
Governments throughout the developed
world have started to improve air quality by
changing the ways their societies use and gen-
erate energy, altering industrial processes, and
selectively altering emissions streams.
Introduction of these new technologies and
programs is expected to cost trillions of dol-
lars worldwide, and these societal expendi-
tures often contribute to an improvement in
air quality. To what extent does improved air
quality improve public health?

In Canada, an annual reporting system
has been developed in which time trends in
the levels of outdoor air pollution are esti-
mated annually, with each successive report-
ing year based on an additional year of
monitoring data (Government of Canada
2006). The U.S. National Research Council
(2004) suggested that, in addition to report-
ing trends in outdoor concentrations of pol-
lutants, health risks attributable to these
exposures should also be monitored.

Hundreds of studies throughout the world
have linked daily variations in urban air pollu-
tion with daily variations in the number of
deaths within cities (Dominici et al. 2000;
Stieb et al. 2002). Most countries maintain

mortality records, thus providing a resource to
routinely track an important aspect of adverse
health risks associated with air pollution. We
illustrate our approach to estimating risk over
space and time with the case of the association
between two pollutants, nitrogen dioxide and
ground-level ozone, and nonaccidental mor-
tality in 24 of Canada’s largest cities over the
17-year period from 1984 through 2000. We
assessed statistical properties of our method
using a simulation approach.

Materials and Methods

Spatial–temporal model for risk of air pollu-
tion. We selected the number of daily nonacci-
dental deaths as the response variable reflecting
the adverse short-term health effects from air
pollution. The association between short-term
air pollution exposure and mortality is one of
the most studied and best-characterized associ-
ations in air pollution epidemiology (Bell et al.
2004; Thurston and Ito 2001). Further, mor-
tality data are available on a national basis, so
we can determine the indicator for each year.

We propose two methods to modeling
risk. In method A, we derive the annual esti-
mate of risk from the time series of L years,

including the current year of interest as well
as L – 1 previous years. Thus, we obtain a
unique estimate of risk for each calendar year.
To identify changes in risk for more recent
years, we weight the mortality counts so that
we assign greater weight to more recent years.
For this purpose, we use the tricubed func-
tion, which gives a much greater weight to
nearby years, to generate appropriate weights
that vary by calendar year. The tricubed func-
tion is a popular weight function used for
locally weighted smoothers (Hastie and
Tibshirani 1990). For example, if L = 10 for
1991–2000, data for 1991 will receive the
smallest weight, 0.00316621, whereas data
for 2000 will receive the largest weight,
0.15908596. We also update the terms for
temporal trends in mortality, weather, and
day of the week (dow) indicators in our
model every L-year period. The greater the
value of L, the smoother the temporal esti-
mate of risk. We denote this estimation
approach as our “multi-L-year estimate.”

In method B, we based estimates of risk
on data for each year separately and deter-
mine a weighted average of these annual esti-
mates based on the previous L years. Again,
we employ the tricubed function to generate
weights, but this time on the regression coef-
ficients. We denote this estimator as our
“smoothed L-year estimate.”

Both approaches employ a two-stage
approach in which we estimate risk over time,
t, separately for each community, β i(t)
(stage 1), and then estimate a common risk
among all cities, μβ(t) (stage 2). We assumed
the community-specific estimates to be nor-
mally distributed with a common mean and
with the variance modeled by the sum of two
variances: within-community variance, νi(t),
and between-community variance indicating
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the heterogeneity of risk among cities, σ2
β(t).

The estimator of the common risk among all
cities, μ̂β(t), is the weighted average of the city-
specific risk estimates, β^i(t), where the weight
is given by [σ^2

β(t) + ν̂i(t)]–1. Our estimator of
risk for community i, β

~
i(t), is given by

[1]

Here, β
~

i(t) will be always closer to μ̂β(t)
than will β^i(t), so we termed β

~
i(t) “shrinkage”

estimators. If σ^ 2
β(t) = 0, then β

~
i(t) = μ̂β(t),

implying that the “best” estimate of risk for
any community is the common risk estimate
when there is evidence that the risks do not
vary among communities. The larger the esti-
mate of heterogeneity in risk [σ^2

β(t)] compared
with the within-community error estimate
[ν̂i(t)], the closer the shrinkage estimate of risk
[β
~

i(t)] to the estimate based solely on a single
community’s information [β^i (t)]. Although
the shrinkage estimators are biased, they have
smaller variances than do the community-
specific estimators, thus providing more stable
estimates of risk over time. We are thus bor-
rowing strength from all the communities to
estimate risk for each specific location. This is
particularly useful when examining smaller
communities that inherently have large uncer-
tainties with respect to their risk estimates. 

The basic concept of modeling air pollu-
tion relative to time-series mortality risk in this
article is similar to that used in a previous study
(Burnett et al. 2004a). However, we have
developed a new estimation approach that is
supported by simulation studies, and the spe-
cific context of the estimator is also somewhat
different from that of our earlier work. In this
article, we focus on a measure that can be “nat-
urally” updated over time such that when an
additional year of mortality and air pollution
information becomes available, it can be added
to the historical data set, and a new risk esti-
mate can be obtained for that year, without
altering the risk estimates from previous years.
Our previous estimation approach and that of
another recent effort on this topic (Dominici
et al. 2007) did not specifically develop esti-
mates to be used in this manner.

Simulation study. We evaluated the statis-
tical properties of our two proposed estimators
of spatial–temporal risk through a simulation
study. To make the simulations as realistic as
possible, we used data from an analysis of air
pollution and mortality in 12 Canadian cities
over the 20-year period 1981–2000. In partic-
ular, we incorporated the city-specific estimates
of mortality risk, measurements of air pollu-
tant, and the confounders into our simulation
and generated daily counts of mortality by
adding Poisson-distributed errors city by city.
In this simulation, we focus on NO2, a pollu-
tant formed in the atmosphere mainly from

transportation sources, with data obtained from
the National Air Pollution Surveillance
Network (National Air Pollution Surveillance
2001). We obtained data temperature from
Environment Canada’s weather archive
(Environment Canada 2002) and mortality
data from the national mortality database (Vital
Statistics—Death Database; Statistics Canada
2004). We coded the mortality data by census
boundaries and included only deaths from
internal causes [International Classification of
Diseases, 9th Revision (ICD-9; World Health
Organization 1975) codes < 800 and ICD-10
(10th Revision; World Health Organization
1993) codes A00–R00]. 

For these simulations, we used daily death
counts, daily 24-hr mean temperature, and a
2-day running average of the daily 24-hr
mean concentrations of NO2 from 1 January
1981 through 31 December 2000.

A generalized additive Poisson regression
model (Dominici et al. 2002; Hastie and
Tibshirani 1990) applied to the daily death
counts is

[2]

where t, temp1(t), temp2(t), and dow(t)
denote calendar time, temperature recorded
on the day of and 1 day before death, and the
days of the week, respectively; f1i , f2i , and f3i
are nonlinear smoothing functions; and g1i is
an indicator function (Dominici et al. 2002).
The three smoothing functions, f1, f2, and f3,
describe the potential nonlinear association
between time (t) or weather variables (temp1,
temp2) and mortality, respectively. Here, xi(t)
represents the average of concentrations of
NO2 on the day of and day before death. We
used natural cubic spline functions to esti-
mate f1, f2, and f3, which we specified by the
number of knots or degrees of freedom (df).
We explored the df of the natural splines,
such as df = 4, 6, 8, 10, 12 for time; df = 3, 4,
5 for temperature; and lag = 0, 1, average of
(0, 1)-day lagged, and average of (0, 1, 2)-day
lagged air pollution. Here we used 6 df per
year for time, 3 df for temperature for the
entire time period, and the average of 0- and
1-day lagged air pollutions, because we found
the least variation from these parameters. [For
a further discussion on natural splines and
choice of df, see Ramsay et al. (2003).] We
completed the model specification by assum-
ing that the variance of the mortality counts is
equal to the expected value.

Three scenarios for the simulations. The
12 Canadian cities revealed several patterns in
the secular trend in associations for NO2, and
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Figure 1. Comparison of multi-L-year estimator [method A (A)] and smoothed L-annual estimator
(method B (B)] applied to simulated data for scenario 1 (top), scenario 2 (center), and scenario 3 (bot-
tom). The solid line of each panel indicates the preassigned risk. We considered methods closer to the
solid line to be better methods. 
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we considered three different scenarios, as
described below. As stated above, we consider
only temporal functions of risk that vary
across years: constant risk over time, linearly
increasing risk over time, and stepwise change
in risk over time. These three scenarios are
represented by solid lines in Figure 1A–C; the
broken lines are results from simulated data,
discussed further below. Under each scenario,
we compared results from the two estimators
mentioned above with preassigned values for
the three scenarios.

Simulation process. We summarize our
simulation process as follows: a) generating
daily mortality data; b) estimating the city-
specific annual risks from the simulated data
by method A (multiyear estimator) and
method B (smoothed-annual estimator);
c) estimating heterogeneity among the differ-
ent cities for each year; and d) estimating the
pooled risk for each year.

More details on each step are described in
the Appendix.

Results

Simulation results. As described above, we
used two methods to estimate pooled risks:
multi-L-year estimator (method A) and
smoothed L-annual estimator (method B) for
L > 1. As a baseline for comparison of the two
proposed methods, we also considered a sin-
gle annual estimator. We estimated the mor-
tality risks for NO2 from the simulated data
by the proposed methods for L = 3, 5, 7, and
9 years and compared these with each other.

First, we compared the risk estimates from
the simulated data for the two methods for all
scenarios. The solid lines in Figure 1 indicate
the preassigned risk over 20 years, and all the
other dotted lines indicate the averages of 1,000
estimated risks for each year. Three panels on
the left show results from multiyear estimator,
and those on the right from smoothed-annual
estimator. We used the plots to visualize the
performance of the two methods (dashed and
dotted lines) in capturing the given time trends.
Both methods captured the preassigned trends
well overall for scenario 1, except for 1987.
However, the multiyear estimator that used 3
years of data, labeled L = 3 in Figure 1A (left),
showed a considerable underestimate for year
2000. Both methods returned slightly better
estimates as L became larger. For scenario 2, the
two methods captured the linearly increasing
trend but underestimated the effects because of
the inclusion of previous years, where the risks
were lower. Scenario 3 required more data to
capture the stepwise increasing trend. After
inspecting the findings, our best choice for the
number of multiyears should be 5 or 7 years to
avoid the apparent over- and underestimation
associated with shorter or longer periods.

Second, we compared the root mean
squared errors (RMSE) of the two methods

for L = 3, 5, 7, and 9 (Figure 2). A smaller
RMSE indicates a better fit in terms of bias
and variance. Overall, the multiyear estimator
and smoothed-annual estimator yielded simi-
lar results, with slightly better fit with the
multiyear method for scenario 3.

Third, we compared model-based error
with simulation error. The model-based error
is the square root of the average of 1,000
squared estimated SEs of the pooled risk esti-
mates, whereas the simulation error is the SD
of 1,000 pooled risk estimates. Table 1 shows
the results for scenario 1. As with the RMSE,
the multiyear estimator provides slightly more
consistent results than does the smoothed-
annual estimator.

Finally, we compared the parameter vari-
ance estimates from all methods. Given that the
parameter variance (heterogeneity) is known,
Table 2 shows the ratios of the estimated values
to the preassigned values for the parameter vari-
ance. Ratios that are closer to unity reflect bet-
ter estimates with less bias, and multiyear
estimator with L = 5 years appears to be the
optimal method for all scenarios together, even
if not the best for each of the three scenarios.
Although method B with L = 5 shows a good
fit for scenario 1, its estimates for the other sce-
narios revealed considerable underestimation.

In summary, considering both risk esti-
mates and heterogeneity estimates, we con-
clude that the multi-L-year estimator is better

Temporal model for effects of air pollution on health
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Figure 2. Comparison of RMSE of Canada-wide risk estimates by multi-L-year estimator (method A) and
smoothed L-annual estimator (method B): box plots of RMSE distribution of 1,000 runs for scenario 1 (A),
scenario 2 (B), and scenario 3 (C ). Baseline indicates nonsmoothed annual estimator. SmAn and SmBn
indicate scenario m, method A or method B, for L = n years. The red dashed line indicates the median of
nonsmoothed annual estimator as the worst fit; blue dashed line indicates the median of multiyear estima-
tor as the best fit. The solid horizontal line in each box indicates the median of the distribution of RMSE for
each method. The box, whiskers, and dots represent the interquartile range, smallest and largest non-
outliers, and outliers, respectively.
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Table 1. Comparison of consistency of estimates for scenario 1: multi-L-year estimator versus smoothed
L-annual estimator for L = 3, 5, 7, and 9 years.

Method (estimator) Model.SEa Simul.SEb Differencec Ratiod

Baselinee 7.73 × 10–4 7.39 × 10–4 3.42 × 10–5 4.63 × 10–2

Multi-3-year 4.59 × 10–4 4.43 × 10–4 1.64 × 10–5 3.70 × 10–2

Multi-5-year 3.76 × 10–4 3.63 × 10–4 1.34 × 10–5 3.70 × 10–2

Multi-7-year 3.29 × 10–4 3.16 × 10–4 1.35 × 10–5 4.28 × 10–2

Multi-9-year 2.95 × 10–4 2.86 × 10–4 9.13 × 10–6 3.19 × 10–2

Smoothed 3-annual 4.96 × 10–4 4.70 × 10–4 2.66 × 10–5 5.66 × 10–2

Smoothed 5-annual 4.11 × 10–4 3.86 × 10–4 2.47 × 10–5 6.39 × 10–2

Smoothed 7-annual 3.60 × 10–4 3.37 × 10–4 2.31 × 10–5 6.86 × 10–2

Smoothed 9-annual 3.26 × 10–4 3.03 × 10–4 2.32 × 10–5 7.67 × 10–2

aModel.SE is the square root of the average of 1,000 squared SEs of the pooled risk estimates. bSimul.SE is the SD of the
1,000 pooled risk estimates. cDifference = model.SE – simul.SE. dRatio = (model.SE – simul.SE)/simul.SE. eBaseline is the
nonsmoothed annual estimator. 



than the smoothed L-annual estimator based
on the RMSEs of the risk estimates and ratios
to true values in heterogeneity estimates.
Regarding the optimal value for L, the results
for RMSE indicate L = 7 or 9, whereas those
for parameter variance ratio indicate L = 5 or
7. It may depend on the time period for
which data are available. For the given
Canadian urban data for 20 years, choosing
L = 7 seems to be reasonable based on
the simulation results.

Example. Daily variations in nonacciden-
tal mortality in Canadian cities have been
shown to be related to daily variations in both
O3 and NO2 (Burnett et al. 2004b). We illus-
trate our temporal model of risk using these
pollutants. We consider the daily 8-hr run-
ning maximum as the summary measure of
population average exposure for O3 because it
is the metric employed for the Canada-wide
ozone standard (Canadian Council of
Ministers of Environment 2000). We used
the daily average concentration for NO2. We
selected communities with a reasonably long
time series of both pollutants, resulting in 24
cities having information from 1984 through

2000, the last year of nationally available
mortality data. The time series models com-
prise natural spline terms in the model for
time with 9 df/year, two natural spline terms
for daily average temperature with 3 df
recorded on the day of and the day before
death, day of week indicator functions, and
the 2-day average of pollution concentrations.

We initially considered a static- or constant-
risk model for each city with βi(t) = βi. For
O3, the pooled common risk is μ̂ = 7.42 ×
10–4, which indicates the log relative rate of
mortality associated with a unit (ppb) increase
in O3, with an SE of 1.46 × 10–4. Here, σ^β =
2.23 × 10–4, implying that 95% of cities have
risks that lie in the interval (0.59 × 10–4 to
9.33 × 10–4), assuming a normal distribution.
For NO2, the pooled common risk is μ̂ = 8.59
×10–4, which denotes the log relative rate of
mortality associated with a unit (parts per bil-
lion) increase in NO2, with an SE of 1.66 ×
10–4. However, there is no evidence of
heterogeneity of risk among cities because the
estimate of the heterogeneity is zero (σ^β = 0).
Therefore, our best estimate of risk for each
city is the common risk (μ̂). Based on this

analysis, assuming a constant risk over time,
we conclude that there is sufficient evidence
to suggest that a statistical association exists
between daily variation in both O3 and NO2
and nonaccidental mortality. 

Figure 3 presents the annual average daily
concentrations of O3 and NO2. We obtained
these values by weighting the ambient concen-
trations by city-specific daily average mortality
counts, thus reflecting population average
exposure with respect to the health outcome
of interest. We applied the Mann–Kendall test
(Gilbert 1987), a nonparametric test for
monotonic trend, to these annual averages.
Concentrations of O3 appear to be increasing
over the 17-year period, whereas those of
NO2 are decreasing. However, the temporal
pattern in NO2 is much clearer than that for
O3. Our graphical interpretation of trends is
supported by the Mann–Kendall test results,
with stronger evidence rejecting the null
hypothesis of no trend and accepting the
alternative hypothesis of some monotonic
trend for NO2 (p = 0.00005) than for O3 (p =
0.0435). The increasing trend in levels of O3
can be attributed to southern Ontario com-
munities, which suffer from regional North
American increases in O3, even though the
O3 precursor pollutant, NO2, is declining
over time (Government of Canada 2006).
The time trends in nonweighted O3 and NO2
show similar Mann–Kendall test results.

Figure 4 displays the estimates of the
annual pooled or common risk. Evidence for
supporting the alternative hypothesis of some
monotonic increasing trend in the annual risks
for O3 is weak (p = 0.3870) but somewhat
stronger for NO2 (p = 0.1082). Only the 1998
risk for NO2 (Figure 4B, red circle) is outside
±2 SD (blue lines) of the 17 annual risk esti-
mates. To examine the sensitivity of the con-
clusion of the existence of a monotonic trend
in annual risk, we applied the Mann–Kendall
test 17 times to data sets, excluding a single
year of data. For O3, the p-value varied
between 0.6853 when excluding 1984 and
0.2241 when excluding 1989. There is no
strong evidence to reject the null hypothesis of
no increasing risks based on exclusion of any
single year of data. However, p-values varied
for NO2 from 0.2241 excluding 1999 to
0.0217 excluding 1998. This is consistent
with the graphical information presented in
Figure 4, for which the 1998 annual risk is
clearly different from those in the proximal
years. The other year in which risk appeared
to be somewhat unusual was 1992. Excluding
this year resulted in a Mann–Kendall test with
a p-value of 0.0647, the second lowest value
examined. Thus, data for 1998 and 1992 have
the most influence on the statistical test for
linear time trend in NO2.

We examined in detail the temporal
pattern of mortality, temperature, and air
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Table 2. Comparison of bias in heterogeneity (difference among the 12 Canadian cities) estimates for all
scenarios during 12 year time period, 1989–2000.

Ratioa

Method (estimator) Scenario 1 Scenario 2 Scenario 3

Baselineb 2.72 0.63 1.10
Multi-3-year 1.87 0.74 0.88
Multi-5-year 1.82 0.82c 0.92c

Multi-7-year 1.63 0.80 0.88
Multi-9-year 1.42 0.75 0.82
Smoothed 3-annual 1.29 0.58 0.65
Smoothed 5-annual 1.04c 0.60 0.57
Smoothed 7-annual 0.90 0.61 0.53
Smoothed 9-annual 0.83 0.60 0.51
aRatio = (parameter variance estimate)/(preassigned value for parameter variance). bBaseline = nonsmoothed annual
estimator. cRatios indicate the best results; the closer to 1, the better estimate.

Figure 3. Trend in annual mortality-weighted averages of O3 (A) and NO2 (B) concentrations (ppb) from
24 Canadian cities. The curve represents time trends in concentrations smoothed by locally weighted
scatterplot smoothing (LOWESS).
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Figure 4. Annual pooled risk estimates for O3 (A) and NO2 (B) from 24 Canadian cities. Blue lines indicate
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pollution in each city in an attempt to iden-
tify unusual patterns that might explain the
relatively low risk for NO2 in 1998. We
observed no obvious patterns for mortality or
air pollution. However, there was a clear
increase in ambient temperature in southern
Ontario in 1998 (data not shown). We then
examined the sensitivity of the annual risk for
NO2 to model specification. To account for
this, we varied the df of the natural splines,
such as df = 6, 9, 12 for time and df = 3, 6, 9
for temperature, but this did not affect the
temporal pattern of risk. We examined the
sensitivity of the estimates of annual risk to
singular exclusion of the three largest cities,
Toronto, Montreal, and Vancouver. The pat-
tern of annual risk estimates was unaltered.
Next, we divided the 24 Canadian cities into
four regions. We observed a relatively low risk
estimate for 1998 in the region of western
Canada. The reasons for this lower risk
remain unclear and subject to further investi-
gations, such as looking into demographic
changes in the western Canada region. We
applied the multi-7-year method to both O3
and NO2, which we plotted over time from
1990 through 2000 (Figure 5). The temporal
estimator of risk follows the general pattern of
the annual estimates. Risk increased slightly
for O3 from 1990 to 1996, followed by a
slight decrease in risk for the next few years
(Figure 5A). It is difficult to clearly distin-
guish a temporal pattern of risk different from
a constant in Figure 5A. However, the tem-
poral pattern in risk is more distinct for NO2
(Figure 5B), with a clear monotonic increase
in risk from 1990 to 1997 and then a sharp
decline in 1998. We examined the influence
of the 1998 data on this pattern by removing
this year and recalculating the temporal risk
pattern (Figure 5C). Without 1998, a clear
monotonic increase in risk is apparent.

Discussion

Here we proposed new methods to estimate
the association between daily variations in
ambient air pollution and daily fluctuations in
nonaccidental mortality over space and time.
Spatial–temporal risk estimates, coupled with
city-specific and national estimates in trends in
air pollution, can be used to assess whether the
adverse effect of air pollution related to mortal-
ities has changed over time. Simulation meth-
ods show our estimator to have reasonable
statistical properties for estimates of the com-
mon risk under various scenarios for changes in
risk over time. However, estimates of the het-
erogeneity of risk among cities are unstable,
with zero values frequently occurring, both in
the simulation study and in the analysis of real
data. In particular, estimates of heterogeneity
in risk can vary considerably over time. This
instability results in highly variable shrunken
estimates of the city-specific risks, making it

difficult to clearly identify temporal patterns.
In the case of O3, we used the estimate of het-
erogeneity of risk based on all 17 years of data
to determine the city-specific shrunken risk.
We frequently observed zero values for the
variance estimate from our temporal model of
risk. This is likely attributable to the much
larger within-city estimation error of risk com-
pared with the variation in risk among cities.
Alternative estimation procedures such as
Bayesian methods should be considered to
improve estimation of the heterogeneity.

We considered the temporal risks of NO2
exposure on mortality for two reasons. First,
NO2 has been shown to be the strongest and
most consistent predictor of mortality in
Canadian studies (Brook et al. 2007). Second,
it is not clear that NO2 itself is the direct causal
agent; it may be acting as a surrogate for com-
bustion in general and traffic specifically. We
can address an interesting question with NO2:
Are the Canadian government’s efforts to
improve air quality by, in part, reducing NO2
translating into improvements in mortality
risk? Based on the present analysis, the answer
is no. The same issue arises with particulate
matter (PM): It is not likely that mass itself is
the causal agent; rather, the shape, number, or
chemistry of particles may be causing the
observed statistical associations between PM
and mortality. Canada has historically moni-
tored PM only every sixth day and only in a
few cities. The limited sample size generates a
large amount of statistical uncertainty in the
risk estimates. This limits our ability to detect
time trends in a meaningful way.

Risk per unit of air pollutant of interest
may vary over time and space because the

measured pollutant may act as a surrogate for
the true toxic agent, the population or the
monitoring sites may vary over time and
space, or the association between exposure
and death may not be linear. 

Monitored air pollutant may act as a surro-
gate for true toxic agent. Although statistical
associations can be observed between air pollu-
tion and mortality, whether the monitored pol-
lutant is in fact the true causal agent is not
known. Several pollutants are emitted from
common sources, and daily variations in con-
centration can be affected by weather condi-
tions, resulting in high correlations among
pollutants. For example, NO2 has been shown
in Canadian cities to be a stronger predictor of
mortality than is fine PM (Burnett et al.
2004b). However, NO2 has also been shown to
be a stronger correlate than is fine PM with sev-
eral pollutants generated from local mobile
sources (Brook et al. 2007), so NO2 may be
acting as a marker for these pollutants. The
increase in the risk of NO2 over time (exclud-
ing 1998) is approximately the same rate as the
decrease in annual average concentrations, sug-
gesting that the attributable risk (product of risk
and concentration) is stable over time. One
explanation for this pattern is that NO2 itself
may not be causally linked to mortality and
that reductions in ambient concentrations are
not translating into improvements in popula-
tion health. The truly toxic components of the
urban atmosphere may not be changing over
time, at least not at the same rate as NO2. Daily
PM measurements in Canada have not been
collected historically. Size-fractionated mass and
elemental concentrations have been collected in
some cities since 1984 on a sampling schedule

Temporal model for effects of air pollution on health
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Figure 5. Time trend in pooled risks of O3 (A) and NO2 (all years, B; 1998 excluded, C) from 24 Canadian
cities. Black lines indicate the pooled risk; blue lines indicate 95% confidence intervals.
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of every sixth day (Burnett et al. 2000).
Speciated PM data (elements, ions, carbon)
have been collected on a sampling schedule of
every third day from 2003 in several Canadian
communities. The temporal pattern in the

correlation between NO2 and these PM pollu-
tants can be examined in order to identify pos-
sible changes in the composition of the
atmosphere and thus determine possible
reasons for increasing NO2 risks.

The population most at risk for mortality
related to air pollution may change over time
and vary in composition across the nation. It is
well documented that the age distribution of
the Canadian population has changed signifi-
cantly over the last 20 years, such that there is
an increasing proportion of elderly individuals
at greater risk of death (Hogan 2001). The
prevalence of cardiorespiratory disease has also
increased (Heart and Stroke Foundation of
Canada 1999). These factors could plausibly
contribute to an increase in the mortality risk
associated with air pollution over time.

The adequacy of network air pollution
monitoring sites as a surrogate for population
average personal exposure could vary by com-
munity and time. This misclassification of
exposure can lead to underestimation of risk,
with the amount of underestimation depend-
ing on both space and time. This issue could
be examined by correlations among monitors
within each community and the use of
enhanced exposure assessment methods such
as land-use regression models, spatial kriging
methods, and population density measures.

The shape of the association between
exposure and death may not be linear. In this
simulation, we have assumed a linear associa-
tion between concentration and mortality. If
the association is nonlinear, then as pollution
levels change over time, the number of deaths
attributable to air pollution will vary depend-
ing on the level of exposure. Methods will
need to be developed to incorporate nonlinear
(threshold) models such as those developed by
Cakmak et al. (1999).

In our study, the annual average daily
concentrations of O3 appeared to be increas-
ing over the 17-year period, whereas those of
NO2 are decreasing. However, our proposed
method returns different time trends in mor-
tality risks. Evidence for some monotonic
increasing time trends in the annual risks for
O3 is weak (p = 0.3870) but somewhat
stronger for NO2 (p = 0.1082). In particular,
an increasing time trend becomes apparent
when excluding year 1998, which reveals
lower risk than proximal years, even though
concentrations of NO2 are decreasing.

Despite decreasing ambient concentra-
tions, mortality risks related to NO2 appear to
be increasing. Further investigations are nec-
essary to understand why the concentrations
and adverse effects of NO2 show opposite
time trends and why year 1998 is quite differ-
ent from its proximal years.
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Appendix

Generating daily mortality data (Y*
ij ). We designed this simulation to be as close to the real

situation as possible. We generated daily mortality counts to be close to the expectation of
the daily death counts for each of the 12 cities for 20 years using the model in Equation 2
(model 2), which required calendar time, temperature, day of week, and air pollutant level.
To conduct a reliable simulation, we incorporated the contribution of those factors (potential
confounding variables) in generating daily mortality counts. We gave only the relative risk for
each city i, βi(t), preselected values that were close to the estimate from that city’s data.

Suppose we estimate the expectation of the daily mortality from model 2 as follows. For
city i and year j,

.

[3]

The contribution of the potential confounding variables is

. [4]

Let β*
ij represent the true values and replacing the estimated risk β^ij by the true risk β*

ij ; we
now have the new expectation of the daily mortality,

. [5]

Adding random errors (εij) from a Poisson distribution, we generated daily deaths as

. [6]

We assumed the true risks, β*
ij , to be different for each year within each city. For each

scenario, we determined the risk for the first year, β*
i1, equal to the shrunken estimate from

the Canadian 12-city data. The preassigned values for city-specific risks ranged from 0.096 ×
10–3 to 1.677 × 10–3 for the estimated risks of NO2.

Estimating city-specific annual risks using simulated data ( β
^

ij). From 1,000 simulated
daily mortality data sets, we obtained 1,000 estimates for the risk, β^ij, and its sampling vari-
ance, ν^ij, by applying model 2.

Estimating heterogeneity among different cities for year j [σ̂2
β( j )]. We obtained annual

risk estimates for each of the 12 cities. Applying the random-effects model to these 12 city-
specific risk estimates for each year, we estimated the parameter variances, σ̂2

β(j ), which indi-
cate heterogeneity among the 12 cities.

Estimating the pooled health risk for year j [ µ̂β (j)]. For any year j, we obtained the
pooled risk estimate by combining the 12 city-specific risk estimates:

, [7]

where K is the number of cities and wij = 1 ⁄ var(β
^
ij) = 1 ⁄ var(σ^ 2

βR,adj( j ) + ν^ij) for city i.

The variance of this pooled risk estimate is
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