
Polychlorinated biphenyls (PCBs) are a major
health concern. They exhibit many negative
biologic effects, they are ubiquitously distrib-
uted, and they persist in the environment.
Although the manufacture and use of PCBs
was banned in the United States in the late
1970s, PCBs were still made and used for
many years in other countries. Certain PCBs
or PCB mixtures elicit biochemical and toxi-
cologic responses in humans and laboratory
animals that mimic those caused by 2,3,7,8-
tetrachlorodibenzo-p-dioxin (TCDD;
dioxin); however, many PCBs, especially
more highly chlorinated congeners, do not
and many of their nondioxin-like effects
remain unknown (Carpenter et al. 2002).
PCBs and their metabolites can exert estro-
genic effects by binding to the estrogen recep-
tor (ER) (Bonefeld-Jorgensen et al. 2001) or
by inhibiting estrogen catabolism (Kester et al.
2000). PCB metabolites have been reported to
interfere with transcriptional activation medi-
ated by thyroid hormone (Iwasaki et al. 2002)
and androgens (Portigal et al. 2002). 

PCBs are lipophilic and accumulate in
liver and adipose tissue (Guvenius et al.
2002). Coplanar PCBs that are structurally
similar to dioxin and mono-ortho-substituted
PCBs induce their own metabolism by bind-
ing to and activating the aryl hydrocarbon
receptor (AhR) (Shimada et al. 2002), which
induces CYP1A and CYP1B isozymes
(Rendic and Di Carlo 1997). The resulting
hydroxylated and methylsulfonyl PCB
metabolites covalently bind to DNA, produc-
ing double-stranded breaks (Srinivasan et al.
2001). Highly chlorinated PCB congeners are
metabolized slowly, if at all, because rapid
metabolism requires two adjacent, unsubsti-
tuted carbon atoms on the biphenyl ring

(Borlakoglu and Wilkins 1993). Thus, highly
chlorinated PCBs linger in human tissues,
increasing their potential to disrupt normal
signaling pathways. Consequently, the ability
of a PCB to induce carcinogenesis or mutage-
nesis or to alter endocrine signaling is strongly
associated with its metabolic fate. Dogs and
rats metabolize PCBs more readily than mon-
keys (Matthews and Dedrick 1984), suggest-
ing that the metabolism and biologic activity
of individual PCBs may be species specific. 

The mammalian xenobiotic response is
mediated primarily by two broad-specificity
sensors: the orphan nuclear receptors
SXR/PXR (human steroid and xenobiotic
receptor/rodent pregnane X receptor)
(Blumberg et al. 1998; Kliewer et al. 1998)
and the constitutive androstane receptor
(CAR) (Forman et al. 1998; Xie et al. 2000b;
reviewed by Dussault and Forman 2002;
Willson and Kliewer 2002). SXR/PXR plays
a critical role in the regulation of phase I
(cytochrome P450), phase II (conjugating),
and phase III (ABC family transporters)
detoxifying enzymes, coordinately regulating
steroid, drug, and xenobiotic clearance in the
liver and intestine (Dussault and Forman
2002; Staudinger et al. 2001; Xie et al.
2000a). SXR/PXR is activated by a diverse
group of steroid hormones, dietary com-
pounds (e.g., phytoestrogens), prescription
drugs (e.g., taxol, rifampicin), medicinal
herbs (e.g., St. John’s Wort), and xenobiotics
(e.g., organochlorine pesticides) that are all
substrates for the SXR-induced enzymes
(reviewed by Dussault and Forman 2002;
Willson and Kliewer 2002).

Because SXR/PXR exhibits species-specific
differences in its response to phytoestrogens,
clinically important drugs, and xenobiotics

(Blumberg et al. 1998; Jones et al. 2000;
Maglich et al. 2002), we infer that the metab-
olism of some compounds will be correspond-
ingly different between humans and model
organisms. To test this possibility, we tested a
variety of PCBs to determine their ability to
activate human and rodent SXR/PXR. We
found that more highly chlorinated PCB con-
geners were able to activate rodent PXR but
not human SXR. These same PCBs were able
to directly bind to human SXR and antago-
nize its activation and target gene induction in
primary human hepatocytes and LS180
human colon carcinoma cells. Using SXR
transcriptional activation and antagonism
data, a predictive molecular model for PCB
binding to SXR was formulated, tested, and
used to identify additional antagonistic PCBs.
The PCBs we identified are among the most
persistent and abundant congeners in human
tissues and show striking differences in their
potential to be metabolized in rodents and
humans. PCBs strongly induce their own
metabolism in rodents; however, our findings
suggest that they antagonize their own metab-
olism—and that of other xenobiotics, dietary
compounds, and endogenous steroids—in
humans. Thus, the use of rats to predict the
risk of human exposure to these PCBs or mix-
tures that contain them will likely lead to erro-
neous conclusions. These findings suggest
more broadly that the literature concerning
the effects of xenobiotic chemicals and the
attendant risks for human and wildlife popu-
lations will need to be reevaluated where the
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behavior of xenobiotic sensors differs across
species. The differential metabolism of drugs,
xenobiotics, and dietary compounds mediated
by SXR/PXR provides both an explanation
and a molecular tool with which to address
the often contradictory and controversial liter-
ature on the effects of dietary and environ-
mental chemicals on human health.

Materials and Methods

Rat PXR cloning. Human Gal-SXR and
mouse Gal-PXR plasmids were described pre-
viously (Blumberg et al. 1998); these plasmids
contain the yeast Gal4 DNA binding domain
fused to the ligand binding domain of SXR or
PXR. Reverse-transcriptase polymerase chain
reaction (RT-PCR) was used to clone the rat
PXR ligand binding domains from liver RNA
samples. Briefly, 1 µg total RNA, 100 pmol
oligo dT18, and 200 units Superscipt II
(Invitrogen, Carlsbad, CA) were incubated
according to manufacturer’s instructions to
generate cDNA. For construction of the Gal4
DBD-PXR ligand binding domain (LBD)
fusion plasmid (Gal-PXR), PCR was used to
amplify LBD-specific fragments of rat PXR;
exonuclease III-mediated subcloning (Li and
Evans 1997) was used to clone the fragments
between the EcoRI and BamHI sites of
pCMX-Gal4. Oligos used for PCR were 
rat forward-5´ TCGCCGGAATTCAA-
GAAAGAGATGATCATGTC3´, rat reverse
5´-TGGCCAGGATCCTCAGCCGTC-
CGTGCTG-3´.

Cell culture. Rifampicin (RIF) and preg-
nenolone 16α-carbonitrile (PCN) were pur-
chased from BioMol (Plymouth Meeting, PA).
PCBs were purchased from ChemService, Inc.
(West Chester, PA) or NeoSyn Laboratories
(New Milford, CT). For ligand treatments,
compounds were freshly diluted in DMSO or
ethanol prior to addition to cell growth media. 

COS7 cells were maintained in phenol
red free-Dulbecco modified Eagle medium
(DMEM; Cellgro, Kansas City, MO)/10%
resin-charcoal stripped fetal bovine serum
(FBS; Sigma Chemical Co., St. Louis, MO).
Cells were transfected using the calcium phos-
phate method, and luciferase and β-galactosi-
dase activities were determined as described
by Grün et al. (2002). All ligand treatments
were performed in triplicate and repeated at
least twice.

Northern blotting. Primary human and rat
hepatocytes were obtained from In Vitro
Technologies (Baltimore, MD) or through the
Liver Tissue Procurement and Distribution
System program (Pittsburgh, PA). Ligands
were added in serum-free hepatocyte incuba-
tion media (In Vitro Technologies), and total
RNA was prepared using Trizol reagent
(Invitrogen). Equal amounts of total RNA
(verified by spectrophotometry and ethidium
bromide staining) were run on denaturing

formaldehyde gels then transferred to
Hybond N membrane (Amersham Biosciences,
Piscataway, NJ). Probes specific for full-length
human CYP3A4 or rat CYP3A1 were generated
by PCR and labeled with α-(32P) dCTP using
the NEBlot kit (New England Biolabs, Beverly,
MA). Blots were probed overnight in QuikHyb
(Stratagene, Cedar Creek, TX) at 68°C fol-
lowed by manufacturer’s recommended washes.

Quantitative real-time RT-PCR. Primary
human hepatocytes or LS180 cells were treated
with various ligands for 48 hr and total RNA
was prepared as described above. For RT-PCR
analysis, 1 µg total RNA was reverse tran-
scribed using Superscript II (Invitrogen).
Quantitative real-time RT-PCR (QRT-PCR)
was performed using the following primer
sets: CYP3A4: (F 5´-CTTCATCCAATG-
GACTGCATAAAT-3´), (R 5´-TCCCAAG-
TATAACACTCTACACAGACAA-3´); AhR:
(F 5´-ATTGTGCCGAGTCCCATATC-3´),
(R 5´-AAGCAGGCGTGCATTAGACT-3´);
UGT1A1 (UDP-glucuronosyltransferase 1A1):
(F 5´-TGCTCATTGCCTTTTCACAG-3),
(R 5´-GGGCCTAGGGTAATCCTTCA-3´);
MDR1 (multidrug resistance 1): (F 5´-
CCCATCATTGCAATAGCAGG-3´) ,
(R 5´-GAGCATACATATGTTCAAACTTC-
3´); glyceraldehyde-3-phosphate dehydrogenase
(GAPDH): (F 5´-GGCCTCCAAGGAGTAA-
GACC-3´), (R 5´-AGGGGAGATTCAGTG-
TGGTG-3´); and the SYBR green PCR
kit (Applied Biosystems, Foster City, CA)
in a DNA Engine Opticon – Continuous
Fluorescence Detection System (MJ Research,
Reno, NV). All samples were quantitated by
the comparative cycle threshold method for rel-
ative quantitation of gene expression, normal-
ized to GAPDH (Livak and Schmittgen 2001).

Ligand binding studies. N-terminal
His6-tagged human SXR ligand binding
domain was expressed in Escherichia coli
together with the SRC-1 receptor interaction
domain essentially as described (Dussault et al.
2001). Protein was solubilized in 6 M guani-
dine-HCl, and active protein was refolded
from the insoluble pellet fraction using a quick
dilution to 0.6 M guanidine-HCl followed
by dialysis against binding buffer. Binding
assays were performed by coating 96-well
nickel chelate FlashPlates (Perkin-Elmer Life
Sciences, Boston, MA) with a 10-fold molar
excess of protein for 45 min at room tempera-
ture in binding buffer (50 mM Hepes, pH 7.4,
200 mM NaCl, 1 M sucrose, 0.1% CHAPS).
Unbound protein was removed from wells by
washing four times with binding buffer.
3H-SR12813 (Jones et al. 2000) (Amersham
BioSciences) was added to a final concentra-
tion of 50 nM in each well alone or together
with competitor ligands in binding buffer as
indicated. Incubation was continued for 3 hr at
room temperature. Total counts were meas-
ured using a Topcount scintillation counter

(Packard, Meriden, CT). Counts remaining
after the addition of 10 µM clotrimazole were
taken as nonspecific background and sub-
tracted from all wells (Jones et al. 2000). All
assays were performed in triplicate and repro-
duced in independent experiments. 

Molecular modeling. All molecular model-
ing operations were performed on a Silicon
Graphics Octane workstation running under
the IRIX 6.5 operating system (Silicon
Graphics, Inc., Mountain View, CA). The
PCB structures in this series were constructed
using the Sybyl 6.8 molecular modeling pro-
gram (Tripos, Inc., St. Louis, MO), followed
by initial geometry optimization using the
MMFF force field and Gasteiger-Marsili charge
set. These structures were then transferred to
the Spartan ’02 (Wavefunction, Inc., Irvine,
CA) for further calculations and visual analysis.

Using Spartan’s implementation of
MMFF, conformational analysis of each PCB
was performed by systematically rotating the
central bond between the two rings of the
biphenyl skeleton through 360° in 10° incre-
ments, followed by energy minimization at
each step while constraining the bond’s torsion
angle. The lowest energy conformer obtained
in this way was subjected to further geometry
optimization using the AM1 method (Dewer
et al. 1985). Previous computational studies
(Mulholland et al. 1993) on the conforma-
tional properties of PCBs have found that
results from AM1 are comparable with experi-
mental values and ab initio calculations. The
molecular electrostatic potential was calculated
and mapped onto the molecular density sur-
face of each PCB for visual analysis, using
ab initio single-point calculations with the
restricted Hartree-Fock wavefunction and
6-31G** basis set (Kong et al. 2000).

Statistics. To determine the potential sig-
nificance of low level activation of the
SXR/PXR from different species, we com-
pared PCB treatments with controls using
one-way analysis of variance (ANOVA) using
GraphPad Prism software (GraphPad, San
Diego, CA). The Bonferonni posttest for mul-
tiple comparisons was applied to determine
p-values.

Results

We surveyed a variety of known or suspected
endocrine disrupting chemicals (EDCs) for
their ability to activate human, rat, or mouse
SXR/PXR and found that PCBs 184 and 196
activated rat and mouse PXR, in accord with
published results for mouse PXR (Schuetz
et al. 1998). Intriguingly, these PCBs did not
activate human SXR (data not shown). To fur-
ther investigate potential species-specific activa-
tion by PCBs, we compared the ability of an
initial set of 16 PCBs ranging from trichloro-
biphenyl to decachlorobiphenyl to activate
mouse and rat PXR and human SXR using
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transient transfection assays. COS-7 cells were
transfected with a Gal4UAS-dependent reporter
along with a vector expressing the ligand bind-
ing domain of human SXR or mouse or rat
PXR linked to the DNA binding domain of
yeast Gal4 followed by treatment with various
PCBs. PCBs showed distinct species-specific
differences in their ability to activate these

receptors (Figure 1; PCBs listed in Table 1).
PCBs with 5–10 chlorine substituents acti-
vated mouse and rat PXR (Figure 1). The
completely unsubstituted biphenyl was not
able to activate rodent PXR or human SXR.
PCBs with ≥ 6 Cl substituents showed some
weak activation of human SXR. PCB 201 and
PCB 209 yielded almost identical activation in

all three species. The human SXR-selective
activator RIF and the rodent PXR-selective
PCN activated either human SXR or rat and
mouse PXR as expected. Similar results were
obtained using full-length human SXR or
mouse or rat PXR (data not shown). The rank
order potency of PCB congeners as rodent
PXR activators increased with more extensive
ortho-chlorination, consistent with published
results (Schuetz et al. 1998). 

To confirm that PCBs are species-specific
activators, we tested whether they induced
SXR/PXR target genes in human and rat pri-
mary hepatocytes and in LS180 human colon
adenocarcinoma cells. Cells were treated with
the human SXR-selective activators bisphenol A
or RIF, or the rodent PXR-selective PCN or
PCB 184. CYP3A4 (human) or CYP3A1 (rat)
mRNA expression was monitored by Northern
analysis (Figure 2). RIF and bisphenol A up-
regulated steady-state levels of CYP3A4 mRNA
in human cells but not CYP3A1 in rat hepato-
cytes. PCN and PCB 184 up-regulated
CYP3A1 mRNA levels in rat hepatocytes but
not CYP3A4 in human cells. The inability of
PCBs to induce human CYP3A4 is consistent
with previous studies (Farin et al. 1994;
Schnellmann et al. 1983). 

Because the ligand binding domains of
SXR and PXR share approximately 80%
amino acid identity, we speculated that the
PCBs should be able to bind to both receptors.
Therefore, we hypothesized that PCBs acting
as rodent-selective activators might behave as
human-selective antagonists. Accordingly, we
next tested each PCB agonist of rodent PXR
for its ability to antagonize human SXR in
transient transfection assays. Cells were treated
with constant amounts of RIF together with
increasing PCB concentrations. Inhibition
binding constant (Ki) values were derived from
inhibition curves and are shown in Table 1.
The results showed that highly chlorinated
PCBs were able to antagonize activation of
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Figure 1. Species-specific activation of SXR/PXR by PCBs in COS-7 cells transiently transfected with
human, mouse, or rat Gal-SXR/PXR, tk-MH1004-luc reporter, and CMX-β-galactosidase transfection control
plasmids. Cells were treated with 10 µM of the indicated ligands for 24 hr, harvested, and assayed for
luciferase and β-galactosidase activity. Data are shown as fold induction of normalized luciferase activity
(normalized RLU per optical density of β-galactosidase per minute) compared with control DMSO treatment
and represent the mean of triplicate experiments. Error bars indicate SE. Values in parentheses indicate the
number of chlorines on each PCB. 
*p < 0.05 compared to control. **p < 0.001 compared to control.

Table 1. PCBs tested and their ability to antagonize human SXR.

No. of Cl atoms
IUPAC no. Name Total Ortho Structure Ki (µM)a n

197b 2,2´,3,3´,4,4´,6,6´-OctaCB 8 4 N 0.6 ± 0.2 8
184 2,2´,3,4,4´,6,6´-HeptaCB 7 4 N 0.9 ± 0.2 4
183 2,2´,3,4,4´,5´,6-HeptaCB 7 3 N 1.1 ± 0.5 4
145b 2,2´,3,4,6,6´-HexaCB 6 4 N 1.3 ± 0.1 4
153 2,2´,4,4´,5,5´-HexaCB 6 2 N 1.9 ± 0.3 4
149b 2,2´,3,4´,5´,6-HexaCB 6 3 N 2.0 ± 0.6 4
196 2,2´,3,3´,4,4´,5,6´-OctaCB 8 3 N 2.1 ± 0.6 4
171b 2,2´,3,3´,4,4´,6-HeptaCB 7 3 N 2.1 ± 0.3 4
203b 2,2´,3,4,4´,5,5´,6-OctaCB 8 3 N 2.4 ± 0.1 4
176b 2,2´,3,3´,4,6,6´-HeptaCB 7 4 N 2.4 ± 0.7 4
154b 2,2´,4,4´,5,6´-HexaCB 6 3 N 3.1 ± 1.4 4
175b 2,2´,3,3´,4,5´,6-HeptaCB 7 3 N 3.1 ± 0.9 4
102b 2,2´,4,5,6´-PentaCB 5 3 N 4.6 ± 1.6 4
187 2,2´3,4´,5,5´,6-HeptaCB 6 3 N 6.5 ± 0.4 3
180 2,2´,3,4,4´,5,5´-HeptaCB 6 2 N 8.4 ± 1.0 3
28 2,4,4´-TriCB 3 1 N 9.1 ± 2 4 6
207 2,2´,3,3´,4,4´,5,6,6´-NonaCB 9 4 N 10.8 ± 1.9 3
201b 2,2´,3,3´,4´,5,5´,6-OctaCB 8 3 N 16.5 ± 7.9 4
99 2,2´,4,4´,5-PentaCB 5 2 N 24.5 ± 5.3 3
74 2,4,4´,5-TetraCB 4 1 N
138 2,2´,3,4,4´,5-HexaCB 6 2 N
209 Decachlorobiphenyl 10 4 N
– Biphenyl 0 0
118 2,3´,4,4´,5-PentaCB 5 1 M
156 2,3,3´,4,4´,5-HexaCB 6 1 M
77 3,3´,4,4´-TetraCB 4 0 C
169 3,3´,4,4´,5,5´-HexaCB 6 0 C

Abbreviatons: C, coplanar; CB, chlorinated biphenyl; IUPAC, International Union of Pure and Applied Chemistry; M, mono-
ortho-coplanar; N, noncoplanar. 
aKi values were derived from inhibition curves at constant RIF concentrations in the range of 1–10 µM using the Cheng-
Prusoff equation; values represent the mean ± SEM calculated from the indicated number of inhibition curves (n).
bSecond set of 10 PCBs, predicted to possess significant antagonist activity.
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Figure 2. Northern blot analysis showing SXR tar-
get gene expression in rat primary hepatocytes,
human primary hepatocytes, and LS180 cells. Cells
were treated with solvent (control), bisphenol A,
PCB 184, PCN, or RIF; then rat primary hepatocyte
RNA was probed with CYP3A1, and human LS180
and primary hepatocyte RNA probed with CYP3A4.
See “Materials and Methods” for details.



human SXR, with PCBs 184, 183, and 153
being the most effective antagonists (Table 1). 

The biologic activities for the initial set of
16 PCBs were studied using molecular mod-
eling to identify structural patterns associated
with those PCBs that antagonize human SXR
activation (Table 1). The PCBs were divided
into two categories: SXR antagonists
(Ki ≤ 9 µM) and nonantagonists (Ki > 9 µM
or undetectable). Inspection of the molecular
structures revealed distinct substitution patterns
that differentiated antagonists from nonantago-
nists. The most salient feature concerns the
total number and specific placement of Cl
atoms on the biphenyl skeleton, particularly the
number occupying the four ortho positions
(2, 5, 2´, and 5´). Ortho substitution causes the
ring–ring torsion angle to rotate farther away
from the coplanar conformation in order to
minimize steric clashes between ortho-Cl
atoms on opposite rings. The combination of
meta, para substitution on the same ring with
either mono- or di-ortho Cl substitution (i.e.,
2,3,4,6 or 2,4,5 ring substitution) was associ-
ated with the more active compounds (e.g.,
PCBs 183, 184). As a conceptual aid, we
depicted these substitution patterns using a
“square” (2,3,4,6-tetrachloro) and a “triangle”
(2,4,5-trichloro) benzene ring (Figure 3).

The 6 active antagonists in this original set of
16 contain one or more of these motifs
(Figure 3; see also Supplemental material
online at http://ehp.niehs.nih.gov/members/
2003/6560/supp.pdf). In compounds with
only a single square or triangle, the other ring
contained at least three Cl atoms including at
least one ortho-Cl atom.

Based on these observations, we inferred
the following structural indicators of PCBs
that antagonize human SXR: a) a Cl-substitu-
tion pattern corresponding to 2,3,4,6
(“square”) or 2,4,5 (“triangle”) on at least one
benzene ring; b) the “square” pattern imparts
greater activity than the “triangle” pattern;
c) PCBs in which both rings fit one of the
patterns should be the most active antago-
nists; d) a ring not fitting either pattern
should contain at least one and preferably two
ortho-Cl atoms and should be para-substi-
tuted (PCBs 184 vs. 145; 154 vs. 102); and
e) the PCB molecule should contain at least
six Cl atoms overall. 

Using these indicators as guides, we pre-
dicted that the following PCBs should possess
significant antagonistic activity: 102, 145,
149, 154, 171, 175, 176, 197, 201, and 203.
Biologic evaluation of this second set of
10 PCBs confirmed our predictions (Table 1).

Six of these PCBs were among the 10 most
active antagonists, and PCB 197, which fits
the “ideal” square–square pattern, was the
most active PCB tested (Ki = 0.6 µM; Figures
3 and 4). PCB 201 showed less antagonistic
activity than anticipated because it was also a
partial agonist (Figure 1).

The SXR antagonism by PCBs in transient
transfections suggested that antagonistic PCBs
should block human SXR-mediated induction
of target genes. SXR is known to regulate genes
in all three phases of xenobiotic metabolism,
and several other potential target genes such as
AhR have been identified by microarray analy-
sis (Maglich et al. 2002). We used QRT-PCR
analysis to assess CYP3A4 and AhR induction
by RIF in primary human hepatocytes and
CYP3A4, UGT1A1, and MDR1 induction in
LS180 cells in the absence or presence of
PCBs. As expected, the highly chlorinated
PCB 184 and PCB 197, which act as strong
antagonists in transfection assays, significantly
reduced SXR target gene induction by RIF in
both primary human hepatocytes and LS180
cells (Figures 5 and 6). Compounds such as
biphenyl and PCB 28, which did not antago-
nize SXR activation in transient transfection
assays, also failed to inhibit the induction of
SXR target genes by RIF. A small induction of
expression by biphenyl alone and an apparent
additive effect of biphenyl plus RIF were
observed for AhR expression in primary
human hepatocytes, suggesting that biphenyl
might be activating AhR to up-regulate its own
expression. In the LS180 cells, PCBs were able
to antagonize SXR-dependent induction of
phase I (CYP3A4), phase II (UGT1A1), and
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Figure 4. Effect of PCBs on activation of human SXR
by rifampicin in COS7 cells transfected with Gal-SXR,
tk(MH100)4-luc, and CMX β-galactosidase transfec-
tion control plasmids, then treated with RIF in the
presence of 1–33 µM PCB 197 for 24 hr. See
“Materials and Methods” for details. Data are shown
as fold induction of normalized luciferase activity rel-
ative to solvent controls. The results shown are from
a typical experiment, and data points are the means
of triplicates; the SE was < 15%.



phase III (MDR1) metabolic enzymes
(Figure 6).

A scintillation proximity in vitro ligand-
binding assay (Dussault et al. 2001; Jones et al.
2000) was employed to verify that PCBs antag-
onize human SXR by direct binding rather
than through another mechanism. The high-
affinity ligand, 3H-SR12813 (Kd = 40 nM)
(Jones et al. 2000), directly bound to recom-
binant human SXR; this binding was specifi-
cally antagonized by an excess of unlabeled
RIF (Figure 7). PCBs 197, 184, 145, and 153
were all effective competitors (Figure 7). The
rank order potency of PCBs as SR12813
competitors closely followed the Ki values of
these PCBs for SXR antagonism (Table 1).
PCBs that were unable to antagonize human
SXR (e.g., biphenyl, PCB 99) and the rodent-
selective activator dexamethasone (Moore
et al. 2000) did not compete effectively for
human SXR binding. We infer from these
experiments that antagonistic PCBs bind
directly to human SXR to function as antago-
nists of SXR ligands.

Discussion

Steroid hormones circulating at nanomolar
concentrations are essential to normal repro-
duction and sexual differentiation. Alterations
in prenatal levels of sex steroids have been
linked to numerous abnormalities, including
permanent changes in prostate size and
increased risk of ovarian cancer (vom Saal
et al. 1997, 1998). SXR is a xenobiotic-sens-
ing nuclear receptor that plays a major role in
regulation of steroid, drug, and xenobiotic
metabolism [reviewed by Dussault and

Forman (2002); Willson and Kliewer (2002)].
Exposure to compounds that activate or block
SXR activity could locally alter natural hor-
mone levels by modulating hormone metabo-
lism. Our results show that some PCBs act as
agonists of rodent PXR but as antagonists of
human SXR, respectively activating or blunting
induction of target genes, in both primary
human hepatocytes and LS180 human colon
carcinoma cells. In agreement with this finding,
Easterbrook et al. (2001) have shown that
PCBs induce metabolic activity in rat but not
human liver microsomes. The data presented
above show that rather than inducing metabolic
activity in human liver and intestinal cells,
exposure to highly chlorinated PCBs inhibits
induction of phase I, II, and III metabolic
enzymes normally modulated by human SXR
(Figures 5 and 6). Thus, PCBs can affect
steroid and xenobiotic metabolism, as well as
their own metabolism, differently in rodents
and humans. Previous studies on the toxicity
and long-term effects of exposure to highly
chlorinated, nonplanar PCBs in rodents may
need to be reevaluated in the light of these new
findings. 

Coplanar and mono-ortho-substituted
PCBs initiate their own metabolism by binding

to and activating AhR, which in turn induces
CYP1A and CYP1B (Shimada et al. 2002).
Most other PCBs are not metabolized effi-
ciently in humans; hence, mechanisms other
than AhR activation must mediate their effects
(Carpenter et al. 2002). Guvenius et al.
(2002) reported that methylsulfonyl and
hydroxy PCB metabolites accounted for only
3–26% of the total PCB concentration in
human liver and 0.3–0.8% of the total PCBs
in adipose tissue. Therefore, many PCBs exist
in their native form in human tissues, where
they may accumulate because of their inherent
lipophilicity. Ligand-induced activation of
SXR is normally achieved at micromolar con-
centrations, and the mixtures of PCBs existing
in certain human tissues could approach these
levels (Portigal et al. 2002). We note that
PCB 153 is one of the most abundant PCBs
found in human tissues (Safe 1994) and is not
significantly metabolized by human hepatic
microsomes (Schnellmann et al. 1983).
PCB 153 was among the strongest antagonists
of human SXR in our experiments (Table 1).
AhR, CYP1A1, and CYP1A2 are human SXR
target genes (Maglich et al. 2002); therefore,
antagonism of SXR-mediated induction of
AhR and CYP1A genes by highly chlorinated
PCBs such as PCB 153 may also disrupt the
metabolism of the coplanar and mono-ortho-
substituted PCBs that are normally metabo-
lized through the AhR pathway. Our finding
that highly chlorinated PCBs antagonized
AhR induction by the SXR activator RIF
(Figure 5) is in agreement with this hypothe-
sis. This reasoning suggests that all types of
PCBs will be more persistent in humans than
in organisms such as rodents, where PCBs
activate endogenous PXR and are metabo-
lized. It should be noted that our results are
based on experiments using primary human
hepatocytes and LS-180 cells. Therefore, it is
not impossible that PCBs may be partially
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Total RNA was analyzed by QRT-PCR; see
“Materials and Methods” for details. 
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metabolized or altered in vivo, modifying their
ability to bind and antagonize SXR activity.

Loss-of-function mutations in the mouse
xenobiotic sensor PXR have been created by
targeted gene disruption (Staudinger et al.
2001; Xie et al. 2000a). Such animals are
viable and fertile, which could be interpreted
to indicate that PXR is not required for nor-
mal mammalian physiology. However, treat-
ment of PXR–/– animals with the toxic
endogenous bile acid lithocholic acid led to
severe liver damage compared with control
animals (Staudinger et al. 2001). This suggests
that the normal physiologic responses to at
least one class of toxicants metabolized via a
PXR-dependent pathway are impaired in
knockout animals. Although there are cur-
rently no published studies examining the
effect of chronic toxicant treatment on PXR–/–

animals, it would be rather surprising if loss of
this critical xenobiotic sensor did not have
deleterious consequences. It would be equally
surprising if antagonism of SXR did not alter
the normal physiologic response to steroids,
xenobiotics, and dietary compounds, as has
been demonstrated for activation of SXR in
promoting drug–drug interactions [reviewed
by Dussault and Forman (2002); Willson and
Kliewer (2002); Xie and Evans (2001)].

PCB antagonism of human SXR activa-
tion has serious implications for human
health. PCBs are persistent and ubiquitous
environmental contaminants, and humans are
exposed to PCBs by eating contaminated
food such as beef, poultry, fish, and dairy
products, and by infant ingestion of contami-
nated breast milk (Safe 1994). Extensive epi-
demiologic evidence has linked PCB exposure
to a variety of diseases, developmental prob-
lems, and human cancers as well as to adverse
reproductive effects in both males and females
(Den Hond et al. 2002; Yu et al. 2000).
Higher levels of PCBs have been detected in
women with benign and malignant breast dis-
ease (Güttes et al. 1998), and exposure to
PCBs has been linked to increased risk of
breast cancer (Dorgan et al. 1999). Exposure
to PCBs in food has been linked to delayed
brain development, neurobehavioral abnor-
malities, and reduced IQ (intelligence quo-
tient) in children (Carpenter et al. 2002;
Jacobson and Jacobson 1996). A confounding
factor is the inability thus far to establish a
consistent link between a particular PCB con-
gener and any of these adverse outcomes.
Antagonism of SXR activation and inappro-
priate hormonal modulation by subsets of
antagonistic PCBs could lead to many of the
human reproductive and developmental
effects described. Expression of SXR and its
CYP3A target genes has been detected in
human breast tissue (Huang et al. 1996) and
breast cancer cell lines (Dotzlaw et al. 1999)
and in rat brain (Schilter et al. 2000).

Therefore, it is worth considering the possibility
that interference with SXR function caused by
members of a group of antagonistic PCBs could
contribute to the adverse consequences
observed without any requirement for a single
congener to be consistently present. 

A large number of compounds are known
or suspected to have effects on the endocrine
system. These endocrine-disrupting com-
pounds may mimic or block the effects of nat-
urally occurring hormones. There is increasing
concern about EDCs and their potential for
causing adverse health effects in humans and
other species. However, there is significant
controversy about whether adverse conse-
quences in animal populations can be causally
linked to EDC exposure and whether any
identified risk can or should be extrapolated to
humans. The degree of risk from EDC expo-
sure is variously estimated to range from cata-
strophic (Colborn et al. 1996) to unproven
(Safe 2000) to insignificant (Ames and Gold
2000; Ames et al. 1990); thus it is safe to say
that there is disagreement among experts.
Further confounding the problem is that
humans and wildlife are typically exposed to
mixtures of xenobiotic chemicals rather than to
a single EDC. Our results demonstrate that
highly chlorinated PCBs show striking differ-
ences in their potential to be metabolized in
rodents and humans. Such PCBs strongly
induce xenobiotic metabolism in rodents
(Borlakoglu and Wilkins 1993; Easterbrook
et al. 2001), whereas they antagonize SXR acti-
vation and the expression of phase I, II, and III
metabolic enzymes in response to known
inducers in primary human hepatocytes
(Figure 5) and intestinal cells (Figure 6).
Therefore, we infer that these PCBs will
inhibit their metabolism and that of other
xenobiotics, dietary compounds, and endoge-
nous steroids normally processed through
SXR-dependent pathways in humans.

Because rats are the primary mammalian
toxicologic model, one cannot escape the con-
clusion that significant errors will be made
when the results of rodent studies are extrapo-
lated to predict human risk, especially when
compounds such as these antagonistic PCBs are
tested. Partially humanized mice that express
human SXR in the livers of transgenic PXR
knockout animals (Xie et al. 2000a) may be a
better model than rats in some cases. A more
appropriate solution would be the use of either
a fully humanized rodent that expresses human
xenobiotic sensors in all tissues or a model ani-
mal that exhibits a response more accurately
reflecting human xenobiotic metabolism. The
development of a rational public policy for
chemical exposure, strongly grounded in sound
science, requires the use of model systems that
accurately and faithfully predict human out-
comes. Xenobiotic-sensing nuclear receptors
have an important role to play in this process.
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