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For nearly half a century, studies of both nat-
ural and laboratory vertebrate populations
have suggested that exposure to a variety of
environmental chemicals, including pesti-
cides, herbicides, and industrial solvents, elic-
its deleterious effects during development by
interfering with hormone-sensitive processes
(Colborn et al. 1993). However, concern over
the potentially harmful effects of these com-
pounds has escalated within the past decade,
spurred on by data demonstrating that more
than 100,000 chemicals are now being pro-
duced on an industrial scale and several thou-
sand new chemicals are introduced each year
(Younes 1999). Some of the most prevalent
and persistent of these compounds include
the pesticide 1,1,1-trichloro-2,2-bis(p-chloro-
phenyl)ethane (DDT) and its major metabo-
lite, 1,1-dichloro-2,2-bis(p-chlorophenyl)
ethylene (p,p´-DDE; Kelce et al. 1998;
Sohoni and Sumpter 1998); methoxychlor,
an analog of DDT (Palanza et al. 1999); and
nonylphenol and octylphenol, degradation
products of the alkylphenol polyethoxylates
(APEOs). These APEOs are widely used as
nonionic surfactants in commercial produc-
tion as well as in herbicides, pesticides, poly-
styrene plastics, and paints (Cooper and
Kavlock 1997; Sonnenschein and Soto 1998;
White et al. 1994). Although contamination
by these environmental toxicants is often first
evident in the water supply, most of these

compounds are highly lipophilic and bioaccu-
mulate in fatty tissue, thereby presenting
potential developmental hazards for both
aquatic and terrestrial species (Crews et al.
2000; Menditto and Turrio-Baldassarri 1999;
Sonnenschein and Soto 1998).

The majority of environmental toxicants
known to interfere with hormone signaling,
including nonylphenol and octylphenol, are
believed to exert their effects at nuclear estro-
gen receptors (ERα or ERβ; Mueller and Kim
1978; White et al. 1994). However, recently it
has been shown that some compounds,
including p,p´-DDE, are devoid of action at
the ER, but block signaling mediated by the
androgen receptor (Kelce et al. 1998; Kelce
and Gray 1999; Sohoni and Sumpter 1998).
Finally, some environmental estrogens,
including the major metabolite of methoxy-
chlor, 2,2-bis(p-hydroxyphenyl)-1,1,1-
trichloroethane, have been shown not only to
be active at the ER [for review, see Cummings
(1997)] but also to elicit biologic actions as an
antiandrogen via nuclear hormone-indepen-
dent mechanisms (Ghosh et al. 1999; Ren
et al. 1997; Waters et al. 2001). 

There is a wealth of data on the effects of
exposure of environmental toxicants believed
to interfere with hormone-sensitive processes
related to reproductive development and sex-
ual differentiation (Crews et al. 2000; Gray
1992; Kelce and Gray 1999; Sharara et al.

1998), but few studies have examined the
effects of early exposure to these environmen-
tal toxicants on other aspects of vertebrate
development. Because of their rapid develop-
ment and their aquatic nature, amphibians
may be particularly sensitive and useful sen-
tinels for studying the effects of environmen-
tal toxicants on early development (Blaustein
et al. 1994; Kloas et al. 1999). In particular,
the laboratory frog Xenopus laevis provides an
excellent model system to assess the effects of
early exposure to environmental toxicants
because of its ability to generate embryos on a
daily basis and because the molecular and
organismal development of this vertebrate has
been described extensively (for review, see
Mayor et al. 1999; Spitzer and Ribera 1998;
Weinstein and Hemmati-Brivanlou 1999). A
recent study (Mann and Bidwell 2000) pub-
lished during the course of the present experi-
ments showed that chronic exposure (~96 hr)
of Xenopus embryos to the nonylphenol poly-
ethoxylate (NPEO), Teric GN8, at moderate
concentrations (EC50 = 2.8–4.6 mg/L; ~5–8
µM assuming a standard oligomer length of
8) induced malformations in Xenopus tad-
poles including cardiac edema, microph-
thalmia, and improper gut coiling in embryos
examined at stage 46 (Nieuwkoop and Faber
1967) and increased mortality by stages
39–40 in embryos exposed to higher concen-
trations (6.0–10 mg/L; 10–17 µM). 

The effects reported for exposure to this
synthetic compound mirror those produced
by the naturally occurring estrogen 17β estra-
diol) (E2) (Nishimura et al. 1997), which is
consistent with a common mechanism of
action for NPEO and E2. Specifically,
Nishimura et al. (1997) demonstrated that
exposure (beginning at stage 3) to 10 µM E2
caused increases in mortality and increased
incidence of malformations, including
crooked vertebrae, swollen stomachs, small
eyes and heads, and suppressed organogenesis
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A growing number of environmental toxicants found in pesticides, herbicides, and industrial solvents
are believed to have deleterious effects on development by disrupting hormone-sensitive processes.
We exposed Xenopus laevis embryos at early gastrula to the commonly encountered environmental
estrogens nonylphenol, octylphenol, and methoxychlor, the antiandrogen, p,p´-DDE, or the syn-
thetic androgen, 17α-methyltestosterone at concentrations ranging from 10 nM to 10 µM and
examined them at tailbud stages (~48 hr of treatment). Exposure to the three environmental estro-
gens, as well as to the natural estrogen 17β-estradiol, increased mortality, induced morphologic
deformations, increased apoptosis, and altered the deposition and differentiation of neural crest-
–derived melanocytes in tailbud stage embryos. Although neural crest–derived melanocytes were
markedly altered in embryos treated with estrogenic toxicants, expression of the early neural crest
maker Xslug, a factor that regulates both the induction and subsequent migration of neural crest
cells, was not affected, suggesting that the disruption induced by these compounds with respect to
melanocyte development may occur at later stages of their differentiation. Co-incubation of
embryos with the pure antiestrogen ICI 182,780 blocked the ability of nonylphenol to induce
abnormalities in body shape and in melanocyte differentiation but did not block the effects of
methoxychlor. Our data indicate not only that acute exposure to these environmental estrogens
induces deleterious effects on early vertebrate development but also that different environmental
estrogens may alter the fate of a specific cell type via different mechanisms. Finally, our data suggest
that the differentiation of neural crest–derived melanocytes may be particularly sensitive to the dis-
ruptive actions of these ubiquitous chemical contaminants. Key words: antiandrogens, apoptosis,
embryogenesis, environmental toxicants, estrogens, melanocytes, neural crest, Xenopus laevis, Xslug.
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of digestive organs and the nervous system. In
this study no deleterious effects of E2 expo-
sure were evident before stage 27, but subse-
quent to this developmental stage both the
incidence of malformations and mortality
increased, and all embryos died by stage 42.
Moreover, these investigators demonstrated
that the ability of estrogens to induce these
effects was limited to a specific critical period:
No malformations were evident in embryos
treated after stage 39. These studies indicate
that exposure to estrogenic compounds at
inappropriate and critical times during devel-
opment induce aberrations in numerous
organ systems, not solely those involved in
reproductive function.

Normal development and remodeling of
many organ systems requires programmed cell
death, and this process plays a particularly
prominent role in the development of neu-
ronal lineages (for review, see Sastry and Rao
2000). In Xenopus there is an abrupt onset of
programmed cell death, as indicated by the
presence of apoptotic TUNEL (terminal
deoxynucleotidyl transferase-mediated dUTP
nick end-labeling)-stained cells. Apoptosis in
Xenopus begins at gastrulation (stage 10.5) and
continues throughout larval development
(Hensey and Gautier 1998). The most appre-
ciable staining was noted in the developing
nervous system, with the highest levels of
TUNEL staining observed in early neural
plate–stage embryos (stage 16–17), followed
by a decline during late neural plate stages, and
a subsequent resurgence of apoptosis in later
tadpole stages (stages 26–35; embryos not
examined at later stages) (Hensey and Gautier
1998). Endogenous and environmental estro-
gens have been shown to alter apoptosis; how-
ever, most studies demonstrating effects of
environmental estrogens have been performed
on cell lines, and some of the studies that have
been performed on intact embryos indicate
the effects of these toxicants are limited to
reproductive tissues (Weber et al. 2002). 

In amphibians, as in mammals and birds,
the developing neural plate gives rise to both
the central nervous system and the neural
crest. An extraordinary number of diverse
cellular phenotypes including sensory neu-
rons, sympathetic neurons, and Schwann cells
in the peripheral nervous system, cartilage
and bone in the head, smooth muscle, con-
nective cells in the dorsal fin, and all non-
retinal pigment cells, are derived from the
neural crest (LeDouarin 1982). Neural
crest–derived precursors arise at stage 15–16;
migration begins at stage 19 and is completed
by stage 40 (Epperlein and Löfberg 1993;
Krotoski et al. 1988). Although neural crest
derived precursor cells can be labeled experi-
mentally to study the ultimate fate of these
disparate cell types (Borchers et al. 2000; Carl
et al. 1999; Collazo et al. 1993; Krotoski et

al. 1988; LaBonne and Bronner-Fraser 2000),
melanocytes, because of their pigmentation,
have provided an excellent naturally occur-
ring marker cell population for studies of
neural crest development and differentiation
in Xenopus (Epperlein et al. 1996; Krotoski et
al. 1988). As with the development of other
tissues, apoptosis has been shown to play a
pivotal role in governing the normal acquisi-
tion of the differentiated phenotype for many
neural crest derivatives (Graham et al. 1996;
Wakamatsu et al. 1998). 

Prospective neural crest can first be iden-
tified by the late gastrula stage (stage 12, ~13
hr  after fertilization) by expression of mRNA
encoding the zinc finger gene Xslug on the
lateral edge of the neural plate (Mayor et al.
1995). Xslug expression is one of the earliest
known responses to neural crest inducers in
the dorsal marginal zone (Mayor et al. 1995),
and its expression profile delineates premigra-
tory and migratory neural crest. Specifically,
Xslug mRNA is strongly expressed in the lat-
eral neural folds in early neural plate (stage
14, ~16 hr) embryos, coalesces into patterns
approximating the premigratory crest aggre-
gates by stage 16 (~18 hr), is evident in
migratory streams in the head and trunk in
taibud stages (stages 22–26, ~24–30 hr), but
diminishes drastically by midtadpole develop-
ment (stage 34, ~44 hr) as migration is com-
pleted (Linker et al. 2000; Mayor et al.
1995). Xslug has been demonstrated to play a
pivotal role in both the induction and the
subsequent migration of neural crest cells in
Xenopus (Carl et al. 1999; LaBonne and
Bronner-Fraser 2000; Linker et al. 2000;
Mayor et al. 1995) and has been postulated
to regulate apoptosis (Hemavathy et al.
2000), a process essential for embryonic
development and neural patterning for both
the central nervous system and neural crest-
derived structures (Graham et al. 1996; Sastry
and Rao 2000; Wakamatsu et al. 1998). 

In the present study, we treated Xenopus
embryos beginning at stage 10.5, a time that
corresponds to the onset of developmental
apoptosis but is before the onset of neural
induction, with toxicants known to act as
environmental estrogens (nonylphenol,
octylphenol), as antiandrogens (p,p´-DDE),
or as mixed estrogenic/antiandrogenic agents
(methoxychlor) and compared these results to
embryos treated with saline, vehicle, the nat-
ural estrogen E2, or the synthetic androgen
17α-methyltestosterone (17α-MeT). Tad-
poles were examined at stage 37, a stage at the
end of the critical period for the detrimental
actions of E2 (Nishimura et al. 1997) and
when nervous system development has pro-
ceeded to the extent that animals manifest
normal free-swimming motor patterns (van
Mier et al. 1989). Here we report that expo-
sure to compounds with estrogenic actions

resulted in increased mortality, gross abnor-
malities in body shape, enhanced apoptosis,
and significant aberrations in the differentia-
tion of neural crest–derived melanocytes in
tadpoles. The observed effects were both com-
pound- and dose-dependent, and the actions
of nonylphenol but not methoxychlor could
be inhibited by the pure antiestrogen ICI-
182,780 (Howell et al. 2000). Although the
most marked changes induced by these estro-
genic compounds were in the deposition and
differentiation of neural crest–derived
melanocytes, these effects were elicited in the
absence of any marked change in the expres-
sion of the neural crest marker Xslug. Taken
together, these data indicate that early expo-
sure to estrogenic toxicants induces widespread
abnormalities in a number of developing tis-
sues. Moreover, although our results suggest
that neural crest derivatives may be highly sen-
sitive and excellent markers of the disruptive
actions of environmental estrogens, these toxi-
cants appear more likely to interfere with fac-
tors that regulate the later differentiation of
neural crest cells rather than those that control
their early induction.

Materials and Methods

Generation of embryos. We induced matings
by injecting human chorionic gonadotropin
(Sigma Chemical Company, St. Louis, MO)
to adult pairs of Xenopus laevis (Henderson
et al. 1984). We used albino frogs for in situ
hybridization studies of Xslug mRNA expres-
sion and pigmented frogs for all other stud-
ies. Embryos were staged according to the
normal table of Nieuwkoop and Faber
(1967). Animal care procedures were
approved by the Institutional Animal Care
and Use Committee at Dartmouth and
adhered to both the National Institutes of
Health and the American Veterinary Medical
Association guidelines.

Chemical compounds. Nonylphenol (4-
nonylphenol; Aldrich Chemical Company,
Milwaukee, WI), octylphenol [4-(tert-
octyl)phenol; Aldrich], p,p´-DDE (Aldrich),
methoxychlor (Aldrich), E2 (Sigma), or 17α-
MeT (Sigma) were dissolved in either 100%
standard or 95% HPLC grade ethanol (EtOH;
Aldrich) or 100% dimethylsulfoxide (DMSO;
Fisher, Pittsburgh, PA), and embryos were
exposed to a final vehicle concentration of
0.01% EtOH (no differences were noted
between the standard and HPLC grade
EtOH) or 0.004–0.01% DMSO. For each
experiment separate batches of embryos were
also exposed to 10% Holtfretter’s solution
(saline) or 0.01% EtOH or 0.01–0.004%
DMSO in 10% Holtfretter’s solution (vehi-
cle). ICI 182,780 (Tocris Cookson Inc.,
Ellisville, MO) was dissolved in 100% DMSO
and co-applied with 1 µM nonylphenol or
1 µM methoxychlor at a final concentration of
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1 µM in 0.01–0.004% DMSO. One micro-
molar ICI 182,780 in the presence of 1 µM
nonylphenol was estimated to block 999 of
1,000 available ERs, assuming nonylphenol
and ICI 182,780 have equivalent access to ERs
at equilibrium, that association rates do not
vary over time, that [nonyphenol] and [ICI
182,780] >> [ER], and based on a relative
binding affinity of ICI 182,780 to E2 of 0.89
(Wakeling et al. 1991) and an IC50 of 30–50
µM for displacement of [3H]E2 by nonylphe-
nol (Lutz and Kloas 1999; White et al. 1994).

We examined 20–30 embryos for each
compound, at each concentration, and for
each experimental paradigm. Treatments were
initiated at stage 10.5 (11 hr). For all experi-
ments except those examining Xslug mRNA
expression, embryos were fixed at stage 37
(~49 hr) for 1 hr in MEMFA (100 mM
MOPS, pH 7.4; 2 mM EGTA; 1 mM
MgSO4; 4% paraformaldehyde), dehydrated
in methanol, and assessed for effects on body
shape (abnormal dorsal curvature), body
length, interocular distance, melanocyte dif-
ferentiation, and apoptosis. For in situ
hybridization analysis of Xslug mRNA expres-
sion, we treated embryos beginning at stage
10.5 and examined them at neural plate stages
(stages 15–18, ~17–20 hr) or tailbud stage
(stages 24–26, 26–29 hr). For all experiments
we compared animals exposed to test com-
pounds only with control and vehicle group
animals harvested from the same mating.

Morphometric measurements. We made
gross morphologic measurements of body
length (rostral tip of the cement gland to the
tip of the tail), interocular distance (between
the medial edges of the eyes), and body shape
(presence of abnormal dorsal curvature).
During initial examination of morphology, it
became apparent that melanocyte differentia-
tion was appreciably altered in some groups of
treated embryos, and so embryos were also
assessed to determine if they displayed reduced
numbers or an absence of melanocytes or if
melanocytes lacked dendritic processes.

Assessment of programmed cell death. We
processed fixed embryos for TUNEL staining
as previously described (Hensey and Gautier
1998). Briefly, embryos were first rehydrated in
PBT [phosphate-buffered saline (PBS) + 20%
Tween-20] and washed in PBS (2 × 15 min),
followed by incubation in 0.5 µM digoxigenin-
dUTP (Roche, Indianapolis, IN) and 150
U/mL TdT (terminal deoxynucleotidyl trans-
ferase; Invitrogen, Carlsbad, CA) overnight.
The next day, the reaction was terminated in
PBS/1 mM EDTA, at 65°C, followed by
washes (6 × 1 hr) in PBS. The embryos were
then blocked (1 hr) in 20% goat serum, incu-
bated overnight in an antidigoxigenin antibody
coupled to alkaline phosphatase (1:2,000)
(Roche), washed extensively in PBS (at least 6 ×
1 hr) and overnight in PBS, followed by a

chromogenic nitro blue tetrazolium chloride
(NBT) reaction [NBT/BCIP (5-bromo-4-
chloro-3-indolyl-phosphate, toluidine-salt)
tablets, Roche] for 10–30 min, until color was
visible. The reaction was stopped by MEMFA.
Embryos were dehydrated in methanol (2 × 5
min) and cleared in a 2:1 solution of benzyl
benzoate/benzyl alcohol. Embryos were
mounted on slides with Permount. Apoptotic
cell bodies were counted manually by visualiza-
tion of the TUNEL-positive cells using 100×
magnification. TUNEL staining has been
reported previously to vary between different
batches of embryos (Hensey and Gautier
1998), and we also noted in the present experi-
ments that the numbers of TUNEL-stained
cells varied from mating to mating in saline-
treated embryos. Because of this inherent vari-
ability in the absence of added compounds,
determinations of effects of environmental con-
taminants on the numbers of apoptotic cells
were made for three batches of embryos at 100
nM concentrations of compounds, five batches
for 500 nM, and two batches for 1 µM. 

Neural crest derivatives arise from the
neural plate and migrate to their final destina-
tions a) along cranial pathways; b) through the
dorsal fin and on both the lateral and medial
aspects of the trunk somites; c) in a pathway
that circumnavigates the tail; and d) along an
enteric pathway into the ventral fin (Mayor et
al. 1999). Thus, we assessed TUNEL-stained
cells in cranial, trunk, enteric, and tail regions
of each embroyo.

Nonisotopic whole-mount in situ
hybridization. Embryos were treated begin-
ning at stage 10.5 with methoxychlor or
nonylphenol (1, 5, or 10 µM). Because Xslug
mRNA expression subsides to minimal levels
by stage 37, we examined embryos at neural
plate stages (stages 15–18) or tailbud stage
(~stage 24). These two stages correspond to
epochs when there is a highly distinctive pat-
tern of expression of Xslug mRNA that also
coincides with active periods of neural crest
migration, a process that extends until stage 40
in Xenopus (Krotoski et al. 1988; Linker et al.
2000; Mayor et al. 1995). We prepared digoxi-
genin-UTP-labeled sense and antisense probes
from a plasmid containing the Xslug cDNA
(Mayor et al. 1995; graciously provided by
M. Bronner-Fraser, California Institute of
Technology) according to the manufacturer’s
instructions (DIG RNA SP6/T7 labeling kit,
Roche). Nonisotopic in situ hybridization was
carried out with minor modifications accord-
ing to Harland (1991). Fixed embryos were
rehydrated with 95% MeOH/H2O, 70%
MeOH/1× PBS, 30% MeOH/1× PBS,
washed 3 times for 10 min each with 0.1%
Tween-20/1× PBS, treated for 15 min with
7.5 µg/mL proteinase K, rinsed 2 times with
0.1 M triethanolamine (TEA; pH 7.8) and
2.5 µL acetic anhydride/mL TEA added twice

for 5 min each to the second rinse. Embryos
were washed again with 0.1% Tween-20/1×
PBS, refixed for 20 min in 4% paraformalde-
hyde/1× PBS, washed again, and incubated
with hybridization buffer (50% formamide, 5×
SSC (sodium chloride sodium citrate), 1
mg/mL Torula RNA, 100 µg/mL heparin, 1×
Denhardt’s, 0.1% Tween-20, 0.1% CHAPS
(3-[(3-cholamidopropyl)dimethylammonio]-
1-propanesulfonic acid), 5 mM EDTA) for 10
min at 60°C. Embryos were prehybridized in
hybridization buffer for 6 hr at 60°C; probe
was added at a concentration of 1 µg/mL and
hybridization carried out overnight at 60°C.
Posthybridization washes were carried out as
follows: 3 × 20 min 2 × SSC/0.1% Tween-20
at 60°C; 30 min 2 × SSC/20 µg/mL
RNAseA/10 U/mL RNAseT1 at 37°C; 10 min
2 × SSC/0.1% Tween-20 at 60°C, 2 × for 10
min in 0.2 × SSC/0.1% Tween-20 at 60°C,
and 2 × for 10 min in maleic acid buffer
(MAB: 0.1 M maleic acid, 0.15 M NaCl).

To visualize hybridization, we replaced
MAB with MAB/2% BMB (10%  blocking
buffer;  Roche) for 15 min, followed by sub-
sequent replacement with this solution for 1
hr. A 1:1500 dilution of antidigoxygenin-AP
Fab fragments (Roche) was then added, and
the embryos were incubated overnight at 4°C
and the reaction was allowed to proceed
according to the kit manufacturer’s instruc-
tions. When NBT/BCIP color reaction was
completed, the embryos were fixed overnight
in MEMFA, cleared and dehydrated in serial
dilutions of ethanol.

Statistical analysis. For all experimental
conditions, embryos and tadpoles were exam-
ined by investigators who were blind to the
experimental conditions (two or more investi-
gators for many experiments). Values given are
means ± SEM or percentages. As noted above,
we compared experimental data only to the
vehicle-alone group from embryos obtained
from the same mating and maintained under
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Figure 1. Cumulative data indicating the percent-
age of dead embryos when assessed 48 hr after
treatment (when control and vehicle alone-treated
embryos reached stage 37) after having been
maintained in 10% Holtfretter’s solution (saline),
vehicle alone (EtOH), 17α-MeT, p,p´-DDE, E2,
methoxychlor (MXC), octylphenol (OP), or
nonylphenol (NP) at concentrations between 10
nM and 10 µM. 
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identical experimental conditions in parallel.
Multivariate analysis of variance (MANOVA)
was performed for assessments of body length,
interocular distances, and numbers of apop-
totic (TUNEL-stained) cells using the general
linear model procedures and the Duncan’s
multiple range test of SAS (SAS Institute
1990). Percentages of embryos displaying
abnormal body shape, melanocyte abnormali-
ties, and percentage of viable embryos were
assessed using the chi-square test. An alpha
value of p < 0.05 was established as significant.
All data designated as significant met or
exceeded this criterion.

Results

Gross morphologic changes and increased
mortality. Mortality for embryos exposed at
stage 10.5 to saline, vehicle, 17α-MeT, or any
of the test concentrations of E2, p,p´-DDE, or
methoxychlor and examined at stage 37 was
0–13% (Figure 1), and none of the embryos

treated with any of the concentrations of p,p´-
DDE or methoxychlor appeared moribund. In
contrast, exposure to micromolar concentra-
tions of nonylphenol or octylphenol signifi-
cantly increased mortality, and in the presence
of the highest concentration (10 µM) of these
compounds, no embryos examined at stage 37
were alive (Figure 1). It should be noted that
although embryos treated with 10 µM E2
were alive, they were moribund and would
have been unlikely to have survived another
day had they not been fixed at stage 37. In
addition, in contrast to tadpoles maintained in
saline, vehicle, or nonestrogenic compounds
who would swim normally when touched on
the head, tadpoles that had been treated with
micromolar concentrations of estrogenic com-
pounds did not display normal swimming
patterns but twitched spastically when
touched. Although embryos maintained in
10 µM concentrations of estrogenic com-
pounds were viable at earlier time points (< 30
hr), because of the drastic decrease in viability
at later times, data for 10 µM concentrations
were not included in subsequent analyses of
tadpoles assessed at stage 37.

Abnormalities that included malformed
cement glands (chicken beaks) pronounced
dorsal flexure, poorly developed somites,
swollen guts, or sloughing of epidermal cells
(Figure 2) were evident in embryos exposed to
5 µM concentrations of estrogenic compounds
(E2, methoxychlor, octylphenol, and nonyl-
phenol). Measurements of body length and
interocular distance were made for all treat-
ment groups at concentrations of compounds
from 10 nM–5 µM. The F-approximation of
Wilks’ lambda for results of MANOVA indi-
cated a significant effect of the chemical
[F(14,1816) = 20.41, p < 0.0001], a significant
effect of concentration [F(8,1816) = 161.34, p
< 0.0001], and a significant effect for chemical
× concentration [F (56,1816) =15.34, p <
0.0001]. The most dramatic effects were
observed with exposure to the alkylphenolic
compounds nonylphenol and octylphenol,
which caused significant decreases in body
length at concentrations as low as 500 nM
(Figure 3A). In contrast to the effects of

nonylphenol and octylphenol, exposure to
5 µM p,p´-DDE, methoxychlor, E2, or 17α-
MeT did not significantly stunt body length.
Assessments of body shape were also made by
determining the percentage of embryos that
displayed abnormal dorsal flexure or crooked
vertebrae. As with measurements of body
length, the most dramatic effects on this para-
meter were induced by exposure to nonylphe-
nol, and significantly greater numbers of
deformed embryos were observed at concen-
trations as low as 500 nM nonylphenol com-
pared to saline- or vehicle-treated embryos
(Figure 3B). Surprisingly, while interocular
distance was also significantly shorter in
embryos exposed to 500 nM nonylphenol
compared to saline- or vehicle-treated animals,
interocular distances were not significantly
different from those of saline or vehicle-
treated animals at the higher concentrations of
1 or 5 µM nonylphenol (Figure 3C).

Melanocyte differentiation. During the
course of evaluating changes in overall mor-
phology, we noted significant differences in
the numbers and the patterning of neural
crest-derived melanocytes in embryos treated
with 100 nM–5 µM concentrations of
nonylphenol, methoxychlor, or E2 (Figure
4A–C) and, to a lesser extent, with octylphe-
nol (data not shown). Exposure to these
estrogenic compounds not only diminished
the number of melanocytes per embryo but
also altered the appearance of dendritic
processes of these pigmented cells in compari-
son to saline- or vehicle-treated embryos
(Figures 4A,B and 5A,B). Moreover, in many
embryos treated with estrogenic compounds,
pigment cells were completely absent from
the dorsal fin (Figure 5B), and in some cases
the dorsal fin itself (which is also a neural
crest–derived structure) was absent. 

The most striking differences in melano-
cyte differentiation were elicited with exposure
to methoxychlor, which caused a dramatic
blunting of dendritic processes so that
melanocytes resembled “dalmatian” spots
(Figures 4B and 5B). These alterations in
melanocyte patterning were specific for com-
pounds with estrogenic effects (nonylphenol
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Figure 2. Representative examples of (A) an
embryo maintained in vehicle alone (EtOH) and (B)
one maintained in saline containing 1 µM nonyl-
phenol beginning at stage 10.5 for 48 hr (~stage 37
for control embryos). Crooked backs, kinked tails,
poorly developed somites and dorsal fins, and
“chicken-beaked” cement glands (CG) were often
evident in embryos treated with micromolar con-
centrations of the estrogenic compounds, E2,
octylphenol, or nonylphenol.

Figure 3. Cumulative data demonstrating measurements of (A) body length, (B) body shape, and (C) interocular distances in embryos maintained for approximately
48 hr (beginning at stage 10.5 through stage 37) in control saline or saline supplemented with vehicle alone (EtOH), 17α-MeT, p,p´-DDE, E2, methoxychlor (MXC),
octylphenol (OP), or nonylphenol (NP) at concentrations ranging from 10 nM to 10 µM. We measured 20–30 embryos from a given mating for each experimental
condition. Error bars are + SEM as defined in “Material and Methods.”
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and octylphenol, E2, and methoxychlor).
Neither the antiandrogenic compound p,p´-
DDE or the synthetic androgen 17α-MeT
induced significant changes in melanocyte
deposition or differentiation (data not
shown). In contrast to the changes in mor-
phology that were only evident for E2 and
methoxychlor at the highest (5 µM) concen-
tration, all estrogenic compounds (except
methoxychlor) tested induced significant
abnormalities in melanocyte differentiation at
concentrations as low as 100 nM (significant
differences were observed for methoxychlor at
500 nM). Taken together, these results sug-
gest that neural crest–derived melanocytes
may serve as highly sensitive indicators of
exposure to estrogenic contaminants. 

Effects of a ER antagonist on the action of
nonylphenol and methoxychlor. To determine
whether the effects of estrogenic compounds
required ER signaling, embryos were exposed
to 1 µM nonylphenol or 1 µM methoxychlor
in the presence or absence of 1 µM of the
pure antiestrogen ICI 182,780 and assessed
for changes in body shape and melanocyte
differentiation. Co-incubation with ICI
182,780 significantly decreased but did not
completely abolish the abnormalities in body
shape and melanocyte differentiation induced
by nonylphenol (Figure 6A). As shown in
previous experiments (Figure 3B), 1 µM
methoxychlor did not induce significant
changes in body shape (Figure 6C). However,
in contrast to the inhibition by ICI 182,780
of the abnormalities in melanocyte differenti-
ation elicited by exposure to nonylphenol,
ICI 182,780 did not interfere with the ability
of 1 µM methoxychlor to induce melanocyte
abnormalities (Figure 6D).

Number of TUNEL-stained cells. To
determine if exposure to estrogenic com-
pounds alters the extent of apoptosis that
occurs during development, we assayed
Xenopus embryos exposed to nonylphenol,
octylphenol, methoxychlor, or E2 at early gas-
trula stages for the number of TUNEL-stained
cells in cranial, trunk, tail, and enteric regions
(Figure 7). Patterns of TUNEL-stained cells
were similar to that previously reported
(Hensey and Gautier, 1998). The heaviest
concentration of labeled cells was observed in
the developing neural structures, but stained
cells were also highly expressed in the dorsal fin
and, although fewer in number, were also evi-
dent in the enteric regions. Exposure to all the
estrogenic compounds at 1 and 5 µM caused a
significant increase in the number of TUNEL-
stained cells in all four regions compared with
saline- or vehicle-treated embryos. As with
assays of morphology, the most marked effects
were elicited by exposure to nonylphenol.
Nonylphenol induced the largest increases in
the numbers in TUNEL-stained cells at any
given concentration. Moreover, significant
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Figure 4. Representative photomicrographs of melanocytes in (A) vehicle alone (EtOH) and (B) methoxy-
chlor-treated (1 µM) embryos. (C) Cumulative data indicating that significant aberrations in melanocyte dif-
ferentiation were evident with exposure to estrogenic compounds at concentrations as low as 100 nM. 

Figure 5. Representative photomicrographs of the dorsal aspect of the trunk of two stage 37 tadpoles.
(A) Embryo maintained in saline demonstrating the presence of the dorsal fin populated by small
melanocytes and larger dendritic melanocytes along the surface of the spinal cord. (B) Embryo treated
with 1 µM methoxychlor demonstrating a thin, poorly developed dorsal fin devoid of melanocytes, spotty
melanocytes atop the spinal cord, crooked spine, and poorly defined somites. (Both embryos had also
been processed for TUNEL staining.) Magnification 100×.
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increases in the numbers of TUNEL-stained
cells over saline- or vehicle-treated embryos
were evident at concentrations as low as 100
nM (Figure 7). For all compounds tested the
most marked increases in the numbers of
TUNEL-stained cells were observed in the cra-
nial region (Figure 7A). Paradoxically, as with
effects on body length, 500-nM concentra-
tions of all compounds tested were without
appreciable effect in this region (Figure 7A).
Significant changes in the numbers of apop-
totic cells were not observed in embryos
treated with the antiandrogenic compound
p,p´-DDE, or the synthetic androgen 17α-
MeT (data not shown). 

Expression of Xslug mRNA. To deter-
mine if the abnormalities in neural
crest–derived melanocytes and increased
apoptosis in neural regions could be attrib-
uted, at least in part, to changes induced in
the expression of the neural crest-specific
transcription factor Xslug, nonisotopic in situ
hybridizations with a digoxigenin-labeled
riboprobe directed against Xslug cDNA
(Mayor et al. 1995) were made for embryos
exposed to 1, 5, or 10 µM nonylphenol or
1 or 10 µM methoxychlor beginning at stage
10.5 and examined at neural plate stages
(stages 15–18) or tailbud stages (~stage 24).
We compared exposed embryos to embryos
maintained in saline or vehicle alone. No
staining was evident when sense probes were
used (data not shown). In neural plate stage
embryos (stages 15–18) hybridized with anti-
sense probes, staining was observed along the
neural fold regions corresponding to premi-
gratory cranial neural crest for control, vehicle
alone (Figure 8A), nonylphenol (Figure 8C),
and methoxychlor (data not shown) treat-
ments. For tailbud stage embryos (~stage 24),
staining was observed in the branchial arches,
as well as along the dorsal midline in control
and vehicle-alone conditions (Figure 8B) and
in embryos exposed to nonylphenol (Figure
8D) or methoxychlor (data not shown). The
staining patterns at both stages were compa-
rable to those described previously (Linker
et al. 2000; Mayor et al. 1995), and no appre-
ciable differences were observed either in the
pattern of staining or in the qualitative inten-
sity of staining in embryos exposed to either
nonylphenol or methoxychlor, even at the
higher concentrations of 5 or 10 µM (data
not shown), versus untreated embryos.

Discussion

Exposure of Xenopus embryos during the
period when neural crest- and neural plate-
derived structures develop (stages 10.5–37) to
micromolar concentrations of the environmen-
tal estrogens nonylphenol, octylphenol, and
methoxychlor induced significant gross mor-
phologic defects, including crooked vertebrae,
swollen guts, poorly defined somites, and

sloughing of epidermal cells, and in the case of
nonylphenol and octylphenol, increased mor-
tality by stage 37. These results are in good
agreement with those of Nishimura et al.
(1997) and Mann and Bidwell (2000), who
reported comparable effects of limited expo-
sure on early larval development in Xenopus to
micromolar concentrations of E2 and NPEO,
respectively. Specifically, Nishimura et al.
reported that viability drops to 0% by stage 42
for embryos maintained in 10 µM E2, and
Mann and Bidwell reported that mortality
occurred consistently by stages 39–40 for
embryos maintained in 6–10 mg/L Teric
GN8. In contrast to the deficits induced by
exposure to these estrogenic compounds, no
significant effects were elicited by exposure to
the anti-androgenic contaminant p,p´-DDE,
or 17α-MeT, a synthetic androgen that is not
aromatized to E2 (Quincey and Gray, 1967).

Although micromolar exposure to
environmental estrogens induced pleomor-
phic effects on a number of organ systems in
this study, the most marked and sensitive
changes we observed were in the differentia-
tion of neural crest–derived melanocytes.
These pigmented cells, which provide an
excellent naturally occurring marker cell pop-
ulation for studies of neural crest development
and differentiation in Xenopus (Epperlein et al.
1996; Krotoski et al. 1988), are normally
abundantly expressed in epidermal and der-
mal layers, as well as in perineural and
perivascular tissues of pigmented Xenopus tad-
poles. Exposure to 100 nM–5 µM concentra-
tions of nonylphenol, octylphenol, E2, or
methoxychlor induced significant changes in
the number, shape, and location of melano-
cytes. In embryos exposed to these estrogenic
compounds, melanocyte numbers were often
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Figure 7. (A) Representative photomicrograph of the ventral and caudal portion of a stage 37 embryo
treated with 1 µM nonylphenol demonstrating the presence of TUNEL-stained cells in the gut.
(B) Cumulative data indicating that micromolar concentrations of estrogenic compounds significantly
increased the number of TUNEL-stained cells. For embryos treated with 5 µM nonylphenol, accurate
counts of the number of TUNEL-stained cells could not be made beyond 300. Error bars are + SEM.
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significantly decreased, they were often found
in ectopic locations (e.g., in the ventral gut),
and they displayed altered morphology, the
most prevalent abnormality being blunted or
absent dendritic processes. Melanocytes reside
in close apposition to sensory nerve endings
and are known to produce a number of neu-
ropeptides and neurotransmitters (for review,
see Tsatmali et al. 2002). This biochemical
and physical arrangement has led others to
speculate that melanocytes may act as local
stress sensors that are key intermediaries in
transmitting information from the environ-
ment to the central nervous system [for
discussion, see Tsatmali et al. (2002)].

Melanocyte differentiation was altered by
exposure to a number of chemically distinct
environmental compounds with estrogenic
activity, a result consistent with the observation
that E2 alters melanogenesis in and decreases
the number of human melanocytes in vitro
(McLeod et al. 1994). While the pure antie-
strogen ICI 182,780 was able to inhibit the
effects of nonylphenol on melanocyte differen-
tiation (and on body shape), this ER antagonist
was not able to inhibit the effects of methoxy-
chlor on melanocyte differentiation. These data
suggest that although both nonylphenol and
methoxychlor have significant effects on
melanocyte differentiation, they may do so via
different signaling pathways. Specifically, a
majority of the effects of nonylphenol appear to
require ER activation, and it has been shown
that ER mRNA is expressed in Xenopus
throughout the time period studied here (stages
10.5–37) (Nishimura et al. 1997). In contrast,
classical signaling through the ER does not
appear to be required for the effects of
methoxychlor on these pigment cells. The ER-
independent action of methoxychlor on
melanocyte differentiation is consistent with
previous reports that indicate this toxicant has
ER-independent effects in a number of other
cell types (Ghosh et al. 1999; Ren et al. 1997;
Waters et al. 2001). 

Exposure to high nanomolar to micro-
molar concentrations of estrogenic contami-
nants also significantly increased apoptosis in
developing tadpoles. As with all other assays
made in this study, the largest increases in
TUNEL-positive cells were observed upon
treatment with nonylphenol. Increases in the
numbers of TUNEL-stained cells induced by
nonylphenol were most striking in the cranial
part of the embryo and in regions correspond-
ing to the developing nervous system. It is
noteworthy that the number of apoptotic cells
observed with 500 nM concentrations of
nonylphenol were markedly lower than those
observed with either 100 nM or 1 and 5 µM
concentrations. This loss of effect at 500 nM
was also observed for measurements of mortal-
ity, interocular distance, and body length with
nonylphenol, but was not observed in assays

of body shape or melanocyte abnormalities.
Previous studies have suggested that there may
be a U-shaped dose–response relationship
with respect to effects of nonlyphenol on the
development of mammalian reproductive
structures, but these results are controversial
(for discussion, see Safe et al. 2001).

Previous studies have demonstrated that
environmental estrogens alter apoptosis in
breast cancer cell lines (Diel et al. 2002; Ren
et al. 1997) and in cells of reproductive tis-
sues (Hughes et al. 2000; Weber et al. 2002),
but few studies have examined the effects of
these environmental contaminants on apop-
tosis in whole embryos and in nonreproduc-
tive tissues. Apoptotic cells were observed
within regions that could correspond to
migratory pathways for neural crest cells not
only in the head but also in the dorsal fin and
enteric regions, but it was not possible by
TUNEL staining to identify these cells as
neural crest derivatives. Future studies in
which TUNEL staining is assessed in con-
junction with approaches that selectively label
neural crest cells (Borchers et al. 2000; Carl
et al. 1999; Krotoski et al. 1988; LaBonne

and Bronner-Fraser 2000) or studies in which
the effects of these environmental estrogens
on neural crest cells maintained  in culture
will be needed to establish if the observed
changes in apoptosis are specific for neural
crest-derived cells. 

The transcription factor Xslug is not only
essential for proper development of the neural
crest, but overexpression of Xslug leads to
overproduction of melanocytes (LaBonne and
Bronner-Fraser 1998), and this factor has
been postulated to regulate apoptosis
(Hemavathy et al. 2000). We hypothesized
that the actions of different estrogenic com-
pounds might converge to alter the expression
of Xslug and thus lead to aberrant melanocyte
differentiation and altered apoptosis.
However, we found no appreciable differences
in the pattern or qualitative intensity of Xslug
mRNA expression in embryos treated with
1–10 µM nonylphenol or methoxychlor ver-
sus saline- or vehicle-treated embryos.
Moreover, because Xslug expression was not
appreciably altered by these compounds, it is
unlikely that they have significant actions on
proneural genes, such as bone morphogenic
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Figure 8. Representative embryos maintained in vehicle alone (A,B) or in 1 µM nonylphenol (C,D) at either
neural plate stages (stages 15–18: A,C) or tailbud stages (stages 24–26: B,D) demonstrating the expression
of Xslug mRNA. Magnification 25×.



proteins or Wnts, that are upstream of Xslug
(Mayor et al. 1999). More likely possibilities
are that inappropriate exposure to estrogenic
compounds alters the deposition of extracellu-
lar matrix molecules or signaling molecules
such as the neurotrophins, which are crucial
for the survival and differentiation of neural
crest-derived structures (Chao and Hempstead
1995; Fariñas 1999; Lewin and Barde 1996).
In particular, nerve growth factor (NGF) and
neurotrophin 3 have been shown to enhance
dendricity and promote migration of
melanocytes (Sieber-Blum and Zhang 1997;
Yaar et al. 1994). Moreover, estrogens regulate
the expression of both neurotrophic factors
and their cognate receptors, as well as down-
stream signaling from those via ER-dependent
and ER-independent mechanisms (Jezierski et
al. 2001; Miranda et al. 1994; Sohrabji et al.
1995; Toran-Allerand 1996) and to induce
significant effects on neuronal apoptosis in the
developing mammalian nervous system
(Wade et al. 1999). Early exposure to inap-
propriately high levels of estrogenic com-
pounds in Xenopus embryos may alter the
expression of neurotrophins and or their
receptors and thus interfere with neu-
rotrophin-mediated development of neural
crest–derived melanocytes and normal pro-
grammed cell death. Consistent with this
hypothesis, preliminary data from our labora-
tory indicate that nonylphenol blocks the abil-
ity of NGF to elicit enhanced neurite
outgrowth from neural crest–derived Xenopus
Rohon-Beard neurons in dissociated cell
culture (Bevan CL. Unpublished data).

The data presented here indicate that brief
exposure to nonylphenol induces significant
and detrimental effects on Xenopus develop-
ment at concentrations ranging from 100 nM
to 10 µM. Although concentrations of
nonylphenol and its ethoxylates assessed in
river water samples ranged from undetectable
to ~5 nM (Naylor et al. 1992), concentrations
of 100 nM–1 µM have been measured in pri-
mary effluent from sewage treatment plants
(Giger et al. 1987), and concentrations higher
than 10 µM have been detected in river sedi-
ment samples (Naylor et al. 1992). Thus
aquatic organisms may be exposed to micro-
molar concentrations of compounds in the
environment. In addition, because many envi-
ronmental contaminants, including the
APEOs, bioaccumulate (Ekelund et al. 1990)
and organisms are rarely, if ever, exposed to a
single compound (Crews et al. 2000; Kavlock
1999), it seems likely that the concentrations
of environmental estrogens found in this
study to elicit abnormalities in the develop-
ment of Xenopus in the laboratory will also be
relevant to organisms in the natural environ-
ment. Future studies will be needed to assess if
the estrogenic compounds that when given
individually, disrupted early development in

Xenopus have synergistic effects when present
as a mixture of lower individual concentra-
tions of multiple toxicants. In addition, the
experiments performed in this study have only
tested the effects of a limited exposure to these
compounds during a brief period of early
development, clearly a paradigm that does not
mirror environmental conditions where
organisms may be exposed throughout life.
Future experiments will also need to be made
to determine if chronic exposure to lower con-
centrations of environmental estrogens elicit
detrimental effects, and if chronic exposure to
these compounds alters the differentiation of
neural crest-derived structures such as the sen-
sory and sympathetic ganglia, which arise at
later developmental stages.
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