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Research

Epidemiologic studies have suggested that
exposure to particulate air pollution may result
in as many as 100,000 premature deaths per
year in the United States (Schwartz et al.
2002). Multiple studies over a broad range of
geographical locations indicate that for each 10
µg/m3 increase in ambient particulate matter
(PM), the daily mortality rate is augmented by
approximately 1–5% (Pope et al. 2002;
Schwartz et al. 1996). Mortality due to cardio-
vascular complications after acute PM exposure
comprises a significant component of all-cause
mortality (Goldberg et al. 2001; Samet et al.
2000). The U.S. population continues to grow;
at least two-thirds of our population is obese or
overweight (Hedley et al. 2004), and now one-
third is hypertensive (Fields et al. 2004).
Children and senior citizens comprise approxi-
mately 40% of the total U.S. population, and
this figure is projected to swiftly increase in the

coming years (U.S. Census Bureau 2004.). A
major concern is that despite the ongoing
growth of the most susceptible populations, the
mechanisms by which PM increases morbidity
and mortality remain largely unknown.

Three prominent hypotheses have been
advanced to explain how pulmonary PM expo-
sure can elicit a cardiovascular response (Brook
et al. 2004; Nemmar et al. 2002; Oberdorster
et al. 2004). The first hypothesis proposes that
PM deposited in the lung acts through a
neural mechanism to alter central nervous sys-
tem function. In the lung, nociceptive neurons
are stimulated by residual oil fly ash (ROFA)
(Veronesi et al. 2000). Cardiac autonomic
function is also altered by PM exposure, sug-
gesting that central input to the heart is altered
(Chen and Hwang 2005). Acute electrocardio-
graphic changes after PM exposure are also
suggestive of an activated neural mechanism

(Wichers et al. 2004). The second hypothesis
proposes that PM deposited in the lung gains
access to the systemic circulation and directly
interacts with target tissues. After exposure,
PM deposition has been reported in a variety
of extrapulmonary tissues, including the blood,
ventricular microvascular walls, liver, spleen,
heart, and brain (Calderon-Garciduenas et al.
2001; Kreyling et al. 2002; Nemmar et al.
2001, 2002; Oberdorster et al. 2002, 2004).
No study has shown in vivo that the presence
of particles within a peripheral tissue is det-
rimental to its function, but several lines of evi-
dence support this hypothesis. In Mexico City
canines, PM deposition was found in the car-
diac arteriolar wall where polymorphonuclear
leukocyte (PMNL) margination and micro-
thrombi were also observed (Calderon-
Garciduenas et al. 2001). Although not truly
representative of PM exposure and subsequent
deposition, treatment of cells or tissues in vitro
with PM causes cytokine and tumor necrosis
factor-alpha (TNF-α) production, cytotoxicity
via endotoxins, oxidative stress, and smooth
muscle relaxation (Bagate et al. 2004; Dye
et al. 1997; Li et al. 2003; Osornio-Vargas
et al. 2003; van Eeden et al. 2001). The third
hypothesis proposes that PM deposited in the
lung initiates a local inflammatory response
that develops into a systemic inflammatory
response, characterized by alterations in cir-
culating factors and cells associated with
inflammation. Pulmonary inflammation after
PM exposure is well documented by our labo-
ratory and many others, in animals as well as
humans (Dreher et al. 1997; Nurkiewicz et al.
2004; Schaumann et al. 2004). Circulating
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The epidemiologic association between pulmonary exposure to ambient particulate matter (PM) and
cardiovascular dysfunction is well known, but the systemic mechanisms that drive this effect remain
unclear. We have previously shown that acute pulmonary exposure to PM impairs or abolishes
endothelium-dependent arteriolar dilation in the rat spinotrapezius muscle. The purpose of this
study was to further characterize the effect of pulmonary PM exposure on systemic microvascular
function and to identify local inflammatory events that may contribute to these effects. Rats were
intratracheally instilled with residual oil fly ash (ROFA) or titanium dioxide at 0.1 or 0.25 mg/rat
24 hr before measurement of pulmonary and systemic microvascular responses. In vivo microscopy
of the spinotrapezius muscle was used to study systemic arteriolar responses to intraluminal infusion
of the Ca2+ ionophore A23187 or iontophoretic abluminal application of the adrenergic agonist
phenylephrine (PHE). Leukocyte rolling and adhesion were quantified in venules paired with the
studied arterioles. Histologic techniques were used to assess pulmonary inflammation, characterize
the adherence of leukocytes to systemic venules, verify the presence of myeloperoxidase (MPO) in
the systemic microvascular wall, and quantify systemic microvascular oxidative stress. In the lungs of
rats exposed to ROFA or TiO2, changes in some bronchoalveolar lavage markers of inflammation
were noted, but an indication of cellular damage was not found. In rats exposed to 0.1 mg ROFA,
focal alveolitis was evident, particularly at sites of particle deposition. Exposure to either ROFA or
TiO2 caused a dose-dependent impairment of endothelium-dependent arteriolar dilation. However,
exposure to these particles did not affect microvascular constriction in response to PHE. ROFA and
TiO2 exposure significantly increased leukocyte rolling and adhesion in paired venules, and these
cells were positively identified as polymorphonuclear leukocytes (PMNLs). In ROFA- and TiO2-
exposed rats, MPO was found in PMNLs adhering to the systemic microvascular wall. Evidence sug-
gests that some of this MPO had been deposited in the microvascular wall. There was also evidence
for oxidative stress in the microvascular wall. These results indicate that after PM exposure, the
impairment of endothelium-dependent dilation in the systemic microcirculation coincides with
PMNL adhesion, MPO deposition, and local oxidative stress. Collectively, these microvascular
observations are consistent with events that contribute to the disruption of the control of peripheral
resistance and/or cardiac dysfunction associated with PM exposure. Key words: arteriole, endothe-
lium, microcirculation, myeloperoxidase, oxidative stress, particulate matter, polymorphonuclear
leukocyte, systemic, venule. Environ Health Perspect 114:412–419 (2006). doi:10.1289/ehp.8413
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interleukin (IL)-1 and IL-6 are elevated in
humans exposed to PM (van Eeden et al.
2001). IL-1, TNF-α, and the immune-related
transcription factor nuclear factor κB are ele-
vated in the brain tissue of mice exposed to
PM (Campbell et al. 2005). Furthermore,
blood samples from healthy humans exposed
to PM reveal elevations in immature PMNL,
neutrophils, and platelets (Salvi et al. 1999;
Tan et al. 2000).

Although the evidence for these three
hypotheses is substantial, and end points have
been identified in some cases, the ultimate
basic mechanisms responsible for perturbations
in a given system are unclear. We have previ-
ously shown that PM exposure impairs or
abolishes systemic endothelium-dependent
arteriolar dilation and dramatically increases
venular leukocyte adhesion and rolling
(Nurkiewicz et al. 2004). As part of a logical
and methodic progression toward identifying
these basic mechanisms, we undertook the pre-
sent study to expand our previous findings in
the systemic microvasculature and better char-
acterize the remote effects of pulmonary PM
exposure on the spinotrapezius muscle micro-
circulation. We hypothesized that after PM
exposure, events linked to inflammation, such
as hemoprotein deposition and oxidative stress,
should be present at the microvascular level.

Experimental objectives. Our first objective
was to determine if alteration of systemic
microvascular function can occur after pul-
monary PM exposure at levels that fail to cause
gross pulmonary toxicity. Rats were exposed by
intratracheal (IT) instillation to various doses of
ROFA, titanium dioxide, or saline. We assessed
pulmonary inflammation and damage by meas-
uring bronchoalveolar lavage (BAL) parameters
and evaluated systemic microvascular function
by intravital microscopy of spinotrapezius mus-
cle arterioles. Microvascular reactivity was
determined by measurement of dilator respon-
siveness to endothelial stimulation.

Our second objective was to determine if
the effects of pulmonary PM exposure on sys-
temic microvascular reactivity to vasodilators
are due to an enhanced vasopressor effect via
modification of adrenergic responsiveness. Rats
were treated with saline or 0.25 mg ROFA
by IT instillation. Spinotrapezius muscle arte-
rioles were studied by intravital microscopy.
Adrenergic responsiveness was determined by
measurement of constrictor responsiveness
after α1-adrenergic receptor stimulation.

Our third objective was to identify events
in the lung, blood, and systemic microcircula-
tion that are consistent with inflammation after
PM exposure. Rats were treated with saline or
various doses of ROFA or TiO2 by IT instilla-
tion. We evaluated the number of rolling and
adherent leukocytes in spinotrapezius muscle
venules, lung histology, muscle histology,
microvascular mRNA levels, myeloperoxidase

(MPO) deposition, and oxidative stress in the
spinotrapezius muscle microvascular wall.

Materials and Methods

PM preparation. ROFA was collected from a
precipitator at Boston Edison Co., Mystic
Power Plant number 4 (Everett, MA). ROFA
particle size and elemental composition from
this source have been previously characterized
(Antonini et al. 2002; Roberts et al. 2004).
ROFA particles were of respirable size with a
count mean diameter of 2.2 µm. We used
TiO2 (mean diameter of 1 µm; Aldrich,
Milwaukee, WI) to determine if any ROFA
effects were substance specific. ROFA and
TiO2 samples (suspended in 300 µL sterile
saline) were sonicated for 1 min before IT
instillation.

Experimental animals. Male Sprague
Dawley rats (7–8 weeks of age) were purchased
from Harlan Sprague Dawley (Indianapolis,
IN) and housed at the West Virginia University
Health Sciences Center in an animal facility
approved by the Association for Assessment
and Accreditation of Laboratory Animal Care.
To ensure that all methods were performed
humanely and with regard for alleviation of
suffering, all experimental procedures were
approved by the West Virginia University
Animal Care and Use Committee.

IT instillation. Rats were lightly anes-
thetized by an intraperitoneal (ip) injection of
sodium methohexitol and IT instilled with
ROFA (0.1 or 0.25 mg/rat) according to previ-
ously established methods (Brain et al. 1976).
We have previously shown that these doses
partially impair or completely abolish endothe-
lium-dependent arteriolar dilation in the rat
spinotrapezius muscle (Nurkiewicz et al.
2004). Rats in the vehicle control group were
IT dosed with 300 µL sterile saline. Rats in the
particle control group were dosed with TiO2
(0.1 or 0.25 mg/rat). After IT instillation, all
rats recovered for 24 hr before BAL, histology,
or intravital microscopy experiments.

Collection of BAL samples for measure-
ment of pulmonary inflammation and dam-
age. Rats were euthanized with sodium
pentobarbital (≥ 100 mg/kg, ip). A tracheal
cannula was inserted, and BAL was performed
through the cannula using ice-cold Ca2+/Mg2+-
free phosphate-buffered saline as previously
described (Nurkiewicz et al. 2004).

BAL fluid lactate dehydrogenase (LDH)
activity and albumin protein assays. BAL fluid
LDH activities were determined as a marker
of cytotoxicity, and albumin concentrations
were determined as an indicator of the
integrity of the alveolar air–blood barrier.
Both assays were measured as previously
described (Nurkiewicz et al. 2004).

Alveolar macrophage (AM) chemilumi-
nescence (CL). AM CL was determined as
previously described (Nurkiewicz et al. 2004)

to evaluate reactive oxygen species production
by AM.

Histology and immunohistochemistry. To
more thoroughly identify pulmonary inflam-
mation, microscopic sections of lungs from rats
treated with saline or exposed to 0.1 mg
ROFA were evaluated. Lung tissue sections
were evaluated by a board-certified veterinary
pathologist for morphologic alterations. Semi-
quantitative pathology scores were calculated
for alveolar inflammation in each slide. The
pathology score was the sum of numeric con-
version of the severity (none, minimal, mild,
moderate, marked, or severe) and distribution
(none, focal, locally extensive, multifocal,
multifocal and coalescent, or severe) of tissue
alterations to produce a pathology score on a
scale of 0–10 (Porter et al. 2001).

To characterize cell types associated with
systemic microvascular inflammation, histo-
logic analysis was performed on the spino-
trapezius muscle of rats 24 hr after exposure to
ROFA or TiO2 (0.1 or 0.25 mg for each par-
ticle type). The muscle was removed from the
rat, fixed immediately in 10% formalin,
processed, and embedded in paraffin. Paraffin
sections stained with hematoxylin and eosin
(H&E) allowed positive identification of neu-
trophils and eosinophils.

To localize the hemoprotein MPO in the
spinotrapezius muscle of rats 24 hr after treat-
ment with saline or 0.25 mg ROFA, immuno-
histochemistry was performed as previously
described (Eiserich et al. 2002). Sections were
deparaffinized and, after microwave antigen
retrieval in citrate buffer pH 6, were incubated
overnight at 4°C with a polyclonal antibody
against MPO (1:500; Calbiochem, EMD
Biosciences Inc., La Jolla, CA). An Alexa 488
fluorescent-conjugated goat anti-rabbit sec-
ondary antibody (Molecular Probes, Eugene,
OR) was used to localize MPO. After counter-
staining the nuclei with diamidinophenylin-
dole (DAPI; Molecular Probes), sections were
examined with a Zeiss LSM 510 laser scan-
ning confocal microscope system (Carl Zeiss
Inc., Thornwood, NY).

Reverse transcriptase–polymerase chain
reaction (RT-PCR). The left and right spino-
trapezius muscles were excised from rats 24 hr
after treatment with saline or 0.25 mg ROFA,
and the microcirculation was dissected from
the surrounding skeletal muscle. The pooled
microvascular samples from an individual rat
were stored in RNAlater (Ambion, Austin,
TX) at 4°C for total RNA isolation. Total
RNA was isolated using an Array Pure Nano-
scale RNA Purification Kit (Epicentre,
Madison, WI) and analyzed as previously
described (Rao et al. 2004).

Intravital microscopy. Rats were anes-
thetized with sodium thiopental (100 mg/kg,
ip) and placed on a heating pad to maintain a
37°C rectal temperature. The trachea was
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intubated to ensure a patent airway, and the
right carotid artery was cannulated to measure
arterial pressure. The right spinotrapezius
muscle was then exteriorized, superfused with
an electrolyte solution, and prepared for
microscopic observation as previously
described (Nurkiewicz et al. 2004).

The animal preparation was then trans-
ferred to the stage of an intravital microscope.
Video images were displayed and videotaped
for off-line analysis. During videotape replay,
arteriolar inner diameters were measured and
venular leukocyte adhesion was quantified.

Experimental protocols. Protocol 1.
Arteriolar endothelium-dependent dilation was
evaluated by assessing the capacity for Ca2+-
dependent endothelial nitric oxide formation
in response to intraluminal infusion of the cal-
cium ionophore A23187 (Sigma Chemical
Co., St. Louis, MO). Glass micropipettes were
filled with a 10–7 M solution of A23187 and
inserted into the arteriolar lumen, and A23187

was then infused directly into the flow stream
for 2-min periods at ejection pressures of 5, 10,
20, and 40 psi (Nurkiewicz et al. 2004). A
2-min recovery period followed each ejection.
At the end of all intravital experiments, adeno-
sine (ADO) was added to the superfusate
(10–4 M final concentration) to fully dilate the
microvascular network and determine the pas-
sive diameter of each arteriole studied.

Protocol 2. To evaluate arteriolar respon-
siveness to adrenergic stimulation, phenyle-
phrine (PHE) was iontophoretically applied to
individual arterioles in rats after exposure to
either saline or 0.25 mg ROFA. Micropipettes
were filled with a 50-mM solution of PHE in
distilled water. The pipette tip was placed in
light contact with the arteriolar wall, and a cur-
rent programmer delivered continuous 2-min
ejection currents of 50, 100, and 200 nA (ran-
domly). A 2-min recovery period followed each
application. To exclude the possibility that
adrenergic stimulation could increase NO

production and therefore attenuate the
observed constrictions, these experiments were
performed during NO synthase (NOS) inhibi-
tion with NG-monomethyl-L-arginine (10–4 M
final superfusate concentration).

Protocol 3. Adhering or rolling leukocytes
in first-order venules of rats after exposure to
either saline, 0.25 mg ROFA, or 0.1 mg TiO2
were quantified to characterize microvascular
inflammation. Leukocytes that were either sta-
tionary or moving but in constant contact with
the venular wall for at least 200 µm were
counted for 1 min in each venule studied.

Protocol 4. Oxidant activity in the arterio-
lar wall was measured with the tetranitroblue
tetrazolium (TNBT) reduction method, which
provides a general index of microvascular oxi-
dant stress (Lenda and Boegehold 2002). After
1 hr of continuous exposure to 2% TNBT
superfusion, the spinotrapezius muscle was
fixed with a 10% formalin solution and excised.
The tissue was then viewed with bright-field
microscopy, and images of microvessels were
digitized and analyzed. Using a 1 × 5 µm pho-
tometric window, a series of average pixel inten-
sity measurements were made along the vessel
wall and in extravascular regions immediately
adjacent to the wall. To assess microvascular
wall levels of formazan (the reduction product
of TNBT and therefore an index of oxidant
activity), the measured pixel intensities were
used to calculate microvascular wall light
absorption (A): A = ln(lt/lo), where lt is the vessel
intensity and lo is the intensity for the adjacent
extravascular region. The amount of formazan
formed is proportional to the level of oxidant
activity, and calculated light absorption is lin-
early related to the amount of formazan present
(Lenda and Boegehold 2002).

Data and statistical analyses. Arteriolar
diameter (D, in micrometers) was sampled
at 10-sec intervals. Resting vascular tone
was calculated for each vessel as follows:
tone = [(Dpass – Dc)/Dpass] × 100, where Dpass is
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Figure 1. Histologic evidence of focal pulmonary alveolitis 24 hr after PM exposure. (A) and (B) are representative findings from five saline-treated rats and five rats exposed
to 0.1 mg ROFA. (A) Saline control showing no morphologic alterations. Abbreviations: AD, alveolar duct; TB, terminal bronchioles. Bar = 50 µm. (B) Histopathologic alter-
ations in a ROFA-exposed rat. Agglomerated ROFA particles in an alveolar space can be seen near an alveolar duct. The ROFA particles do not transmit light and therefore
appear black when viewed in the light microscope. AMs are frequently observed in alveoli near ROFA particles and are intimately associated with the agglomerated ROFA.
PMNLs are present in lesser numbers near ROFA particles, most frequently in the interstitium. Bar = 20 µm. (C) Mean alveolitis pathology scores.
*p < 0.05 compared with saline; similar results were obtained with TiO2.

Table 1. Profiles of experimental animals used for intravital studies.

Age Weight Mean arterial pressure
Experimental group N (days) (g) (mm Hg)

Saline control 15 55 ± 4 236 ± 4 98 ± 5
0.1 mg TiO2 5 50 ± 1 275 ± 9* 108 ± 6
0.1 mg ROFA 4 52 ± 1 225 ± 3 102 ± 9
0.25 mg TiO2 3 56 ± 3 219 ± 7 91 ± 15
0.25 mg ROFA 11 50 ± 2 221 ± 8 94 ± 7

N, number of rats. Values are mean ± SE.
*p < 0.05 compared with all other groups.

Table 2. BAL data from saline-treated and TiO2- and ROFA-exposed rats.

Experimental Cellular content of BAL fluid
group PMNL (106 cells/rat) Albumin (mg/mL) LDH (U/L) Total AM CL

Saline control 0.93 ± 0.11 0.13 ± 0.02 58 ± 10 7.50 ± 1.63
0.1 mg TiO2 1.73 ± 0.36* 0.14 ± 0.04 67 ± 13 5.21 ± 1.60
0.1 mg ROFA 1.24 ± 0.28 0.23 ± 0.05 75 ± 2 14.47 ± 2.60*,**
0.25 mg TiO2 1.11 ± 0.15 0.19 ± 0.02 65 ± 8 3.64 ± 0.73
0.25 mg ROFA 1.91 ± 0.20* 0.17 ± 0.01 46 ± 4 17.42 ± 1.11*,**

N = 22 rats for saline control; N = 5–7 rats for all other doses. Values are mean ± SE. CL = counts per minute × 105/0.25 ×
106 AM/15 min.
*p < 0.05 compared with saline. **p < 0.05 compared with 0.1 mg TiO2 and p < 0.05 compared with 0.25 mg TiO2.



passive diameter under ADO, and Dc is the
diameter measured during the control period. A
tone of 100% represents complete vessel clo-
sure, whereas 0% represents the passive state.
All data are reported as mean ± SE, where n
represents the number of arterioles and N rep-
resents the number of rats. Statistical analysis
was performed by commercially available soft-
ware (Sigmastat; Jandel Scientific, Chicago, IL).
We used one-way repeated-measures analysis of
variance (ANOVA) to determine the effect of a
treatment within a group or differences among
groups. Two-way repeated-measures ANOVA
was used to determine the effects of group,
treatment, and group × treatment interactions
on measured variables. For all ANOVA proce-
dures, we used the Student-Newman-Keuls
method for post hoc analysis to isolate pairwise
differences among specific groups. Significance
was assessed at the 95% confidence level (p <
0.05) for all tests.

Results

The general characteristics of rats used for
intravital microscopy experiments are reported
in Table 1. At the time of study, age and mean
arterial pressure were not different among the
experimental groups. Body weight was signifi-
cantly higher in the 0.1-mg TiO2 group. Rats
used for BAL data were of the same age as
those reported in Table 1 (data not shown).

The effects of pulmonary exposure to
ROFA and TiO2 on BAL parameters of
inflammation and damage 24 hr after IT
treatment are reported in Table 2. PMNL
counts were significantly higher in the 0.1-mg
TiO2 and 0.25-mg ROFA groups than in the
saline-treated group, but not in the 0.25-mg
TiO2 and 0.1-mg ROFA groups. BAL fluid
albumin and LDH were not significantly dif-
ferent among the experimental groups. Total
zymosan-stimulated AM CL was significantly
greater in the 0.1-mg ROFA and 0.25-mg
ROFA groups than that in the saline controls,
whereas the 0.1-mg and 0.25-mg TiO2 groups
were not different from the saline controls. AM
counts were not statistically different among
the experimental groups (data not shown).

The pulmonary microscopic sections of five
saline-treated rats and five rats exposed to
0.1 mg ROFA were examined by a board-
certified veterinary pathologist at 24 hr post-
exposure. Figure 1A represents a typical slide
from saline-treated rats, in which no morpho-
logic alterations are present. Erythrocytes were
occasionally present in slides from saline-treated
rats, but this was an artifact of the fixation

technique. The alveolitis was predominantly
histiocytic, although lesser numbers of neu-
trophils and/or eosinophils were sometimes
observed. Alveolitis was generally centered
around alveolar ducts or perivascular spaces
near alveolar ducts in all rats. In several foci of
alveolitis, agglomerated ROFA could be seen in
association with alveolar inflammation
(Figure 1B). The mean alveolitis pathology
score of 2.92 ± 0.43 in ROFA-exposed rats was
significantly greater than that for saline-treated
rats (0.60 ± 0.27; Figure 1C).

Resting variables of all arterioles studied
24 hr postexposure are reported in Table 3.
Resting and passive (in the presence of ADO)
arteriolar diameters were not significantly dif-
ferent among the experimental groups.
Accordingly, resting arteriolar tone was not
different among the experimental groups.

In spinotrapezius muscle arterioles of the
saline-treated group, A23187 infusion pro-
duced dose-dependent dilation that was near
maximal at the highest ejection pressure
(Figure 2). Exposure to 0.25 mg TiO2 or
ROFA completely abolished this response
24 hr postexposure at each ejection pressure.
Arterioles in rats exposed to 0.1 mg TiO2 or
ROFA displayed an attenuated responsiveness
to A23187 infusion. In these groups, vaso-
dilation in response to A23187 infusion at
20 and 40 psi was significantly greater than
that observed in rats exposed to either particle
at 0.25 mg. Additionally, the response in the
0.1 mg TiO2 group at 10 psi was significantly
greater than that observed for either group at
0.25 mg. These findings support our original
observations and are consistent with our postu-
late that pulmonary exposure to PM inhibits
systemic microvascular function in a dose-
dependent manner (Nurkiewicz et al. 2004).

Arteriolar adrenergic sensitivity 24 hr after
PM exposure was assessed with PHE applica-
tion and resultant vasoconstriction (Figure 3).
Iontophoretic PHE application produced
robust, dose-dependent arteriolar constriction
in saline-treated rats. In rats exposed to
0.25 mg ROFA (a pulmonary load that abol-
ished endothelium-dependent dilation), the
arteriolar responses to PHE iontophoresis
were identical to those in saline-treated rats.
This suggests that after pulmonary PM expo-
sure, peripheral arterioles are not hyper-
sensitive to adrenergic stimulation and that
their contractile ability is unaltered.

The number of rolling and adherent
leukocytes through 200 µm venular segments
is displayed in Figure 4. We have previously

reported this number to be as great as 54 ± 4
leukocytes/min in rats exposed to 2 mg ROFA
(Nurkiewicz et al. 2004). This systemic
response to PM exposure is widespread
throughout the microvascular network and is
significantly greater than that observed in
venules of saline-treated rats (13 ± 2 leuko-
cytes/min). Results in the present study indi-
cate that, at 24 hr postexposure, this dynamic
response persists at equivalent magnitudes in
venules of rats exposed to either 0.25 mg
ROFA or 0.1 mg TiO2 (52 ± 5 or 65 ± 9
leukocytes/min, respectively).

Spinotrapezius muscle histology was per-
formed to specifically identify the adherent
and rolling leukocytes reported in Figure 4.
Rats were either treated with saline or exposed
to 0.1 mg ROFA. At 24 hr postexposure, the
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Table 3. Resting variables for all arterioles studied (mean ± SE).

Saline 0.1 mg TiO2 0.1 mg ROFA 0.25 mg TiO2 0.25 mg ROFA
No. of arterioles 28 9 9 8 25
Resting diameter (µm) 44 ± 2 45 ± 1 41 ± 2 41 ± 2 43 ± 1
Passive diameter (µm) 108 ± 3 111 ± 4 111 ± 6 100 ± 3 106 ± 3
Resting tone (% of maximum) 59 ± 2 59 ± 2 62 ± 3 59 ± 2 59 ± 1
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muscles were excised, fixed, and stained with
H&E (Figure 5). Histologic analysis positively
identified the adherent cells in venules from
ROFA-exposed rats as PMNLs because of the
presence of deeply lobed nuclei. Identical
results were obtained in rats exposed to TiO2
(data not shown).

RT-PCR was performed to characterize
potential inflammatory markers at the systemic
microvascular level after PM exposure
(Figure 6). Rats were either treated with saline
or exposed to 0.25 mg ROFA 24 hr before
spinotrapezius muscle microvessel dissection.
Although no inflammatory marker was differ-
ent between the two groups, it is important to
note that neither endothelial NOS (eNOS) nor
inducible NOS (iNOS) message was altered by
PM exposure. This suggests that the capacity of
microvascular endothelium to synthesize eNOS
is not impaired after PM exposure.

To further characterize inflammatory
events associated with venular PMNL adhesion

24 hr after PM exposure, we identified the
presence of MPO in neutrophils and the
microvascular wall in the spinotrapezius muscle
(Figure 7). Representative confocal fluores-
cence images are presented in Figure 7. In
Figure 7A, MPO is evident (intense green fluo-
rescence) in a single PMNL of a saline-treated
rat. In Figure 7B, MPO is evident not only in
each of the multiple PMNLs but also in the
microvascular wall of a rat exposed to 0.25 mg
ROFA. It is also apparent in Figure 7B that
some PMNLs have migrated, or are in the
process of migrating, from the microvascular
lumen into the interstitial space. Similar results
were observed in rats exposed to TiO2 (data
not shown). This histologic and immunologic
evidence suggests that MPO deposition occurs
in the systemic microvascular wall after pul-
monary PM exposure.

To better characterize the effects of sys-
temic inflammation associated with PM expo-
sure, general oxidative stress was measured in

the spinotrapezius muscle microvascular wall
24 hr after IT treatment (Figure 8). Calculated
light absorption (from deposits of formazan,
the reduction product of TNBT and reactive
oxygen species) in the microvascular wall from
rats exposed to 0.25 mg ROFA was signifi-
cantly greater than that from saline-treated
rats. This suggests that general oxidative stress
in the systemic microcirculation increases after
pulmonary PM exposure.

Discussion

This second report from our group is part of
our ongoing investigation of the remote bio-
logic effects at the systemic microvascular level
that follow pulmonary PM exposure. In the
present study, we present three novel obser-
vations. Additionally, we have verified our pre-
vious findings using lower PM doses.

We have previously reported that exposure
to ROFA produces a dose-dependent impair-
ment of systemic endothelium-dependent arte-
riolar dilation and increases venular leukocyte
adhesion and rolling (Nurkiewicz et al. 2004).
This arteriolar impairment is equally present
after exposure to identical doses of TiO2
(Figure 2). Similarly, leukocyte adhesion and
rolling remain elevated at lower doses of ROFA
and TiO2 (Figure 4). These findings reinforce
our postulate that the remote biologic effects at
the systemic microvascular level after PM expo-
sure are due to the presence of particles in the
lung, rather than their inherent pulmonary tox-
icity, because BAL markers of lung damage
were not elevated at doses of < 0.25 mg PM/rat
(Table 2, albumin and LDH).

Consistent with our previous study
(Nurkiewicz et al. 2004), we report here that
systemic microvascular responses after PM
exposure are independent of the degree of pul-
monary inflammation (as determined by BAL).
This is evident from the data in Table 2: BAL
from rats exposed to either ROFA or TiO2 or
treated with saline is neither predictably differ-
ent nor wholly convincing in areas where sig-
nificance is noted (Table 2, PMNL). However,
because activated inflammatory cells may
adhere to adjacent tissues or form aggregates
too large to recover by BAL or simply involve a
very small fraction of the lung, isolated pul-
monary “hot spots” may not be represented by
our BAL data. Therefore, lung tissue was
examined for histopathologic changes by a
pathologist to better identify pulmonary
pathology after PM exposure. The data in
Figure 1 indicate that such “hot spots,” or foci
of histiocytic alveolitis, are associated with
deposition sites of PM. The collective impres-
sion was that this inflammation was focal
rather than diffuse (Figure 1C). The increased
macrophage activation associated with these
foci may be indicated by the dose-responsive
increase in AM CL, a measure of macrophage
activation.

Nurkiewicz et al.

416 VOLUME 114 | NUMBER 3 | March 2006 • Environmental Health Perspectives

80

60

40

20

0

Ro
lli

ng
 a

nd
 a

dh
er

in
g

le
uk

oc
yt

es
 (p

er
 m

in
ut

e)

0.25 mg
ROFA

2 mg
ROFA

Saline
control

0.1 mg
TiO2

* *

*

Figure 4. PM exposure increases venular leukocyte
rolling and adhesion in the spinotrapezius muscle
24 hr after IT treatment. Venular leukocytes were
quantified as rolling and adhering leukocytes per
minute in a 200-µm segment. n, number of venules.
Saline control, n = 26; 2 mg ROFA, n = 15; 0.25 mg
ROFA, n = 18; 0.1 mg TiO2, n = 10. Values are mean
± SE.
*p < 0.05 compared with saline control.
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Figure 5. PMNL identification in the spinotrapezius muscle microcirculation of PM-exposed rats 24 hr after
IT exposure. (A) Representative H&E-stained section from a saline-treated rat. Abbreviations: CT, connec-
tive tissue; SM, skeletal muscle fiber. (B) Representative H&E-stained section from a rat exposed to 0.1 mg
ROFA. Note the deeply lobed nuclei that are characteristic of PMNLs. Bars = 25 µm; similar results were
obtained with TiO2.
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Figure 6. Microvascular inflammatory markers 24 hr
after exposure to ROFA: mRNA measurements in
microvessels from six saline-treated rats and six
rats exposed to 0.25 mg ROFA. After microdissec-
tion, vessels from both spinotrapezius muscles of an
individual rat were pooled for data collection.
Abbreviations: MIP-2, macrophage inflammatory
protein; VCAM-1, vascular cell adhesion molecule.
Note that neither eNOS nor iNOS message was
altered after ROFA exposure.



Several reports suggest that the autonomic
influence on a given tissue is altered after PM
exposure (Brook et al. 2004; Chen and Hwang
2005; Wichers et al. 2004). In the present
study, we did not observe any differences in
blood pressure (Table 1) or arteriolar tone
(Table 3). Although this observation does not
support the postulate that autonomic activity is
altered after PM exposure, it is limited because
our experimental data were collected in anes-
thetized rats. Given this limitation, neurogenic
input may still be enhanced by increased recep-
tor sensitivity. The first major finding we
report here is that systemic arteriolar α1-adren-
ergic receptor sensitivity is unaltered after PM
exposure. This is evident in Figure 3, which
shows identical arteriolar constriction pro-
duced by iontophoretic application of PHE in
both saline-treated and ROFA-exposed rats.

Translocation of PM from the lung to
remote sites may also be responsible for adverse
cardiovascular effects (Calderon-Garciduenas
et al. 2001; Nemmar et al. 2004; Oberdorster
et al. 2004). In the present study, ROFA and
TiO2 particles of at least 1 µm were used, and
systemic microvascular changes were measured
24 hr postexposure. There is currently no evi-
dence suggesting that fine PM migrates to sys-
temic sites within this time frame. However,
microvascular TiO2 deposition will be
addressed in future studies. A second transloca-
tion possibility is that soluble metals from
ROFA reach the systemic microcirculation.
Soluble metals have been shown to drive many
of the pulmonary effects of ROFA (Dreher
et al. 1997; Kodavanti et al. 1998; Rice et al.
2001). However, because TiO2 exhibits the
same dose dependence as ROFA (Figures 2 and
4), soluble metals do not appear to be driving
the reported microvascular effects.

Our original observations of increased
venular leukocyte adhesion and rolling
were made in rats exposed to 2 mg ROFA

(Nurkiewicz et al. 2004). This effect is repeat-
able after exposure to either 0.25 mg ROFA
or 0.1 mg TiO2 (Figure 4). Because this
robust response is independent of the PM
type or dose, other types of PM may elicit a
less pronounced response at lower doses than
those used here.

Intravital microscopy is a powerful tool that
allows direct observation of leukocyte–venule
interaction in vivo, but the maximum optical
resolution of our system is approximately 1 µm.
Although leukocytes can be easily identified by
their characteristic rolling and adhesion in a
laminar stream of red cells, further characteriza-
tion is not possible at this resolution. This issue
was resolved via histology of the spinotrapezius
muscle (Figure 5), which allowed us to identify
the adhering and rolling leukocytes as PMNLs.

Our PCR results indicate that the messages
for adhesion factors at the microvascular level
are not altered after PM exposure (Figure 6).
This suggests that such factors are not altered
after exposure to PM, but it is possible that the
message quickly increases and then subsides
within the 24 hr postexposure period we used.
It is also possible that other adhesion factors
are involved and/or that the adhesion factors
on the leukocytes are altered with no change in
the endothelial expression of such factors. Our
PCR results also indicated that microvascular
eNOS and iNOS messages are not altered after
PM exposure. A decrease in eNOS message
could have been the cause of the impaired
endothelium-dependent dilation, and an
increase in iNOS message could have been
responsible for the observed microvascular
inflammation. However, data shown in
Figure 6 do not support the hypothesis that
eNOS or iNOS is altered after PM exposure.

The second major finding in this study is
that microvascular MPO deposition is associ-
ated with PM exposure (Figure 7). Lipopoly-
saccharide injection in rats produces a diffuse

localization of MPO throughout the aortic
endothelium (Eiserich et al. 2002). The MPO
was presumed to be secreted by activated
leukocytes and taken up by endothelial cells
and vascular tissue, independent of neutrophil
extravasation. We identified MPO in neu-
trophils and in the microvasculature of the rat
spinotrapezius muscle after treatment of rats
with ROFA or TiO2. Although the MPO was
not found in all vessels, it was localized primar-
ily in microvessels within the vicinity of adher-
ent or migrating neutrophils. Given the
anatomical and physiologic differences
between the aorta and the microcirculation, as
well as the heterogeneous nature of a micro-
vascular network, differences in MPO localiza-
tion are not unexpected. In the spinotrapezius
microvasculature, deposition of MPO may also
occur during transmigration of the neutrophils.
Further immunohistochemical experiments are
being done to distinguish endothelial cells
from neutrophils because it is possible that the
staining we see is not in the endothelial cells
but in transmigrating neutrophils. It is also
important to note that MPO was identified at
a single time point, and future studies must
characterize the temporal relationship between
PM exposure and MPO deposition. Moreover,
future studies will determine the contribution
of local MPO deposition to microvascular dys-
function associated with PM exposure.

MPO is the most abundant hemoprotein
in leukocytes and comprises approximately
5% of their dry weight (Klebanoff 2005).
Therefore, identification of MPO in PMNLs
of saline-treated or ROFA-exposed rats is not
novel. However, given the significant increase
in rolling and adherent PMNLs after ROFA
exposure (Figures 4 and 5), it is likely that the
systemic microvascular inflammation may be
triggered by MPO. This is further supported
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Figure 7. Localization of MPO in the spinotrapezius muscle microcirculation 24 hr after ROFA exposure.
Fluorescent antibodies targeted a polyclonal antibody against MPO; nuclei are counterstained blue with
DAPI. (A) Representative confocal fluorescent image of a venule from a saline-treated rat. (B) Representative
confocal image of a venule from a rat exposed to 0.25 mg ROFA. Note the fluorescence in the microvascular
wall indicating the presence of MPO (arrows). Bars = 20 µm; similar results were obtained with TiO2.
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Figure 8. ROFA exposure increases oxidative stress in
the systemic microcirculation 24 hr after IT treatment.
n = number of vessels. Calculated wall light absorp-
tion [A = ln(lt/lo)] in microvessels from saline-treated
rats (n = 16) and rats exposed to 0.25 mg ROFA (n = 15)
after exposure to 2% TNBT. Values are mean ± SE.
*p < 0.05 compared with saline control.
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by the observation that firm adhesion of
leukocytes to the venular wall is not necessary
to alter endothelial intracellular Ca2+ concen-
tration or microvascular permeability (Zhu
et al. 2005). Moreover, MPO was identified
in the microvascular wall of ROFA-exposed
rats, whereas it was absent in that of saline-
treated rats (Figure 7). Upon deposition in the
vascular wall, MPO is preferentially situated in
the subendothelial matrix (Baldus et al. 2001),
a position in which MPO can ideally interrupt
NO signaling between the endothelium and
the vascular smooth muscle. MPO may dis-
rupt the influence of NO on microvascular
tone from at least two perspectives. MPO gen-
erates reactive substrate radicals that consume
NO (Eiserich et al. 2002). Alternatively, MPO
produces hypochlorous acid that can chlori-
nate L-arginine and render it unusable by
NOS as a substrate for NO production
(Zhang et al. 2001).

The third major finding in this study is
that oxidative stress is increased in the micro-
vascular wall after PM exposure (Figure 8).
The TNBT assay is useful for characterizing
general oxidative stress, but it cannot identify
specific reactive oxygen species. However,
given that leukocyte adhesion and rolling are
markedly increased after ROFA exposure
(Figure 5) and that MPO is present in the cells
and microvascular wall (Figure 7), it is likely
that hydrogen peroxide and superoxide are
involved in this process. Regardless of which
oxygen radicals are elevated after PM exposure,
such radicals in the vascular wall have been
shown to alter vascular tone and impair
endothelium-dependent arteriolar dilation
(Lenda et al. 2000; Sato et al. 2003).

Alterations in the vascular reactivity and
resting diameter of a large conduit artery after
PM exposure have been reported (Brook et al.
2002; O’Neill et al. 2005). Studies by O’Neill
et al. (2005) investigated human brachial artery
reactivity in diabetic humans after PM expo-
sure and suggested that both endothelium-
dependent and -independent arterial dilation
are impaired after PM exposure. Conversely,
studies by Brook et al. (2002) have reported no
change in these vascular reactivity indexes, but
they did suggest that the brachial artery con-
stricts by 0.09 ± 0.15 mm after PM exposure.
This subtle change had no effect on peripheral
resistance because neither systolic nor diastolic
blood pressure was altered. O’Neill et al.
(2005) reported that endothelium-dependent
dilation produced an approximately 6%
increase in brachial artery diameter under nor-
mal conditions, and this response is decreased
by approximately 9% after PM exposure. If we
assume a resting brachial artery diameter of
4 mm (Brook et al. 2002), endothelium-
dependent dilation under the conditions
reported by O’Neill et al. (2005) would cause
the brachial artery to dilate to approximately

4.24 mm, and PM exposure would attenuate
this dilation to approximately 4.22 mm. The
relative contribution of these nominal PM-
dependent effects on peripheral resistance
would be negligible in a vascular segment that
provides little to no vascular resistance.
Furthermore, neither study reported brachial
artery blood flow data after PM exposure,
which would provide some insight into down-
stream changes in the resistance vasculature.
Although the findings by O’Neill et al. (2005)
and Brook et al. (2002) do provide valuable
biologic end points, the absence of a link to the
resistance vasculature makes the physiologic
relevance of these findings difficult to assess.

If changes in the reactivity of conduit arter-
ies are not responsible for PM-associated
cardiovascular morbidity and mortality, then
what vascular events could precipitate such an
outcome? Cardiac disturbances and decreases in
arterial pressure may occur after pulmonary PM
exposure (Wichers et al. 2004). These changes
do not appear to be outwardly consistent with
our model, in which PM exposure compro-
mises the capacity of the systemic arterioles to
dilate. One explanation for this paradox may be
that an acute baroreceptor reflex is occurring in
response to an increased cardiac afterload.
During periods of activity (e.g., walking or stair
climbing), cardiac output increases and periph-
eral dilation is essential to match the metabolic
needs of active tissues. An inability to suffi-
ciently reduce peripheral resistance in these cir-
cumstances would augment cardiac afterload,
thus further increasing arterial pressure. This
increased arterial pressure could stimulate an
acute baroreceptor reflex that would decrease
cardiac output and therefore arterial pressure.

Increases in arterial pressure after PM
exposure have also been documented (Chang
et al. 2004; Vincent et al. 2001). Our data do
not indicate that PM exposure increases arterial
pressure, but this possibility cannot be dis-
counted because our data were collected from
anesthetized rats. Regardless, the relationship
between our findings and those that indicate
arterial pressure is increased after PM exposure
is more evident. In this case, if our findings in
the spinotrapezius muscle are representative of
PM exposure effects in other microvascular
beds, the inability to decrease peripheral resis-
tance would directly contribute to an increased
arterial pressure. In some susceptible popula-
tions, such as those with hypertension or vas-
cular disease, this increase in arterial pressure
could be fatal if appropriate compensatory
mechanisms are also compromised.

Conclusions

The present findings verify our previous report
(Nurkiewicz et al. 2004) that systemic endothe-
lium-dependent arteriolar dilation is impaired
after pulmonary PM exposure in a dose-
dependent manner. Local MPO deposition and

oxidative stress may be mechanisms by which
this effect occurs. These findings are consistent
with the larger body of evidence that suggests
systemic inflammation follows pulmonary PM
exposure. Future mechanistic studies will iden-
tify the relative contribution of these two effects
to the established microvascular dysfunction. It
will also be important to determine if these
inflammatory effects are localized to target tis-
sues or part of a larger systemic response. The
data presented here also suggest that arteriolar
adrenergic sensitivity is not affected by PM
exposure. Although the systemic microcircula-
tion is capable of overriding neurogenic input,
such input still plays a major role in the collec-
tive generation of vascular resistance and blood
flow distribution. Further studies are necessary
to better clarify the influence of peripheral
nerves on microvascular function after PM
exposure and to determine if this is consistent
with a baroreceptor reflex. Because autonomic
reflexes can occur rapidly, it will be essential to
characterize the temporal relationship of such
reflexes after PM exposure.
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