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Passed into law in 1996, the U.S. Food
Quality Protection Act (FQPA) requires a
more comprehensive assessment than ever
before of pesticide exposure, dose, and effects
(1,2). In particular, the FQPA requires pesti-
cide risk assessments to consider exposure to
potentially sensitive subgroups in the popula-
tion, coincident dietary and nondietary (i.e.,
aggregate) exposure, and contemporaneous
multichemical (i.e., cumulative) exposure.
These issues also are important to epidemio-
logical studies designed to evaluate the associ-
ations between selected human health
outcomes and pesticide exposure (3–5).

Traditional dietary exposure assessments
for pesticides are based on food consump-
tion data from population-based surveys and
pesticide levels observed in food samples col-
lected for surveillance monitoring or in a
market-basket design (6–13). The utility of
this approach is limited by incomplete infor-
mation on the accuracy of the market-basket
methodology, interindividual variability of
dietary pesticide exposure, temporal aspects
of dietary pesticide exposure, and cumulative
pesticide exposure through food. In this
paper, we present the results of an investiga-
tion of these issues for seven organochlorine
insecticides, two organophosphorous insecti-
cides, and one triazine herbicide. The objec-
tives of the study were to a) determine
pesticide levels in short-term composite food

samples; b) evaluate variability in pesticide
occurrence and levels by time of year; c) eval-
uate variability in pesticide occurrence and
levels among individuals; and d) describe co-
occurrence of multiple pesticides in short-
term food samples. The data presented here
are the product of a pilot investigation of
temporal variation in human exposure to
selected contaminants in multiple media—
the National Human Exposure Assessment
Survey in Maryland (NHEXAS–Maryland). 

Methodology 

Study population. A stratified probability
sample of 80 individuals older than 10 years
of age was selected from four contiguous
counties in Maryland that compose the
Baltimore metropolitan statistical area. The
sampling strategy was designed to ensure
adequate representation of urban, suburban,
and rural residences as well as the racial
diversity of the metropolitan Baltimore area.
An additional contiguous county, Talbot
County, was included to ensure adequate
representation of the rural stratum. Details
of the sampling strategy are reported else-
where (14).

All participants provided informed
consent under protocols approved by an
institutional review board. Demographic
characteristics of the study population are
summarized elsewhere (15). Each individual

participated in as many as six 1-week 
monitoring periods or cycles approximately
equally spaced over 12 months. Cycles 1–6
correspond to 21 September–23 December
1995; 15 January–23 February 1996; 27
February–20 April 1996; 22 April–15 June
1996; 18 June–27 July 1996; and 30 July–18
September 1996, respectively. Field staff col-
lected samples of environmental and biologi-
cal media, including solid food and beverages,
during a consecutive 7-day period within a
cycle. Participants completed exposure-related
questionnaires during each cycle as well.

Duplicate plate collection and analysis.
Participants were requested to prepare a
duplicate portion of meals consumed on 4
consecutive days during each sampling cycle.
Participants were compensated to offset food
costs and to provide an incentive. Duplicate
portions were placed in precleaned, leak-
proof, 1-gallon high-density polyethylene
containers. Beverages were collected and
stored separate from solid food samples.
Commencing with cycle 2, the weight of
each 4-day solid food and beverage sample
was recorded by a field technician. The sam-
ples were placed in Polyfoam packers with
blue-ice and shipped overnight to a U.S.
Food and Drug Administration (FDA) labo-
ratory in Kansas City, Missouri.

Samples were homogenized and analyzed
for 10 pesticides following established meth-
ods (16). The target pesticides were selected
to represent three classes of pesticides: tri-
azine herbicides, organophosphorus insecti-
cides, and organochlorine insecticides.
Briefly, samples were organic solvent
extracted, cleaned up with Florisil (U.S.
Silica, Berkeley Springs, WV), and analyzed
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Between September 1995 and September 1996, 4-day composite duplicate plate samples (379
solid food samples and 303 beverage samples) were obtained from a stratified random sample of
75 individuals in Maryland and analyzed for the presence of 10 pesticides. Samples were collected
in each of six approximately equally spaced cycles as part of a larger pilot investigation of longitu-
dinal exposure to pesticides and other elements. Chlorpyrifos was detected in 38.3% of the solid
food samples, malathion in 75.2%, and p,p´-DDE in 21.4%. Other pesticides were detected in
less than 10% of the solid food samples. Pesticide residues were not detected in duplicate bever-
age samples. In solid food samples, the mean concentration of chlorpyrifos was 0.7 (SD 1.7)
µg/kg, 1.8 (2.1) for malathion, and 0.2 (0.6) for p,p´-DDE. The detection rate and mean concen-
tration of chlorpyrifos, malathion, and p,p´-DDE varied by a factor of 2–3 among sampling cycles
and significantly according to results from several statistical analyses. Co-occurrence of chlorpyri-
fos and malathion in solid food samples was found relatively frequently and also varied with time.
Pesticides were detected in food samples with greatest frequency in spring and summer months
and with lowest frequency in winter months. These results support the hypothesis that 4-day
average exposure to chlorpyrifos and malathion varies over time for this population mean and for
individual members of the population and that correlation between exposures to these two
organophosphate pesticides can occur. The measurements of pesticide levels in duplicate plate
samples presented here can be used to evaluate and set parameters for dietary exposure models.
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by gas–liquid chromatography with flame
photometric, electron capture, or electrolytic
conductivity detection. For all samples con-
taining a detectable amount of target ana-
lyte, the presence of the pesticide was
confirmed using an auxiliary analytical tech-
nique as specified in the analytical method.

Quality assurance. We performed
numerous quality assurance steps for con-
centration data of the target pesticides to
ensure traceability and accuracy of the data.
A chain of custody (COC) form followed
each sample and questionnaire from the field
to the laboratory and finally to the database
manager. A food or beverage sample data
point not accompanied by a completed
COC was omitted from subsequent analysis.
In the laboratory, we analyzed reagent
blanks for the presence of target pesticides,
and we determined detection limits and
recovery efficiencies over the course of the
investigation. Detection limits (DL), as fol-
lows, were identical in food and beverage
samples and did not vary over the course of
the study: atrazine, 0.17 µg/kg; cis-chlor-
dane, trans-chlordane, dieldrin, and hep-
tachlor, 0.05 µg/kg; chlorpyrifos and
malathion, 0.1 µg/kg; p,p´-DDD, p,p´-
DDE, and p,p´-DDT, 0.07 µg/kg. Recovery
efficiency as determined by fortified samples
(previously analyzed samples spiked with a
known amount of analyte to a concentration
in the range of 4.4–35.2 µg/kg and reana-
lyzed) approximated 100% for each pesticide
and did not vary substantially or significantly
among sampling cycles according to an
analysis of variance test. The exception to
the lack of intercycle variation was dieldrin

in solid food samples, for which between
cycle variability was marginally significant (p
= 0.0433). However, the range of recoveries
for dieldrin in solid food was relatively small
(79.3–97.2%) (Table 1). Field blanks and
replicate samples were not obtained.

Data analysis. To evaluate temporal vari-
ation in the detection rate of the pesticides,
we restricted data analysis to observations
from those individuals who participated in
more than one cycle. An observation in the
data set contained the DL and concentration
of each pesticide in a duplicate plate sample
(micrograms of analyte per kilogram of sam-
ple) and average daily mass of the duplicate
plate (kilograms of sample per day). We
computed average daily exposure to a pesti-
cide (micrograms of analyte per day) as the
product of pesticide concentration and mass
of the duplicate plate. Concentrations of pes-
ticides not detected in samples were assumed
to be zero. 

We determined statistical weights
through reflection of the sampling design
with appropriate weights reflecting differen-
tial probability of selection from the initial
population for each stratum. Specific
weights for each participant and cycle com-
bination can be obtained from the authors.
We generated population-weighted descrip-
tive statistics for the pesticide concentrations
in diet samples and associated exposure for
each pesticide overall and for each sampling
cycle. Mean pesticide concentrations and
exposures across sampling cycles were
calculated for each participant to estimate
prolonged average concentrations in food
and dietary exposures. All means reported

and analyzed here are population-weighted
arithmetic means.

For analytes found in more than 60% of
the duplicate plate samples, we used a mixed
generalized linear model (GLM) to test for
significant variability of population-weighted
mean pesticide detection frequency (binary:
0 = not detected; 1 = detected), concentra-
tion (micrograms per kilogram), and average
daily exposure (micrograms per day) among
sampling cycles (17). Also for those analytes,
we used a two-way GLM to test for signifi-
cant interindividual variability for each expo-
sure metric controlling for the effect of
sampling cycle. For pesticides found in less
than 60% but in more than 20% of the sam-
ples, we tested significant intercycle and
interindividual variability using the nonpara-
metric Kruskal-Wallis (K-W) procedure. For
this group of pesticides, we also used logistic
regression to evaluate temporal variability in
the rate of pesticide detection. For this
analysis the detection rate in each cycle was
compared to that in cycle 1: 

logit X = β1 + β2 cycle 2 + β3 cycle 3
+ β4 cycle 4 + β5 cycle 5 
+ β6 cycle 6, [1]

where X stands for logit of pesticide detec-
tion and the variables cycle N are dummy
variables that are equal to 1 if the observa-
tion is in that cycle and 0 otherwise. No sta-
tistical tests were performed on data for
analytes detected in fewer than 20% of the
duplicate plate samples.

Cumulative exposure is defined as joint
exposure to more than one substance with the
same toxicological mechanism of action, and
has received particular attention with regard
to organophosphorus insecticides (18).
Cumulative exposure to pesticides in this set
of data was assessed as the frequency of dupli-
cate plate samples that contained more than
one pesticide. We used Spearman correlation
analysis to describe the relationship between
pesticide concentrations measured in the
samples.
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Table 1. Recovery efficiency (%) for pesticides in fortified duplicate solid food and beverage samples.

Fortified
concentrationa Cycle

Pesticide (µg/kg) 1 2 3 4 5 6 All p-Valueb

Solid food samples (n) 9 6 7 5 6 6 39
Atrazine 15.9–35.2 87.9 96.5 102.0 101.8 114.3 109.8 101.0 0.1626
cis-Chlordane 4.7–8.2 83.9 91.3 88.7 94.0 89.7 93.7 89.6 0.3999
trans-Chlordane 5.2–8.7 86.9 92.5 88.9 96.8 93.2 92.5 91.2 0.6066
Chlorpyrifos 10.9–18.6 91.7 90.2 84.7 85.2 95.8 87.8 89.4 0.5744
Dieldrin 4.9–8.7 79.3 82.7 80.3 97.2 93.5 91.0 86.3 0.0433
Heptachlor 4.6–8.2 76.4 89.7 82.4 88.6 86.5 84.2 83.8 0.0938
Malathion 10.5–19.9 83.9 73.3 77.3 78.2 91.0 87.8 82.1 0.1252
p,p´-DDD 6.9–12.0 84.0 93.5 89.4 93.2 101.0 94.7 91.9 0.1128
p,p´-DDE 6.5–16.2 91.1 108.3 100.1 105.6 105.5 110.8 102.5 0.1283
p,p´-DDT 9.5–16.0 83.4 89.7 83.4 91.4 90.8 91.7 87.8 0.4371

Beverage samples (n) 7 5 5 1 3 4 25
Atrazine 16.0–32.9 91.1 113.8 114.8 90 105.7 112.5 105.5 0.0614
cis-Chlordane 5.3–7.9 87.8 84.0 84.0 73 89.3 86.0 85.6 0.7252
trans-Chlordane 5.5–7.6 88.4 85.0 88.2 76 89.3 86.5 87.0 0.7976
Chlorpyrifos 10.3–15.8 88.1 80.8 80.8 79 89.0 84.8 84.4 0.6489
Dieldrin 4.4–14.9 79.5 80.8 90.2 73 90.7 94.5 85.4 0.0930
Heptachlor 4.5–7.2 76.1 84.0 83.8 68 80.7 78.3 79.8 0.4387
Malathion 9.0–16.2 86.5 76.4 71.2 80 83.3 81.3 80.0 0.2098
p,p´-DDD 7.2–11.7 89.8 97.8 85.8 77 87.3 95.0 90.6 0.4738
p,p´-DDE 7.5–12.7 90.0 109.4 92.8 75 99.0 98.8 96.3 0.0541
p,p´-DDT 10.5–15.8 89.1 85.8 81.6 77 85.7 87.0 85.7 0.7641

aRange of concentration resulting from addition of standard to duplicate plate samples. bp-Value for general linear model
test of significant variabilty of recovery among cycles.

Table 2. Demographic characteristics of
NHEXAS–Maryland study population from whom
dietary pesticide data were obtained.

Factor/level Frequency Percent

Sex
Female 48 64.0
Male 27 36.0

Age (years)
< 25 6 8.0
25–44 32 42.7
45–64 30 40.0
> 64 7 9.3

Race
African American 14 18.7
Asian/Pacific Islander 1 1.3
Caucasian 60 80.0



Results
The final data set comprised 379 duplicate
solid food samples from 75 individuals (Table
2). The distribution of observations among
sampling cycles was 75, 69, 68, 61, 47, and
59 samples for cycles 1–6, respectively.
Thirty-five individuals provided a duplicate
solid food sample in all 6 cycles, 18 in 5
cycles, 14 in 4, 7 in 3 cycles, and 1 in 2 cycles.
As discussed later, secondary data analyses
indicated that the dropout apparent from the
cycle-specific participation rates did not influ-
ence our findings in a meaningful way. 

We obtained 303 duplicate beverage
samples from 75 individuals and analyzed
them for the target pesticides. One sample
obtained in the first cycle contained p,p´-
DDE at an estimated level of 0.6 µg/kg.
Pesticides were not detected in the remain-
ing beverage samples. The low detection rate
for pesticides in beverages is consistent with
findings from other studies (19).

Temporal variation of pesticides in solid
food samples. Distributions of pesticide con-
centration that were observed in duplicate
solid food samples are summarized in Table
3. Chlorpyrifos was detected in 38.3% of the
samples, malathion in 75.2%, and p,p´-
DDE in 21.4%. Each of the seven other pes-
ticides was found in less than 10% of the
samples. Cycle-specific occurrence frequency
ranged over a factor of approximately 2 for
chlorpyrifos, 1.5 for malathion, and 3 for
p,p´-DDE (Table 4). For each of these pesti-
cides, cycle-specific detection frequency var-
ied significantly according to the mixed
GLM (Table 4) and the K-W and two-way
GLM procedures (not shown in Table 4).
By the mixed GLM analysis, detection of
chlorpyrifos and malathion was significantly
(p < 0.04) greater in cycles 3 and 4, corre-
sponding to March through mid-June 1996,
than in the other sampling cycles. In the
logistic regression analysis, chlorpyrifos was
detected more frequently in cycle 3 than in
cycle 1 [odds ratio (OR) = 2.9, p = 0.0032].
The occurrence of malathion was signifi-
cantly greater in cycles 3 (OR = 5.8, p =
0.0002) and 4 (OR = 13.9, p < 0.0001) than
in cycle 1 in the logistic regression analysis.
The frequency of p,p´-DDE detection was
significantly greater in cycle 3 than in cycles
2, 4, and 5 according to the mixed GLM
and greater than in cycle 1 (OR = 2.7, p =
0.0086) for the logistic regression.

Mean (SD) concentrations for chlorpyri-
fos, malathion, and p,p´-DDE computed
from all 379 observations made over the
entire study were 0.7 µg/kg (1.7 µg/kg), 1.8
(2.1), and 0.2 (0.6), respectively. Mean cycle-
specific concentrations of malathion ranged
from 1.4 to 2.4 µg/kg among cycles (Table
4), and the intercycle variation was significant
(p = 0.0198) according to the mixed GLM

analysis. For the K-W analyses, median con-
centrations varied significantly among cycles
for chlorpyrifos (p = 0.0326), malathion (p =
0.0045), and p,p´-DDE (p = 0.0087).

Summary statistics for the mass of dupli-
cate solid food samples and dietary exposure
(micrograms per day) to chlorpyrifos,
malathion, and p,p´-DDE for each cycle are
shown in Table 5. Because the weight of food
samples was not measured in cycle 1 and was
also not measured for approximately 8% of
food samples in other cycles, we obtained
only 279 measures of dietary exposure.

Median exposure to chlorpyrifos (p = 0.0106)
and p,p´-DDE (p = 0.0188) varied signifi-
cantly among cycles when assessed using the
K-W procedure. For malathion, exposures
did not vary among cycles according to the
K-W analysis (p = 0.2055), but did vary sig-
nificantly (p = 0.0182) in the mixed-model
analysis that controlled for the effect of
interindividual variability.

Interindividual variation for pesticides in
solid food samples. Chlorpyrifos, malathion,
and p,p´-DDE were detected in at least one
duplicate solid food sample obtained from
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Table 3. Population-weighted detection rates and quantiles of pesticide concentrations (µg/kg) in duplicate
solid food samples (n = 379) collected from 75 individuals in Maryland, September 1995–September 1996.

Pesticide % Detected 50% 75% 90% 95% 99% Maximum

Atrazine 0.0 0.0 0.0 0.0 0.0 0.0 0.0
cis-Chlordane 1.6 0.0 0.0 0.0 0.0 0.3 0.6
trans-Chlordane 2.1 0.0 0.0 0.0 0.0 0.5 1.5
Chlorpyrifos 38.3 0.0 0.8 1.8 2.9 7.7 24.3
Dieldrin 6.9 0.0 0.0 0.0 0.3 0.7 1.7
Heptachlor 4.5 0.0 0.0 0.0 0.0 1.7 6.6
Malathion 75.2 1.3 2.3 4.4 5.9 12.4 16.5
p,p´-DDD 0.3 0.0 0.0 0.0 0.0 0.0 1.0
p,p´-DDE 21.4 0.0 0.0 0.7 1.0 2.5 5.8
p,p´-DDT 0.3 0.0 0.0 0.0 0.0 0.0 1.0

Table 4. Population-weighted descriptive statistics for pesticide concentrations (µg/kg) in duplicate solid
food samples for each cycle. 

Cycle Prolonged
1 2 3 4 5 6 average

Pesticide Measure (n = 75) (n = 69) (n = 68) (n = 61) (n = 47) (n = 59 ) (n = 75)a

Chlorpyrifos % Detected 34.7 27.5 47.1 57.4 36.2 27.1 79.7
(p < 0.0001) Median 0.0 0.0 0.0 0.4 0.0 0.0 0.4

Mean 0.9 0.5 0.4 0.9 0.9 0.5 0.8
SD 2.1 1.8 0.7 1.5 2.5 1.2 1.0

Malathion % Detected 61.3 68.1 85.3 93.4 74.5 71.2 98.7
(p < 0.0001) Median 1.0 1.3 1.6 2.0 1.3 1.3 1.6

Mean 1.5 1.7 2.0 2.4 1.9 1.4 1.9
SD 2.4 1.8 2.2 2.4 2.1 1.5 1.3

p,p´-DDE % Detected 22.7 17.4 35.3 11.5 10.6 27.1 64.0
(p = 0.0017) Median 0.0 0.0 0.0 0.0 0.0 0.0 0.1

Mean 0.2 0.2 0.4 0.1 0.2 0.2 0.2
SD 0.4 0.3 0.8 0.6 0.8 0.4 0.3

n, number of observations. Result (p-value) of the mixed model test of intercycle variability of occurrence is shown below
the label for each pesticide.
aValues in this column refer to average values for each individual in the study; % detected in this column refers to the
fraction of individuals with at least one measurable residue concentration.

Table 5. Population-weighted descriptive statistics for food weight (kg) and pesticide exposure (µg/day) in
duplicate  solid food samples for each cycle. 

Cycle Prolonged
2 3 4 5 6 average

Analyte Measure (n = 64) (n = 59) (n = 57) (n = 40) (n = 59 ) (n = 74)a

Food Weight Median 0.72 0.74 0.68 0.63 0.63 0.67
Mean 0.75 0.72 0.68 0.66 0.63 0.72
SD 0.32 0.29 0.26 0.28 0.26 0.24

Chlorpyrifos Median 0.0 0.0 0.2 0.0 0.0 0.3
Mean 0.5 0.4 0.6 0.5 0.3 0.5
SD 1.7 0.7 1.1 1.5 0.6 0.9

Malathion Median 1.1 1.0 1.2 0.9 0.9 1.1
Mean 1.2 1.4 1.4 1.3 0.9 1.3
SD 1.2 1.6 1.1 1.7 1.4 1.0

p,p´-DDE Median 0.0 0.0 0.0 0.0 0.0 0.0
Mean 0.1 0.4 0.1 0.2 0.1 0.2
SD 0.3 1.2 0.2 0.8 0.3 0.3

n, number of observations. For cycle 1, n = 0.
aValues in this column refer to average values for each individual in the study.



most of the 75 study participants (Figure 1).
Four individuals had measurable concentra-
tions of chlorpyrifos in all five duplicate
solid food samples, and 18 individuals had
measurable quantities of malathion for all
five duplicate plate samples. No individual
had measurable quantities of p,p´-DDE in
all five samples. According to the K-W pro-
cedure, pesticide occurrence in solid food
samples varied significantly among individ-
uals for chlorpyrifos (p < 0.0001), margin-
ally significantly for p,p´-DDE (p = 0.0848),
and did not vary significantly (p = 0.2428)
for malathion. In contrast, mean and
median malathion concentrations varied sig-
nificantly among individuals according to
the two-way GLM (p = 0.0158) and the K-
W analysis (p = 0.0375).

Cumulative exposure. The frequency of
joint occurrence of chlorpyrifos, malathion,
and p´p´-DDE in duplicate solid food sam-
ples is summarized in Table 6. The combi-
nation of chlorpyrifos and malathion
occurred the most frequently (134/379 sam-
ples) overall. The frequency of chlorpyrifos
and malathion co-occurrence varied signifi-
cantly among cycles according to the mixed
GLM analysis, with the greatest frequency in
cycle 4. Concentrations of chlorpyrifos and
malathion in a sample were weakly corre-
lated when examined overall, and exhibited
little correlation when examined by cycle
(Table 4). We obtained similar results for
combinations of chlorpyrifos and malathion
with p,p´-DDE.

Discussion

Several investigations have been conducted
of exposure to pesticides via solid food inges-
tion. Based on a food consumption survey of
the adult population (age 25–60 years) in
Basque Country (Spain), total diet samples
were obtained and analyzed for the presence
of different contaminants and nutrients (9).
Among organochlorine pesticides p,p´-DDE
was detected most frequently, being found
in 20.65% of the food samples, with esti-
mated mean intake of 0.9 µg/day (nonde-
tects set to 0 µg/day) and maximum intake
3.5 µg/day. In a similar study, food samples
representing the major dietary foods were
collected randomly from 3 markets in
Hsinchu, Taiwan (13), and p,p´-DDE was
detected in 18% of food samples. The aver-
age p,p´-DDE concentration was found to
be 0.71 µg/kg food (SD = 0.21 µg/kg). In
the NHEXAS–Maryland study, p,p´-DDE
was detected in 21.4% of the duplicate plate
samples, which is comparable to the detec-
tion rate in Basque Country and Hsinchu.
However, the mean pesticide intake (0.2
µg/day) and mean pesticide concentration
(0.2 µg/kg) were lower than those found in
the other studies. Caution should be exercised

when comparing values across studies
because of possible differences in application
rates, dates of deregistration, food intakes,
degree of food preparation, analytical
methods, and other study protocols (9).
Measurements of organophosphate pesti-
cides may be biased low in these food mea-
surements due to the potential hydrolysis of
the phosphate ester either through chemical
or biochemical processes.

The Total Diet Study (TDS) is a national
market-basket survey carried out annually by
the FDA (12,20). The survey is used to assess
the population’s intake of pesticides,
radionuclides, and various chemicals and
nutrients. Based on the 1986–1991 TDS, the

estimated pesticide intakes for a typical U.S.
adult were 0.3, 5.5, and 1 µg/day, for chlor-
pyrifos, malathion, and p,p´-DDE, respec-
tively (12). The estimated pesticide intakes in
the NHEXAS study (0.4, 1.3, and 0.2
µg/day for chlorpyrifos, malathion, and p,p´-
DDE, respectively) are lower than those
observed in the TDS, except for chlorpyrifos.
Differences in the values observed may be
due to the differences in the market-basket
and duplicate-plate approaches, number of
foods analyzed, timing of the studies, and
analytical methods (21). 

Daily intakes of these pesticides may also
be compared to published levels of accept-
able or safe exposure. Acceptable daily
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Table 6. Relative frequency of joint pesticide occurrence and Spearman correlation (r) between pesticide
concentrations (µg/kg) in duplicate solid food samples for each cycle and overall. 

Cycle
1 2 3 4 5 6 Overall

Pesticide 1 Pesticide 2 (n = 75) (n = 69) (n = 68) (n = 61) (n = 47) (n = 59 ) (n = 379)

Chlorpyrifos Malathion 27.6% 26.8% 41.6% 61.4% 39.3% 18.5% 35.4%
(p < 0.0001) r 0.27** 0.21* –0.04 0.10 0.20 0.12 0.17***
Chlorpyrifos p,p´-DDE 8.4% 7.9% 17.7% 6.6% 1.5% 9.1% 8.9%
(p < 0.0004) r 0.03 –0.03 0.02 0.08 0.05 0.15 0.04
Malathion p,p´-DDE 14.9% 19.2% 39.6% 10.0% 6.4% 18.4% 18.8%
(p < 0.0016) r 0.12 0.16 0.14 0.11 –0.02 0.28** 0.13***

n, number of observations. Result (p-value) for significance test of intercycle variability of joint occurrence is shown
below the label for each pesticide. 
Asterisks indicate p-value from significance test for the hypothesis that r = 0. *p < 0.1, **p < 0.05, ***p < 0.01.

Figure 1. Population-weighted distribution for fraction of duplicate solid food samples per person found to
contain a pesticide.
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intakes (ADI) are established by experts
working with the United Nations Food and
Agricultural Organization and the World
Health Organization and represent the max-
imum amount of pesticides and other chem-
icals that can be ingested daily without
causing adverse effects (22). The ADI values
for chlorpyrifos, malathion, and total DDT
(p,p´-DDE > 95%) are 10, 20, and 20 µg/kg
body weight/day, respectively (12). The U.S.
Environmental Protection Agency (U.S.
EPA) establishes oral reference doses (RfD)
that are an estimate of daily oral intake over
a lifetime that is unlikely to increase the risk
of adverse effects in the human population,
including those in sensitive subgroups (23).
The RfDs for chlorpyrifos and malathion are
3 and 20 µg/kg/day, respectively. Based on
measured weights of the duplicate solid food
samples and body weight self-reported by
NHEXAS–Maryland participants, mean
(maximum) body-weight adjusted exposures
were 6.8 × 10–3 (0.2), 1.8 × 10–2 (0.2), and
2.0 × 10–3 (7.2 × 10–2) µg/kg/day for chlor-
pyrifos, malathion, and p,p´-DDE, respec-
tively. Thus, exposures were below the
corresponding ADI and RfD values. 

The goal of this portion of the
NHEXAS–Maryland study was to investi-
gate temporal variation in dietary exposure
to pesticides. We observed significant varia-
tion in the frequency of detection, concen-
trations, and exposures to chlorpyrifos and
malathion among sampling cycles. Detection
frequency, concentration, and exposure were
greatest in cycles 3 (27 February–20 April)
and 4 (22 April–15 June). Seasonal variation
of pesticide occurrence in environmental
media was observed in other studies and may
reflect increased pesticide application during
spring and summer months in response to
increased activity of pests and vulnerability
of agricultural commodities (24–26). Other
factors that could explain temporal variation
in dietary exposure to pesticides include
periodic changes in food consumption and
sources of food by season.

As described elsewhere (15), levels of
3,5,6-trichloro-2-pyridinol (TCP) in urine
obtained from the NHEXAS–Maryland
study participants, the major biological
metabolite of chlorpyrifos found in urine, also
varied across cycles. Geometric mean urinary
TCP concentrations were significantly (p <
0.0001) greater in the spring and summer
than in the fall or winter (15). This finding
was consistent with other studies where con-
centrations of metabolites of nonpersistent
pesticides were hypothesized to be greatest in
summer months due to a higher rate of pesti-
cide use (26). Additional research is needed to
ascertain the relationship between biological
markers of chlorpyrifos exposure and intake
via food and other media.

Detection of p,p´-DDE varied by a fac-
tor of 3 among cycle—surprisingly, because
it is a persistent metabolite of DDT, which
is no longer in use in the United States.
Occurrence of p,p´-DDE did not exhibit an
apparent seasonal dependence, as did chlor-
pyrifos and malathion. Temporal variation
in occurrence of this organochlorine com-
pound in duplicate plate samples may reflect
changes over time in abundance of imports
in the U.S. food supply, food consumption
patterns, or a combination of factors yet to
be identified.

Different organophosphorus (OP) insec-
ticides exhibit a similar toxicological mecha-
nism in mammals (27). They bind with and
consequently inhibit the ability of enzymes
such as acetylcholinesterase to stop the
synaptic transmission of electrical impulses
by neurotransmitters such as acetylcholine.
Thirty-five percent of the 379 food samples
found in this study contained measurable
quantities of two OP substances—chlorpyri-
fos and malathion. In addition, the inci-
dence of such cumulative exposure varied
across the year. The detection frequency in
spring and summer months was 2–3 times
the frequency in winter months (Table 6).
Note that the samples analyzed in this study
are composites of 4 consecutive days of food
consumption. Thus, the results reflect joint
exposure within the span of 4 days and pro-
vide little information about coincident expo-
sure on a shorter time scale. Nevertheless, the
data indicate that cumulative dietary exposure
to chlorpyrifos and malathion may occur
within a toxicologically relevant period of
time given their biological half-lives of less
than 3 days (28–30). In future analyses of
data from this investigation, we will explore
cumulative exposure to OP compounds in
multiple media including indoor air, settled
dust, soil, and drinking water.

Temporal variability of occurrence and
concentrations of chlorpyrifos, malathion,
and p,p´-DDE (single and cumulative) was
explored more fully by fitting the models
described earlier to the 210 observations
obtained from the 35 subjects who partici-
pated in all 6 sampling cycles—i.e., a
complete, year-long, balanced data set.
Descriptive statistics of pesticide occurrence
and concentrations in the reduced data set
were nearly identical to those in the full,
unbalanced data set. Results for tests of signif-
icant variability among cycles were consistent
with results from the full data set, with one
exception. In the restricted data set, p,p´-
DDE occurrence did not vary significantly (p
= 0.1665) according to mixed GLM proce-
dure. Results from the reduced data set
should be interpreted with caution. The
reduced sample size increases the standard
error estimates by nearly a factor of 1.5 over

those for the full data set. The loss of power
due to the reduction in sample size may be
reflected in increased p-values for effects. This
is the most likely explanation for the apparent
anomaly, because the cycle-specific point esti-
mates of p,p´-DDE occurrence in the full and
restricted data sets are nearly equal. In conclu-
sion, we find no indication that analyses of
the unbalanced data set influenced the find-
ings regarding temporal variability of pesticide
exposure in a meaningful way. 

Several efforts are underway to construct
reliable models for conducting aggregate and
cumulative population-based assessments of
pesticide exposure and risk (31). The data
presented in this paper may be useful for set-
ting parameters for these models or for eval-
uating model performance, particularly with
regard to longitudinal exposure. For exam-
ple, information is presented that can be
used to characterize the fraction of the mod-
eled population that is exposed to chlorpyri-
fos or malathion in food on one or more
occasions over a year (Figure 1). Similarly,
the results can be used to establish parame-
ters for cross-sectional frequency and magni-
tude of dietary exposure as a function of
time of year (Table 3). In addition, we
found that body-weight adjusted exposure
(micrograms per kilogram body weight per
day) and unadjusted exposure (micrograms
per day) are highly correlated. Spearman and
Pearson correlation coefficients between
body-weight adjusted and unadjusted expo-
sures were > 0.95 and as high as 0.99 for
chlopyrifos, malathion, and p,p´-DDE. In
this population dividing by body weight
introduced little reordering of exposure
among individuals and little change in the
relationship of exposure level among individ-
uals when compared to exposure expressed
without regard to body weight (i.e., as
micrograms per day). Specifically, uncer-
tainty about the distribution of body weight
or the relationship between body weight and
determinants of dietary pesticide exposure
for persons between 12 and 84 years old (the
age range in our study) is unlikely to be an
important source of overall uncertainty for
model predictions of dietary exposure to
these pesticides.

Limitations of the NHEXAS–Maryland
duplicate-plate pesticide results for modeling
purposes include the 4-day integration period,
the 8–10-week interval between collection of
repeated samples from a single participant,
and 1-year overall scope. As a result, the data
contain little information about exposure on
a per-serving, day-to-day, or year-to-year
basis that may be important for evaluating
pesticide safety and risks. Nevertheless, these
data may be used to benchmark or evaluate
models with time resolution equal to the
temporal frequency and range of this study.
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In future work, we will report analyses of cor-
relations between the pesticide intakes
described here, food consumption reported on
the NHEXAS–Maryland diet questionnaire,
and pesticide intake predicted from the diet
records and residue levels measured in specific
foods as part of national market-basket studies.

Conclusion

The results of this study demonstrate the fea-
sibility, utility, and some of the limitations of
duplicate plate methods for assessing dietary
exposure to pesticides. Occurrence and con-
centrations of chlorpyrifos, malathion, and
p,p´-DDE in 4-day composite solid food sam-
ples were shown to vary over time, whereas 4-
day composite beverage samples were shown
rarely to contain a target pesticide over the
analytical detection limit. Co-occurrence of
chlorpyrifos and malathion in solid food sam-
ples was found relatively frequently and also
varied with time. Additional analysis of these
and other NHEXAS–Maryland data is
required to investigate aggregate or multiple
media exposure to pesticides in this study
population and the relationship between lev-
els in environmental media and biological tis-
sues. New field and laboratory investigations
are required to address questions about
short-term (e.g., day-to-day) and chronic
(e.g., lifetime) dietary exposure to one or
more pesticides and contemporaneous mul-
timedia/multipesticide exposure.
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