33%)	(50) 4 (8%) 2 (4%) 1 (2%) 7 (14%) 1 (2%) 1 (2%) 21 (42%)
HEMATOPOIESIS		1 (2%)	
<pre>#LIVER/CENTRILOBULAR NECROSIS, NOS METAMORPHOSIS FATTY</pre>	(20)	(48) 1 (2%)	(50) 11 (22%)
<pre>#BILE DUCT Hyperplasia, NOS</pre>	(20) 3 (15%)	(48) 5 (10%)	(50) 9 (18%)
<pre>#PANCREAS FIBROSIS, DIFFUSE</pre>	(19)	(46)	(49)

TABLE C2 (CONTINUED)

	CONTROL(UNTR) 11-1356	LOW DOSE 11-1354	HIGH DOSE 11-1352
ATROPHY, FOCAL		5 (11%)	3 (6%)
#STOMACH MINERALIZATION CYST, NOS	(20)	(50) 1 (2%)	(49) 1 (2%)
#LARGE INTESTINE PARASITISM	(19) 10 (53%)	(46) 5 (11%)	(48) 13 (27%)
RINARY SYSTEM			
#KIDNEY MINERALIZATION HYDRONEPHROSIS	(20)	(49) 1 (2%) 1 (2%)	(50)
INFLAMMATION, CHRONIC Nephropathy, toxic	16 (80%)	26 (53%) 1 (2%)	42 (84%)
#KIDNEY/TUBULE	(20)	(49)	(50)
DEGENERATION, NOS Necrosis, nos	5 (25%)	2 (4%) 1 (2%)	1 (2%) 1 (2%)
#URINARY BLADDER Hemorrhage	(15)	(25)	(40) 1 (3%)
INFLAMMATION, ACUTE	1 (7%)		
NDOCRINE SYSTEM			
#PITUITARY Cyst, nos Pigmentation, nos	(19) 3 (16%)	(46) 2 (4%) 1 (2%)	(49) 1 (2%)
#ADRENAL LIPOIDOSIS	(20)	(49)	(50) 2 (4%)
CYTOPLASMIC VACUOLIZATION #ADRENAL CORTEX	(20)	1 (2%)	(50)
LIPOIDOSIS		1 (2%)	
#THYROID HYPERPLASIA, C-CELL HYPERPLASIA, FOLLICULAR-CELL	(17) 1 (6%)	(36) 1 (3%) 1 (3%)	(35) 1 (3%)
EPRODUCTIVE SYSTEM			
*MAMMARY GLAND DILATATION/DUCTS	(20)	(50)	(50)

TABLE C2 (CONTINUED)

	CONTROL(UNTR) 11-1356	LOW DOSE 11-1354	HIGH DOSE 11-1352	
*CLITORAL GLAND Abscess, Nos	(20)	(50)	(50) 1 (2%)	
#UTERUS DILATATION, NOS	(20)	(47)	(47) 1 (2%)	
CYST, NOS INFLAMMATION, ACUTE ABSCESS, NOS	2 (10%)	1 (2%) 1 (2%)	1 (2%)	
FIBROSIS NECROSIS, NOS AMYLOIDOSIS		1 (2%) 1 (2%)	1 (2%) 1 (2%)	
*CERVIX UTERI Cyst, nos Epidermal inclusion cyst	(20) 1 (5%)	(47)	(47) 1 (2%) 1 (2%)	
HEMORRHAGE Inflammation, acute		1 (2%)	1 (2%) 1 (2%) 3 (6%)	
ABSCESS, NOS Inflammation, acute/chronic		1 (2%) 1 (2%)		/
#UTERUS/ENDOMETRIUM INFLAMMATION, NOS INFLAMMATION, ACUTE	(20) 7 (35%) 4 (20%)	(47) 4 (9%) 1 (2%)	(47) 7 (15%) 6 (13%)	
ABSCESS, NOS Hyperplasia, NOS Hyperplasia, Cystic	2 (10%) 4 (20%) 4 (20%)	2 (4%)	1 (2%) 5 (11%)	1
OVARY/OVIDUCT Inflammation, acute	(20) 1 (5%)	(47)	(47)	
OVARY Follicular cyst, nos Abscess, nos	(20) 1 (5%) 1 (5%)	(44)	(47) 3 (6%)	
ERVOUS SYSTEM				
BRAIN Inflammation acute and chronic Malacia	(18)	(47)	(49) 1 (2%) 1 (2%)	
CEREBELLUM HEMORRHAGE	(18)	(47)	(49) 1 (2%)	

NONE

TABLE C2 (CONCLUDED)

	CONTROL(UNTR) 11-1356			
IUSCULOSKELETAL SYSTEM				
*STERNUM Abscess, Nos	(20)	1 (2%)	(50)	
BODY CAVITIES				
*SUBPLEURAL TISSUE FOAM-CELL	(20)	(50) 1 (2%)	(50)	
LL OTHER SYSTEMS				
ADIPOSE TISSUE NECROSIS, NOS		1		
PECIAL MORPHOLOGY SUMMARY				
NO LESION REPORTED	1	5		

APPENDIX D

SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MICE TREATED WITH CARBROMAL

 TABLE D1

 SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE MICE TREATED WITH CARBROMAL

	CONTROL(UNTR) 22-2355	LOW DOSE 22-2353	HIGH DOSE 22-2351
ANIMALS INITIALLY IN STUDY ANIMALS MISSING	20	50 14	50 · 1
ANIMALS NECROPSIED ANIMALS EXAMINED HISTOPATHOLOGICALLY**	20 20	35 35	49 49
INTEGUMENTARY SYSTEM			
*SUBCUT TISSUE HEMATOMA, NOS	(20)	1 (3%)	(49)
RESPIRATORY SYSTEM			
<pre>#LUNG/BRONCHUS HYPERPLASIA, EPITHELIAL</pre>	(20) 1 (5%)	(34)	(46)
#LUNG Congestion, Nos	(20)	(34) 1 (3%)	(46)
BRONCHOPNEUMONIA, ACUTE PNEUMONIA, CHRONIC MURINE Hyperplasia, adenomatous		1 (3%) 1 (3%)	1 (2%) 1 (2%) 2 (4%)
HEMATOPOIETIC SYSTEM			
<pre>#BONE MARROW HYPERPLASIA, HEMATOPOIETIC</pre>	(17)	(33)	(31) 6 (19%)
HYPERPLASIA, GRANULOCYTIC		1 (3%)	0 (174)
#SPLEEN DEGENERATION, HYALINE	(20) 1 (5%)	(35)	
HEMOSIDEROSIS Hyperplasia, reticulum cell		4 4 7 84 2	1 (2%) 1 (2%)
HYPERPLASIA, LYMPHOID HEMATOPOIESIS		1 (3%)	2 (5%)
#SPLENIC FOLLICLES INFLAMMATION, NOS	(20)	(35)	(44) 1 (2%)
#MESENTERIC L. NODE EDEMA, NOS	(20)	(33) 1 (3%)	(40)

NUMBER OF ANIMALS WITH TISSUE EXAMINED MICROSCOPICALLY * NUMBER OF ANIMALS NECROPSIED **EXCLUDES PARTIALLY AUTOLYZED ANIMALS

TABLE D1 (CONTINUED)

	CONTROL(UNTR) 22-2355	LOW DOSE 22-2353	HIGH DOSE 22-2351
INFLAMMATION, NOS			1 (3%)
HYPERPLASIA, NOS			1 (3%)
HEMATOPOIESIS		1 (3%)	
IRCULATORY SYSTEM			
#MYOCARDIUM	(20)	(34)	(45)
INFLAMMATION, NOS			1 (2%)
*RENAL ARTERY	(20)	(35)	(49)
ARTERIOSCLEROSIS, NOS			1 (2%)
IGESTIVE SYSTEM			
#SALIVARY GLAND	(20)	(33)	(44)
DILATATION/DUCTS			1 (2%)
PERIVASCULAR CUFFING			1 (2%)
#LIVER	(20)	(35)	(48)
LYMPHOCYTIC INFLAMMATORY INFILTR		1 (3%)	
DEGENERATION, HYALINE		1 (3%)	
NECROSIS, FOCAL Metamorphosis fatty	2 (10%)	1 (3%)	1 (2%)
HEMOSIDEROSIS	2 (10%)		1 (2%)
NUCLEAR ENLARGEMENT		1 (3%)	
HEPATOCYTOMEGALY			5 (10%)
HYPERPLASIA, NODULAR		1 (3%)	
ANGIECTASIS		1 (3%)	1 (2%)
HEMATOPOIESIS			1 (2%)
#LIVER/PERIPORTAL	(20)	(35)	(48)
LYMPHOCYTIC INFLAMMATORY INFILTR		1 (3%)	
#PEYERS PATCH	(20)	(34)	(48)
HYPERPLASIA, NOS		3 (9%)	2 (4%)
HYPERPLASIA, LYMPHOID	1 (5%)		
#LARGE INTESTINE INFLAMMATION, NOS	(20)	(35)	(45)
NEMATODIASIS	8 (40%)	12 (34%)	1 (2%) 12 (27%)
NEHALODIADID	0 (40%)	12 (34%)	12 (2/%)
#COLON NEMATODIASIS	(20)	(35)	(45)
MENATODIASIS		1 (3%)	

TABLE D1 (CONTINUED)

	CONTROL(UNTR) 22-2355	LOW DOSE 22-2353	HIGH DOSE 22-2351
IRINARY SYSTEM			
#KIDNEY INFLAMMATION, CHRONIC PERIVASCULAR CUFFING	(20) 1 (5%)	1 (3%)	1 (2%) 2 (4%)
NDOCRINE SYSTEM			
#ADRENAL Hyperplasia, adenomatous	(19)	(32)	(38) 1 (3%)
#ADRENAL CORTEX Hyperplasia, nos Hyperplasia, focal	(19)	(32) 2 (6%)	(38)
#ADRENAL MEDULLA Degeneration, hyaline	(19)	(32) 1 (3%)	(38)
#THYROID Hyperplasia, C-Cell	(20)	(29) 1 (3%)	(39)
#THYROID FOLLICLE Hypertrophy, Nos	(20) 1 (5%)	(29)	(39)
#PANCREATIC ISLETS Hyperplasia, NOS	(20) 1 (5%)	(35)	(47)
EPRODUCTIVE SYSTEM			
*MAMMARY GLAND Cytoplasmic vacuolization	(20)	(35)	(49) 1 (2%)
#PROSTATE Hyperplasia, Nos	(20)	(35)	(46) 1 (2%)
*SEMINAL VESICLE FIBROSIS	(20)	(35)	(49) 1 (2%)
#TESTIS Infarct, NDS	(20) 1 (5%)	(34)	(47)
HYPERPLASIA, INTERSTITIAL CELL			1 (2%)

TABLE D1 (CONTINUED)

	CONTROL(UNTR) 22-2355	LOW DOSE 22-2353	HIGH DOSE 22-2351
NERVOUS SYSTEM			
*NERVDUS SYSTEM Calcification, focal	(20)	(35) 1 (3%)	(49)
<pre>#BRAIN MINERALIZATION CALCIFICATION, FOCAL CYTOPLASMIC VACUOLIZATION</pre>	(20) 1 (5%) 6 (30%)	(33) 4 (12%) 1 (3%)	(47) 7 (15%) 4 (9%)
#CEREBRAL WHITE MATTE Cytoplasmic vacuolization	(20)	(33) 1 (3%)	(47) 12 (26%)
SPECIAL SENSE ORGANS			,
NONE			
MUSCULOSKELETAL SYSTEM NONE			
BODY CAVITIES			
*ABDOMINAL CAVITY HEMATOMA, NOS	(20)	(35) 1 (3%)	(49)
*SUBPLEURAL TISSUE FOAM-CELL	(20)	(35)	(49) 1 (2%)
*MESENTERY INFLAMMATION, GRANULOMATOUS PERIARTERITIS	(20)	(35) 1 (3%) 1 (3%)	(49)
INFLAMMATION, GRANULOMATOUS PERIARTERITIS	(20)	1 (3%)	(49)
INFLAMMATION, GRANULOMATOUS PERIARTERITIS	(20)	1 (3%)	(49)
INFLAMMATION, GRANULOMATOUS PERIARTERITIS ALL OTHER SYSTEMS	(20)	1 (3%)	(4 9)

TABLE D1 (CONCLUDED)

		CONTROL(UNTR) 22-2355	LOW DOSE 22-2353	HIGH DOSE 22-2351	
ANIMAL	MISSING/NO NECROPSY	• • • • • • • • • • • • • • • • • • •	14	1	

,

TABLE D2 SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN FEMALE MICE TREATED WITH CARBROMAL

	CONTROL(UNTR) 22-2356	LOW DOSE 22-2354	HIGH DOSE 22-2352
ANIMALS INITIALLY IN STUDY	20	50	50
ANIMALS MISSING	1	1	2
ANIMALS NECROPSIED	19	49	47
ANIMALS EXAMINED HISTOPATHOLOGICALLY**	19	49	47
INTEGUMENTARY SYSTEM			
NONE			
RESPIRATORY SYSTEM			
	(48)	(49)	(47)
FOREIGN BUDY, NOS Perivascular cuffing	1 (6%)		1 (2%)
#LUNG	(18)	(49)	(47)
CONGESTION, CHRONIC PASSIVE		1 (2%)	
INFLAMMATION, FOCAL		1 (2%)	4 (2))
PNEUMONIA, GIANT-CELL PNEUMONIA, CHRONIC MURINE	1 (6%)	1 (2%)	1 (2%) 2 (4%)
INFLAMMATION, CHRONIC	1 (0%)	1 (2%)	2 (4%)
PERIARTERITIS			1 (2%)
ALVEDLAR MACROPHAGES	1 (6%)		
HYPERPLASIA, ADENOMATOUS		2 (4%)	
HEMATOPOIETIC SYSTEM			
#BONE MARROW	(16)	(48)	(41)
HYPERPLASIA, HEMATOPOIETIC		3 (6%)	2 (5%)
#SPLEEN	(17)	(47)	(46)
HYPERPLASIA, NOS			1 (2%)
HYPERPLASIA, RETICULUM CELL Hyperplasia, lymphoid	2 (12%)	1 (2%)	2 (4%)
#LYMPH NODE	(16)	(45)	(37)
HYPERPLASIA, LYMPHOID	1 (6%)		
#MANDIBULAR L. NODE	(16)	(45)	(37)
HYPERPLASIA, NOS	1 (6%)		

NUMBER OF ANIMALS WITH TISSUE EXAMINED MICROSCOPICALLY * NUMBER OF ANIMALS NECROPSIED

**EXCLUDES PARTIALLY AUTOLYZED ANIMALS

TABLE D2 (CONTINUED)

	CONTROL(UNTR) 22-2356		HIGH DOSE 22-2352
#BRONCHIAL LYMPH NODE Inflammation, Nos	(16) 1 (6%)	(45)	(37)
#MESENTERIC L. NODE INFLAMMATION, NOS	(16) 1 (6%)	(45)	(37)
INFLAMMATION, GRANULOMATOUS Hyperplasia, nos		1 (2%)	1 (3%)
IRCULATORY SYSTEM			
*PULMONARY ARTERY Hyperplasia, nos	(19) 1 (5%)	(49)	(47)
IGESTIVE SYSTEM			
#SALIVARY GLAND Inflammation, chronic	(15)	(44) 1 (2%)	(42)
#LIVER HEMORRHAGE	(19)	(49)	(46) 1 (2%)
FIBROSIS, FOCAL NECROSIS, FOCAL	2 (11%)	1 (2%)	1 (2%) 1 (2%)
METAMORPHOSIS FATTY NUCLEAR ALTERATION		2 (4%)	3 (7%) 1 (2%)
NUCLEAR ENLARGEMENT Hematopoiesis		1 (2%)	1 (2%)
#LIVER/PERIPORTAL LYMPHOCYTIC INFLAMMATORY INFILTR	(19)	(49) 1 (2%)	(46)
#LIVER/HEPATOCYTES NECROSIS, NOS	(19)	(49) 1 (2%)	(46)
#BILE DUCT CYST, NDS CALCIFICATION, NOS	(19)	(49)	(46) 1 (2%) 1 (2%)
‡PANCREAS FIBROSIS	(16)	(47) 1 (2%)	(46).
#LARGE INTESTINE NEMATODIASIS	(16)	(44)	(43)

TABLE D2 (CONTINUED)

	CONTROL(UNTR) 22-2356	LOW DOSE 22-2354	HIGH DOSE 22-2352
URINARY SYSTEM			
<pre>#KIDNEY LYMPHOCYTIC INFLAMMATORY INFILTR METAPLASIA, OSSEOUS</pre>	(19) 1 (5%)	(49) 1 (2%)	(46) 1 (2%) 1 (2%)
#KIDNEY/CORTEX CYST, NDS	(19) 1 (5%)	(49)	(46)
#URINARY BLADDER LYMPHOCYTIC INFLAMMATORY INFILTR	1 (6%)	(45)	(43)
ENDOCRINE SYSTEM			
#PITUITARY Hyperplasia, NOS Hyperplasia, Diffuse	(10) 1 (10%)	(31) 1 (3%)	(26)
#ADRENAL LIPOIDOSIS	(16)	(45)	(42) 1 (2%)
#ADRENAL MEDULLA DEGENERATION, HYALINE	(16)	(45) 2 (4%)	(42) 2 (5%)
<pre>#THYRDID COLLOID CYST INFLAMMATION, ACUTE HYPERPLASIA, EPITHELIAL HYPERPLASIA, FOCAL</pre>	(15) 1 (7%)	(38) 1 (3%)	(37) 1 (3%) 1 (3%) 1 (3%)
<pre>#THYROID FOLLICLE HYPERTROPHY, NOS</pre>	(15)	(38) 1 (3%)	(37)
#PANCREATIC ISLETS Hyperplasia, Nos	1 (6%)	(47) 4 (9%)	1 (2%)
REPRODUCTIVE SYSTEM			
*MAMMARY GLAND LACTATION	(19)	(49) 1 (2%)	(47)
*VAGINA INFLAMMATION, SUPPURATIVE	(19)	(49)	(47)

TABLE D2 (CONTINUED)

	CONTROL(UNTR) 22-2356	LOW DOSE 22-2354	HIGH DOSE 22-2352
#UTERUS CYST, NOS	(18) 1 (5%)	(48)	(44)
HEMORRHAGE PYOMETRA	8 (44%)	1 (2%) 14 (29%)	25 (57%)
#UTERUS/ENDOMETRIUM INFLAMMATION, CHRONIC Hyperplasia, cystic	(18)	(48)	(44) 1 (2%) 3 (7%)
#OVARY/OVIDUCT Cyst, NOS	(18)	(48) 1 (2%)	(44)
#OVARY CYST, NOS FOLLICULAR CYST, NOS ABSCESS, NOS	(6) 1 (17%)	(24) 5 (21%) 1 (4%) 1 (4%)	(23) 4 (17%)
IERVOUS SYSTEM			
#BRAIN MINERALIZATION HEMORRHAGIC CYST CALCIFICATION, NOS	(19) 1 (5%)	(48) 1 (2%) 1 (2%)	(47)
CALCIFICATION, FOCAL Cytoplasmic vacuolization	3 (16%) 2 (11%)	3 (6%)	3 (6%) 1 (2%)
#CEREBRAL WHITE MATTE CYTOPLASMIC VACUOLIZATION	(19) 1 (5%)	(48) 3 (6%)	(47) 1 (2%)
PECIAL SENSE ORGANS			
NONE			
NUSCULOSKELETAL SYSTEM			
*SKELETAL MUSCLE PARASITISM	(19) 1 (5%)	(49)	(47)
CAVITIES .	40 - C C C C C C C C		
*ABDOMINAL CAVITY STEATITIS	(19)	(49)	(47)

TABLE D2 (CONCLUDED)

	CONTROL(UNTR) 22-2356	22-2354	
NECROSIS, FAT		1 (2%)	ar da, ann an las an an an an an an an las an las an air bh an las fur an las fur an las fur da las fur (, da
*MESENTERY THROMBOSIS, NOS INFARCT, NOS	(19) 1 (5%) 1 (5%)	(49)	(47)
LL OTHER SYSTEMS			
*MULTIPLE ORGANS LYMPHOCYTIC INFLAMMATORY INFILTR AMYLOIDOSIS	• • • •	(49)	(47) 1 (2%) 1 (2%)
OMENTUM Lymphocytic inflammatory infiltr			1
BROAD LIGAMENT Lymphocytic inflammatory infiltr			2
PECIAL MORPHOLOGY SUMMARY			
NO LESION REPORTED Animal Missing/No Necropsy	1	6 1	2 2

* NUMBER OF ANIMALS NECROPSIED

D-12

DHEW Publication No. (NIH) 79-1729