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Combined Exposure to Ozone and

Nitrogen Dioxide

by Bernard D. Goldstein*

The combined effects of ozone and nitrogen dioxide were assessed in an ih vitro test
system utilizing human red cells. In general, these two pollutants had additive effects on
the parameters measured which included osmotie fragility, acetylcholinesterase activity,
lipid peroxidation, reduced glutathione and methemoglebin levels. However, at lower
pollutant doses a synergistic increase in lipid peroxides was noted while at higher doses
the effect became less than additive. Further studies of this observation suggested that fer-
rous hemoglobin potentiates ozone-induced lipid peroxidation while methemoglobin,
resulting primarily from nitrogen dioxide, inhibits this process.

Ozone was also found to potentiate the methemoglobinemic effects of nitrogen dioxide,
particularly in sequential studies in which ozone exposure preceded nitrogen dioxide.

Inasmuch as the effects of these two pollutants vary from protective to synergistic de-
pending on the pollutant concentration, duration and sequence of exposure, as well as on
the parameter assayed, it would appear that the approach toin vivo study of the combined
effects of ozone and nitrogen dioxide should he aimed at simulating ambient conditions as

closely as possible.

Study of the effects of multiple pollutants in-
haled simultaneously is a relatively unexplored
area of air pollution research, despite the fact that
it is recognized that the toxicity of such mixtures
may not be predictable on the basis of response to
the individual components (/). The lack of infor-
mation is due both to the complexities in perform-
ing such studies and, at least in the United States,
to the focus on individual air pollutants inherent in
the Clean Air Act of 1970,

The present studies consist of our initial evalua-
tion of the combined effects of ozone and nitrogen
dioxide. There are a number of similarities in the
toxic effects of these pollutants which are both pre-
sent in significant concentrations in urban areas
where photochemical smog occurs. At high con-
centrations both ozone and nitrogen dioxide pro-
duce death in pulmonary edema. Tolerance to
lethal levels following exposure to sublethal con-
centrations occurs with each, as does cross-
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tolerance to the effect of the other (2,3). At
relatively low levels both have been shown to pro-
duce animal lung lipid peroxidation (¢—6). In con-
centrations approaching air quality standards,
both ozone and nitrogen dioxide potentiate
respiratory infections in animals and for each it ap-
pears that their major effect on alveolar
macrophages is interference with intracellular kill-
ing of bacteria (7--9). Long-term exposure to either
pollutant results in pathological changes sugges-
tive of chronic respiratory disease (10,11}

It is, of course, recognized that substantial
differences in the toxicity of these two pollutants do
exist. Qzone is a far more powerful oxidant, while

. nitrogen dioxide is an acid anhydride and conceiva-

bly exerts part of its toxicity through the formation
of nitrites. There are both similarities and distinct
differences in animal lung pathology. It is con-
ceivable that both the differences and the
similarities in their toxic effects at the cellular level
may play a role in determining the degree to which
interactions between these two pollutants occur in
the human lung. Previous studies of the combined
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effects of ozone and nitrogen dioxide include the
suggestion of additive pathological damage in the
lungs of rats (12) and the report of indifferent
effects on the bacteriocidal function of mouse
alveolar macrophages (13).

Our initial studies of the combined effect of
ozone and nitrogen dioxide have been performed in
an in vitro mode] system previously used in this
laboratory for the study of ozone toxicity. The ra-
tionale for the use of an in vitro model is both to
evaluate potential parameters for future animal
studies and to ascertain whether such a meodel
might be useful in predicting the in vivo effects of
combined exposure. The model consists of washed
human red cells suspended in phosphate buffered
(0.01M) saline, pH 7.4, The red cells are exposed to
ozone and nitrogen dioxide in specially fabricated
double-inlet fritted disc bubblers in which mixing
of the pollutants occurs only within the red cell
suspension. In most of these studies four bubblers
are used, one of which receives both ozone and
nitrogen dioxide. The ozone and nitrogen dioxide
streams are split in two, with one half of the ozone
stream going to the second fritted disc bubbler and
nitrogen dioxide to the third. Both of these bub-
blers also receive an input of filtered reom air while
the fourth bubbler is gassed with filtered room air
through both bubblers.

The parameters chosen for study include
osmotic fragility (I4), an indicator of red cell
membrane integrity; malonaldehyde (MDA) for-
mation (15), a parameter of cell membrane lipid

peroxidation; the activity of acetylcholinesterase
(AChE)} {16), a cell membrane enzyme whose ac-
tivity deereases in association with a number of free
radical and oxidative membrane processes {17,18);
reduced glutathione (GSH) (19), an intracellular
tripeptide which functions as a scavenger of free
radicals and peroxides; and the formation of
methemoglobin (metHb) (20}, the ferric form of
hemoglobin.

Data have been obtained at a number of
different concentrations of ozone and nitrogen
dioxide. Four representative experiments are
shown in Table 1. In general, the data appear to
show generally additive effects. However, two
anomalies are apparent, The first is that at lower
concentrations of ozone and nitrogen dioxide there
tends to be a more than additive increase in lipid
peroxides, measured as malonaldehyde formation,
while at higher concentrations of these two pollu-
tants a less than additive effect occurs. This is more
clearly demonstrated in Figure 1, where samples
obtained during the initial period of combined ex-
posure to ozone and nitrogen appear to show a syn-
ergistic effect. In contradistinction, during the lat-
ter part of the exposure period less MDA is present
than would be expected from the individual action
of these pollutants, Further information was ob-
tained in sequential studies in which the effect of
exposing red cells to first one pollutant and then
the other is compared to simultaneous and in.
dividual exposure. Sequential exposure in any
order to low cohcentrations of ozone and nitrogen

Table 1. Effects of combined and individual in vitro exposure to ozone and nitrogen dioxide on human red cell osr_notic
fragility, malonaldehyde (MDA), acetylcholinesterase (AChE) activity, glutathione (GSH), and methemoglobin.®

Osmotic fragility

Ozone, Nitrogen (50% hemolysis), MDA, AChE, GSH, MetHb,
ppm dioxide, ppm ¢/100 m] NaCl nmole/g Hb % of Control % of control %
2. 20 0.48 18 80 84 79.5
2 0 0.47 10 84 &9 2.2
0 20 .44 4 99 95 72.6
0 0 0.43 0 100 100 0.4
2.2 36 045 16 R0 82 188
2.2 ¢ 0.44 11 86 84 2.1
0 3.6 0.43 2 98 97 14.0
0 0 (.42 0 100 100 3.6
38 4.1 0.66 46 30 36 240
38 4} 0.66 42 38 38 4.6
0 4.1 .44 2 48 96 17.1
t] (] 0.43 0 100 100 0.3
41 102 0.64 32 32 14 100
41 0 0.66 40 34 28 6.8
0 1062 .45 11 a5 86 100
0 0 041 0 100 160 0.3

2The red cells were analyzed after 2 hr of exposure. All assays were performed in duplicate.
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FIGURE 1. Malonaldehyde formation in red cell suspensions

exposed to (o} 10.2 ppm ozone, (*® } 32 ppm nitrogen
dioxide, or (&) to both simultaneously.

dioxide resulted in generally additive rather than
synergistic effects on lipid peroxidation. At higher
concentrations additive effects were also observed
when ozone preceded nitrogen dioxide exposure.
However, when ozone was given following exposure
to nitrogen dioxide concentrations producing ap-
preciable methemoglobin formation, there was a
decrease in the expected levels of MDA, Further-
more, preincubation of red cells with sodium nitrite
so as to produce 100% methemoglobin levels also
resulted in lesser MDA formation upon subsequent
oZone exposure.

No effect of nitrite was observed on the thiobar-
bituric acid assay system used to measure MDA,
nor was the protective effect of high levels of
nitrogen dioxide observed when red cell
membranes were substituted for intact red cells in
the in vitro exposure model. Based on these studies
we have tentatively concluded that oxygenated fer-
rous hemoglobin (oxyhemoglobin) potentiates
ozone-induced lipid peroxidation and that the for-
mation of methemoglobin by nitrogen dioxide
therefore interfered with this reaction. While the
pertinence of these in vitro studies is questionable,
it should be noted that in cities such as Los Angeles
where the automobile is the main source of
nitrogen dicxide, peak nitrogen dioxide values tend
to precede peak ozone values by 1 or 2 hr.

A second area of interest in the data is the ap-
parent potentiation by ozone of the methemo-
globinemic effects of nitrogen dioxide. In
sequential studies this was most apparent when
ozone preceded nitrogen dioxide exposure. The
biochemical basis for this observation has not been
elucidated. However, it has been noted that red
cells previously exposed to ozone and nitrogen
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dioxide have a lesser decrease in methemoglobin
levels following overnight incubation with glucose
than do red cells exposed to nitrogen dioxide alone.
This would suggest that ozone interferes with the
normal metabolic processes resulting in the reduc-
tion of methemoglobin to ferrous hemoglobin,
perhaps by inactivation of the enzyme NADH-
methemoglobin reductase, or by interfering with
the availability of NADH.

The present findings illustrate the potential
complexities involved in the assessment of the
effects of combined exposure to two pollutants. The
data clearly indicate that for these two pollutants
and for this in vitro system the absolute and rela-
tive concentration of pollutants as well as the time
course and sequence of administration will affect
the expression of toxic interactions.

It must be emphasized that the applicability of
these in vitro findings to humans breathing both of
these pollutants is not known, nor can it be
assumed that other combinations of pollutants
would be affected by similar variables either in
vitro or in vive. However, the results do suggest
that animal inhalation experiments assessing the
combined effects of ozone and nitrogen dioxide
should be performed at various concentrations,
time courses, and sequences of exposure. Further-
more, if animal experiments do indicate that such
variables affect the toxic interaction of pollutanis,
these findings would question the validity of assess-
ing combined exposure by a methodological ap-
proach that utilizes higher than expected ambient
concentrations of pollutants and then assumes that
the same dose—response relationship will be pre-
sent at ambient concentrations.
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