Pathogenesis of UTI in Women with Diabetes Mellitus

Andy IM Hoepelman Dept of Medicine, Div of Acute Medicine & Infectious Diseases University Medical Center Utrecht, the Netherlands

Urinary tract infections in Diabetes mellitus

- Prevalence is increased in women compared to nondiabetics of the same gender
- Prevalence is not increased in male diabetics
- Many infections are asymptomatic (ASB)
- Most infections are complicated (50% ACB)
- Increased in pregnancy and related to prematurity and new-born mortality
- Most important cause of bacteremia in diabetics

Concepts of increased rate of infection in diabetics

- Patients with diabetes mellitus have organ dysfunction (Neuropathy, Bladder dysfunction)
- Patients with diabetes mellitus are immunocompromised
- Bacteria grow better in glucose
- Micro-organisms in diabetics express different virulence factors
- Bacteria adhere better in patient with diabetes mellitus

Urinary tract infections in Diabetes mellitus University Medical Center Utrecht Research project

- Is the incidence of ASB in women increased?
- Is there a difference between type-1/2 patients?
- With which risk factors is the increased incidence correlated?
- What are the type of bacteria causing ASB/UTI and what virulence factors do they express?
- What are the consequences of asymptomatic bacteriuria
- What is the pathogenesis of ASB in diabetics
- Started in 1996 with a grant from DF Netherlands

Objectives of the clinical part

To determine in a multi-center study:

- The prevalence of asymptomatic bacteriuria (ASB) in women with DM
- The risk factors for ASB in women with DM type 1 and DM type 2
- Consequences of ASB

Results (1) - Prevalence

	ASB+	ASB-	Control ASB + n= 153
All n=636	163 (26%)	473 (74%)	9 (6%)
Type-1 N=258	53 (21%)	205 (79%)	
Type-2 N=378	110 (29%)	268 (71%)	

Risk factors for all women with DM

	ASB-	ASB+	p-value	or
number	473 (74%)	163 (26%)		
retinopathy	119 (25%)	57 (35%)	0.01	1.2
albuminuria	18 (6%)	18 (16%)	0.002	3.1
BMI	27.8	26.8	0.004	1.0
UTI last year	83 (18%)	43 (26%)	0.009	1.9
duration DM	13.1	14.9	0.07	
HbA1c	8.5	8.6	0.5	

Risk factors DM type 1

	ASB-	ASB+	p-value	or
number	205 (79%)	53 (21%)		
Neuropathy	44 (23%)	20 (40%)	0.03	2.2
Macroalbumi nuria	8 (5%)	7 (16%)	0.02	3.6
Duration DM	17.9	22.4	0.02	
HbA1c	8.5	8.8	0.3	

Yellow= multivariate analysis

Risk factors DM type 2;n= 378

	ASB-	ASB+	p-value	or
number	268 (71%)	110 (29%)		
Age	58.0	63.0	<0.001	
albuminuria	10 (6%)	11 (15%)	0.03	2.9
BMI	29.9	28.3	0.04	1.0
UTI last year	48 (18%)	30 (27%)	0.02	1.9
Duration DM	9.3	11.3	0.05	
HbA1c	8.6	8.5	0.9	
Yellow=multiva	riate analysis			12/18

12/18/2003 2:30 PM 9

Conclusion (1)

Prevalence of ASB is increased (26%-6%; p<0.001)

Risk factors in type-1 are peripheral neuropathy and macroalbuminuria

Risk factor in type-2 is age

No effect of regulation, a post-voiding bladder residue, various contraceptive methods, estrogen treatment, sexual intercourse, cardiovascular dysfunction

ASB is suggested in some studies <u>non-diabetics</u> to lead to: -recurrent UTI -hypertension -renal impairment -increased mortality What are the consequences of ASB (to treat or not to treat that's the question)

Development of symptomatic UTI

Effect on renal function

Follow up o	characteristics	of all women	with
N=589	ASB-	ASB+	Р
	N=441 (75%)	N=148 (25%)	
UTI	75 (17%)	40 (27%)	.02

 Antimicrobial
 62 (14%)
 34 (23%)
 .01

 Therapy UTI
 .01

Increase	4.4%	5.6%	.26	
In creatinine				
clearance			12/18/2003 2:30 PM	13

Consequences of ASB in type-1 DM

Geerlings et al Arch Intern Med, 2001; 161 (11): 1421-7

Consequences of ASB in type-2 DM

Geerlings et al Arch Intern Med, 2001; 161 (11): 1421-7

Follow up characteristics of all women with DM type-1

N=241	ASB – N=192 (80%)	ASB+ N=49 (20%)	P-value
Symptomatic Uti	28 (15%)	6 (12%)	.8
Antimicrobial Therapy UTI	25 (13%)	5 (12%)	.7
Increase In Creatinine	1.5%	4.6%	.2
Albuminuria Increase	-19%	-25%	.9

Geerlings et al Arch Intern Med, 2001; 161 (11): 1421-7

Follow up characteristics of all women with DM type-2

N=348	ASB – N=249 (72%)	ASB+ N=99 (28%)	P-value
Symptomatic Uti	47 (19%)	34 (34%)	.006
Antimicrobial Therapy UTI	37 (15%)	29 (29%)	.003
Increase In Creatinine	6.1%	6.6%	.9
Albuminuria Increase	-28%	-43%	.4

Conclusion (2)

27% of women with ASB develop a symptomatic infection

ASB at baseline increases the risk for a symptomatic UTI (17 vs. 27% p=0.02)

More antibiotics are prescribed (p=0.01)

Women with type-1 DM have a relative faster decline in renal function (4.6% vs. 1.5%)

Geerlings et al Arch Intern Med, 2001; 161 (11): 1421-7

Pathogenesis of increased rate of bacteriuria in women with diabetes mellitus

- Different micro-organisms are seen in diabetics
- Micro-organisms in diabetics express different virulence factors
- Bacteria grow better in glucose
- Patients with diabetes mellitus are immunocompromised
- Adherence of microorganisms has changed

Concepts of increased rate of urinary tract infections in diabetics

Bacteria grow better in glucose

Effect of glucose on growth of *E.coli* in urine

Concepts of increased rate of infection in diabetics

- Bacteria grow better in glucose
- Different micro-organisms are seen in diabetics

Bacteria found in diabetic women with ASB 636 women: 163 ASB (26%)

- E.coli 42% compared to 78% in control group
- Other Enterobacteriaceae 30%
- Hemolytic streptococcus group B 10%
- Enterococcus spp
- S.aureus

Correlation of bacterial factors and patients' characteristics *E.coli*

Bacterial	Abr	normal UT	Mee	dical Illness	One	e or more
factor	Y	No	Y	Νο	Y	No
P fimbriae (%)	45	82	42	76	52	100
Type 1	81	96	83	91	85	100
Hemolysin	46	44	46	44	44	50

Johnson & Stamm JID 1987;156:225-29

Virulence factors in 111 *E.coli* isolated from diabetic women

type 1	96	87%
MSHA	65	59%
subunit-A	22	20%
G-adhesin-I	0	0%
G-adhesin-II	5	5%
G-adhesin-III	16	15%
MRHA	21	19%
sfa	33	30%
afa	6	5%
CNF	21	19%
aerobactin	35	32%
hemolysis	36	33%
O-UTI	21	19%

Geerlings et al, Antonie van Leeuwenhoek 2001;80:119-127

Correlation of virulence factors with clinical consequences (increase in creatinine)

VF	Ν	Creatinin increase without VF	Creatinin increase with VF	P-VALUE
Type 1	90%	6.3%	6%	.97
MSHA	60%	2.1%	8.1%	.08
Pap A	24%	5.9%	4.7%	.82
MRHA	22%	4.9%	8.7%	.48
SFA	35%	4.2%	10.4%	.18
AFA	4%	6.4%	4.4%	.87
Aerobactin	32%	6.5%	3.9%	.56
CNF	21%	3.9%	12.6%	.11
Hemolysis	33%	4.1%	8.4%	.34

Geerlings et al, Antonie van Leeuwenhoek 2001;80:119-127

Correlation of virulence factors with clinical consequences (symptoms)

VF present	N	No symptomatic UTI	Symptomatic UTI	P-VALUE
Type 1	90%	89%	16%	.16
MSHA	60%	55%	75%	.15
Pap A	24%	30%	6%	.05
MRHA	22%	26%	6%	.09
SFA	35%	40%	25%	.28
AFA	4%	4%	-	.42
Aerobactin	32%	42%	13%	.03
CNF	21%	25%	6%	.11
Hemolysis	33%	30%	50%	. 18

Geerlin van Leeuwennoek 2001

Concepts of increased rate of infection in diabetics

- Bacteria grow better in glucose
- Different micro-organisms are seen in diabetics
- Patients with diabetes mellitus are immunocompromised -PMN function

Defects in PMN function

BALASIOU ET AL Diabetes Care 1997;20:392-95

Defects in PMN function

Defects in PMN function

BALASIOU ET AL Diabetes Care 1997;20:392-95

Concepts of increased rate of infection in diabetics

- Bacteria grow better in glucose
- Different micro-organisms are seen in diabetics
- Patients with diabetes mellitus are immunocompromised -PMN function -Cell mediated immunity/mucosal response

Cellular and molecular mechanisms of mucosal resistance in UTI

- C3H/HeJ mice increased susceptibility to UTI due to impaired neutrophil recruitment
- The chemokines support neutrophil migration across the uroepithelium
- IL-8R KO mice fail to clear bacteria from kidney and bladder
- Patients prone to acute pyelonefritis have a low CXC chemokine 1 expression

Svanborg et al, J Immunol 1987;138:3475; Infect Immun 1997;65:3451; J Exp Med 2000;192:881-890

Incidence of UTI in HIV-infected man increases with decreasing CD-4 cell count

HOEPELMAN et al, AIDS 1992;6:179-184

Urinary interleukin-6

Urinary interleukin-8

TNF (after stimulation of monocytes)

Eur J Clin Invest 2000; 30: 995-1001

Pathogenesis of increased rate of bacteriuria in women with diabetes mellitus

- Different micro-organisms are seen in diabetics
- Micro-organisms in diabetics express different virulence factors
- Bacteria grow better in glucose
- Patients with diabetes mellitus are immunocompromised
- Adherence of microorganisms has changed

EM of type 1 fimbriae

mannose receptor

E. coli outer membrane

FimH adhesin

(slide provided by Dr. R. Ballou)

type 1 pilus

FimC

Fim H Sequence in *E.coli* from WWDM

PCR- analysis and sequencing of our 31 E. coli-

strains isolated from women with DM :

327 identical fimH sequence

Adherence of bacteria to diabetic cells

Adherence to uroepithelial cells 16 14 12 number bacteria per cell 10 \Box controls (n=19) 8 ■ dm (n=25) 6 4 Т 2 0 Pfimbriae (Ctrl type 1 fimbriae negative no fimbriae (A-

(Ctrl 39)

254)

Geerlings et al, Diabetes Care 2002: 25; 1405-9

36)

Adherence of E.coli isolated from
women with DM to T-24 cells can
be inhibitedn = 14* p < 001

Adherence of E.coli to uroepithelial cells of women with DM can be inhibited n = 6

* p < .05

J Urol, 2004 in press

E.coli expressing type-1 pili can be internalized

Hultgren et al Science 1998;282:1494; EMBO J 2000;19:2803; I&I 2001;69:4572

Scott J Hultgren

- FimH adhesin facilitates intimate contact with uroplakin
- FimH is involved in mediating internalization of UPEC
- Can trigger cytokine and chemokine production leading to exfoliation of uroepithelial cells
- Avoidance of clearance leads to a quiescent bacterial reservoir within the bladder mucosa

Research goals

- Clinical data in women with type-1 DM point out to effect of AGEs (or some other pathway) on uroepithelial cell
- Is adherence of E.coli also increased in animal models of DM?
- If so what is the mechanism?
- Is bacteriuria associated with renal failure?

Acknowledgement

• UMC

- Suzanne Geerlings
- Ellen Brouwer
- Frank Coenjaerts
- Ruby Meiland
- Theo Collet
- Kok van Kessel
- Wim Gaastra
- Ronald Stolk
- Jan Verhoef
- Emiel van Lith
- Medimmune, Inc Sol Langerman Gale Auguste Hassan Bamba

Diakonessenhuis Utrecht

- Rob Diepersloot
- Joost Hoekstra
- Willem Hustinx

Catharina Ziekenhuis Eindhoven Bert Bravenboer Marielle Camps

Bosch Medicentrum Paetrick M Netten Paul Bouter Peter Schneeberger

st Joseph ziekenhuis Veldhoven Arjen Jansz

Adherence of type-1 fimbriae in WWDM

- Uroplakin is the receptor
- Protein component is the same
- Almost all strains tested have the FimH gene
- Adherence to T-24 cell of these strains can be inhibited by anti-Fim H antibodies
- Adherence of strains to uroepithelial cells of WWDM can be inhibited by anti-Fim H antibodies