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Although the association between ovarian
function and bone loss is well recognized, the
minimal hormonal requirements for main-
taining healthy bones are poorly defined.
Exercise-induced amenorrhea (Beitins et al.
1991; Broocks et al. 1990; Bullen et al.
1985), prolactin-secreting tumors (Klibanski
et al. 1980; Schlechte et al. 1983), and
gonadotropin-releasing hormone (GnRH)-
induced hypogonadism (Scharla et al. 1990;
Surrey and Judd 1992) all result in bone loss
in women. Female athletes have been shown
to lose bone despite increased skeletal loading,
a situation that places these women at
increased risk for bone injuries (Cann et al.
1984). Older studies suggested that bone loss
in healthy young women is related to abnor-
malities of progesterone production (Bullen et
al. 1985; Prior 1990). However, recent reports
have indicated that even modest exercise can
result in alterations of ovarian function charac-
terized by perturbations of the follicular phase
but not the luteal phase of the menstrual cycle
(De Souza et al. 1997; Waller et al. 1996;
Winters et al. 1996). These subtle alterations
of the follicular phase were associated with
decreased bone integrity and an increased inci-
dence of bone fractures (De Souza et al. 1997).
Other data suggest that stress-related effects on
bone health are associated with alterations in
the rise of follicle-stimulating hormone (FSH)

during the late luteal phase of the menstrual
cycle, which in turn alter the follicular phase of
the next cycle (De Souza et al. 1998).

The number of women in the workforce
has grown over the past 20 years and contin-
ues to expand. Because a majority of working
women are in their reproductive years, there
is public concern about exposures in the
workplace that could adversely affect men-
strual function, fertility, or pregnancy. As a
consequence of this concern, several studies
have been designed to identify such hazards
(Eskenazi et al. 1995; Gold et al. 1995a,
1995b; Lasley et al. 1995; Schenker et al.
1995). Despite clear evidence that subtle stres-
sors such as changes in work schedule also may
have adverse effects on reproductive health,
there have been few studies on such nonchemi-
cal hazards, and there is little understanding of
their mechanism(s) of action. Such stressors
not only may have intrinsic adverse effects, but
also they may exacerbate the effects of other
workplace hazards. The presence of these stres-
sors also can confound interpretation of the
results of studies designed to evaluate other
putative hazards.

Previous studies have indicated that stres-
sors as subtle as night work or shift work can
lead to irregular menstrual cycles (Miyauchi
et al. 1992) through perturbations of the
diurnal rhythms of reproductive hormones.

The present study was conducted to test the
hypothesis that stresses associated with the
disruption of the regular work schedule
induce alterations in ovarian function which,
in turn, are associated with transient bone
resorption. Specifically, we assessed work shift
status, ovarian hormone profiles, and bone
metabolites during two consecutive menstrual
cycles of female workers to determine if a
delay of ovulation and lengthening of the fol-
licular phase are induced by the changing of
work-shift regularity, and if these alterations
of the menstrual cycle are associated with
increased bone resorption.

Materials and Methods

Subjects. Twenty-one healthy Chinese female
workers on rotating work shifts in a textile
mill in Anqing, China, were recruited into the
study during 1996–1998. The Human
Subjects Committees at the Harvard School of
Public Health and the China Medical
Institutes approved all study procedures, and
informed consent was obtained from each par-
ticipant (Cho et al. 2002; Ronnenberg et al.
2000). Daily early morning urine samples
were collected by the subjects during consecu-
tive menstrual cycles. Paired sequential cycles
were identified in which one of the pair was
longer than the other. Of the 21 subjects
enrolled, 9 subjects were excluded from the
study because of noncompliance with the
study protocol. Five subjects did not collect
daily urine samples during the luteal-follicular
phase transition (LFPT). Samples collected
from the other 4 excluded subjects were too
dilute to provide reliable information for fol-
licular phase determination, as shown by low
levels of creatinine in the sample (< 0.2
mg/mL). There was no association between
the noncompliance of the subjects and their
work shift schedules, and no other criteria
were used to exclude subjects from the study.
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Of the 12 women (23–31 years of age) in the
study, 11 were cotton-weaving workers and
one was a laboratory technician. All 12
women worked rotating shifts during the
study period, but the types of work shift were
not known to the investigators until after the
laboratory analyses were complete.

Menstrual cycle definitions. The menstrual
cycle length was defined as the number of days
from the onset of one period of menstrual
bleeding to the day before the onset of the next
period of menstrual bleeding. All cycles were
determined to be ovulatory, as evidenced by a
sustained rise of urinary pregnanediol-3-glu-
curonide (PdG) for 10 or more days immedi-
ately preceding the onset of menstruation. The
midcycle urinary FSH peak was used as a bio-
marker to indicate the day of ovulation (Li et
al. 2002) and for follicular phase length deter-
mination. The follicular phase length was
defined as the number of days from the first
day of menstruation up to and including the
day of the FSH peak. The remaining days in
the cycle were defined as the luteal phase. The
LFPT was defined as the interval including day
–8 to –1 of the preceding cycle, when day 1 is
the first day of the menstrual bleeding in the
study cycle. In other words, the LFPT was the
last 8 days of the preceding cycle. Work sched-
ules were evaluated during the LFPT preceding
each of the two study cycles. FSH profiles were
determined during the LFPT preceding the
second of the two study cycles.

Sample collection and storage. The urine
samples (3–5 mL) were self-collected, stored
frozen without preservatives in the subjects’
home refrigerator freezers at –10°C, then
transferred to the laboratory at the end of
each menstrual cycle for storage at –35°C. All
samples collected during the entire cycle were
thawed and analyzed for estrone conjugates
(E1C), PdG, FSH, and creatinine, and then
were refrozen. When cycles were shown to be
ovulatory and the follicular phase had been
defined, the samples collected in the follicular
phase were thawed for a second time and ana-
lyzed for deoxypyridinoline (DPD).

Laboratory analyses. Assays for urinary
E1C, PdG, and the beta subunit of FSH were
performed as previously described (Munro et
al. 1991; Qiu et al. 1998). Urinary DPD was
measured using the Pyrilinks-D kit (Metra
Biosystems, Inc., Mountain View, CA). All
assay results were indexed by the concentra-
tion of creatinine in the same urine sample.
In the present data set, the interassay coeffi-
cients of variation for E1C, PdG, FSH, and
DPD were 10.4, 10.4, 12.9, and 11.7%,
respectively.

Statistical analysis. The hormone values of
urinary E1C, FSH, and PdG, as well as uri-
nary DPD values, were compared between
longer cycles and shorter cycles by using 2-way
analysis of variance with repeated measures.

The area under the curve (AUC) of DPD was
calculated by trapezoidal rule (Holder et al.
1999) and compared between longer cycles
and shorter cycles by paired t-test. All data are
presented as mean ± SEM. We considered p <
0.05 significant.

Results

Seven subjects had a cycle pair in which a
longer length cycle was followed by a shorter

cycle, and five subjects had a shorter length
cycle followed by a longer cycle (Table 1).
The mean length (± SEM) of the longer
cycles was 37.4 ± 1.3 days, and the mean
length of the shorter cycles was 28.8 ± 0.74
days. The follicular phase length was signifi-
cantly longer in the longer cycles compared
with the shorter length cycles (21.9 ± 1.2 vs.
14.2 ± 0.56 days; p < 0.001), but there was
no difference in the lengths of the luteal

Table 1. Characteristics of menstrual cycles.

First cycle Second cycle
Subject Cycle length (days) Follicular length (days) Cycle length (days) Follicular length (days)

1 31 17 34a 18
2 33a 18 22 14
3 31 17 39a 25
4 33a 18 31 15
5 38a 22 31 15
6 37a 20 30 14
7 37a 21 28 12
8 46a 29 29 10
9 29 15 46a 31
10 28 13 35a 20
11 33a 20 27 14
12 28 14 38a 21
aLonger length cycle.

Figure 1. Daily urinary E1C concentrations (A) and FSH concentrations (B) indexed by creatinine concen-
trations of the same sample for 12 women that had pairs of sequential menstrual cycles in which one was
of shorter length and the other was of longer length; both groups of cycles were aligned to the day of the
midcycle FSH peak (day 0). (A) There was no statistical difference between E1C values on any day when
the shorter and longer cycles were aligned in this manner (p > 0.05). (B) There was no statistical differ-
ence between FSH values on any day when the shorter length and longer cycles were aligned in this
manner (p > 0.05).
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phases between the two cycle types (14.6 ±
0.75 and 15.5 ± 0.36 days; p > 0.05).

Urinary hormone metabolite profiles were
characterized by a gradual rise and abrupt fall
of E1C (Figure 1A), with a single, prominent
periovulatory FSH peak on approximately day
14 (shorter length cycles) or day 22 (longer
cycles) after the onset of menstruation. When
the midcycle FSH peak was defined as day 0,
the E1C profiles from day –5 to day 0 were
not different between the two groups of cycles
(p > 0.05) (Figure 1A). Neither the FSH peak
concentrations (2.95 ± 0.85 vs. 3.14 ± 0.91
ng/mg Cr, p > 0.05) (Figure 1B) nor the PdG
profiles (data not shown) were statistically dif-
ferent between the two cycle groups. The only
difference between the hormone profiles in the
shorter length cycles and longer cycles was that
the urinary E1C and FSH peaks were delayed
in the longer cycles (Figure 1A). In addition,
FSH levels were significantly lower during the
interval from day –7 to day –3 of the LFPT
preceding longer cycles compared with FSH
levels in the same interval prior to shorter
length cycles (from 0.35 ± 0.04 ng/mg Cr vs.
0.69 ± 0.12 on day –7 to 0.56 ± 0.10 ng/mg
Cr vs. 0.74 ± 0.11 on day –3; p = 0.045)
(Figure 2).

DPD concentrations during the follicular
phase were compared between the longer
cycles and the shorter cycles. In general, DPD
concentrations gradually increased during the
late follicular phases of longer cycles. Trend
analysis showed that the slope of the urinary
DPD trend line for longer cycles was statisti-
cally different from zero, whereas there was
no statistically significant trend for shorter
length cycles (p = 0.021 for long cycles)
(Figure 3). Mean concentrations of DPD

were significantly higher in longer cycles com-
pared with shorter length cycles on day –1
before the FSH peak (66.9 ± 6.62 vs. 54.2 ±
4.42 nmol/L; p = 0.043) and on day –2 (62.3
± 5.57 vs. 48.4 ± 5.68 nmol/L; p = 0.026),
whereas DPD levels were not significantly dif-
ferent between the two cycles in the early and
midfollicular phases (from 52.2 ± 4.28 vs. 57.3
± 5.56 on day –9 to 70.9 ± 11.4 vs. 53.1 ± 3.5
on day –4, longer cycles vs. shorter cycles; p >
0.05). To address the overall effects of irregular
work schedule changes on bone resorption, the
AUC for DPD was analyzed to evaluate the
excretion of DPD over time during the follicu-
lar phase of menstrual cycles. The area under
the DPD concentration curve from day –8 to
day –1 before the FSH peak was significantly
greater (429.2 ± 29.2 vs. 389.9 ± 24.8; p =
0.042) in longer cycles compared with shorter
cycles, and this difference in bone resorption
was greater (189.8 ± 15.5 vs. 163.8 ± 13.3; p <
0.004) when only the late follicular phase (day
–4 to –1) was considered.

Work schedules were available for all 12
of the cycles preceding the shorter length
study cycles and for 10 of the cycles preceding
the 12 longer study cycles. A regular, forward
progression of work shifts (day–day–swing–
swing–graveyard–graveyard–off day–off day)
with no more than two consecutive shifts was
found preceding all but one of the 12 shorter
length cycles (first cycle of subject 1). In con-
trast, only 5 of the 10 longer cycles were asso-
ciated with this normal progression, and 4 of
the 5 remaining longer cycles (second cycle of
subjects 3, 9, 10, and 12) were preceded by
extra off days, which broke the regularity of
the work schedules. The LFPT preceding the
remaining longer menstrual cycle (first cycle

of subject 8) was characterized by an extended
period of work (swing–swing–swing–grave-
yard-day) (Table 2).

Discussion

Previous reports indicate that even subtle stres-
sors, such as night work or shift work, can
increase the incidence of irregular menstrual
cycles in healthy young women (Miyauchi et
al. 1992). In the present study, rotating shift
workers had some shorter length menstrual
cycles (27–31 days) as well as some longer
cycles (33–46 days). The hormone profiles of
these cycles show that the variations in cycle
length resulted primarily from differences in
the length of the follicular phase of the cycle
rather than the length of the luteal phase. Our
findings suggest that the disruption of the reg-
ularity of rotating shift work is associated with
longer menstrual cycles characterized by a
delay in the day of ovulation and a lengthen-
ing of the follicular phase. We also found evi-
dence of increased bone resorption in the
follicular phases of these longer cycles. In this
study, we were able to identify pairs of sequen-
tial menstrual cycles that included cycles of
different lengths. Our ability to study consec-
utive cycles of the same woman decreases the
possibility that changes in nutrition, general
health, or lifestyle would contribute to
changes in hormone secretion or bone accre-
tion. In fact, all of the endocrine parameters
that we measured were similar in the longer
and shorter length cycles except for those asso-
ciated with the delay of ovulation.

Our previous study of young women who
exercised regularly demonstrated that pertur-
bations of FSH secretion during the LFPT are
associated with a delay of ovulation in the sub-
sequent cycle and a prolongation of its follicu-
lar phase (De Souza et al. 1998). Thus, it
appears that this transition period from the
luteal phase of one cycle to the follicular phase
of the next cycle is particularly sensitive to
effects of environmental stressors. The present
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Figure 2. Daily urinary FSH profiles during the LFPT preceding shorter cycles and longer cycles. Day 1 is
the first day of the next menstrual bleeding. FSH levels were significantly lower during the interval from
day –7 to day –3 of the LFPT preceding longer cycles compared with those in the same interval prior to
shorter length cycles (p < 0.05).
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report suggests that changes in the regularity
of work shift can have adverse effects on men-
strual function when they take place at this
time. The frequency of off days during the
LFPT may have similar effects, but further
investigation of confounding factors is needed
before any conclusions can be drawn. The
observed differences in FSH profiles during
the transition periods preceding shorter and
longer cycles may provide an important clue
to the underlying mechanism. The apparent
inhibition of FSH secretion during this time is
consistent with a previous study of women
who exercised regularly in which a decreased
FSH secretion during the LFPT was 90% pre-
dictive of a prolonged follicular phase and
delay of ovulation in the following menstrual
cycle (De Souza et al. 1998).

This study not only confirms previous
reports that shift work and/or night work per-
turb ovarian function but also it demonstrates
an adverse effect of such stressors on bone
health. There was significantly greater bone
resorption in the follicular phase of longer
cycles than in that of shorter cycles, as mea-
sured by levels of urinary DPD. DPD is a
crosslink of bone type-1 collagen released
during the bone resorption process and
excreted unmetabolized in the urine. Elevated
levels of urinary DPD indicate increased bone
resorption. DPD measurements are used to
identify and evaluate individuals at risk for
accelerated bone loss (Robins et al. 1994).
Elevated levels of DPD can be measured
before changes in total bone mineral density
are observed by densitometry (Fujimura et al.
1997). In addition, DPD measurements can
detect whether supplementation and lifestyle
interventions are affecting the rate of bone
loss. Although DPD concentrations were not
measured during the luteal phases of the men-
strual cycles in this study, DPD concentra-
tions were not different in shorter cycles and
longer cycles during the early follicular phase
and midfollicular phase. These similarities,
along with the normal hormone profiles
observed during the luteal phases of both

cycle types, support the concept that differ-
ences in bone resorption in this study were
limited to the follicular phase. The only dif-
ference in the endocrine profiles of the two
cycle types was in the early follicular phase
and appeared to reflect a delay in follicle
recruitment. However, this delay in follicle
recruitment did not appear to have an imme-
diate effect on bone mobilization. The differ-
ences observed in DPD were not apparent
until the late follicular phase, when estrogen
levels were essentially the same in the two
groups. Thus, the apparent endocrine cause
for the loss of bone preceded the detection of
bone resorption by several days.

Previous studies have indicated that prog-
esterone is anabolic in women, and reduced
production of progesterone is related to bone
loss in young women (Bullen et al. 1985;
Prior 1990). In contrast to these earlier
reports, the present data show no difference in
luteal phase progesterone profiles, but rather
indicate that subtle changes in the length of
the follicular phase and its hormone dynamics
are associated with transient bone resorption.
This finding is consistent with earlier reports
from this laboratory on studies of healthy
women (De Souza et al. 1997; Waller et al.
1996). Although it is likely that abnormalities
in the follicular phase can result in bone
resorption, the underlying mechanism(s) is
still not clear. During the long follicular
phases observed in this study, estrogen was
delayed in reaching normal circulating levels.
However, the evidence of bone resorption was
not detected in urine until several days later.

In conclusion, the present data indicate
that the LFPT is a particularly sensitive
period of the menstrual cycle when environ-
mental stressors may be effective in perturb-
ing ovarian function. During this time,
stressors such as exercise or changes in work
schedule can result in a perturbation of FSH
secretion. Diminished FSH secretion during
this time appears to delay the recruitment of
the next follicle cohort, with a consequent
delay of ovulation in the next menstrual cycle

and a prolongation of its follicular phase.
Although the delay of ovulation does not
appear to decrease fecundity as indicated by
the periovulatory hormone profiles (Li et al.
2001), one important adverse effect is a tran-
sient resorption of bone. Such perturbations, if
repetitive, may increase the risk of osteoporosis
in later life.
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