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Polybrominated diphenyl ethers (PBDEs) have
for decades been applied as additive flame
retardants in polymers in electronics and elec-
tric goods, and in rubber, plastics, and textiles
(Alaee et al. 2003). The technical mixture of
decabromodiphenyl ether, in which BDE-209
is the major congener, now dominates the
market among the PBDE products [Bromine
Science and Environmental Forum (BSEF)
2004]. The concentrations of PBDEs, includ-
ing BDE-209, have accumulated in humans
and the environment worldwide (Gill et al.
2004; Hites 2004; Law et al. 2003). Hitherto,
mainly PBDE congeners with four to six
bromines have been assessed in human blood
and milk (Fängström et al. 2005; Hites 2004;
Sjödin et al. 2003). A few studies also included
exposure to higher brominated PBDE con-
geners, both in humans occupationally
exposed to PBDEs (Jakobsson et al. 2002;
Sjödin et al. 1999; Thuresson et al. 2005) and
in humans exposed to background concentra-
tions (Fängström et al. 2005; Schecter et al.
2003; Thuresson et al. 2005).

It is not yet fully understood how humans
are exposed to the PBDEs, but ingestion (food
and dust) and inhalation seem to be important
routes of exposure. Many PBDEs have been
reported to be present in food (Bocio et al.
2003; Domingo 2004; Huwe and Larsen
2005; Tittlemier et al. 2004), in ambient and
occupational air (Butt et al. 2004; Pettersson-
Julander et al. 2004; Sjödin et al. 2001), and in

household dust (Schecter et al. 2005; Stapleton
et al. 2005; Wilford et al. 2005). Hence, domi-
nant PBDE exposure routes differ from those
of major historical persistent organic pollutants
[e.g., polychlorinated biphenyls (PCBs) and
2,2-bis(4-chlorophenyl)-1,1,1-trichloroethane
(DDT)] because there are numerous indoor
sources for PBDEs but many fewer for the
PCBs and DDT.

All PBDEs are bioavailable, but the chem-
ical and biologic properties of the congeners
vary, as reviewed recently by Birnbaum and
Staskal (2004), Darnerud (2003), and Gill
et al. (2004). Based on knowledge of the
kinetics of halogenated aromatics, we should
expect great variations in their degradation
and excretion rates. Geyer et al. (2004)
recently presented estimated half-lives based
on experimental data for a number of bromi-
nated flame retardants, including tetra- to
hexa-BDEs, but not for any higher BDEs.
These low- to medium-brominated PBDE
congeners were indicated to have very slow
elimination rates. A similarly long half-life for
2,2´,4,4´,5,5´-hexabromobiphenyl has also
been reported (Lambert et al. 1990). In con-
trast, observations in five electronics disman-
tlers sampled before and after 30 days of
vacation suggested a rather rapid elimination
of BDE-209, with a median decrease of 66%
during this period of time (Sjödin et al. 1999).
This was the first observation that BDE-209 is
degraded or eliminated at a much higher rate

than lower brominated congeners of PBDEs.
Similarly, Sandholm et al. (2003) observed a
short half-life (t1/2 = 2.4 days) for BDE-209 in
rats dosed with this congener. Also, gray seals
experimentally dosed with BDE-209 indi-
cated a short half-life (8–13 days) of this com-
pound (Thomas et al. 2005).

The objective of the present study was to
calculate the apparent half-lives for BDE-209
and other higher BDEs in human serum,
using data from occupationally exposed
workers sampled before, during, and after a
vacation period. If we assume that those who
are known to be occupationally exposed to
PBDE do not experience any other PBDE
exposure beyond normal background outside
their work environment, we can determine
apparent half-lives of compounds with rea-
sonably short half-lives compared with the
duration of the vacation. Because two types
of exposure have to be considered, work-
related and general background exposure, we
also used data from reference populations
without any known occupational exposure
for estimation of background exposure levels.

Materials and Methods

Study groups and sampling. We included five
groups of workers in our study; these groups
have all been previously described in detail
(Sjödin et al. 1999; Thuresson et al. 2005).
The serum concentrations of some PBDEs in
these groups (cross-sectional investigations)
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are summarized in Table 1. For this study, we
analyzed an additional number of samples
from workers who donated blood samples
during their vacations from the electronics
dismantling plant (Sjödin et al. 1999) and
from the rubber manufacturer (Thuresson
et al. 2005).

Electronics dismantlers. Workers in a
recycling plant performing manual disman-
tling of electronic goods were shown by Sjödin
et al. (1999) to have elevated serum concentra-
tions of BDE-47, BDE-153, BDE-183, and
BDE-209 compared with referents. In the pre-
sent study, three female and one male dis-
mantler, 43–49 years of age, were sampled
immediately before the summer vacation and at
the end of their vacation, 28 or 29 days later. In
addition, three or four samples were obtained
from each worker during their vacation period.
The sampling took place in 1998, 1 year after
the first study (Sjödin et al. 1999).

Workers manufacturing flame-retarded
rubber compound. At a plant manufacturing
technical rubber, batches of deca-BDE flame-
retarded rubber compound were regularly pro-
duced, usually during campaigns of 1–2 days,
two to four times a month. The commercial
deca-BDE used as an additive consisted of
mainly BDE-209 with traces of nona-BDEs
and octa-BDEs. The mixers had elevated
serum levels of octa-BDEs to BDE-209,
whereas the millers had serum levels compara-
ble with male referents (Thuresson et al.
2005). In the present study, we include blood
samples from four male rubber mixers,
25–60 years of age, and three male millers,
31–45 years of age, drawn immediately after a
period of production of flame-retarded rubber
in June 2000, on the day before the start of the
summer vacation, and again at the end of vaca-
tion (31, 34, or 43 days later). Additionally, we
obtained between one and seven samples from
each of the workers during their vacation.

In 2002, the production of flame-retarded
rubber had decreased substantially at the plant,
and no batches were produced between the
end of September and the end of November
that year. Two mixers were resampled on the
morning before a 1-day production period and

at days 2 and 7 after the handling of deca-
BDE. Data from these samplings were not
included in the modeling of half-lives but are
reported separately.

Clerks. In June 1997 blood samples were
obtained from 20 female clerks, 25–61 years
of age, regularly using computers 8 hr/day
(Sjödin et al. 1999). Samples from their vaca-
tion period were not obtained.

Cleaners. In September 1997, blood sam-
ples were obtained from 20 female hospital
cleaners 30–60 years of age (Sjödin et al.
1999). Their work was performed without any
computer support, and their electrical and
flame-retarded environment was considered to
be at a minimum. They all had none or very
limited computer experience. Samples from
their vacation periods were not obtained.

Abattoir workers. Blood samples were
obtained from 18 male abattoir workers
24–60 years of age in March 2000 (Thuresson
et al. 2005). Their work was performed with-
out any computer support, and the electrical
and flame-retarded environment was consid-
ered to be at a minimum at the plant. They all
had none or very limited computer experience.
No samples from any vacation periods were
obtained.

Blood sampling. Blood was drawn from
the cubital vein into evacuated plain tubes
(Vacutainer; Becton Dickinson Vacutainer
Systems, Rutherford, NJ, USA). The serum
was centrifuged, transferred to dark-colored
acetone-washed glass bottles, frozen, and kept
at –20°C until the start of the chemical analy-
sis. Informed consent was obtained from all
subjects, and the study was approved by the
Ethics Committee at Lund University,
Sweden (protocol LU 227-97). 

Analysis of PBDEs. Chemicals and
instruments. Solvents, reference standards,
and other chemicals used in analysis of serum
samples, as well as the instrumental support
of the work, have been reported previously
(Sjödin et al. 1999; Thuresson et al. 2005).

Analyses of human serum. Extraction of
serum, lipid determination, and partitioning
between an organic solvent and aqueous
sodium hydroxide have been described in

detail elsewhere (Hovander et al. 2000;
Sjödin et al. 1999; Thuresson et al. 2005).
We performed the cleanup procedure with
sulfuric acid lipid removal, and quantitative
analyses of PBDEs by gas chromatography–
mass spectrometry [electron capture negative
ion (ECNI) monitoring, m/z = 79, 81] as pre-
viously described in detail for the individual
studies (Sjödin et al. 1999; Thuresson et al.
2005). We used the response factor for BDE-
203 for quantification of structurally unidenti-
fied octa- and nona-BDEs, which probably
underestimate the nona-BDE levels. For all
other PBDE congeners, authentic reference
standards were available. Selected ion monitor-
ing (SIM) chromatograms of the PBDE peak
patterns in a referent (abattoir worker), an elec-
tronics dismantler, and a rubber worker are
presented in Figure 1 and show the differences
in their PBDE patterns.

The blood samples were analyzed at differ-
ent time points between 1998 and 2004. All
samples from each study group were analyzed
together. Because the original limit of quan-
tification (LOQ) varied between data sets, we
had to recalculate uniform LOQs for the pre-
sent study. For all serum samples analyzed, we
used a signal-to-noise (S:N) ratio > 5 to define
the LOQ, when no interference was present in
the blank samples. If interferences were pre-
sent in the blank samples, the amount of the
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Table 1. Median serum concentrations (range) of some PBDE congeners (pmol/g lipid weight) in occupa-
tionally exposed workers and referent groups (cross-sectional data). 

Study group M F BDE-47 BDE-153 BDE-183 BDE-203 BDE-209

Electronics 15 4 5.9 7.0 11 — 5.0
dismantlersa (< 1–47) (3.2–19) (3.1–26) (< 0.3–9.9)

Rubber 7 — 1.2 1.3 < 0.1 0.36 28
workersb (< 1–3.7) (< 0.5–3.2) (< 0.1–1.1) (< 0.2–1.3) (1.2–140)

Computer — 20 3.0 1.3 0.24 — < 0.7
clerksa (< 1–10) (0.80–5.1) (< 0.02–1.4) (< 0.3–8.0)

Hospital — 20 3.2 0.89 0.16 — < 0.7
cleanersa (< 1–34) (0.64–7.6) (0.025–0.39) (< 0.3–3.9)

Abattoir 17 — 2.5 2.9 < 0.1 < 0.2 2.5
workersb (< 1–13) (1.7–5.7) (All subjects < 0.1) (< 0.2–0.49) (0.92–9.7)

Abbreviations: F, female; M, male.
aData from Sjödin et al. (1999). bData from Thuresson et al. (2005). 
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Figure 1. Representative ECNI mass chromatograms
with SIM of the m/z = 79 and 81 ions presented for a
referent (A; an abattoir worker without known occu-
pational PBDE exposure), an electronics dismantler
(B), and a rubber mixer (C). BDE-183 is the dominat-
ing peak in the dismantler (B), and octa-BDE con-
geners to BDE-209 dominate in the rubber mixer (C).
The peak heights of the surrogate standard (SS;
BDE-138) are approximately the same in A–C. 



analyte in the sample had to be at least five
times the average blank level to be accepted.
The amounts of PBDEs in blank samples, if
any, were subtracted from sample concentra-
tions before being reported. When LOQs dif-
fered between sets of data recorded and
analyzed at different time points, the LOQ
was set as the highest measured LOQ (based
on S:N ratio or blank sample levels) or the
lowest quantified value in all data sets.

Determination of apparent half-lives. For
modeling of the half-life of each PBDE con-
gener, we assumed that each subject had a
certain, constant non-work-related exposure
independent of profession. Each of the occu-
pationally exposed workers also had a work-
related exposure considered to be at a steady

state before vacation but different between
groups and subjects. Considering the start of
the vacation as day 0, Equation 1 for each
subject can be expressed as follows:

Cserum = 

Cnon-work-related + Cwork-related × e (–0.693 × t/t 1⁄2)

Based on the results from the cross-sectional
studies, we selected groups for inclusion in
the models. Clerks, cleaners, and abattoir
workers were considered occupationally
unexposed in all half-life calculations. We
considered the electronics dismantlers to be
occupationally exposed to all PBDE congeners
studied. Four rubber mixers were considered
to be occupationally exposed to deca-, nona-,

and octa-BDEs but not to lower brominated
congeners. The remaining three rubber millers
had PBDE concentrations that did not differ
from the referents and were considered occu-
pationally unexposed.

The rubber millers and abattoir workers
(all male) were sampled in 2000, whereas the
female referents were sampled in 1997. Thus,
we added a separate addition factor for millers
and abattoir workers to the model (whether it
represents a calendar year effect or a sex differ-
ence cannot be distinguished). For BDE-209
the inclusion of this addition factor yielded a
better fit of the model but did not change the
half-life estimate. For all other congeners, there
were no differences in the model fits, and this
additional factor was set to zero.
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Table 2. Serum concentrations (pmol/g lipid weight) of 10 PBDE congeners in eight subjects working either as electronics dismantlers or rubber mixers at differ-
ent time points during their vacation (a time free from any work-related exposure).

Day of Serum concentration (pmol/g LW) of PBDE congeners
Subject vacation LW (g) LC (%) BDE-153 BDE-183 octa-1 octa-2 octa-3 BDE-203 BDE-206 BDE-207 BDE-208 BDE-209

Electronics dismantlers 
A 0 0.029 0.53 9.3 10 0.34 8.9 0.62 1.1 0.32 1.7 0.20 5.7

4 0.032 0.55 10 10 0.37 8.9 0.55 0.97 0.19 1.3 0.17 2.8
10 0.028 0.52 7.6 7.5 0.25 7.1 0.40 0.78 0.12 1.0 0.13 1.8
17 0.027 0.53 9.5 8.3 0.27 7.3 0.36 0.71 0.12 0.94 0.13 1.5
24 0.027 0.54 9.3 8.7 0.27 7.3 0.36 0.76 0.11 0.93 0.14 1.8
28 0.027 0.52 8.3 7.5 0.20 6.4 0.30 0.58 0.091 0.84 0.12 1.5
35 0.028 0.54 8.1 7.8 0.22 6.4 0.38 0.48 0.10 0.76 0.092 1.1

B 0 0.023 ND 7.0 8.7 0.31 6.6 0.79 1.1 0.26 1.5 0.21 2.9
3 0.021 0.37 5.1 6.2 0.25 5.1 0.49 0.78 0.20 1.2 0.17 2.0

10 0.023 0.40 6.1 7.1 0.28 5.6 0.57 0.72 0.15 1.1 0.16 1.6
14 0.027 0.51 5.1 6.1 0.26 4.9 0.46 0.60 0.13 1.0 0.15 1.4
21 0.032 0.57 5.0 5.2 0.20 4.2 0.37 0.55 < 0.06a 0.83 < 0.04a 1.6
28 0.032 0.56 5.7 6.2 0.24 4.7 0.40 0.53 0.10 0.85 0.13 1.1

C 3 0.027 0.54 4.8 5.8 0.15 3.9 0.41 0.38 0.12 0.58 0.12 1.1
6 0.026 0.55 4.7 5.5 0.17 3.9 0.42 0.38 0.11 0.55 0.12 1.2

17 0.033 0.54 4.6 5.8 0.17 3.7 0.39 0.31 0.070 0.43 0.077 0.63
26 0.030 0.50 4.4 5.1 0.14 3.3 0.35 0.26 0.067 0.35 0.056 0.90
31 0.036 0.55 5.1 6.2 0.19 3.7 0.39 0.32 0.079 0.41 0.10 0.78

D 0 0.033 0.56 17 15 0.60 16 1.3 2.1 0.47 3.0 0.37 6.2
4 0.032 0.54 15 11 0.38 9.6 0.68 1.1 0.22 1.6 0.20 3.5

10 0.041 0.57 18 13 0.51 12 0.79 1.3 0.19 1.7 0.20 2.1
17 0.042 0.57 18 12 0.35 8.6 0.86 1.1 0.17 1.1 0.14 2.7
25 0.034 0.55 17 12 0.49 12 0.71 1.2 0.19 1.6 0.20 2.0

Rubber mixers 
E 0 0.054 0.98 3.2 1.1 2.7 14 3.2 1.3 6.9 11 2.3 140

10 0.045 0.80 2.9 < 0.07a 2.5 17 3.5 1.2 4.2 9.2 1.9 95
13 0.046 0.86 3.9 < 0.07a 2.8 15 3.2 1.1 2.8 9.3 1.5 110
17 0.045 0.81 3.9 1.2 3.1 18 4.0 1.6 1.8 11 1.8 60
24 0.059 1.0 7.6 1.7 2.1 26 5.0 1.7 3.1 10 1.5 50
31 0.061 1.1 4.3 < 0.07a 1.7 11 2.5 0.80 1.2 4.2 0.58 19
34 0.033 1.0 3.5 < 0.07a 2.9 17 3.8 1.4 2.4 11 1.5 48

F 0 0.045 0.78 1.7 < 0.07a 2.1 16 1.5 0.61 2.2 8.2 1.2 36
10 0.040 0.76 1.0 < 0.07a 1.3 9.0 0.89 0.61 0.84 3.0 0.52 9.7
13 0.056 1.1 1.8 < 0.07a 0.73 6.4 0.96 0.44 0.48 2.0 0.36 6.1
17 0.046 0.81 1.6 < 0.07a 0.84 6.1 0.94 < 0.06a 0.46 1.8 0.33 6.6
24 0.047 0.81 1.4 < 0.07a 0.72 5.6 0.80 < 0.06a 0.45 1.6 0.34 5.3
31 0.043 0.78 1.4 < 0.07a 0.69 5.7 0.75 0.42 0.30 1.2 0.15 3.4
34 0.040 1.0 1.1 < 0.07a 0.78 6.1 0.70 0.32 0.33 1.2 0.20 4.2

G 0 0.036 0.65 1.3 < 0.07a 0.69 5.0 0.57 0.47 0.99 3.7 0.69 28
2 0.032 0.58 1.4 < 0.07a 0.83 6.0 0.73 0.64 1.5 4.8 1.6 67

34 0.019 0.45 < 0.6a < 0.07a 0.65 5.7 0.46 0.55 0.80 2.4 0.49 7.9
H 0 0.038 0.68 < 0.6a < 0.07a 0.57 2.9 0.90 0.36 4.8 5.2 1.2 90

9 0.036 0.65 0.99 < 0.07a 0.84 4.3 1.1 < 0.06a 2.1 4.4 0.64 33
34 0.016 0.76 < 0.6a < 0.07a < 0.04a 2.4 < 0.04a < 0.06a 0.72 1.7 0.33 6.6

LOQ 0.6 0.07 0.04 0.09 0.04 0.06 0.06 0.07 0.04 0.3

Abbreviations: LC, lipid content; LW, lipid weight; ND, not determined. 
aBelow LOQ. 
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In total, 107 observations from 68 sub-
jects for BDE-209 and BDE-183 were avail-
able for the calculations. Because octa- and
nona-BDEs had not been determined for
cleaners and clerks, 67 observations from
28 individuals were available. For serum con-
centrations below the uniform LOQ, the level
was set to LOQ/2, and the values could thus
be used in the kinetic calculations.

We used NONMEM (version 5, level 1.1;
Beal and Sheiner 1982) for the calculations.
We determined the variance in the popula-
tions, expressed as a coefficient of variation for
both the non-work-related and work-related
exposures. Approximate estimations of the
95% confidence interval (CI) were calculated
as the estimate ± 2SE of the estimate.

Additionally, we performed a nonlinear
regression analysis of concentration versus
time data between days 10 (to ensure that the
uptake phase had ended) and 34 in two rub-
ber workers with a rich data set. We assumed
a monoexponential decline on top of the
baseline (background) level. We used NLIN
Procedure in SAS (version 8.2; SAS Institute,
Cary, NC, USA).

Results

PBDE serum concentrations from four elec-
tronics dismantlers and four rubber mixers
sampled two to seven times from the begin-
ning to the end of their vacation are given in
Table 2. The half-lives of the higher BDEs
increased with decreasing number of bromine
substituents (Table 3). For BDE-209, the cal-
culated t1/2 was 15 days (95% CI, 11–18 days).
For the three nona-BDEs (BDE-206,
BDE-207, and BDE-208), the calculated t1/2
values were 18, 39, and 28 days, respectively,
with the shortest half-life for the PBDE con-
gener with three ortho-bromines (BDE-206).
The four octa-BDE isomers (octa-1, octa-2,
BDE-203, and octa-3) had calculated half-lives
of 72, 85, 37, and 91 days, respectively, with
the shortest half-life for BDE-203. BDE-183

had a calculated half-life of 94 days (95% CI,
68–120 days). The apparent half-lives for
BDE-153 and several other medium- and low-
brominated congeners could not be deter-
mined but were indicated to be much longer
than our 1-month observation period (BDE-
153 data in Table 2).

In two rubber mixers with a rich data set,
a traditional elimination model yielded simi-
lar results for BDE-209, with half-lives of 14
and 16 days, respectively, calculated between
days 10 and 34, to ensure that the uptake
phase was over (Figure 2).

We observed a rapid uptake of BDE-209
after an isolated 1-day period of deca-BDE
exposure during production of a batch of
flame-retarded rubber (Figure 3). The levels
of BDE-209 increased between days 0 and 2
and had clearly declined at day 7 in both
workers. In contrast, the octa-BDE levels
were at their highest at day 7. For nona-BDE,
only a slight decrease between days 2 and 7
was observed. Moreover, the relative increase
of BDE-209 between day 0 and day 2 was
higher than the relative increase of the octa-
and nona-BDEs in both workers.

Discussion

Initial findings in a small number of electron-
ics dismantlers had indicated that the half-life
of BDE-209 might be shorter than the half-
lives of PBDEs with a lower degree of bromi-
nation (Sjödin et al. 1999). In the present
study, we used a larger number of individual
measurements from studies of occupationally
exposed subjects and referents without known
occupational exposure to PBDEs to further
investigate PBDE congener half-lives (Sjödin
et al. 1999; Thuresson et al. 2005). We found
that the apparent half-lives of deca- to hepta-
BDEs in serum increased with decreasing
number of bromine substituents. For the fully
brominated BDE-209, the apparent half-life
was as short as 15 days. Data from two differ-
ent types of modeling agreed well. The results

obtained from the present study thus confirm
our first observation in electronics dismantlers
(Sjödin et al. 1999) and are corroborated by
observations in two rubber workers after a sin-
gle day of exposure to deca-BDE 16 months
later (Figure 2). Thus, it is not likely that fluc-
tuations in background exposure levels can
invalidate our findings. Our data are too
sparse to investigate whether the kinetics are
dose dependent. However, the half-life estima-
tions in workers with initial higher (i.e., rub-
ber workers; Figure 2) versus lower (i.e.,
dismantlers) BDE-209 levels seem to agree. A
previous NONMEM calculation, based on
data from the four dismantlers only (Table 2,
subjects A–D), having initial BDE-209 levels
much lower than the rubber workers, yielded
the estimate of 7 days (95% CI, 3–16 days)
(Sjödin 2000). 

Experimental data are well in accordance
with our observations. A rapid clearance of

Table 3. Calculated apparent half-lives of some PBDE congeners, based on observations during vacation from occupationally exposed electronics dismantlers
and rubber mixers. 

Addition Samples with
Addition Addition abattoir workers concentrations

BDE t1/2 (days) Baseline (all) electronics dismantlers rubber mixers and rubber millers < LOQ (%)
congener Est SE 95% CI Est SE CV % Est SE CV % Est SE CV % Est SE Ce CUe
BDE-209a 15 1.7 11–18 0.86 0.18 150 1.6 0.86 87 70 22 73 2.8 0.60 0 0.20
BDE-208b 28 5.5 17–39 0.045 0.012 ND 0.13 0.035 35 1.5 0.33 48 NA NA 0.02 0.79
BDE-207b 39 17 4–73 0.36 0.067 50 0.63 0.54 96 7.5 2.5 54 NA NA 0 0.12
BDE-206b 18 2.5 15–20 0.12 0.064 35 0.083 0.48 ND 3.3 2.6 56 NA NA 0.02 0.42
Octa-1b 72 39 0–150 0.097 0.018 19 0.12 0.41 120 1.7 1.6 61 NA NA 0.02 0.33
Octa-2b 85 28 29–140 0.35 0.14 130 3.6 2.7 130 12 4.2 54 NA NA 0 0.63
BDE-203b 37 11 16–59 0.074 0.022 ND 0.055 0.15 1,700 0.21 0.37 366 NA NA 0.09 0.87
Octa-3b 91 95 0–280 0.093 0.38 ND 0.44 0.52 43 2.4 1.7 69 NA NA 0 0.21
BDE-183a 94 13 68–120 0.15 0.033 63 9.1 1.5 31 NA NA NA NA NA 0 0.61

Abbreviations: Ce, considered exposed; CUe, considered unexposed; CV %, relative coefficient of variation; Est, estimate; NA, not applicable; ND, not determined. Baseline estimates
were derived from rubber millers and reference populations of cleaners, clerks, and abattoir workers. The model assumed that each subject had a certain non-work-related exposure
that was constant but not dependent on profession. Each of the occupationally exposed workers also had a work-related exposure considered to be at steady state before vacation but
different between groups and subjects. 
aOne hundred seven observations in 68 individuals. bSixty-seven observations in 28 individuals. 
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two rubber mixers. The lines indicate the predicted
decline between days 10 and 34. The correspond-
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Thuresson et al.

180 VOLUME 114 | NUMBER 2 | February 2006 • Environmental Health Perspectives

BDE-209 has been indicated in carp
(Stapleton et al. 2004) and rats (El Dareer
et al. 1987; Norris et al. 1975; Sandholm et al.
2003). The half-life calculated in gray seals,
8.5–13 days (Thomas et al. 2005), agrees well
with our estimate of 15 days (95% CI, 11–18
days). From a theoretical point of view, it is
also reasonable that BDE-209 should have a
relatively shorter half-life than other PBDEs
because of its susceptibility to undergo, for
example, reductive dehalogenation and substi-
tution reactions under experimental condi-
tions (Eriksson et al. 2003; Rahm et al. 2005).
Also, hexabromobenzene, another perbromi-
nated aromatic compound, has been shown to
be readily metabolized in the rat (Yamaguchi
et al. 1988).

The general pattern of decreasing half-lives
of PBDE congeners with increasing number of
bromine substituents was thus expected.
Within each group of isomers, such as the
nona-BDEs and octa-BDEs, the estimated
apparent half-lives varied nominally, albeit with
wide and overlapping confidence intervals. It
can be noted, however, that the PBDE con-
geners with the shortest half-lives within each
group of isomers have a hydrogen substituent
in one of the phenyl rings and the other ring
fully brominated. No further conclusions can
yet be drawn from these observations.

The metabolism of BDE-209 is not yet
fully elucidated. In the rat, Mörck et al.
(2003) reported that BDE-209 was metabo-
lized, excreted, and only marginally distrib-
uted to adipose tissue, but it was found in
plasma and blood-rich tissues. Moreover,
traces of nona-BDEs were also observed. For
octa- and nona-BDE, experimental data are
entirely lacking. In rainbow trout, Kierkegaard
et al. (1999) found a clear accumulation of
nona- and octa-BDEs over time, after expo-
sure to deca-BDE. On the other hand, studies
of carp have shown a rather rapid degradation
of BDE-209, but no accumulation of hepta-
BDEs to nona-BDEs (Stapleton et al. 2004).
It seems likely that nona-BDEs and octa-
BDEs are formed in humans after exposure to
BDE-209, as previously indicated in our cross-
sectional study of rubber workers, using a
technical deca-BDE product containing only
trace levels of octa- and nona-BDEs (Figure 1)
(Thuresson et al. 2005). Furthermore, our
findings from rubber mixers investigated after
a 1-day deca-BDE exposure (Figure 3) sup-
port metabolic formation of octa- and nona-
BDEs from BDE-209.

There are yet no other half-life calculations
based on observational human data. Estimates
based on animal experimental data have been
published previously for BDE-47, BDE-99,
BDE-100, BDE-153, and BDE-154 (Geyer
et al. 2004), indicating long half-lives for all
these congeners. Their significant tissue bur-
dens in both wildlife and humans further sup-
port the persistence of these PBDE congeners.
Our observations for BDE-153 agree well
with the estimated long half-life (Geyer et al.
2004), but we refrained from calculation
because our observation period was too short.

BDE-209 has been shown to have
developmental neurotoxicity in mice (Viberg
et al. 2003), and its potential carcinogenicity
as observed in the National Toxicology
Program (NTP 1986) must also be consid-
ered. It is obvious that BDE-209 differs from
low- to medium-brominated PBDEs because,
despite its short half-life in blood, it is pre-
sent in male Swedes representing the general
public at levels similar to those of BDE-47
(Jakobsson et al. 2005; Thuresson et al. 2005).
Taking the rapid turnover of this compound
into account, humans must be exposed more
or less continuously to keep up the blood con-
centration. It seems likely that BDE-209 is
metabolized to nona-BDEs and octa-BDEs,
but the metabolism is probably more complex,
as indicated in an experimental study in the
rat (Mörck et al. 2003), finding also hydroxy-
lated metabolites that may be more toxic than
the parent compound. BDE-209 and the
other higher BDEs are of special concern
because large amounts of deca-BDE are still
used, while the penta- and octa-BDE products
are phased out. Thus, better knowledge of the

metabolism and kinetics of higher BDEs,
along with a better understanding of their
toxicology, is needed.
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Figure 3. Serum concentrations [pmol/g lipid
weight (LW)] of BDE-209 (A), BDE-207 (B), and one
not yet identified octa-BDE congener (C) in two
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