Quantcast
Environmental Health Perspectives Free Trail Issue
Author Keyword Title Full
About EHP Publications Past Issues News By Topic Authors Subscribe Press International Inside EHP Email Alerts spacer
Environmental Health Perspectives (EHP) is a monthly journal of peer-reviewed research and news on the impact of the environment on human health. EHP is published by the National Institute of Environmental Health Sciences and its content is free online. Print issues are available by paid subscription.DISCLAIMER
spacer
NIEHS
NIH
DHHS
spacer
Current Issue

EHP Science Education Website




Comparative Toxicogenomics Database (CTD)

spacer
Environmental Health Perspectives Volume 111, Number 7, June 2003 Open Access
spacer
Chemical Analysis of World Trade Center Fine Particulate Matter for Use in Toxicologic Assessment

John K. McGee,1 Lung Chi Chen,2 Mitchell D. Cohen,2 Glen R. Chee,2 Colette M. Prophete,2 Najwa Haykal-Coates,1 Shirley J. Wasson,3 Teri L. Conner,4 Daniel L. Costa,1 and Stephen H. Gavett1

1National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA; 2Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York, USA; 3National Risk Management Research Laboratory, and 4National Exposure Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA

Abstract

The catastrophic destruction of the World Trade Center (WTC) on 11 September 2001 caused the release of high levels of airborne pollutants into the local environment. To assess the toxicity of fine particulate matter [particulate matter with a mass median aerodynamic diameter < 2.5 µm (PM2.5) ], which may adversely affect the health of workers and residents in the area, we collected fallen dust samples on 12 and 13 September 2001 from sites within a half-mile of Ground Zero. Samples of WTC dust were sieved, aerosolized, and size-separated, and the PM2.5 fraction was isolated on filters. Here we report the chemical and physical properties of PM2.5 derived from these samples and compare them with PM2.5 fractions of three reference materials that range in toxicity from relatively inert to acutely toxic (Mt. St. Helens PM ; Washington, DC, ambient air PM ; and residual oil fly ash) . X-ray diffraction of very coarse sieved WTC PM (< 53 µm) identified calcium sulfate (gypsum) and calcium carbonate (calcite) as major components. Scanning electron microscopy confirmed that calcium-sulfur and calcium-carbon particles were also present in the WTC PM2.5 fraction. Analysis of WTC PM2.5 using X-ray fluorescence, neutron activation analysis, and inductively coupled plasma spectrometry showed high levels of calcium (range, 22-33%) and sulfur (37-43% as sulfate) and much lower levels of transition metals and other elements. Aqueous extracts of WTC PM2.5 were basic (pH range, 8.9-10.0) and had no evidence of significant bacterial contamination. Levels of carbon were relatively low, suggesting that combustion-derived particles did not form a significant fraction of these samples recovered in the immediate aftermath of the destruction of the towers. Because gypsum and calcite are known to cause irritation of the mucus membranes of the eyes and respiratory tract, inhalation of high doses of WTC PM2.5 could potentially cause toxic respiratory effects. Key words: , , , , , , , . Environ Health Perspect 111:972-980 (2003) .


The full version of this article is available for free in HTML or PDF formats.
spacer
 
Open Access Resources | Call for Papers | Career Opportunities | Buy EHP Publications | Advertising Information | Subscribe to the EHP News Feeds News Feeds | Inspector General USA.gov