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Antibody responses to vaccination are influ-
enced by a variety of endogenous factors
including genetics, sex, age, and exogenous
factors such as stress, nutrition, and infec-
tious diseases. These factors need to be taken
into consideration in clinical and epidemio-
logic studies where the antibody response is
the biomarker assessed, for example, when
one wants to assess in immunotoxicology
investigations effects of exposure to environ-
mental agents. 

Studies in laboratory animals have shown
that many environmental chemicals exert
immunotoxic activity as indicated by altered
immune functions, including effects on resis-
tance to experimental infections [reviewed by
the International Programme on Chemical
Safety (1)]. Effects of environmental expo-
sures on immune functions have also been
shown in humans (1), yet it is less well known
whether immunotoxicity induced by environ-
mental chemicals will have such severe conse-
quences for resistance to infections. It has
been suggested that where exposure to envi-
ronmental immunotoxicants may induce sub-
tler immunosuppression, consequences of
such suppression may become evident as
increased incidences of common infections,
such as influenza and common cold (1).

In experimental studies in rodents, it has
been shown that the antibody response to
sheep erythrocytes are a valuable indicator for
immunotoxicity (2,3). This is due to the fact
that the humoral immune response to sheep
erythrocytes involves major components of
the immune system, such as degradation of
the erythrocytes by phagocytes, antigen pre-
sentation, cellular immune functions result-
ing in helper activity, and finally production
of specific antibodies. In addition, alterations
in the response to sheep erythrocytes corre-
lates well with resistance to experimental
infectious agents in these animal studies (3).
This immune function test was also applied
in nonhuman primates; for example, expo-
sure of female rhesus monkeys (Macaca
mulatta) to polychlorinated biphenyls (PCBs)
reduced the antibody response to sheep ery-
throcytes, in conjunction with effects on sev-
eral other immunologic parameters (4).

Of course, it is not possible to use anti-
body titers to sheep erythrocytes to study
immunotoxicity in human populations. It
has therefore been suggested that effects of
immunotoxic exposures on the specific
immune response to agents derived from
infectious microorganisms, (e.g., to vaccines)
be used instead (5,6). Depending on the 

vaccine, major components of the immune
system may be involved in the ultimate
humoral response to the vaccine. It is not pos-
sible for all vaccination responses to translate
the vigor of the antibody response to protec-
tion. Ideally, vaccination is performed in such
a way that those variations in response do not
result in altered protection, but protection is
not always achieved in every individual vacci-
nated. Effects of exposure to immunotoxi-
cants on vaccination titers, if and when they
are observed, will therefore not necessarily
indicate a decreased protection of individuals
to the pathogen at which the vaccination is
aimed. Rather, this may serve as a model of
effects of exposures on immune responses to
(other) infectious agents required for proper
resistance to (other) infections.

Influence of Environmental
Exposures on Resistance to Infectious
Diseases and Vaccination Titers
Patients suffering from immune deficiency
develop more frequent, more severe, and
often atypical infections, depending on the
type of the deficiency. Complications of
severe immunodeficiency include bacterial,
viral, fungal, and parasitic infections. The res-
piratory tract is a primary target for infectious
pathogens, especially in immunosuppressed
patients. For instance, infectious complica-
tions have been commonly described in
patients treated with various cytotoxic drugs
for cancer treatment and with immunosup-
pressants, such as cyclosporin A, for the pre-
vention of allograft rejection or the treatment
of autoimmune disorders (7,8).

Also, such consequences of environmen-
tal exposures have been documented in the
literature. For instance, children born
between July 1978 and June 1987 to moth-
ers that had been exposed to toxic levels of
PCBs and dibenzofurans through consump-
tion of contaminated rice bran oil in
1978–1979 showed higher frequencies of
upper respiratory tract infections (5).
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In laboratory animals, an adequate way to assess effects of environmental exposures on the
immune system is to study effects on antigen-specific immune responses, such as after sensitiza-
tion to T-cell–dependent antigens. This probably also applies to testing effects in the human pop-
ulation. It has thus been suggested that antibody responses to vaccination might be useful in this
context. Vaccination responses may be influenced by a variety of factors other than environmental
ones. One factor is the vaccine itself; a second is the vaccination procedure used. In addition, the
intrinsic capacity of the recipient to respond to a vaccine, which is determined by sex, genetic fac-
tors, and age, is important. Psychological stress, nutrition, and (infectious) diseases are also likely
to have an impact. We reviewed the literature on vaccine response. With regard to exogenous fac-
tors, there is good evidence that smoking, diet, psychological stress, and certain infectious diseases
affect vaccination titers, although it is difficult to determine to what extent. Genetic factors ren-
der certain individuals nonresponsive to vaccination. In general, in epidemiologic studies of
adverse effects of exposure to agents in the environment in which vaccination titers are used, these
additional factors need to be taken into consideration. Provided that these factors are corrected
for, a study that shows an association of exposure to a given agent with diminished vaccination
responses may indicate suboptimal function of the immune system and clinically relevant dimin-
ished immune response. It is quite unlikely that environmental exposures that affect responses to
vaccination may in fact abrogate protection to the specific pathogen for which vaccination was
performed. Only in those cases where individuals have a poor response to the vaccine may exoge-
nous factors perhaps have a clinically significant influence on resistance to the specific pathogen.
An exposure-associated inhibition of a vaccination response may, however, signify a decreased
host resistance to pathogens against which no vaccination had been performed. Key words: age,
antibody responses, epidemiology, genetic factors, immunotoxicity, nutritional factors, stress,
vaccination. Environ Health Perspect 109:757–764 (2001). [Online 31 July 2001]
http://ehpnet1.niehs.nih.gov/docs/2001/109p757-764vanloveren/abstract.html

RESEARCH
Review

Vaccine-Induced Antibody Responses as Parameters of the Influence of
Endogenous and Environmental Factors

Henk Van Loveren, Jan G.C. Van Amsterdam, Rob J. Vandebriel, Tjeerd G. Kimman, Hans C. Rümke, 
Peter S. Steerenberg, and Jeff G. Vos

National Institute of Public Health and the Environment, Bilthoven, the Netherlands



Exposure to organochlorines through the
food chain of Inuit mothers in Nanuvik
(Arctic Quebec) has been reported to increase
the incidence of otitis media in their breast-
fed children (9). An association of cumulative
background exposure to PCBs and dioxins
on the prevalence of otitis media was also
reported in a group of 3.5 year olds in the
Netherlands (10). In addition, an association
of the prevalence of chickenpox with mater-
nal exposure was observed. 

Few studies have used vaccination titers to
detect immunotoxicity in humans. This holds
true even for studies of immunosuppression
by pharmaceuticals such as cyclosporin. In a
study of human antibody production as a
response to treatment with murine mono-
clonal antibodies, decreased anti-mouse anti-
body production was shown after cyclosporin
treatment (11). After treatment for acute
leukemia, children had reduced antibody
responses to diphtheria, tetanus, and inacti-
vated polio vaccine (DT-IPV) (12). Also
post-transplant (organs, bone marrow)
immune suppression has been shown to lead
to a long period of hyporesponsiveness to
vaccinations (13–15).

A vaccination response study that did not
involve humans was performed in seals by De
Swart et al. (16). These authors fed captive
seals with herring from the Baltic Sea or from
the Atlantic Ocean. The relative contamina-
tion of the herring by polyhalogenated hydro-
carbons, notably PCBs, was 10-fold higher in
Baltic compared to Atlantic herring. In seals
that were fed with the Baltic herring, a signifi-
cantly decreased specific antibody response to
ovalbumin was observed.

In a study by Reigert and Graber (17),
the specific antibody response to tetanus tox-
oid was studied in 19 children, 12 of which
were exposed to lead at concentrations that
induced metabolic impairment. The anti-
body responses appeared unaffected. No
other immune parameters were included in
that study, so it is unclear whether immuno-
toxicity occurred in these children, although
lead certainly has been identified as an
immunotoxicant (18).

One example of the role of lifestyle factors
in antibody responses in humans is the effects
of smoking. Increased specific serum IgA and
IgG responses to Chlamydia pneumoniae were
observed by Von Hertzen et al. (19,20).
These responses were to the natural infection
by the pathogen and not to a vaccine. Hence,
alterations in specific antibody titers caused
by smoking may be a reflection of effects of
the course of the infection and the subsequent
antibody titers, rather than a reflection of a
direct influence of smoking on the immune
response to Chlamydia. However, in other
studies, smoking has been shown to interact
with specific antibody production. Smoking

has been implicated in suboptimal responses
to vaccination with hepatitis B (21,22). In
contrast, elevated antibody titers to influenza
vaccination were noted in smokers (23). 

A final example of studies on effects of
environmental exposures on specific anti-
body titers after vaccination is the studies
performed in the Netherlands by Weisglas-
Kuperus and colleagues (10,24). They
observed lower antibody responses to
measles and rubella in some breast-fed
infants. At 3.5 years of age, there was a sta-
tistically significant negative correlation of
antibody titers to measles vaccination with
the exposure to PCBs and dioxins as deter-
mined in cord blood, and a statistically sig-
nificant negative correlation of antibody
titers to rubella with maternal exposure to
these compounds. However, after correction
for sex, early feeding type (formula fed or
breast-fed), duration of breast-feeding dur-
ing infancy, tobacco smoking by one or both
of the parents, family history of atopy, and
day care or nursery attendance, definitive
conclusions could not be drawn. 

In a study by Termorshuizen et al. (25),
an association of season with specific anti-
body levels after hepatitis B vaccination was
established in health-care students. In the
course of the vaccination procedure, involv-
ing multiple vaccinations, higher antibody
titers were observed from the time of the sec-
ond vaccination onward when the first and
second vaccination were applied in the win-
ter as compared to the summer. At the com-
pletion of the vaccination regimen, similar
levels of antibodies were reached in both
study groups. This finding was in accord
with the working hypothesis of the authors:
exposure to ultraviolet radiation diminished
antibody titers after vaccination, and ultravi-
olet radiation exposure was highest in the
summer. Yet, a definitive conclusion on the
causal relationship cannot be drawn from
this study, as other factors may have had an
influence on the vaccination titers. 

Variability in Vaccination Titers due
to the Vaccination
A number of factors related to the way vacci-
nation is performed determine the qualita-
tive and quantitative immune response to
the vaccine. The first is number of vaccine
doses (in the case of nonreplicating vac-
cines). In individuals and in the population,
the (average) concentration of antibodies
depends on the number of vaccine adminis-
trations. More vaccine generally gives higher
antibody levels, as reviewed by Halsey and
Galaska (26), and thereafter confirmed in
numerous studies (27).

The second factor is spacing of doses. In
infant vaccination schedules that have longer
intervals between doses, the postvaccination

antibody titers are usually higher than in
short-spaced vaccination schedules. Short-
spaced vaccination series however induce
protection earlier (26–28). A third factor is
vaccine concentration. Most vaccines avail-
able are formulated to contain an optimal
concentration. Some vaccines result in a bet-
ter priming and a higher antibody response
when a higher dose is given (27,29). In prac-
tice, this is only relevant for vaccines that are
available in a range of concentrations
(depending on the indications), such as
hepatitis A and hepatitis B vaccines.

Finally, kinetics of the immune response
are important. A first dose of an inactivated
vaccine often does not induce a detectable
antibody response, yet it does prime B- and
T-memory cells. There is a vigorous reponse
to subsequent booster doses (secondary
immune response). Peak levels of antibodies
are found 1–3 months after the booster vac-
cination, then the levels decline. A next dose
usually induces a peak response again, and
the following decline will end at a higher
base level.

Hence, the vaccine, vaccination route,
and time point during or after completion of
the vaccination procedure will affect the vac-
cination titers. Therefore, if vaccination
titers are used as an indicator in epidemio-
logic studies, it is important to account for
these variables. 

Sociogeographic Effects
In some vaccine studies using the same lots of
vaccines and schedules, the response in one
group is higher than in another group (e.g., in
Turkish vs. Belgian infants, in Apeldoorn vs.
Rotterdam infants), suggesting that genetic
and/or environmental factors affect circulat-
ing antibody levels after immunization (30).

Similar differences have been found in
measles antibody seroprevalences among
immunized Inuit, Innu, and Caucasian sub-
jects. Here, too, the higher measles seroposi-
tive rate found among native compared to
non-native Canadian children may point at
genetic as well as environmental factors (31),
in addition to differences in natural infections
that may have occurred in these populations.

Genetically Determined Variability
in Vaccination Responses
Two examples of genetically determined
variability in vaccination responses have
been reported in the literature (32–45).

Measles.The relationship of the human
leukocyte antigen (HLA) and transporter
associated with antigen processing (TAP)
genotype with antibody response to measles
virus vaccination is shown in Table 1.
Generally, nonresponders had higher rates of
homozygosity. Regarding HLA class II, non-
responders had a higher homozygosity rate
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of the DR locus, and excess of DR7 alleles, a
DRB1 allele, and a DQA1 allele. Hyper-
responders had excess of DR13 alleles,
(another) DRB1 allele, and (another) DQA1
allele. 

Regarding HLA class I, an association of
two B alleles with response was found, with
an allele dose response in one case, whereas
an inverse association was found with two
(other) B alleles and a C allele. Non-
responders were more likely homozygous at
a specific amino acid position of TAP2.

Hepatitis B. The relationship of the
HLA and complement genotype with anti-
body response to hepatitis B surface antigen
vaccination is shown in Table 2. Regarding
HLA class II, nonresponders showed an
increased homozygosity for a combination of
two alleles. An increased frequency of a wide
range of (single) alleles was found, and also
combinations of three or four alleles were
found. For high responders, increased fre-
quencies of a wide range of (single) alleles
was also found, as well as combinations of

three alleles. Regarding HLA class I, in non-
responders as well as in high responders,
increased frequencies of several (single) alle-
les were found. Nonresponders showed
increased homozygosity for a specific combi-
nation of three haplotypes, one for class I,
one for class II, and one for complement.

In conclusion, several HLA class I and
class II genes are involved in the response to
vaccination against measles and hepatitis B.
For measles, a polymorphism in TAP may
also be involved.

Age and Vaccination Responses
Vaccination response in childhood. Age is an
important determinant for the immune
response. In infants, maturation of the
immune system continues after birth.
Neonates are not able to respond to most
polysaccharide antigens; children do better
after 2 years of age. Also, the response to
protein antigens continues to further matu-
rate during the first years of life (28). For
this reason, infants receive four vaccinations

as a basic immunization with DT-IPV, while
adults need only three for a similar effect.
Circulating antibodies (from maternal origin
or from antibodies administered) impair the
vaccination response, possibly by neutraliz-
ing vaccine antigens or by a suppressor
mechanism that downregulates the antibody
formation when sufficient antibodies are pre-
sent. However, circulating antibodies appear
not to prevent the antibody responses later
in life (46). Interpretation of antibody levels
as a parameter for the effect of external fac-
tors on immune responses needs considera-
tion of this factor, too.

Vaccination responses in the elderly.
Using the SENIEUR-protocol (47), studies
in well-characterized, healthy elderly (> 65
years) populations (including history of ill-
ness, infections, drug intake, and laboratory
values) have been performed and showed
that the serum levels of IgG, IgM, and IgA
increase with age, as well as the number of
benign monoclonal gammapathies and the
number of autoantibodies. The number of
lymphocytes and their proliferative activity
decreases, while the number of neutrophils
increases with aging. Monocytes, basophils,
and eosinophils do not change during life,
but monocyte function was increased in
elderly individuals (48,49).

As a consequence of age-related alter-
ations in the immune system, the elderly may
have an impaired response to primary as well
as secondary immunization (50). The efficacy
of influenza vaccine has been estimated to be
70–90% in young adults, but it is lower in
elderly nursing home patients (51–55). The
diminished efficacy has been attributed to
lower rates of protective antibody responses
against the influenza strains. Hemagglutinin
inhibition antibody titers of > 40 are gener-
ally considered protective. Yet, several studies
indicate that at least 25% of the elderly do
not develop hemagglutinin inhibition anti-
body titers after vaccination (52,56,57).

Following vaccination, elderly, healthy
subjects showed reduced production of anti-
tetanus toxoid antibody, compared with
young adults. Moreover, the antibody titers
of the elderly declined by 6 months to base-
line values, whereas in young adults titers
persisted for up to 1 year (58). A recent
study demonstrates that 40% of a popula-
tion of SENIEUR-compatible Austrians
were not protected against tetanus (59). Fifty
percent of these individuals had been vacci-
nated within the last 10 years and 25%
within the last 5 years.

Especially in the elderly, decreasing effec-
tiveness (60) with increasing delay since vac-
cination has been reported for pneumococcal
vaccine (61). The overall antibody response
among the elderly has been determined to be
lower after revaccination than after primary
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Table 1. Summary relationship between HLA and TAP and antibody response to measles virus vaccine.

Hyperresponder Nonresponder Reference

Higher DR homozygosity rate (32)
Higher homozygosity rate (33)
Higher homozygosity rate (34)

Excess DR13 Excess DR7 (32)
Excess DRB1*13 Excess DRB1*07 (35)
Excess DQA1*01 Excess DQA1*05 (33)
Association with B7, B51 Association with B13, B44, C5 (34)
B7 allele dose response (34)

More likely TAP665 homozygous (36)

Table 2. Relationship between HLA and antibody response to HBsAg (hepatitis B surface antigen) vaccine.

Hyperresponder Nonresponder/hyporesponder Reference

Caucasian
B8, SC01, DR3 homozygosity (37)

DRB1*0701; DQA1*0201; DQB1*0201 (38)
DPB*0201

DRB1*0701; DQB1*0202 homozygosity (39)
DRB1*01 DRB1*03 (40)
DRB1*15 DRB1*14
DRB1*010* DRB1*07 (41)
DR5 DPB1*1101
DPB1*040* DQB1*020*
DQB1*0301
DQB1*0501
DRB1*13 DRB1*3 (42)

DRB1*7
DQB1*0602; DQA1*0102; DR15 DQB1*0604; DQA1*0102; DRB1*1302 (43)
DQB1*0603; DQA1*0103; DRB1*1301

Japanese
Bw54-DR4-DRw53-DQw4 (44)

A, B, DRB1, DQA1, DQB1, DPA1, DPB1 (45)
A,B

B46, B7 A*2602, A*1101, B35, B70
DRB1

*08032, *0101, *1403 *0405, *0406, *0802, *0401, *1101
DQA1 *0302, *0301, *0104, *0601
DQB1 *0401, * 03032, *0302
DPA1
DPA1*0103
DPB1

*0402, *0202, *1301 *1401



vaccination (62). Vaccination procedures in
the elderly generally consist of repeat vac-
cines, and the response to these vaccinations
may be less adequate to use in studies of
effects of environmental exposures on the
immune system.

Effect of Chronic Psychological
Stress on the Vaccination Response
Objective scores of chronic stress such as
loneliness, psychoneurotic complaints,
depression, irascibility, and anxiety have
been used to study effects of stress on the
immune system in humans (63–70).
Chronic stress diminishes the efficacy of the
immune system to protect the host against
infections. Chronic stress leads to a decrease
in natural killer cell number and activity,
decreased lymphocyte response to mitogens,
an increase in CD4/CD8 ratio, and increases
in virus infections and antibody titer to
latent viruses.

In addition, the impairment of the
immune response leads to a poorer response
of the immune system to vaccines. The study
of the response of individuals to vaccines is
preferentially performed by using de novo
antigens, as these are not affected by previous
events. Various groups studied the effect of
chronic psychological stress on the antibody
response to various vaccines, and variable
results were obtained (Table 3). Generally,
high levels of stress (negative life events, acad-
emic exams, daily stress) and anxiety appear
to reduce the antibody response to a primary
or secondary immunization with a vaccine.

Jabaaij et al. (63) performed a study in
stressed subjects characterized by loneliness,
daily hassles, psychoneurotic complaints,
and submissive coping style. Subjects were
vaccinated and antibody titers determined 7
months later. A high stress score derived in
the month of the second assessment was
associated with a lower antibody response to
the vaccine, but in a later, similar study
using a higher dose of the same vaccine, no
effects were observed at any time point (64).

Petry et al. (65) vaccinated 81 seronega-
tive subjects with a similar vaccine three
times and determined antibody titers 3
months after the third dose (i.e., in the
booster phase of immunization). Higher lev-
els of stress, depression, irascibility, and anxi-
ety during the 6-month period following the
first vaccination were associated with higher
peak antibody titers.

Glaser et al. (66) studied the effects of
stress on the antibody response to hepatitis B
vaccine given three times to healthy stu-
dents. The “early” seroconvertors, were sig-
nificantly less anxious and less stressed than
“late” seroconvertors, indicating that stress
delayed the humoral immune response to
hepatitis B vaccination.

Kiecolt-Glaser et al. (67) found impaired
responses in Alzheimer’s caregivers (subject
to chronic stress) to influenza vaccination
relative to matched controls. One month
after vaccination, 65% of the control sub-
jects, but only 37% of the caregivers, had a
4-fold increase in antibody response.

Similar results were recently observed in
caregivers of dementia patients receiving a
trivalent influenza vaccine (68). Mean scores
of emotional distress were significantly
higher in caregivers than in controls. In 26
of 67 controls (39%), but in only 8 of 50
caregivers (16%), a 4-fold increase in at least
one of the IgG subclass titers was observed.

Snyder et al. (69) investigated the effect
of stress and psychosocial factors on the anti-
body response to vaccination with KLH
(keyhole limpet hemocyanin) antigen.
Antibody titers were measured 3 and 8
weeks after immunization and showed that
subjects with more stressful events tended to
have lower baseline and 3-week postimmu-
nization IgG levels. Psychological distress
scores correlated negatively and psychologi-
cal well-being scores correlated positively
with IgG levels. Those who reported less
stress tended to have higher IgG levels at 8
weeks postimmunization.

Nutrition and Efficacy of Vaccination
Malnutrition. Protein deficiency can affect
immune responses in young children,
depending on its severity. Under extreme
malnutrition conditions such as marasmic
(severe caloric deficiency), and kwashiorkor
(severe protein deficiency) impairment of
vaccination was found for yellow fever, small-
pox (70), tuberculosis, and polio (71,72). No
impairment of the immune response to the
vaccination was found under mild and mod-
erate conditions of malnutrition on vaccina-
tion against tuberculosis, measles (73,74)
smallpox (70,73), yellow fever (70), diphthe-
ria, tetanus, and pertussis (75).

Malnutrition caused by anorexia nervosa
or bulimia nervosa was associated with distur-
bances in the immune system (76,77). A gen-
eral decrease in lymphocyte subsets, except
for CD19+ cells (B cells) is described for
anorexia and bulimia patients. In addition,
impairment for the cell-mediated response
(delayed-type hypersensitivity) was found in

anorexia patients (76). It is noteworthy that
anorexia nervosa patients are not prone to
infections (78–80).

Breast-feeding versus formula feeding.
Breast and artificial milk are the major nutri-
tion during the first 6 months of life, and still
are important in later months. Lesourd (81)
studied the effect of breast milk and four
types of artificial milk on the effect of vaccina-
tion. Babies fed breast milk or high-protein
cow’s milk had an adequate and sustained
responses; those fed on formula that was rela-
tively low on proteins and carbohydrates had
high but temporary responses, and those fed
on low-protein cow’s milk or the soy-based
formula had poor responses (81). Besides pro-
tein content, contaminants in the formula
may also have had an influence.

Food constituents. The presence or the
absence of certain vitamins and nutrients can
affect immune responses (82–85). Addition
of vitamins C and E to food has been shown
to stimulate immune responses, and sup-
pressed immune responses have been
observed associated with deficiency of vita-
mins A, B, and E. Immune responses are
also affected by iron and zinc deficiencies.
These trace metals are essential for the devel-
opment and maintenance of the cell-medi-
ated (iron and zinc) and humoral response
(iron). In general, it appears that cell-medi-
ated and nonspecific immunity are more sen-
sitive to nutrition deficiency than is humoral
immunity (86). 

Currently, there is a growing interest in
diets specifically designed to promote health.
Probiotics such as lactic acid bacteria can
transiently colonize the intestine and exert
beneficial effects on the immune system (87).
Fish oil, which is rich in eicosapentanoic and
docosahexaenoic acid, affects cell-mediated
and humoral responses in both humans and
experimental animals, with some stimulated
and others down-regulated (88,89). 

In the elderly, the effect of immunosenes-
cence is superimposed on the development of
malnutrition. Randomized controlled studies
have shown that supplementation of vitamin
E for 4 months improved certain clinically
relevant indices of cell-mediated immunity in
healthy elderly persons. Delayed-type hyper-
sensitivity and antibody titers to hepatitis B
were significantly increased, as were antibody
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Table 3. Effect of stress stimuli in vaccination studies.

Vaccine Stressor Observation No. Reference

Hepatitis B Loneliness, hassles Lower Ab-response 95 (63)
Hepatitis B Daily stress, neuroticism No effect on Ab-response 68 (64)
Hepatitis B Life events, stress anxiety Higher peak Ab-response 81 (65)
Hepatitis B Exam stress, social support Delayed Ab-response 48 (66)
Influenza Alzheimer caregiving Lower Ab-response 64 (67)
Influenza Depression caregiving Lower IgG Ab-response 117 (68) 
KLH Life events, daily stress Lower IgG Ab-response 89 (69)

KLH, keyhole limpet hemocyanin.



titers to tetanus vaccination (81,90,91). In a
study of influenza vaccination in the elderly
with low serum albumin levels, a very poor
antibody response to the influenza vaccina-
tion was induced (81), but in another study
no difference was observed between elderly
and young adults (92). 

In conclusion, the data indicate that
nutritional status as well as individual nutri-
tients in food can affect vaccination titers and
should therefore be a concern in the design of
epidemiologic studies of effects of environ-
mental factors on the immune system. 

Influence of Infectious Diseases on
the Immune Response to Vaccination
Numerous inflammatory and immune reac-
tions that occur in response to infection
might in theory affect the outcome of a vacci-
nation given in the course of that infection.
Pathogens may affect the immune response
following vaccination by infecting CD4+ Th
cells and macrophages. This has been docu-
mented for viruses [human immunodeficiency
virus (HIV), measles virus, enteroviruses],
bacteria (Streptococci and Staphylococci), and
parasites (Leishmania, Plasmodium). They
may further influence the immune system by
stimulating the production of cytokines,
which in turn may affect the nature and mag-
nitude of the immune response following
vaccination (93,94).

Influence of immunosuppressive infec-
tions on the vaccination response. HIV,
measles virus, some bacteria (Salmonella), and
helminthes (Schistosoma, Nematospiroides)
exert well-documented immunosuppressive
effects. In addition, it is well known that
HIV-infected persons may have a poor
response upon vaccination against measles
virus and hepatitis A and B virus (95–98).

Infection with Plasmodium spp. has sev-
eral effects on the function of immune cells
and has been documented to inhibit the
antibody response to tetanus toxoid (99).
Measles virus is clearly immunosuppressive.
It interferes with the function of antigen-
presenting cells such as monocytes and den-
dritic cells. This may lead to deficiencies in
interleukin-12 (IL-12) production and T cell
proliferation (100–102). Despite these well-
documented immunosuppressive effects of
measles virus, the effect of measles virus
infection on concurrent vaccination is not
documented.

Chronic carriers of hepatitis B virus have
a disturbed T-helper cell function, which is
associated with a reduced recall response to
whole tetanus toxoid (103). The effect of
chronic hepatitis B virus carriership on pri-
mary vaccinations is unknown. The same is
true for helminth and bacterial infections.
Salmonella, Schistosoma, and Nematospiroides
may influence the function of B and T cells

(104–106). Yet their influence on the vacci-
nation response is not documented.

Influence of nonimmunosuppressive and
nonspecified infections on the vaccination
response. Oral poliovirus vaccine (OPV), a
live attenuated poliovirus, interferes with the
antibody response to a rotavirus vaccine.
However, the effect was small and could be
circumvented by a higher dose of vaccine
(107). 

A number of studies have been directed
to the question of whether nonspecific infec-
tions, manifested by symptoms such as diar-
rhea, rhinorrhoea, coughing, fever, rash, or a
febrile upper respiratory tract infection, neg-
atively affect the vaccination response against
mumps, measles, rubella, and poliovirus.
One study described a negative effect (108),
whereas seven other studies reported no or
only minimal clinically significant influence
(109–114). 

Specific interaction with cross-reacting
pathogens. Infection with microorganisms
that are closely related to vaccine components
may interfere with the vaccination response to
such components, for example, because they
crossreact or limit the replication of vaccine
virus. Sabin OPV type 2, for example, inter-
feres with the vaccination response to Sabin
type 3 (115). Non-polioenteroviruses may
also interfere with the vaccination response
to OPV. In contrast, nonspecific enteric
infection did not interfere with OPV vacci-
nation (116). 

In conclusion, although some infections
may exert well-documented immunosuppres-
sive effects in either humans or laboratory ani-
mals, their influence on the vaccination
response is poorly documented. The influence
of well-known immunosuppressive infections,
such as measles virus and HIV, appears lim-
ited to well-developed countries such as the
Netherlands because their incidence is very
low. Clinical measles virus infection in the
Netherlands is limited to persons who refuse
vaccination on religious grounds. The influ-
ence of nonspecific childhood infections on
the vaccination response has been evaluated in
several studies. These infections appear to
have no or only a limited negative influence
on the response to vaccination. 

Discussion and Conclusion

Vaccination titers are a reflection of the
immune function, and changes in vaccina-
tion-specific immune responses are therefore
considered as indicators for the effect of
environmental exposures on the immune
system in human populations. To date, few
studies have been performed in which vacci-
nation titers were used to detect immunotoxi-
city in the human population. Hence, there is
as yet not much experience with sensitivity of
this type of testing in epidemiologic studies.

The literature to date indicates that many
influences on the response to a vaccination
exist, and these therefore should be taken
into consideration in the design of epidemi-
ologic studies aimed at assessing the effect of
environmental exposures on which the
response to vaccination is used as an indica-
tor of the function of the immune system. In
other words, these influences need to be
carefully controlled for.

It is necessary to know the inter- and
intraperson variability in the population
regarding the responses to the chosen vac-
cine, so that the required study group size
can be determined. The vaccine itself, the
vaccination route, booster vaccination, and
time point during or after completion of the
vaccination procedure have impacts on the
vaccination titers. Therefore, it is important
to standardize vaccination procedures.
Moreover, insight in the interval between
the commencement of the exposure that is
being studied and the effect on the immune
system that is expected (hours, days, months,
years) will help in the study design. 

The data indicate that sex, genetics, age,
psychological stress, smoking, nutrition, and
certain infectious diseases that are not neces-
sarily directly antigenically related to the vac-
cine all may have an influence on vaccination
titers and should be considered as con-
founders. Also, geographic differences have
been noted, which may have several causes,
such as socioeconomics or culture. Little
information is available on the quantitative
relevance of all these confounders, and there-
fore studies need to be designed so that either
these confounders are excluded or so that it is
possible to correct for these influences. It is
obvious that such influences have differential
relevance in different populations, such as
elderly versus children or populations in
wealthy societies versus underdeveloped
regions.

According to the extensive animal stud-
ies reported by Luster et al. (2,3) the anti-
gen-specific response to T-cell–dependent
antigens (sheep erythrocytes) correlates well
with host resistance to infectious diseases. It
is quite likely that this applies to humans as
well. In those cases where reduced antibody
titers to a given vaccination are observed that
cannot be attributed to any other determi-
nant than the environmental immunosup-
pressive agent under study, it is likely that
the exposed population has lower resistance
to infections. Obviously, there is a certain
reserve capacity, and not every change in
function of the immune system will lead to a
decreased resistance in healthy individuals.
Yet, since in the entire population a high
prevalence of different types of infectious dis-
eases, such as common colds, gastroenteritis,
and so on, is evident, further suppression of
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immune responses in infected individuals is
likely to have an impact. These impacts may
be expressed as prolonged duration or more
severe disease due to the infection. Such
effects may go unnoticed because they may
only lead to more of the same symptoms.
They may actually not be significant for the
individual patient. But due to the high
prevalence of many rather innocuous infec-
tions, such effects may, on a population
basis, be significant.

With respect to the efficacy of vaccina-
tion in terms of protection, it needs to be
mentioned that it is not always possible to
deduce from the vaccination titer the level of
protection gained. It is therefore likewise not
possible to deduct from effects of environ-
mental factors whether these effects hamper
protection against the pathogen at which the
vaccination is aimed.

Antibody response after hepatitis B
immunization, however, predicts susceptibil-
ity to disease on exposure (117). This is also
true for postimmunization measles antibody
responses and for postimmunization polio
antibody responses. Responses in the low
positive range do not protect against clinical
measles when subjects are exposed to the wild
measles virus, whereas high levels are protec-
tive. A strong correlation exists between low
antibody levels after a single dose of (measles)
vaccine and high susceptibility to infection
with exposure (118). So any insult to
responses to these vaccines that result in titers
below a certain threshold will indicate effects
even for the protection at which the vaccine
is aimed. It is, however, unlikely that such
conditions will usually be encountered. For
the majority of the population, vaccination is
performed so that modest or even relatively
big variations in the response do not result in
altered protection, even though not every
individual will always be protected. This is
corroborated by the findings in developing
countries in which malnutrition of children
results in impaired responses after vaccina-
tion, even though these alterations do not
cause the general failure of vaccination strate-
gies (though it should be mentioned that
sometimes problems with vaccination to
measles are associated with vitamin A defi-
ciency). One may expect that individuals
with a response to a vaccine that leads to bor-
derline protection may be subject to experi-
encing a clinically significant negative
consequence of diminished vaccination
response if environmental exposure that
affects vaccination responses occurs.

In many countries, hepatitis B vaccina-
tion is mostly done in adults, generally by
three intramuscular injections of the vaccine
at 0, 2, and 6 months. Specific antibody
titers are generally evident after the second
immunization, and maximal titers occur after

the third vaccination. Vaccination to measles
is mostly done in children. Infants are injected
intramuscularly at the age of about 2 months
and then at 14 months. For both types of vac-
cination, nonresponders can be observed, usu-
ally < 5%. The choice for these or other types
of vaccines obviously depends on the environ-
mental factor that one wants to study, and in
what type of study group. This will also deter-
mine the magnitude of the effect that is
expected. In general, effects of environmental
factors on vaccination titers are expected to be
modest. Thus, the study group that is evalu-
ated needs to be large enough to have suffi-
cient power to detect such modest differences.
Groups of 1–200 individuals have been used.
The nature of the environmental agent studied
will also determine the design of the study, in
particular at what time point antibody titers
are measured. Agents that produce reversible
effects, such as ultraviolet radiation, may
require study of the full kinetics of antibody
responses during the entire immunization pro-
cedure (e.g., at 2 weeks after each vaccination),
whereas persistent chemicals such as PCBs
may require titers only after the vaccination
procedure has been completed (10).

Vaccination titers may prove valuable
tools for identifying effects of exposure to
immunotoxicants in the human population.
However, given the many confounders, even
if they are all corrected for, immunotoxi-
cants identified in animals may not induce
detectable effects on vaccination titers in
humans. Careful consideration of the results
of experimental animal studies and epidemi-
ologic studies is then warranted, in terms of
exposure, other immune end points, and
study size, to evaluate the actual risk that the
immunotoxicant poses to humans.

In conclusion, vaccination titers may be
applied to study effects of exposures to envi-
ronmental factors, provided that confounders
are adequately controlled for. Variability in
the response to vaccination is likely to be
smallest in the case of vaccination to an anti-
gen to which no prior exposure, either natu-
rally or by prior vaccination, has occurred,
which may apply especially to vaccination in
children. In addition, confounders such as
stress or smoking may also be less evident in
children. For this reason, vaccination in chil-
dren may prove to be most adequate to study
immune effects of environmental factors.
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