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Environmental and occupational epidemio-
logic research involves the identification of
relations between past exposures to putative
toxicants and subsequent adverse health
effects in individuals within study popula-
tions. Such relations are often hard to fully
characterize because of difficulties in accu-
rately quantifying exposure, dose, and effect.
Meaningful quantification is particularly dif-
ficult because the exposure–effect relation
arises from a multistage process, often
referred to as the toxicologic paradigm. As a
result, the use of biomarkers in molecular
epidemiology research has gained widespread
attention (1).

In using biomarkers in environmental
epidemiology, it is critical to consider the
actual process or parameter a given biomarker
reflects. For example, the concepts of expo-
sure, internal dose, and biologically effective
dose are often blurred in practice, and the loss
of these distinctions can influence interpreta-
tion of data. Measures of exposure or internal
dose are often assumed to be surrogates of the
biologically effective dose; their use implies a
set of assumptions that is not usually fully
articulated or considered. These assumptions
involve considerations of the toxicokinetics of
the agent and “exposure” biomarker, which
are influenced by varying exposure intensity
and duration, the residence time of the active
form of the agent at the sensitive target, satu-
ration effects, and release from body stores.
Similarly, measures of health effects depend
on the time course of response to a given
exposure (the toxicodynamics of the agent
and “response” biomarker) and are influenced
by varying response magnitude and duration,
dose–dependent repair mechanisms, and
multiagent synergistic effects.

In practice, simplifying assumptions are
usually made to directly relate exposure to
biologically effective dose and to relate this

surrogate of dose to health effect. These sim-
plifying assumptions generally overlook the
potentially important influence of bidirec-
tional transfer of the agent from one
anatomic or physiologic compartment to
another. Less frequently, more sophisticated
approaches to relating exposure to internal
dose and internal dose to biologically effec-
tive dose at the sensitive target have been
used. In general, these approaches are based
on multicompartmental pharmacokinetic
modeling (2–4). Even with sophisticated
approaches to characterizing the toxicokinet-
ics of a given agent–effect paradigm, simpli-
fied models of response are usually used in
epidemiologic investigations (e.g., the
assumption of an irreversible, static response
to a given exposure). To help understand
these issues, we present a conceptual frame-
work based on linear systems theory and its
application to the analysis of lead-associated
neurocognitive decline. We specifically con-
sider issues of residence time of the agent at
the sensitive target, later release of the agent
from body stores (with corresponding re-res-
idence at the sensitive target), and the time
course of response.

Theory

A fundamental assumption in dose–response
studies of toxic agents is that the active form
of the agent at the sensitive target site causes
the effect (4). Thus, to characterize the rela-
tion between exposure to an environmental
agent and subsequent development of an
adverse health effect, two types of processes
must be modeled: the toxicokinetics that
describe the relation between environmental
exposure and ultimate cumulative dose at the
sensitive target, and the toxicodynamics that
describe the relation between this cumulative
dose at the sensitive target and the adverse
effects. In practice, it is frequently assumed

that the total adverse effect is proportional to
the area under the curve (AUCT) of the
time–concentration relation for the active
form of the agent at the target site, (4):

AUCT = ∫CT (t)dt [1]

Thus, it is highly desirable in environmental
epidemiologic investigations to be able to
estimate AUCT and to be able to characterize
the relation between AUCT and the observed
effect at any given measurement time.

Toxicokinetics: Measures of AUCT

A common surrogate for AUCT is cumulative
exposure, E, defined as the integral exposure
to a certain time-dependent environmental
concentration of a toxic agent, CE(t):

E = ∫CE(t)dt [2]

Another common surrogate for AUCT is the
cumulative dose, D, which is frequently
based on the assumption of a linear relation
between exposure and dose:

D(t) = kE(t)
D = k ∫CE(t)dt [3]

The use of either cumulative exposure or
cumulative dose as a surrogate for AUCT
implies the assumption of a linear relation
between AUCT and either E or D, with y-
intercept equal to zero:

AUCT = kEE = kDD [4]

In other words, Equation 4 implies that the
toxicokinetics are strictly linear; that is, the
transfer of a toxic agent from the environ-
ment to the sensitive target (including
bioactivation, if relevant) follows a linear
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dependence. Of perhaps greater importance,
Equation 4 implies that the residence time of
the agent at the sensitive target is relatively
brief, and that, if the agent is concentrated in
body stores, it is not subsequently released
and made bioavailable to the sensitive target.
This conclusion follows directly from charac-
terization of the transfer of an environmental
agent to the body [i.e., from exposure, CE(t),
to internal dose, CD(t)] and from the initial
biodistribution in the body to the sensitive
target [i.e., biologically effective dose, CT(t)]
with linear systems theory (5), as discussed
below. If these assumptions are incorrect,
CT(t) will be significantly different in shape
than either CE(t) or CD(t) [i.e., CT(t) will be
spread out compared with either CE(t) or
CD(t)], even in the case of a truly linear rela-
tion between exposure and internal dose, and
the use of Equation 4 will lead to an underes-
timation of the actual AUCT. Thus, the com-
mon use of the cumulative exposure index
[i.e., integrated exposure over time (Equation
2)] (4) may underestimate the AUCT.

For the sake of our discussion, a system is
considered linear if the relation between the
input [e.g., CE(t)] and the output [e.g., CT(t)]
has the properties of additivity and scaling. A
system has the property of additivity if the
sum of the outputs from two independent
inputs equals the unified output from the
sum of the inputs. That is, if the function f
that describes a system is linear, then:

f [x1(t) + x2(t)] = f [x1(t)] + f [x2(t)].

In our case, this implies that the sum of the
two actual time–concentration curves at the
sensitive target resulting from two separate
exposures would be the same as the single
time–concentration curve resulting from the
sum of the exposures. That is, we assume that
a single, complex time-varying exposure may
be conceptualized as a series of intensity-
scaled instantaneous exposures, and that the
actual observed time–concentration curves
resulting from the single, complex time-vary-
ing exposure can be modeled as the sum of
individual time–concentration curves from
the series of intensity-scaled instantaneous
exposures.

A system has the property of scaling if
the output is scalable by the input:

f [ax(t)] = af [x(t)].

In our case, this implies that the time–con-
centration curve at the sensitive target multi-
plicatively scales with a multiplicative change
in exposure. For example, if the exposure
intensity doubles, we assume that the
time–concentration curve will double (i.e.,
the concentration will double, and the curve
will retain the same shape).

Additivity and scaling are usually com-
bined into the principle of superposition. In
general, biological systems follow this super-
position principle, up to the point of satura-
tion or other mass effects at very high
concentrations.

An equally important consideration for a
linear system is time invariance. In a time-
invariant system, a time shift or delay of the
input produces a corresponding shift in the
output, without any other change. In our
case, this implies that the toxicokinetics do
not change over time (i.e., the same exposure
would always produce the same time–concen-
tration curve). This assumption is frequently
made in assessments of environmental con-
centrations of toxicants (6), but has not
always explicitly been applied to toxicokinetic
behavior. In practice, this assumption implies
that ongoing exposure does not influence the
toxicokinetics per se. Such is the case when
the adverse effects (i.e., the toxicodynamics)
do not influence physiologic processes that
govern the toxicokinetics. For example, if
lead does not influence blood flow or organ
extraction from blood, chronic exposure does
not change the biodistribution of an addi-
tional dose relative to the first dose. As a con-
trasting example, initial exposure to a
respiratory irritant may influence airway cal-
iber or mucociliary clearance, thus changing
the toxicokinetics of subsequent exposures.
For the example given below (lead-associated
neurocognitive decline), we assume that the
system is time invariant.

Given a linear, time-invariant system, the
output [e.g., CT(t)] for any given arbitrary
input [e.g., CE(t)] can be directly predicted
from knowledge of the input and the sys-
tem’s impulse response function (IRF). This
IRF characterizes the system’s response (i.e.,
the output) to an infinitely short duration
input (mathematically equivalent to a delta
or Dirac function in time, denoted as δ) (5):

[5]

From a toxicokinetic perspective, IRFTK is
the CT(t) curve that would be observed from
a single, infinitely short duration exposure.
Because IRFTK is a time-varying curve and is
conceptually derived from a single pulse
exposure, its use implies that the ongoing
toxicokinetics of even a single molecule of a
toxicant could be captured by this formal-
ism. For example, IRFTK could represent the
behavior of a single lead molecule that enters
the brain (and produces an effect), is cleared
and stored in bone, is then released back to
the blood, and reenters the brain (and pro-
duces a second effect).

Assuming that the toxicokinetics can be
described by a linear, time-invariant system,
the observed target site concentration–time

curve from an arbitrary exposure time course
is given by the mathematical convolution
(denoted by ⊗ ) of the actual exposure time
course with the target site IRFTK (5):

CT(t) = kECE(t) ⊗ IRFTK(t), [6]

where CE(t) is the exposure time–concentra-
tion curve, and kE is a constant relating units
of exposure to units of biologically effective
dose. Equation 6 may be recast as the stan-
dard convolution integral:

CT(t) = kE ∫ CE(τ)IRFTK (t–τ)dτ, [7]

where τ is a dummy variable of integration.
Of major importance, if either of the two
terms in the convolution [e.g., CE(t) or
IRFTK in Equations 6 and 7] is a δ function,
then that term drops out of the convolution,
and the relation reduces to a straight equiva-
lency. That is, if the residence time of a toxi-
cant at the sensitive target is very short, and
if there is no subsequent bioavailability due
to release from body stores, then IRFTK is
essentially a δ function, and the assumptions
implicit in Equation 4 are valid. On the
other hand, if the residence time is signifi-
cant, then IRFTK is not a δ function, but a
curve with some spread in time, and
Equation 7 must be used (with Equation 1)
instead of Equations 2 and 4 to determine
AUCT. In a similar fashion, if there is signif-
icant subsequent release from body stores,
IRFTK will be multi-peaked or have an initial
peak (representing the initial transfer from
the environment), followed by non-zero val-
ues over time (representing the release from
body stores), and Equation 7 must again be
used to compute AUCT via Equation 1.

In essence, one extreme scenario for the
IRF and Equations 6 and 7 is that IRFTK is a
δ function, implying that the residence time is
essentially zero (i.e., the active agent rapidly
transits through the sensitive target) and that
no release from body stores occurs. The oppo-
site scenario from a toxicokinetic perspective
is that the active agent permanently resides in
the sensitive target; that is, IRFTK is a con-
stant with time (either because the agent
never clears from the sensitive target or
because ongoing significant biorelease from
body stores constantly replenishes that
amount of agent cleared from the target). In
general, Equations 1 and 7 can be combined,
with AUCT expressed as a double integral,
with integration limits from time zero to the
current observation time, T:

AUCT = kE ∫T0 ∫T0 IRFTK(T–t)CE(t)dt dT [8]

If IRFTK is a δ function, the inner integral
drops out, and Equation 8 reduces to that
relation implied by Equations 3 and 4:

δ ttransfer → ( )IRF
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AUCT = kE ∫T0 CE(t)dt [9]

If IRFTK is a constant function, it drops out
of the inner integral in Equation 8, but the
double integration remains:

AUCT = kE ∫T0 ∫T0 CE(t)dt dT [10]

[Note that IRFTK is causal, which means
that it results from an event in real time;
thus, IRFTK (t < 0) = 0. This assumption
facilitates the simplification of Equation 8 to
either Equation 9 or Equation 10.]

Equations 9 and 10 define opposite sce-
narios. If the actual IRFTK is closer to a δ
function than a constant, the use of Equation
9 in environmental epidemiologic investiga-
tions should provide biologically effective
dose estimates that are better predictors of
health outcomes than would the use of
Equation 10. If the actual IRFTK is signifi-
cantly spread, either because of significant
residence time or significant release over time
from body stores, then the use of Equation
10 should provide better biologically effective
dose estimates, and thus stronger and more
consistent associations with the health out-
comes under study.

Toxicodynamics: Time-Dependent
Measures of Response
In the previous section, we used linear sys-
tems theory to characterize the time course
of the active form of the agent at the sensi-
tive target, CT(t). We now want to character-
ize the time course of the health outcome or
response, R(t). As with CT(t), R(t) can be
conceptualized as a linear system character-
ized by an IRF. Since we designated the IRF
for the toxicokinetic relation IRFTK, a simi-
lar IRF, designated IRFTD, can be used to
characterize the toxicodynamics: 

[11]

From a toxicodynamic perspective, IRFTD is
the R(t) curve that would be observed from a
single, infinitely short duration CT(t) curve
[i.e., in the case where both CE(t) and IRFTK
are δ functions]. The shape of IRFTD directly
indicates reversible versus irreversible (persis-
tent) versus progressive effects from a single
exposure, as shown in Figure 1. A reversible
effect would yield an IRFTD that goes from
zero at the point of exposure to some
response value and back to zero. An irre-
versible effect would yield an IRFTD that goes
from zero at the point of exposure to some
response value that persists, independent of
time. A progressive (increasing) effect (from a
previous exposure) would yield an IRFTD

that continuously increases with time, start-
ing from zero at the point of exposure.

The utility of Equation 11 is that it iden-
tifies issues in the design of an epidemiologic
study in which response is measured either
cross-sectionally at some time after exposure
ceases, or longitudinally. For example, a cross-
sectional design uses a surrogate of cumulative
exposure and a single measure of response at
some later time. Equation 11 tells us that
such a design is only applicable if IRFTK is a δ
function and if IRFTD is a step function (i.e.,
the effect is persistent rather than either
reversible or progressive). In a longitudinal
study, it is imperative to consider possible
shapes for IRFTD, because the observed R(t)
implies underlying IRFTK and IRFTD func-
tions that are usually not directly obtainable.
For example, the observation of a progressive
increase in effect with time could be the result
of a) the ongoing presence of active agent at
the sensitive target, due to either long resi-
dence time or ongoing release from body
stores, either of which would cause AUCT to
continue to increase with time; b) progressive
response from past exposures; or c) a combi-
nation of the two. Equation 11 suggests that
the observed R(t) could be the result of a sig-
nificantly non-δ function IRF for either the
toxicokinetic or toxicodynamic portion of the
toxicologic paradigm. For example, from a
purely mathematical point of view, the same
R(t) would be observed if either IRFTK or
IRFTD were a δ function and the other were a
step function.

Application to Longitudinal Data
Analysis

Bandeen-Roche et al. (7) have previously
described a general model for analysis of data
from prospective observational studies with
multiple outcome measures over time. Their
model includes a family of exposure sum-
maries whose mathematical formalism is a
convolution integral similar to Equation 7,
although they did not approach the overall
model’s conceptualization with linear sys-
tems. In their data analysis model, outcome
or response is a function of exposure history
plus a random error. With our notation:

R(t) = F[CT(t)] + ε(t) [12]

In their approach, F[·] represents a complex
function representing the effects of the fam-
ily of exposure summaries. They use this
construct to create a generalized linear model
that separates cross-sectional, longitudinal,
historic, and regression-to-the-mean effects.
Here, “cross-sectional,” “longitudinal,” and
“regression-to-the-mean” have their conven-
tional epidemiologic definitions, and “his-
toric” addresses the influence of previous
exposures on the toxicodynamics resulting
from subsequent exposures. If we use sepa-
rate β coefficients to designate cross-sec-
tional (βcs), longitudinal (βl), historic (βh),
and regression-to-the-mean (βrm) terms in
the model, then initial (i.e., cross-sectional)
and subsequent (i.e., longitudinal) relations

C t

C t R t
R t C t

E
toxicokinetics

T
toxicodynamics

E TK TD

( )  →
( )  →  ( )
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can be defined (with our notation):

R1 = β0 + βcsAUC1 + ε1
R2 = α0 + βcsAUC1

+ βl(AUC2–AUC1) + βhAUC1
+ βrm (β0 + βcsAUC1 + ε1)+ ε2 [13]

It is common in data and statistical analyses
of longitudinal data to use the difference
between successive measurements. In such a
case, the model above reduces to:

∆R = R2–R1
= β*+ β1(AUC2 – AUC1)

+ βhAUC1 + BrmR1 + ε* [14]

This equation is important in generalizing
the use of the linear systems approach we
propose in longitudinal data analysis. Such
analyses go directly to the heart of the toxi-
cokinetic and toxicodynamic implications of
the IRF model we have invoked.

Empirical Validation: Cognitive
Effects of Lead
Lead is widely recognized as a significant neu-
rotoxicant, and the development of biomark-
ers of lead exposure has been vigorously
pursued. X-ray fluorescence (XRF) measure-
ment of lead in bone has been adopted as the
method of choice to assess cumulative expo-
sure (8,9) because lead in blood has a clear-
ance half-time of 30 days, whereas lead in
bone has a clearance half-time of 15–30 years.
XRF measures of bone lead highly correlate

with the integral of the time-course of blood
lead concentration [also called the “cumula-
tive blood lead index” (10,11)]. Independent
data suggest an association between cumula-
tive blood lead level and cumulative brain
uptake (12–13). Because multiple blood-lead
level measurements as a function of time,
which are necessary to compute the cumula-
tive index, are usually not available in epi-
demiologic studies and only rarely in
occupational studies, single XRF measures of
lead in bone are taken to represent “cumula-
tive exposure” (via Equation 2) or “cumula-
tive dose” (via Equation 3).

Hu et al. (14) considered two paradigms
for the interpretation of skeletal lead, as mea-
sured by XRF: bone lead as an indicator of
cumulative lead exposure, and bone lead as a
source of body lead burden that can be mobi-
lized into the circulation. The first paradigm
considers bone lead as a surrogate marker for
cumulative dose to sensitive targets, whereas
the second considers bone lead as an impor-
tant endogenous source of further exposure.
With either paradigm, the dose–response
relation could be linear or nonlinear and
involve a threshold or not (14). In either
case, XRF measures of bone lead could be
predictive of a given health outcome (such as
cognitive decline) as long as a strictly linear
relation exists between the XRF measure and
AUCT. As discussed above, if either the resi-
dence time (assuming the first paradigm) or
release from bone stores (assuming the 
second paradigm) is significant, then the

XRF measure, although clearly better than a
blood measure, would not correlate as highly
with health outcome as a truer AUCT metric.
For example, a comparison of the strength of
association with health outcomes between
AUCT estimated from Equation 9 versus
Equation 10 would provide some evidence
for which of the two scenarios (short resi-
dence time and no release versus long resi-
dence time and/or subsequent release) is
more likely. This distinction is particularly
useful in making hypotheses about whether
an effect is likely to be transient or persistent
or progressive.

Methods

To empirically investigate these scenarios, we
reanalyzed data from a longitudinal study of
535 former organolead manufacturing work-
ers, for whom we have already reported results
(15–19). Informed consent was obtained
before a subject was enrolled in the study. As
reported in more detail elsewhere (19), a bat-
tery of 19 cognitive tests was obtained annu-
ally (Table 1). The results of this battery were
compared with blood and bone lead measure-
ments. Current tibial lead was measured via
XRF and used to estimate the peak tibial lead
value at the time of cessation of occupational
exposure. To do so, the clearance of lead from
bone was modeled with a mono-exponential
function, as has previously been demonstrated
to fit longitudinal bone lead data (20); the
clearance half-time was assumed to be 27
years (21). The AUCT was estimated in
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Table 1. Generalized estimating equation linear modeling results identifying predictors of annual change in neurobehavioral test scores in 535 former organolead
manufacturing workers comparing four different dose metrics, 1994–1998.

Neurobehavioral measurea Current PbBb Current TLc Peak TLd AUC-leade

(used in separate regression models of change) β (SE β) β (SE β) β (SE β) β (SE β)

Block design (Wechsler Adult Intelligence Scale) 0.161 (0.135) –0.058 (0.160) –0.223 (0.165) –0.213 (0.173)
Digit symbol (Wechsler Adult Intelligence Scale, revised) –0.187 (0.126) –0.133 (0.135) –0.038 (0.140) 0.058 (0.139)
Symbol digit –0.012 (0.102) –0.099 (0.099) –0.206 (0.107)** –0.225 (0.108)**
Serial digit learning –0.160 (0.132) –0.020 (0.153) –0.104 (0.161) –0.149 (0.165)
Rey complex figure, copy –0.001 (0.097) –0.030 (0.091) –0.138 (0.094) –0.170 (0.096)
Rey complex figure, delayed recall –0.174 (0.088)** –0.077 (0.090) –0.174 (0.096)* –0.196 (0.097)**
Rey auditory verbal learning test, immediate recall, 5 trials 0.049 (0.167) –0.255 (0.175) –0.571 (0.193)*** –0.671 (0.204)***
Rey auditory verbal learning test, delayed recall –0.055 (0.055) –0.128 (0.054)** –0.149 (0.058)** –0.134 (0.058)**
Rey auditory verbal learning test, recognition –0.009 (0.053) 0.035 (0.062) –0.028 (0.072) –0.054 (0.078)
Trails A –0.225 (0.252) –0.586 (0.273)** –0.503 (0.308) –0.451 (0.309)
Trails B –0.790 (0.629) 0.285 (0.740) –0.061 (0.851) –0.212 (0.881)
Finger tapping, dominant hand –0.196 (0.124) –0.260 (0.155)* –0.170 (0.153) –0.056 (0.150)
Finger tapping, nondominant hand –0.137 (0.099) –0.224 (0.128)* –0.169 (0.135) –0.094 (0.137)
Pegboard, dominant hand 0.045 (0.087) –0.133 (0.092) –0.138 (0.098) –0.122 (0.098)
Pegboard, nondominant hand –0.093 (0.087) –0.254 (0.100)** –0.250 (0.101)** –0.182 (0.102)*
Pegboard, both hands 0.053 (0.074) –0.048 (0.095) –0.094 (0.087) –0.117 (0.086)
Pegboard assembly 0.461 (0.235)** –0.034 (0.329) –0.320 (0.320) –0.577 (0.301)*
Stroop (C form – A form) –0.740 (0.389)* –0.676 (0.544) –1.122 (0.606)* –1.366 (0.675)**
Choice reaction time average –0.393 (2.541) –0.298 (2.703) –2.121 (2.776) –2.968 (2.989)
SIGNS of β coefficients 14/19 negative 20/22 negative 22/22 negative 21/22 negative
Statistical significance — — 1 < 0.01 1 < 0.01

2 < 0.05 (1+) 3 < 0.05 3 < 0.05 4 < 0.05
1 < 0.01 2 < 0.10 2 < 0.10 2 < 0.10

aAdjusted for age, education, visit number, testing technician, and baseline score; tests were standardized for direction so that a negative coefficient indicates worsening performance
with increasing blood or tibial lead. Beta coefficients are standardized so that they can be directly compared for each neurobehavioral test. The units of each β coefficient indicate
change in neurobehavioral test score per SD unit increase in the lead biomarker. bCurrent PbB = current blood lead level. cCurrent TL = current tibial lead. dPeak TL = peak tibial lead,
estimated from current tibial lead and years since last exposure, using an estimated half-time of lead in tibia of 27 years (see “Methods”). eAUC-lead = area under the curve of estimated
tibial lead levels versus time (see “Methods”). *** p-value ≤ 0.01; ** p-value ≤ 0.05; * p-value ≤ 0.10. 



three ways: a) by assuming that the current
tibial lead was proportional to AUCT, b) by
assuming that the peak tibial lead was pro-
portional to AUCT, and c) by forming and
integrating the estimated tibial lead time
course (which we designate AUC´). To do
the latter, we back-extrapolated from the
current tibial lead value to the time at which
exposure ended (i.e., the same process used
to get the peak tibial lead value), and then
assumed a straight line between that peak
value and a value of zero at the start of occu-
pational exposure some years earlier, as
shown in Figure 2. (We knew the date of
start of occupational exposure and cessation
of exposure for each subject.)

If the XRF measurement can be concep-
tualized via Equation 2 (i.e., the XRF value
at a given time T represents the integral
exposure from time zero to that time T),
then the AUCT estimated by the third
approach above (AUC´) represents

AUC´ = ∫T0 XRF(t)dt =∫T0 ∫T0 CE(t)dt dT [15]

Equation 15 is thus identical in form to
Equation 10 and implies permanent resi-
dence of lead at the sensitive target (central
nervous system receptors in the brain, in our
case). This is also seen by comparison of
Equation 15 with Equation 8; the only way
that Equation 8 (which is the general form)
could be identical to Equation 15 is if
IRFTK in Equation 8 is a constant.

In other words, we have four estimates of
cumulative biologically effective dose or
AUCT:
1. Current blood-lead level, which reflects

both past exposures with a 30-day clearance
half-time (i.e., it is a poor index of cumula-
tive exposure) and the reintroduction of

lead into the circulation via release from
bone stores. This metric assumes a short
residence time in brain and is mainly
reflective of present release from bone and
other stores because our population is no
longer occupationally exposed.

2. Current tibial lead level, which reflects
cumulative exposure (with a 27-year clear-
ance half-time) and the magnitude of
bone stores potentially available for
release. This metric assumes a short resi-
dence time in brain and allows for the
possibility of some release from body
stores; it better reflects cumulative expo-
sure than blood lead because of the much
slower clearance.

3. Peak tibial lead level, which reflects cumu-
lative exposure (and is corrected for clear-
ance) and the magnitude of bone stores
potentially available for release. This met-
ric also assumes a short residence time in
brain and allows for the possibility of
some release from body stores.

4. AUC´, which reflects cumulative biologi-
cally effective dose in the case of permanent
residence (either because the initial resi-
dence time is long and/or there is signifi-
cant ongoing release from bone stores).
Comparisons of the association of these

four estimates of AUCT with each of the 19
cognitive tests were based on linear regression
using generalized estimating equations
methodology. Beta coefficients for the four
estimates of AUCT, for each of the 19 cogni-
tive tests, were obtained and assessed for statis-
tical significance. The cognitive test outcomes
were z-transformed before modeling so that
the β coefficients could be directly compared.
The linear regression models controlled for
age, education, visit number, testing techni-
cian, and baseline score on each test.

Two types of linear regression models
were used. The first (R1 in Equation 13)
focused on cross-sectional data from the
baseline measurements. Here, the baseline
score on each of the 19 cognitive tests were
the dependent variables in the linear regres-
sion models. The second focused on longitu-
dinal data, starting with the baseline data,
and adding three subsequent measurements,
each 1 year apart, for each of the 19 cogni-
tive tests. Here, the dependent variables were
the annual change scores (via Equation 14),
in practice defined as (Ri – R0)/∆ time rather
than Ri –Ri–1, and generalized estimating
equations methods were used to examine
associations of the lead measures with
change in test scores over time.

Results

Cross-sectional analyses. We previously
reported the associations of current and peak
tibial lead levels with 19 neurobehavioral test
scores (16); we now report associations for
blood-lead level and AUC´. Taking a p-value 
< 0.05 as significant, current blood lead level
was significantly associated with 4/19 tests,
current tibial lead level with 9/19, peak tibial
lead level with 11/19, and AUC´ with
14/19. All significant β coefficients indicated
that increasing lead levels were associated
with lower neurobehavioral test scores.

Longitudinal analyses. Table 1 shows the
results of the linear regression analyses using
the baseline values for blood lead, current
tibial lead, peak tibial lead, and AUC´.
Taking a p-value < 0.05 as significant, cur-
rent blood lead level was associated with
2/19 neurobehavioral test change scores
(although one of the two significant β coeffi-
cients was in the opposite direction than
expected), current tibial lead level with 3/19,
peak tibial lead level with 4/19, and AUC´
with 5/19. Of interest, current blood lead
level had the highest β for 3/19 associations,
current tibial lead level for 4/19 associations,
peak tibial lead level for 3/19 associations,
and AUC´ for 9/19 associations. There was
only one instance where AUC´ did not have
a significant β coefficient when one of the
other estimates did; in this case, current tib-
ial lead level produced the only β coefficient
that achieved statistical significance.

Because the cognitive test outcomes were
standardized, both the direction and magni-
tude of the associations (β coefficients) of
each AUCT lead measure with each neurobe-
havioral test change score could be directly
compared. Current blood-lead level had only
two significant β coefficients, one of which
was positive (i.e., in the opposite direction
than expected). Use of current blood level
would thus lead to the conclusion of no asso-
ciation between lead and cognitive decline.
In contrast, progressing from current tibial
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lead level to peak tibial level to AUC´
increased the number of significant β coeffi-
cients, and AUC´ produced the largest β
coefficient in more of the 19 tests than any
of the other 3 measures.

Even though the β coefficients changed
depending on which of the four estimates of
AUC was used, some association between
the four estimates was present. Pearson’s cor-
relations were significant (p < 0.01) between
a) blood and current tibial lead (r = 0.44),
peak tibial lead (r = 0.26), and AUC´ (r =
0.18); b) current tibial lead and peak tibial
lead (r = 0.86), and AUC´ (r = 0.70); and c)
peak tibial lead and AUC´ (r = 0.94).

A critical issue in the interpretation of
the longitudinal test outcomes is whether the
change in cognitive performance over time
could be completely (and thus solely)
explained by the increase in AUC´ with time
(since the limit of integration for any AUC
measure progressively increases with time).
In other words, is any progressive cognitive
decline simply the result of progressive
cumulative dose? Accordingly, we also evalu-
ated a generalized model in which δ-AUC´
(δ-AUC´ = AUC´ end-of-interval – AUC´
baseline) was used instead of baseline AUC´.
With this model, only 2/19 tests had signifi-
cant beta coefficients, and the change in cog-
nitive test outcomes could not be explained
by the change in AUC alone. This suggests
that a progressive model for IRFTD needs to
be considered.

Discussion

In epidemiology, assessing the association
between exposure to a putative toxicant and
subsequent health outcome implies the exis-
tence of an underlying biologically based
dose–response relation. The goal of exposure
or internal dose assessment is thus to find an
index that best represents the cumulative bio-
logically effective dose of the active form of
the toxicant at the sensitive target. In prac-
tice, this index should be proportional to the
integral of the time course of the concentra-
tion of active agent at the sensitive target (i.e.,
Equation 1), designated AUCT. The use of
cumulative exposure or internal dose as a sur-
rogate for this time–concentration integral
will only prove useful if the toxicokinetics are
approximately linear over the concentration
range expected, and if the effects are approxi-
mately cumulative (4,6). This is simply a
restatement of Haber’s rule: tissue damage
should be related to the product of the mean
exposure intensity and time (6). Thus, a
major issue in the development and use of
biomarkers is the degree to which these
assumptions hold. In other words, it is
important to understand whether the toxico-
kinetics and toxicodynamics are linear and
time-invariant mathematically, and whether

the toxicodynamics represent a reversible,
persistent, or progressive process.

In this report, we present a conceptual
framework based on linear systems theory as
an aid to identifying and considering these
issues. With respect to toxicokinetics, we have
attempted to relate different surrogates of
cumulative biologically effective dose and to
identify the conditions under which certain
assumptions are implicitly invoked. We have
introduced the common linear systems con-
cept of an impulse response function, IRFTK,
to describe the toxicokinetics following an
infinitely short duration exposure. Use of lin-
ear systems theory and this concept allows us
to define a general relation between the expo-
sure time-course and the time-concentration
curve of the active form of the agent at the
sensitive target, whose integral, AUCT, is
likely best correlated with response. This gen-
eral relation (Equation 8) could be trans-
formed into two more specific relations, one
representing the case where the residence time
in the sensitive target is infinitely short and no
biorelease occurs (Equation 9), and another
representing the case where the effective resi-
dence time is infinitely long (either because
the agent never clears from the sensitive target
or because ongoing significant biorelease from
body stores constantly replenishes that
amount of agent cleared from the target;
Equation 10).

We also sought to use linear systems the-
ory to conceptualize the time-course of
response, which was particularly important
for the longitudinal data presented here, in
which we studied the association of four esti-
mates of AUCT with cognitive decline in an
occupationally exposed cohort of 535 work-
ers. We found that progressively more β
coefficients were statistically significant as we
moved from current blood lead level to cur-
rent tibial lead level to peak tibial lead level
to AUC´ in both cross-sectional and longitu-
dinal analyses.

Conceptualizing AUCT in this way and
generating multiple estimates of AUCT is
helpful in several ways: it clarifies the distinc-
tions between exposure, internal dose, and
biologically effective dose; it guides the
development of different estimates of AUCT;
and the results of a comparison of the associ-
ation of these different estimates of AUCT
with health outcomes provide indirect evi-
dence of the underlying biological phenom-
ena. For example, for those health outcomes
in which a measure of recent or current dose
has the highest association, the health out-
come is likely an acute, reversible process,
whereas for those health outcomes in which
a measure of cumulative dose has the highest
association, the health outcome is likely a
persistent or progressive accumulative
process. For those health outcomes in which

a measure that includes consideration of resi-
dence time has the highest association, the
agent’s toxicokinetics likely include signifi-
cant residence in the sensitive target and/or
significant release from body stores.

Significant successes and utility have been
reported with the use of pharmacokinetic
modeling in predicting the toxicokinetics of
environmental agents such as lead (4,22).
Our approach differs from these previous
mathematical efforts in that it is “model free”
(i.e., it does not assume a certain “topology”
or relationship among a series of anatomic or
physiologic compartments, as do classical
pharmacokinetic modeling approaches).
Rather, our approach makes use of linear sys-
tems theory to describe the IRF of the system
nonparametrically. This nonparametric IRF
exists independent of compartment-based
descriptions. In other words, there are no pre-
determined parameters whose presence, num-
ber, and character are fixed by an a priori
hypothetical model.

Having stated this, we emphasize that we
are not asserting that our approach is intrinsi-
cally better than multicompartment model-
ing; rather, we view the two approaches as
highly complementary. For example, both
may lead to a useful prediction of AUCT, but
they require different assumptions and inde-
pendent data. The choice of approach
depends on prior knowledge and on the
types of information and relations desired. If
compartments and relations can be identified
and appropriate quantitative rate constants
determined, then the multi-compartment
toxicokinetic approach yields accurate predic-
tions (4,22). On the other hand, when less is
known about the potential compartments,
and particularly when little is known about
rate constant values, the conceptualization of
the toxicokinetics via a linear system with an
IRF may prove useful. Such is the case when
an empirical time course in an organ or struc-
ture of interest is already known (23). In this
regard, the empirical time course need not
come from a δ input function because decon-
volution analysis can be used to obtain
IRFTK from the combination of any arbitrary
but known input function and the empirical
time course (5). Once IRFTK is obtained in
this way, the time-course for any other arbi-
trary but known input function can be pre-
dicted via Equation 6.

We also emphasize that our conceptual
framework covers both toxicokinetics and
toxicodynamics, whereas pharmacokinetic
modeling only addresses predictions of toxi-
cokinetics. In this regard, we highlight the
complementary nature of pharmacokinetic
modeling and linear systems analysis by sug-
gesting that pharmacokinetic modeling can
be used, when available, to predict IRFTK for
subsequent use in linear systems analysis of
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the toxicodynamics. In essence, either phar-
macokinetic modeling or our approach
could be used to predict the needed kinetic
time-course if the right data are in hand; it is
important that the types of data are strik-
ingly different. In practice, we used the toxi-
cokinetic portion of our conceptual
framework to create four different estimates
of AUCT; we do not claim that any of these
estimates is more accurate than one obtained
from pharmacokinetic modeling. Rather, the
conceptual framework provides a different
understanding of the meaning of each of
these estimates than one derived from phar-
macokinetic modeling, and this understand-
ing helps in the interpretation of the actual
data.

The conceptual framework as presented,
embodied in specific equations, and used so
far, requires that the toxicokinetics and toxi-
codynamics be linear and time invariant.
With respect to toxicokinetics, when the
active form of the agent is produced by
metabolism, nonlinear effects, especially at
high doses, are expected as the processes sat-
urate. Nonlinear kinetics could also arise
from changes in individual uptake or suscep-
tibility with time, from synergistic or antago-
nistic effects related to concurrent mixed
exposures to other toxicants, from allergic
responses, from changes produced by the
initial exposure to that agent (e.g., upregula-
tion of cytochrome P450), or from dose-rate
effects (6). With respect to toxicodynamics,
for stochastic processes like carcinogenesis,
dose–response relations may be linear or
nonlinear. In the case of a direct genotoxic
carcinogen, a linear or linear-quadratic rela-
tion between AUCT and response is
expected (4). For nonstochastic processes, a
linear relation with a threshold is commonly
observed. As with the toxicokinetics, up- or
downregulation of receptors or tolerance
effects can introduce nonlinearities. To the
extent to which strict linearity is not present,
the power of the conceptual framework and
actual approach decreases; the degree of lin-
earity may be different for the toxicokinetic
and toxicodynamic portions of the analysis
in a given application.

In contrast to the requirement for linear-
ity, time invariance is not strictly required in
our approach. For the sake of simplicity of
presentation and implementation, we have
invoked the assumption of time invariance;
this assumption is what leads to the specific
convolution integral given in Equation 7,
and repeated below:

CT(t) = kE ∫CE(τ)IRFTK (t–τ)dτ [7]

If IRFTK is time varying, the convolution
integral given in Equation 7 must be modi-
fied, as follows:

CT(t) = kE ∫CE(τ)IRFTK(t;τ)dτ [7´]

Equation 7´ differs in a subtle way from
Equation 7: IRFTK is now a function of both
t and τ, not just t – τ. An analogous situation
holds for IRFTD. This implies the need to
obtain a family of IRFs (as a function of t)
rather than just a single IRF. In practice, if
the IRF changes only slowly, then it becomes
possible to treat segments of time as being
time invariant and to use a single IRF during
that time period.

In essence, our approach has permitted
initial comparisons of different assumptions
about the residence time of lead in brain,
release from bone stores, and the persistence
or progression of lead-associated neurobe-
havioral effects. Using both cross-sectional
and longitudinal data analysis, we have been
able to show, in preliminary form, that a) a
measure of cumulative lead dose (AUC´)
that implies either long residence time of
lead in brain or significant ongoing release of
lead from body stores is the best predictor of
both test scores at cross-section and test
score declines over time; b) the change in
this AUC metric over time is a poor predic-
tor of longitudinal test score change; and c)
the observed longitudinal change in test
scores is consistent with a model of progres-
sive neurobehavioral effect. Given our
knowledge about the clearance half-time of
lead in brain and the current blood and tib-
ial lead levels in the former workers, we
believe that the observed annual test score
declines are likely due to a combination of
newly induced effects from lead released
from bony stores and, more significantly,
progressive effects from past exposures to
lead. In any event, the model requires that,
at a minimum, effects persist for many years
past the exposure that triggered the effect.
These data thus support the hypothesis that
this is not a transient neurochemical effect,
that, by necessity, would depend on the con-
tinued presence of lead in brain to sustain
the effect, but rather a persistent structural
change (which may have been initially trig-
gered by neurochemical events).

In general, elimination of the toxicant
from the sensitive target site probably repre-
sents the rate-limiting step between exposure
and response (6). For example, Rappaport (6)
has alluded to the physiologic damping that
“resulted from accumulation of lead over sev-
eral months owing to the slow rate of elimina-
tion and distribution of this metal from the
blood.” If this elimination is slow, the accu-
mulated burden is large relative to the
amount of toxicant received (6). In such a
case, knowledge of AUCT itself (compared
with either integrated exposure or internal
dose) will better predict response because even
large short-term fluctuations in exposure will

not directly provide important information
on biologically effective dose.

Ultimately, we are interested in the
development, validation, and application of
biomarkers whose behavior we understand
vis-à-vis the toxicologic paradigm. In this
regard, the use of the IRF has already been
described in noninvasive imaging (24) and
may provide a means to obtain impulse
response functions for the toxicokinetics and
toxicodynamics of environmental agents of
interest, such as lead, which has been radio-
labeled (25).
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