
INTRODUCTION TO MACROMOLECULAR SIMULATIONPeter J. SteinbachCenter for Molecular ModelingCenter for Information TechnologyNational Institutes of HealthBldg. 12A Room 2051steinbac@helix.nih.govhttp://cmm.cit.nih.gov/intro simulationClassical Mechanics Applied to BiologyThe purpose of this tutorial is to introduce several popular numerical techniques used to simulatethe structure and dynamics of biomolecules. The discussion is con�ned to simulation methods thatapply classical mechanics to biological systems, although some quantum theory is presented to quan-tify some shortcomings of classical approximations. Molecular dynamics (MD) simulation, Langevindynamics (LD) simulation, Monte Carlo (MC) simulation, and normal mode analysis are among themethods surveyed here. There are techniques being developed that treat the bulk of a macromoleculeclassically while applying quantum mechanics to a subset of atoms, typically the active site. Thisresearch frontier will not be addressed here. Completely classical studies remain more common andcontinue to contribute to our understanding of biological systems.When is classical mechanics a reasonable approximation?In Newtonian physics, any particle may possess any one of a continuum of energy values. Inquantum physics, the energy is quantized, not continuous. That is, the system can accomodate onlycertain discrete levels of energy, separated by gaps. At very low temperatures these gaps are muchlarger than thermal energy, and the system is con�ned to one or just a few of the low-energy states.Here, we expect the `discreteness' of the quantum energy landscape to be evident in the system'sbehavior. As the temperature is increased, more and more states become thermally accessible, the`discreteness' becomes less and less important, and the system approaches classical behavior.For a harmonic oscillator, the quantized energies are separated by �E = hf , where h is Planck'sconstant and f is the frequency of harmonic vibration. Classical behavior is approached at temperaturesfor which kBT � hf , where kB is the Boltzmann constant and kBT = 0.596 kcal/mol at 300 K. Settinghf = 0.596 kcal/mol yields f = 6.25/ps, or 209 cm�1. So a classical treatment will suÆce for motionswith characteristic times of a ps or longer at room temperature.1



Outline { Shades of things to comeWe'll expand on the above argument with a more quantitative analysis of classical and quantumtreatments of simple harmonic oscillation. This not-too-mathematical glimpse of quantum mechanicalphenomena is included to help simulators estimate how much they can trust various motions that havebeen simulated with the approximations inherent in classical physics. Then, we'll identify the basicingredients of a macromolecular simulation: a description of the structure, a set of atomic coordinates,and an empirical energy function. This is followed by a discussion of the most popular simulation tech-niques: energy minimization, molecular dynamics and Monte Carlo simulation, simulated annealing,and normal-mode analysis. Finally, a few general suggestions are o�ered to those about to performtheir �rst macromolecular simulation. But �rst, a little theoretical background is presented to aid thediscussion. It's a short summary of the most relevant concepts of classical, quantum, and statisticalmechanics, along with a glimpse of classical electrostatics.
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1 Classical and Quantum Mechanics { in a NutshellClassical MechanicsBuilding on the work of Galileo and others, Newton unveiled his laws of motion in 1686. Accordingto Newton:I. A body remains at rest or in uniform motion (constant velocity { both speed and direction) unlessacted on by a net external force.II. In response to a net external force, ~F , a body of mass m accelerates with acceleration ~a = ~F=m.III. If body i pushes on body j with a force ~Fij , then body j pushes on body i with a force ~Fji = �~Fij .For energy-conserving forces, the net force ~Fi on particle i is the negative gradient (slope in threedimensions) of the potential energy with respect to particle i's position: ~Fi = �~riV (~R), where V (~R)represents the potential energy of the system as a function of the positions of all N particles, ~R. Inthree dimensions, ~ri is the vector of length 3 specifying the position of the ith atom, and ~R is thevector of length 3N specifying all coordinates. In the context of simulation, the forces are calculatedfor energy minimizations and molecular dynamics simulations but are not needed in Monte Carlosimulations.Classical mechanics is completely deterministic: Given the exact positions and velocities of allparticles at a given time, along with the function V (~R), one can calculate the future (and past)positions and velocities of all particles at any other time. The evolution of the system's positions andmomenta through time is often referred to as a trajectory.Quantum MechanicsA number of experimental observations in the late 1800's and early 1900's forced physicists to lookbeyond Newton's laws of motion for a more general theory. See, for example, the discussion of the heatcapacity of solids. It had become increasingly clear that electromagnetic radiation had particle-likeproperties in addition to its wave-like properties such as di�raction and interference. Planck showed in1900 that electromagnetic radiation was emitted and absorbed from a black body in discrete quanta,each having energy proportional to the frequency of radiaion. In 1904, Einstein invoked these quanta toexplain the photo-electric e�ect. So under certain circumstances, one must interpret electromagneticwaves as being made up of particles. In 1924 de Broglie asserted that matter also had this dual nature:Particles can be wavey.To make a long and amazing story [1] short, this led to the formulation of Shr�odinger's wave3



equation for matter: H	 = E	:Don't let the brevity of notation fool you; this partial di�erential equation is diÆcult to deal withand generally impossible to solve analytically. It is tailored to a given physical system by de�ning theHamiltonian operator H to incorporate all the relevant forces exerted on the particles of the system.The solution of this equation yields the discrete (quantized) values (or eigenvalues) of energy En, andfor each En its corresponding wave function 	n. In general, these wave functions are complex-valuedfunctions (involving p�1), but the quantity 	�	 is always real and thus may correspond to somethingphysical. (	� is the `complex conjugate' of 	.) In fact, 	�	 is a probability density. For motion inthe single dimension x, it is `a probability per unit x': 	�	dx is the probability that the particlewill be found at a position between x and x + dx. The wavefunctions are normalized (scaled) by therequirement that the particle must be somewhere, i.e., that these probabilities must sum to one:Z 	�	 ~dr = 1:Quantum mechanics is thus not deterministic, but probabilistic. It forces us to abandon the notionof precisely de�ned trajectories of particles through time and space. Instead, we must talk in termsof probabilities for alternative system con�gurations.To clarify these concepts, consider two major successes for the quantum theory, predictions ofthe discrete energy levels of the harmonic oscillator and the hydrogen atom. Pictured below are thepotential energy (solid lines) and the four lowest energy levels (dashed lines) for a one dimensionalharmonic oscillator (red) and the three dimensional hydrogen atom (blue). The harmonic oscillatordepicted corresponds to a hydrogen atom oscillating at the frequency f = 100/ps and represents oneof the highest frequency atomic motions in macromolecules. The energy levels of harmonic oscillatorsare equally spaced, separated by an energy of hf, or 9.5 kcal/mol for the oscillator shown. The energygaps for a hydrogen atom oscillating at f = 10/ps are 0.95 kcal/mol, on the order of thermal energy,and so classical mechanics better approximates quantum results (e.g., average energy and motionalamplitude) for this slower oscillator.Excitation of electrons within atoms requires much more energy than excitation of atomic vi-brations. Promotion of the hydrogen atom's electron from its ground state to its �rst excited staterequires 235 kcal/mol. Way beyond the reach of thermal energy, this excitation requires the absorptionof ultraviolet radiation with a wavelength of 121 nm.4
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Figure 1: Potential and four lowest En levels for a harmonic oscillator and the hydrogen atom.2 Statistical Mechanics { Calculating Equilibrium AveragesAccording to statistical mechanics, the probability that a given state with energy E is occupied in equi-librium at constant particle number N, volume V, and temperature T (constant NVT , the `canonical'ensemble) is proportional to e�E=kBT , the `Boltzmann factor.'probability / e�E=kBT : (1)The equilibrium value of any observable O is therefore obtained by averaging over all states accessibleto the system, weighting each state by this factor.Quantum mechanically, this averaging is performed simply by summing over the discrete set ofmicrostates (Figure 1): hOi = PnOne�En=kBTZ ; (2)where Z is the partition function: Z =Xn e�En=kBT ; (3)5



and On is the expectation value of the quantity O in the nth energy eigenstate:On = Z 	�nO	n ~dr: (4)Classically, a microstate is speci�ed by the positions and velocities (momenta) of all particles,each of which can take on any value. The averaging over states in the classical limit is done byintegrating over these continuous variables:hOi = R Oe�E=kBT ~dp ~drR e�E=kBT ~dp ~dr ;where the integrals are over all phase space (positions ~r and momenta ~p) for the N particles in 3dimensions.When all forces (the potential energy V) and the observable O are velocity-independent, the mo-mentum integrals can be factored and canceled:hOi = R e�K=kBT ~dp R Oe�V=kBT ~drR e�K=kBT ~dp R e�V=kBT ~dr = R Oe�V=kBT ~drR e�V=kBT ~dr ; (5)where K = PNi=1 p2i =2mi is the total kinetic energy, and E = K + V . As a result, Monte Carlosimulations compare V's, not E's.3 Classical vs. Quantum Mechanics: The Harmonic Oscillator inOne DimensionThe harmonic oscillator is the model system of model systems. We study it here to characterizedi�erences in the dynamical behavior predicted by classical and quantum mechanics, stressing conceptsand results. More details and mathematical formalism can be found in textbooks [1, 2]. Our modelsystem is a single particle moving in the x dimension connected by a spring to a �xed point. Itspotential energy is V (x) = kx2=2, where k is the spring constant. Sti� springs are described by largek's.Classically, this oscillator undergoes sinusoidal oscillation of amplitude A = p2E=k and fre-quency f = (k=m)1=2=(2�), where E is the total energy, potential plus kinetic. In equilibrium attemperture T, its average potential energy and kinetic energy are both equal to kBT=2; they dependonly on temperature, not on the motion's frequency.6



Quantum mechanically, the probability of �nding the particle at a given place is obtained fromthe solution of Shr�odinger's equation, yielding eigenvalues En and eigenfunctions 	n(x). For the onedimensional harmonic oscillator, the energies are found to be En = (n+ 1=2)hf , where h is Planck'sconstant, f is the classical frequency of motion (above), and n may take on integer values from 0 toin�nity. The 	n(x) turn out to be real functions involving the Hermite polynomials. From equation 1,only the ground state (n = 0) is populated as the temperature T ! 0. The energy does not go to zerobut to hf=2. The corresponding zero-point motion is a quantum mechanical phenomenon. Classically,there is no motion as T ! 0. Thus, we expect that quantum mechanics predicts more motion thanclassical mechanics, especially at low temperature.3.1 Probability(x): Where is the oscillating particle?For the oscillator in the nth eigenstate with energy En, the probability of being between x and x+ dxis 	�n	ndx. In the following �gure, 	�n	n is plotted in solid lines for n = 0 (red) and for n = 5 (blue),along with the corresponding classical predictions, plotted in dotted lines for classical oscillators withthe same total energies (0.5 hf and 5.5 hf). Numerical constants chosen: m = mass of H atom, f =100/ps, about the frequency of O-H bond stretching.Classically, the probability that the oscillating particle is at a given value of x is simply the fractionof time that it spends there, which is inversely proportional to its velocity v(x) at that position. Theparticle must stop completely (for a moment) before reversing its direction, and so it spends the mosttime where the spring is either fully compressed or fully extended (x = �A). It spends the least timewhere its velocity is greatest, i.e., where the spring is at its equilibrium length (x = 0). Classically,there is zero chance for a particle to have a potential energy V greater than its total energy E, and sothe motion is strictly con�ned to the range �A � x � A (see vertical dotted lines at x = �A).Quantum mechanically, there exist states (any n > 0 ) for which there are locations x, where theprobability of �nding the particle is zero, and that these locations separate regions of high probability!Also, note that there is appreciable probability that the particle can be found outside the range�A � x � A, where classically it is strictly forbidden! This quantum mechanical tunneling is relatedto the famous Heisenberg Uncertainty Principle, which states that one cannot know both the positionand momentum of a particle with in�nite precision at the same time.Finally, note that the classical approximation more closely resembles the average of 	�n	n as theenergy En of the oscillator increases. 7
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Figure 2: Quantum and classical probability of �nding oscillator as a function of position.3.2 Average Energy U and Heat CapacityNext, we consider the average energy U = hEi of the harmonic oscillator at �xed NVT . We calculateit as a function of temperature using equations 2, 4, and 5, with the observable O = E. U is plottedin dotted lines for three frequencies (spring constants k): f = 100/ps (green), 10/ps (blue), and 1/ps(cyan). The classical result (red) is U = kBT , regardless of the frequency of the harmonic motion(the classical `equipartition of energy'). Note that the deviation of classical from quantum behavior isreduced as the frequency, and hence the energy gap between quantum states, is reduced.The heat capacity at constant volume, CV = @U=@T jV , is plotted in solid lines for each of the fourU curves. (To �t on the same scale, CV values were scaled by a factor of 1500). This heat capacitymeasures the energy absorbed (released) by a system as its temperature is raised (lowered) one degreewhile the volume is held constant. (The heat capacity at constant pressure, CP , is larger than CV forgases because work is done as the container expands.) In the early twentieth century, experimentallymeasured values of the heat capacity for solids at low temperature, which can be approximated asthree dimensional arrays of harmonic oscillators, pointed to a problem in the classical theory. Classical8
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Figure 3: Harmonic oscillation: average energy and heat capacity versus temperaturephysics predicted a temperature independent heat capacity (red horizontal line), whereas the measuredvalues went to zero as T 3 as T ! 0. The much improved predictions (by Einstein in 1907 and Debye in1912) of the low-temperature heat capacity of solids were among the earliest successes for theoreticalmodels that invoked quantum concepts.The frequency dependencies of U and CV at 300 K are shown in the second �gure. Again, the CVvalues have been scaled by a factor of 1500. Classical quantities (in red) are independent of frequency,with U = kBT = 0.6 kcal/mol drawn as a dashed line. Quantum mechanical quantities (U in green, CVin cyan) deviate more and more from classical values as the frequency is increased. As foreshadowedin the introduction, this deviation becomes appreciable at frequencies above 1/ps.An aside: For those unfamiliar with the concept of heat capacity, consider the well known con-sequences of water's large heat capacity. Water can absorb and release considerable thermal energywith little change in temperature. Hence, average coastal temperatures are cooler in summer thaninland temperatures as the water absorbs and stores heat. The reverse is true in winter, as the waterreleases the stored energy. 9
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Figure 4: Harmonic oscillation at 300 K: average energy and heat capacity versus frequency3.3 Mean-Square FluctuationOne physical quantity of great interest is the variance in the position of atoms at equilibrium, h(�x)2i.For our model oscillator, hxi = 0; so h(�x)2i = hx2i. This mean-square uctuation about the averageposition is related to the B factors of crystallography and is also measurable by neutron scattering [3]and by M�ossbauer spectroscopy [4]. It is one of the most important quantities to keep an eye on inmolecular dynamics simulations as well. What is this uctuation for the harmonic oscillator in equi-librium at constant NVT according to classical and quantum mechanics? We again use equations 2,4, and 5, now with O = x2, and consider the same three frequencies of proton vibration. BecauseV = kx2=2 and hV i = hKi = hEi=2 for harmonic oscillation, the quantum and classical results are pro-portional to those obtained above for the average energy. That is, hx2i = U=k = U=m(2�f)2. Again,m is taken as the mass of a proton. (To plot the three frequencies on one scale, results have beenscaled to the f = 100/ps values (green): Results for f = 10/ps (blue) were scaled by 0.01 ; results forf = 1/ps (cyan) were scaled by 0.0001. Consequently, the three classical curves (red), hx2i = kBT=k,coincide.) 10
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Figure 5: Mean-square uctuation of H atom undergoing harmonic oscillation.3.4 Overall Comparison { What does all this mean for simulation?As expected, the classical approximation is at its best (approaches the quantum results) at hightemperatures and for oscillators of low frequency (small k and/or big m). Under these conditions, thegaps between quantum states are small relative to thermal energy, kBT .The highest energy vibration we've looked at in detail has been that of protons oscillating at f =100/ps. This frequency was chosen because it is essentially that of oxygen-hydrogen bond stretching.It represents one of the highest frequency modes of vibration in a biomolecule and thus serves as aworst-case scenario for classical approximations in macromolecular simulations. Several aspects ofthis motion have been depicted; see the plots of V and eigenvalues E, of probability(x), and the greencurves in the plots of U and heat capacity and mean-square uctuation.Indeed, the mean-square uctuation predicted classically at this frequency is about eight timestoo small at 300 K. We can take consolation in the scale, though. For while the quantum value ofhx2i = 0:005�A2 (rms x = 0.07 �A) is large compared to the classical result, it is still modest relative tocrystallographic resolutions and the equilibrium length of the O-H bond. Furthermore, when compared11



to motional amplitudes measured by neutron scattering, classical simulations predict too much motion[6]. Thus, the reduced motion resulting from the neglect of quantum e�ects is overshadowed by otherapproximations made in simulations (perhaps the neglect of electronic polarizability and the assumedpairwise additivity of van der Waals forces). The overestimate of protein motion by simulations is notyet understood.Another problem with classical dynamics is the incorrect partitioning of energy (see plots of U andheat capacity). Classically U = kBT and CV = kB, independent of frequency. In reality, high fre-quency motions have much more energy (larger U) and much less ability to exchange energy (smallerCV ) than classical mechanics predicts. High frequency motions like O-H bond stretching are ener-getically trapped in their quantum ground state, unexcitable to higher energy levels except at veryhigh temperatures. Thus, the average energy U for the oscillator with f = 100/ps is very nearlytemperature independent (CV � 0) all the way up to 600 K. The frequency-dependent underestimateof U by classical mechanics complicates calculations of free energy di�erences �G when vibrationalfrequencies are likely to change during the process under investigation. However, these errors tend tocancel in estimates of ��G values. In classical simulations, low frequency motions exchange energywith too many (high frequency) degrees of freedom, but this unphysical give-and-take of energy withhigh frequency motions tends to average out.To summarize, classical simulations are unable to analyze the details of bond stretching and anglebending quantitatively. These motions are at frequencies too high for an accurate treatment usingNewton's laws. However, we've observed that the errors in motional amplitude are relatively small,and errors in energy tend to cancel out in appropriately designed calculations, as when ��G's arecalculated rather than �G's. For lower frequency motions (f � 1/ps or less), observables such as Uand hx2i become temperature independent (as quantum e�ects dominate) at much lower temperatures.For these motions, classical mechanics is a good approximation at physiological temperatures.4 Electrostatics and the `Generalized Born' Solvent ModelWe now delve into electrostatics to estimate the electrostatic polarization free energy, Gpol, involved inthe transfer of a solute with an arbitrary charge distribution from vacuum to aqueous solution. Gpolis the interaction between the charge distribution and its reaction potential, the potential induced bythe charge distribution in the presence of the dielectric boundary at the solute-solvent interface.First, we review some basics. Again, we will focus on important results, and leave most of themathematical details to textbooks [7]. Don't worry if the equations are unfamiliar; just stay tuned for12



the punch line.All problems in electrostatics boil down to the solution of a single equation, Poisson's equation:r2� = ��=�0;where r2 is the Laplacian operator, � is the electrostatic potential, � is the charge density (total chargeper unit volume including all `free' and `polarization' charges), and �0 is the permittivity of free space.In cartesion (xyz) coordinates, r2� � @2�@x2 + @2�@y2 + @2�@z2 :The electrostatic potential at a given point in space is the potential energy per unit charge that a testcharge would have if positioned at that point in the electric �eld ~E speci�ed by �:~E = �~r� � ��@�@x x̂+ @�@y ŷ + @�@z ẑ� ;where x̂, ŷ, and ẑ are unit vectors in the x, y, and z directions, respectively. Similarly, the electric �eldat a given point in space is the force per unit charge that would act on a test charge located at thatpoint. If we know � at all points in space, we've solved the problem since all forces and energies canbe obtained from �.Let's examine two model systems, a point charge and a point dipole, each immersed in a dielectricmedium. In the following two boundary-value problems, we simply state the answer, giving � as afunction of position for all points in space. In these problems, we seek � in regions were there is nocharge (� = 0). Thus, we need solutions to the special case of Poisson's equation known as Laplace'sequation, r2� = 0, that satisfy two boundary conditions. First, � must be a continuous function, e.g.,at the dielectric boundary. Second, because there is no `free' charge (charge other than the inducedpolarization charges) at the dielectric boundary, the normal component of the electric displacement,~D = � ~E, will also be continuous at this boundary.First, we model a single ion in solution as a sphere of radius a with a point charge q at its center,immersed in a solvent of dielectric constant �. Aside from the point charge at the center, there isnothing inside the solvent-exclusion cavity, and so the dielectric constant inside is the permittivity offree space �0. The spherical symmetry of this system renders it a problem of only one dimension, thedistance r from the point charge. The solution is:�(r) = 8<: q=(4��0r)� q(1=�0 � 1=�)=(4�a); r < aq=(4��r); r � a (6)13



One step up in complexity from a point charge is a point dipole. So let's replace the point chargeat the center of our solvent-exclusion sphere with a point dipole ~p. With this model system we canapproximate the solvation energy of a neutral molecule possessing a permanent dipole moment. Again,the dielectric constant of the solvent is �, and the dielectric constant inside the spherical molecule is�0. This cylindrically symmetric system has two independent dimensions, the distance r and the angle� from the direction of the dipole vector. We get [8]:�(r; �) = 8<: pcos�(1=r2�Rr)=(4��0); r < ap�cos�=(4��r2); r � a (7)where R = 2(�� �0)(2�+ �0)a3 ; p� = 3�2�+ �0p:Note that in equations 6 and 7 the potential inside the spherical molecule is a sum of two terms. Ineach case, the �rst term is the potential that would exist in the absence of the dielectric boundary atr = a, and the second term is the potential induced in the spherical cavity by the charge distribution'sinteraction with the dielectric (e.g., the solvent). The energy of the charge distribution arising fromthis second term (the reaction potential) gives the electrostatic contribution to the solvation freeenergy.The energy of a point charge in its reaction potential is one half of the product of the charge andthe reaction potential. The `one half' appears because this is not the energy of a charge in an externalelectric �eld. Here, the charge has contributed to the creation of the �eld through its electrostaticinteractions with the dielectric. So our continuum model of the solvent predicts that the electrostaticpolarization free energy of solvating a spherical ion isGion = 12q�reaction = � q28�a � 1�0 � 1�� : (8)This G is known as the Born energy [9].The energy of a dipole in its reaction �eld (the negative gradient of the reaction potential) is minusone half of the dot product of the dipole and the reaction �eld. Again, this is half the energy of adipole in an external electric �eld. The reaction �eld of the dipole is parallel to the dipole, and we getGdipole = �12~p � ~Ereaction = � p24��0a3 (�� �0)(2�+ �0) : (9)14



Several names (Bell, Onsager, Kirkwood) have been associated with this energy.Note that both G values are zero if � = �0, i.e., if we haven't changed the dielectric constant of theenvironment.Still and coworkers [10] have proposed the following approximate expression for the free energy ofsolvent polarization for an arbitrary charge distribution of N charges:Gpol = � 18� � 1�0 � 1�� NXi;j=1 qiqjfGB ; (10)where fGB = qr2ij + a2ije�D; D = r2ij=(2aij)2; aij = paiaj:This functional form of the so-called Generalized Born (GB) approximation has been used with con-siderable success to eÆciently evaluate hydration energies for small molecules. Parameterization ofthe method involves accounting for the e�ects of neighboring solute atoms in the determination ofeach atom's e�ective Born radius a.As shown in the following �gure, this GB approximation behaves appropriately in important lim-iting situations. For N identical, coincident (rij = 0) particles of charge q, it gives the correct Bornenergy (equation 8, for a single particle of charge Nq). For two charges of equal and opposite sign,it approaches the dipole result (equation 9) at short separation distances, as it should. For two wellseparated charges (rij > 2:5aij), it approaches the appropriate energy: the two Born energies plus theenergetic change in the Coulomb interaction between the two charges due to the dielectric medium.5 Classical Macromolecular SimulationTo simulate the structure and dynamics of biomolecules, we approximate them as a physical networkof balls that have point charges at their centers and are connected by springs. In addition to springsthat govern the bending of bonds and angles, there are forces that favor certain rotations about thebonds. The balls representing the atoms are not hard spheres; they are Lennard-Jones particles thatcan overlap each other. Our goal is to study the motion of this physical network of balls and springs,in hopes of interpreting and predicting the dynamics of real macromolecules at the atomic level.15
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Figure 6: GB approximation (red lines) to solvent polarization energies for two charges of equal radiias a function of separation. The dependence of Born radii on atomic positions is neglected here. Uppercurves: Equal and opposite charges with Gdipole (blue dashed) at small separation and Coulomb +Born polarization energies (green dashed) at large separation. Lower curves: Equal charges with Gion(blue dashed) at zero separation and Coulomb + Born polarization energies (green dashed) at largeseparation.5.1 A Note on Notation { Some CHARMMing languageThe following discussion of classical simulation techniques is quite general. But when introducing aparticular concept, its name in the program CHARMM may be given parenthetically. Every programdesigned to simulate macromolecules deals with these concepts in its own way. Connecting the conceptsto CHARMM-like nomenclature simply reects my experience and may better clarify the concepts forthose with particular interest in this simulation package.5.2 Simulating Biomolecules: The Three Necessary IngredientsTo simulate the dynamics of a macromolecule, we need to specify three things:16



5.2.1 I. A Description of the StructureThe Protein Structure File (CHARMM: `.psf ') contains a description of all molecules in thesystem to be simulated, their covalent connectivity, and all the energetic interactions to be calculated.Despite its name, the psf is not limited to proteins. It may be used to describe other systems, such asnucleic acids or lipids. The psf de�ning a speci�c system (e.g., carboxymyoglobin (MbCO) hydratedby 350 water molecules) is assembled, or GENErated, from the generic building blocks de�ned inthe Residue Topology File (.rtf). To generate the psf for hydrated MbCO, we need amino acidsand water molecules (de�ned in aminoh.rtf), and a heme and CO ligand (in porphyrinh.rtf). Again,despite the term `rtf', the components found in an rtf need not be amino acid residues. Other rtf'scontain di�erent building blocks: base pairs, lipid head groups, etc.5.2.2 II. Initial CoordinatesThe psf only speci�es what atoms are involved, how they're connected, and what interactions deter-mine the system's energy. Next, we need to place the atoms somewhere. Simulations are generallybegun with experimentally determined coordinates, typically from the Brookhaven Protein Data Bank.Structures determined by X-ray di�raction lack positions for hydrogen atoms, while those determinedby neutron di�raction (less common) or nuclear magnetic resonance do not. For X-ray structures, thehydrogen positions can be assigned by CHARMM (using the HBUIld command). Initial coordinatesof small systems can also be created in the absence of experimental data by invoking ideal stereo-chemistry, as speci�ed in the parameter �le. This can also be done for proteins for which limited dataexist, e.g., if only the C� coordinates are known to within 1 �A or so.5.2.3 III. An Empirical Energy Function: Free Energy vs. Potential EnergyFinally, given a de�ned system and its initial atomic coordinates, we need a function describing theenergy of the system for any con�guration, ~R, of the atomic coordinates. A functional form must bechosen for the energy as well as the associated numerical constants. For macromolecular simulationpotentials, these parameters number in the thousands and include spring sti�nesses and equilibriumdistances, torsional barriers and periodicities, partial charges, and Lennard-Jones coeÆcients. Theenergy function and its associated constants are contained in the Parameter File (.prm). Devel-opment of parameter sets is a laborious process. Both the functional form and numerical parametersrequire extensive optimization. A brute-force iteration of simulation and parameter modi�cation isperformed to improve agreement between simulations of model systems and information derived from17



ab initio calculations, small-molecule spectroscopy, and educated guessing.Free Energy vs. Potential EnergyFor a system held at constant NVT , the Helmholtz free energy, A � U �TS = �kT ln(Z), is aminimum at equilibrium, where U = hEi is the average total energy of the system (kinetic energy pluspotential energy), T is the absolute temperature, S is the entropy, and Z is the partition function (eq 3).Suppose the pressure P is held constant instead of the volume (constant NPT , the `isothermal isobaric'ensemble). In this case, the Gibbs free energy, G � U + PV�TS , is minimized at equilibrium.Note that the enthalpy, H = U + PV, is the quantity at constant pressure that corresponds to U atconstant volume. Di�erences in G drive chemical reactions.Some empirical energy functions are designed to approximate the Gibbs free energy G. For example,in Monte Carlo studies of protein structure prediction, the energy function may be based simply on thelikelihood of residues of type i and j being within a certain distance of each other. The probabilitiesp are determined by counting the number of times that residues i and j are found close to each otherin the protein structures deposited in the Protein Data Bank. They are then converted into �G-likeenergies by: pij / e��Gij=kBT . Because the p's are derived from structures at constant T and Pdetermined experimentally, these energy functions account for entropic contributions to the Gibbsfree energy in an approximate way.In most molecular dynamics software packages, however, the empirical energy function, V (~R) (notto be confused with the volume V), is developed to approximate the potential energy of the system.In general, it does not include entropic e�ects in any e�ective way. Many simulations have beenperformed at constant energy, E. That is, E is �xed and T uctuates about an average value as energyis exchanged between the kinetic energy and the potential energy. In principle, simulations performedat constant T and Pmimic experimental conditions better than simulations at constant E. Recently, animproved constant-PT algorithm has been developed [11]. Constant E simulations have the advantagethat they allow energy conservation to be checked. Any signi�cant drifts in E indicate a problem thatshould be tracked down before continuing the simulation. Although it uctuates, the temperatureis still well de�ned at constant E, and di�erences between dynamics at constant T and constant Eare generally not too signi�cant on the time scales currently accessible to MD simulation (100's of psto a few ns). However, the constant-PT simulation may well become the standard as large solvatedsystems are simulated over longer time scales.
18



6 The Empirical Potential Energy FunctionEach of the interactions commonly employed in the potential energy function V (~R) is sketched below.Simple harmonic terms describe bond stretching and angle bending. The planarity of groups (e.g.,the amide planes of proteins) can also be enforced by harmonic potentials known as an improperdihedrals. Rotation about single bonds (torsions) is governed by sinusoidal energies.The electrostatic attraction or repulsion between two charges is described by Coulomb's law:V Coulombij (rij) = qiqj4��r�0rij ;where qi and qj are the atoms' partial charges, rij is the distance separating the atoms' centers, �0 isthe permittivity of free space, and �r is the relative dielectric coeÆcient of the medium between thecharges (i.e., �medium = �r�0).A distance-dependent dielectric coeÆcient (RDIE: �r = rij) has been used to approximate solventscreening without including explicit water molecules. Physically, it's a pretty ugly way to cheat. Butif you don't want to include water, it may be the best your simulation package has to o�er; it isalmost certainly better than using unscreened partial charges in the absence of water. For realisticdynamics, we recommend constant-dielectric (CDIE) simulations with explicit solvation and �r = 1.The presence of water retards conformational searching, however.An important electrodynamic e�ect remains to be included: van der Waals interactions. Theelectron cloud of a neutral atom uctuates about the positively charged nucleus. The uctuations inneighboring atoms become correlated, inducing attractive dipole-dipole interactions. The equilibriumdistance between two proximal atomic centers is determined by a trade o� between this attractivedispersion force and a core-repulsion force that reects electrostatic repulsion and the Pauli exclusionprinciple. The Lennard-Jones potential models the attractive interaction as / r�6ij and the repulsiveone as / r�12ij : V LJij (rij) = "ij 24 rminijrij !12 � 2 rminijrij !635 ;where rminij is the equilibrium separation distance (where the force F = �dV LJij =drij = 0) and "ij isthe well depth; i.e., V LJij (rminij ) = �"ij. Why this `6-12' form for the van der Waals interaction? Theapplication of quantum perturbation theory to two well separated hydrogen atoms in their groundstates yields an interaction energy that decays as r�6ij , and r�12ij is obviously easy to calculate fromr�6ij . For simplicity, the Lennard-Jones forces are typically modeled as e�ectively pair-wise additive:the potential energy VABC of three adjacent particles A, B, and C is the sum of the three energies for19



each atom pair: VABC = VAB + VBC + VAC . Pair-wise additivity is only an approximation.Perhaps, you are thinking, `Hey, what about magnetic forces?' The magnetic force between twomoving charges is expressed in terms of a double vector cross product involving the two particlevelocities and the vector ~rij of separation. It does not generally act along ~rij , but it does whentwo charges q have instantaneous velocities v along parallel lines. For this case, we can convenientlycompare the magnitudes of the magnetic and electric forces. It turns out that the magnetic force isweaker than the electric force by a factor of (v=c)2, where c is the speed of light. Thus, magnetic forcesare neglible for nonrelativistic particles, such as the partial charges that are used in simulation force�elds. For example, if a particle moves as much as 1 �A in as short a time as 1 femtosecond (10�15 s),then (v=c)2 = 1:1 � 10�7. We may therefore completely neglect magnetic interactions.For those who like equations with their pictures, a typical potential energy function used in MDsimulations looks like: V (~R) = Vbonded(~R) + Vnonbonded(~R);withVbonded(~R) = Xbonds kl(l� l0)2 + Xangles k�(� � �0)2 + Ximpropers k!(! � !0)2 + XtorsionsAn [1 + cos(n�� �0)]Vnonbonded(~R) =Xi<j 0@"ij 24 rminijrij !12 � 2 rminijrij !635+ qiqj4��r�0rij1AThe �rst `bonded' sum is over bonds between atom pairs; the second sum is over bond anglesde�ned by three atoms; the third and fourth sums are over atom foursomes (as in the �gure above).For bookkeeping purposes, each atom is assigned a number. In the `nonbonded' interactions (van derWaals and electrostatics), the summation is over atoms i and j, where `i < j' simply ensures that eachinteraction is counted only once. Generally, atoms separated by one or two bonds are excluded fromthe nonbonded sum, and those separated by three bonds, `1-4 interactions', may have electrostaticinteractions reduced by a multiplicative scale factor. The form of V (~R) shown here reects the choicenot to include an explicit hydrogen bond term, favoring instead to account for hydrogen bonds throughan appropriate parameterization of Lennard-Jones and Coulomb interactions. Note also that a singledihedral angle (torsion) may have an energy described by more than one Fourier component (multiplevalues of n). 20
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Figure 7: Interactions included in representative potential energy function for MD simulation.21



6.1 Matching CHARMM's Electrostatic Approximations to EnvironmentalApproximationsTo speed up computation of V (~R), electrostatic and van der Waals forces are commonly terminatedat a speci�ed distance (CTOFnb) from the atom exerting the forces [12]. For van der Waals forces, usethe CHARMM keyword VSHIft. For electrostatic forces, the choice of approximation depends on thesystem to be simulated. Ewald summation is being used more and more as a way to treat electrostaticswithout any cuto� in periodically repeated (in�nite) systems such as solutions or crystals. However,the appropriate choice of spherical cuto� is still relevant for any modeling and simulation of a �nitesystem, e.g., a hydrated protein in vacuum.The following �gure shows the potential energy of electrostatic interaction for two unit charges(top), as approximated by various methods using a cuto� distance of 12 �A. Also shown is the error inthe Coulomb force (bottom) resulting from these approximations. Note the large force errors at longrange obtained when using a switching function on the potential energy (switch). This potential-switching method should not be used. The choice made from among the other alternativesavailable in CHARMM should be made based on the system simulated, as detailed in the followingdiscussion.6.1.1 No Explicit Solvent (RDIE)A distance-dependent dielectric coeÆcient (RDIE: �r = rij) has been used to approximate solventscreening without including explicit water molecules. Physically, it's a pretty ugly way to cheat. Butif you don't want to include water, it may be the best your simulation package has to o�er; it isalmost certainly better than using unscreened partial charges in the absence of water. For realisticdynamics, we recommend constant-dielectric (CDIE) simulations with explicit solvation and �r = 1.The presence of water retards conformational searching, however.The SHIFt option does a good job of monotonically damping a 1=r3 force (RDIE electrostatics) tozero. Use of CTOFnb = 10 �A should suÆce. Although simulations have de�nitely evolved towardexplicit solvation with true Coulombic 1=r2 forces (CDIE), RDIE SHIFt is arguably the best choice(in CHARMM) when the inclusion of explicit water remains prohibitively expensive.6.1.2 Partial Solvation by Explicit Water MoleculesWhen water molecules are included in the simulation, constant-dielectric (CDIE) electrostatics shouldbe employed. For systems of �nite size (e.g., a protein hydrated in vacuum), spherical cuto�s are used.Good numerical input values are CTOFnb � 12 (�A), CUTNb = CTOFnb + 2, and INBFreq = �1.22



Figure 8: Potential energy and error in force calculated by some `spherical cuto�s.'
23



Electrostatic SHIFting does not monotonically damp the 1=r2 force, but force shifting (FSHIft) andforce switching (FSWItch) do. If the system simulated is composed entirely of neutral groups, forceshifting (ATOM FSHIft) is the better of the two. As the number of charged groups in the systemincreases (e.g., hydrated protein), force switching (ATOM FSWItch) is recommended with CTONnb= CTOFnb � 4.6.1.3 Solutions, Crystals, and InterfacesSolutions and crystals are simulated as `in�nite' systems. More precisely, the basic `unit cell' (e.g.,a single protein in a cube of water) having zero net charge is replicated periodically in all threedimensions. Periodic boundary conditions are used so that an atom exiting through one face ofthe unit cell enters the cell through the opposite face. These simulations are expensive, requiringconsiderable explicit water and the calculation of forces exerted by the `image' atoms that neighborthe primary unit cell. Ewald summation is the preferred electrostatic treatment for these periodicsystems. If an interface (e.g., air-water) is present, Ewald summation may improve results even morethan otherwise.7 Classical Simulation and Modeling Techniques7.1 Questions We Can Ask With a ComputerGiven a structural description and atomic coordinates: `What does it look like?'This is an obvious question to ask, but the value of sitting down and staring at a structure isdiÆcult to overestimate. Of course, the pretty pictures generated by graphics packages are onlyrepresentations of models, even the pretty pictures of `experimental' structures. CHARMM graphicshas broad capabilities but is less convenient than some commercial packages, such as QUANTA orSYBYL. It's hard to beat RASMOL, a public domain program that spins proteins on command, withoptions to display them as ribbons, balls and sticks, or space-�lling overlapping spheres. RASMOLalso allows point-and-click atom identi�cation as well as limited zooming and z-clipping.Given a structural description, atomic coordinates, and an energy function: `Howdoes the system relax and uctuate?'Now we're getting to the point! Structure determination is clearly a critical step toward under-standing biological function, but protein function requires motion. Molecular dynamics is the linkbetween structure and function. 24



Figure 9: Energy minimization seeks the energy minimum nearest the starting (?) conformation.We might, for example, wish to characterize the dependence of a protein's structure and dynam-ics on environmental conditions. We could perform simulations at di�erent temperatures, di�erentpressures, or di�erent levels of hydration. We could approximate the solution environment by a peri-odically repeating system in which the repeating unit was a single protein in a box of water. Or thecrystalline phase could be simulated as a special case of the periodic system with a particular box sizeand shape.To answer questions like these on a computer, we need to employ a few techniques that manipulatethe structure, ~R, given the potential energy, V (~R).7.2 Energy MinimizationFunction optimization is a calculation that pervades much of numerical analysis. In the context ofmacromolecules, the function to be optimized (minimized) is an energy. The energy landscape of abiomolecule possesses an enormous number of minima, or conformational substates. Nonetheless, thegoal of energy minimization is simply to �nd the local energy minimum, i.e., the bottom of the energywell occupied by the initial conformation (? in �gure). The energy at this local minimum may be muchhigher than the energy of the global minimum. Physically, energy minimization corresponds to aninstantaneous freezing of the system; a static structure in which no atom feels a net force correspondsto a temperature of 0 K. In the early 1980's, energy minimization was about all one could a�ord todo and was dubbed `molecular mechanics.' 25



7.3 Molecular Dynamics (MD) SimulationAs already noted, MD simulation generally begins where experimental structure determination leaveso�, if not during the structure re�nement itself. It is generally not used to predict structure fromsequence or to model the protein folding pathway. MD simulation can fold extended sequences to`global' potential energy minima for very small systems (peptides of length ten, or so, in vacuum), butit is most commonly used to simulate the dynamics of known structures.An initial velocity is assigned to each atom, and Newton's laws are applied at the atomic level topropagate the system's motion through time (see `Classical and Quantum Mechanics { in a Nutshell'above). Thus, dynamical properties such as time correlation functions and transport coeÆcients (e.g.,di�usion constants, bulk viscosities) can be calculated from a suÆciently long MD trajectory.Once again, Newton's second law is: ~Fi = mi~ai, where ~Fi is the sum of all forces acting on atom ithat results in its acceleration ~ai. The acceleration is the second derivative of the position with respectto time: ~ai = d~vi=dt = d2~ri=dt2. In words, it is the rate of change of the velocity ~vi, which in turn, isthe rate of change of the position ~ri.The `Leap Frog' algorithm is one method commonly used to numerically integrate Newton's secondlaw. We obtain all atomic positions ~ri at all times tn and all atomic velocities ~vi at intermediate timestn+1=2. This method gets its name from the way in which positions and velocities are calculated in analternating sequence, `leaping' past each other in time:~vi(tn+1=2) = ~vi(tn�1=2) + ~Fi(tn)mi �t;~ri(tn+1) = ~ri(tn) + ~vi(tn+1=2)�t:Initial velocities are assigned so as to reect equilibrium at the desired temperature T (a Maxwelliandistribution), without introducing a net translation or rotation of the system.The energy of an isolated system (as opposed to, for example, one in contact with a thermal bath)is conserved in nature, but it may not be in simulations. Energy conservation can be violated insimulations because of an insuÆciently short integration time step �t, an inadequate cuto� methodapplied to long-range (electrostatic and Lennard-Jones) forces, or even bugs in the program. Ofcourse, energy conservation alone is not suÆcient to ensure a realistic simulation. The realism ofthe dynamics trajectory depends on the empirical potential energy function V (~R), the treatment oflong-range forces, the value of �t, etc. 26



7.4 Langevin Dynamics (LD) SimulationThe Langevin equation is a stochastic di�erential equation in which two force terms have been added toNewton's second law to approximate the e�ects of neglected degrees of freedom. One term representsa frictional force, the other a random force ~R. For example, the e�ects of solvent molecules notexplicitly present in the system being simulated would be approximated in terms of a frictional dragon the solute as well as random kicks associated with the thermal motions of the solvent molecules.Since friction opposes motion, the �rst additional force is proportional to the particle's velocity andoppositely directed. Langevin's equation for the motion of atom i is:~Fi � i~vi + ~Ri(t) = mi~ai;where ~Fi is still the sum of all forces exerted on atom i by other atoms explicitly present in the system.This equation is often expressed in terms of the `collision frequency' � = =m.The friction coeÆcient is related to the uctuations of the random force by the uctuation-dissipation theorem: h~Ri(t)i = 0;Z h~Ri(0) � ~Ri(t)idt = 6kBTi:In simulations it is often assumed that the random force is completely uncorrelated at di�erenttimes. That is, the above equation takes the form:h~Ri(t) � ~Ri(t0)i = 6kBTiÆ(t � t0):The temperature of the system being simulated is maintained via this relationship between ~R(t) and. The jostling of a solute by solvent can expedite barrier crossing, and hence Langevin dynamics cansearch conformations better than Newtonian molecular dynamics ( = 0).7.5 Monte Carlo (MC) SimulationInstead of evaluating forces to determine incremental atomic motions, Monte Carlo simulation simplyimposes relatively large motions on the system and determines whether or not the altered structureis energetically feasible at the temperature simulated. The system jumps abruptly from conformationto conformation, rather than evolving smoothly through time. It can traverse barriers without feeling27
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Figure 10: Monte Carlo makes use of Boltzmann probabilities, not forces.them; all that matters is the relative energy of the conformations before and after the jump. BecauseMC simulation samples conformation space without a true `time' variable or a realistic dynamicstrajectory, it cannot provide time-dependent quantities. However, it may be much better than MD inestimating average thermodynamic properties for which the sampling of many system con�gurationsis important.When the potential energy V and observables to be calculated from the simulation are velocity-independent (as is typical), an MC simulation need only compare potential energies V, not total ener-gies E (see `Calculating Equilibrium Averages' above). Two conformations, ~R and ~R0, are comparedand updated as shown below [13]. RAND is a random number uniformly distributed on [0,1].For simple systems, the structural modi�cations are often tuned so that about 50% of the ~R0conformations are accepted. For macromolecular systems, this acceptance ratio can be much smaller,e.g. when dihedral angles are modi�ed by large amounts. It is then generally expedient to bias therandom moves in favor of known structural preferences such as side chain rotamers (`biased probabilityMonte Carlo'). In searching for low-energy local minima, it can be advantageous to minimize the energybefore evaluating the energy V 0 (`Monte Carlo-minimization', or MCM [14]). Simulated annealinghas also been performed prior to accepting or rejecting the new conformation in a `Monte Carlo-minimization/annealing' (MCMA) protocol [15]. Because explicit water molecules can hinder theacceptance of new conformations, Monte Carlo (or MCM, MCMA) simulations of macromoleculesgenerally use an implicit model of solvation, as in references [15, 16]. That is, a term is added to theempirical potential energy function that mimics the e�ects of water and, in some cases, counter ions.28
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Figure 11: Metropolis Monte Carlo.7.6 Normal Mode (Harmonic) AnalysisNormal modes of vibration are simple harmonic oscillations about a local energy minimum, character-istic of a system's structure ~R and its energy function V (~R). For a purely harmonic V (~R), any motioncan be exactly expressed as a superposition of normal modes. For an anharmonic V (~R), the potentialnear the minimum will still be well approximated by a harmonic potential, and any small-amplitudemotion can still be well described by a sum of normal modes. In other words, at suÆciently lowtemperatures, any classical system behaves harmonically.In a typical normal mode analysis, the characteristic vibrations of an energy-minimized system(T = 0+ K) and the corresponding frequencies are determined assuming V (~R) is harmonic in alldegrees of freedom. Normal mode analysis is less expensive than MD simulation, but requires muchmore memory.As a globular protein is heated from very low temperature, the uctuations of its atoms beginto deviate measurably from harmonic behavior around 200 K. The motion at 300 K is considerablyanharmonic. This must be kept in mind when attempting to interpret physiological behavior in termsof normal modes. Still, calculation of the normal mode spectrum is less expensive than a typical MD29



simulation, and the spectrum may provide qualitative, if not quantitative, insight.The normal mode spectrum of a 3-dimensional system of N atoms contains 3N � 6 normal modes(3N � 5 for linear molecules in 3D). In general, the number of modes is the system's total number ofdegrees of freedom minus the number of degrees of freedom that correspond to pure rigid body motion(rotation or translation). Each mode is de�ned by an eigenvector and its corresponding eigenfrequency,!. The eigenvector contains the amplitude and direction of motion for each atom. In mode i, all Natoms oscillate at the same frequency, !i.In macromolecules, the lowest frequency modes correspond to delocalized motions, in which alarge number of atoms oscillate with considerable amplitude. The highest frequency motions are morelocalized, with appreciable amplitudes for fewer atoms, e.g., the stretching of bonds between carbonand hydrogen atoms.7.7 Simulated AnnealingSimulated annealing is a special case of either MD (`quenched' MD), LD, or MC simulation, in whichthe temperature is gradually reduced during the simulation. Often, the system is �rst heated andthen cooled. Thus, the system is given the opportunity to surmount energetic barriers in a searchfor conformations with energies lower than the local-minimum energy found by energy minimization.This improved equilibration can lead to more realistic simulations of dynamics at low temperature[6]. Of course, annealing is more expensive than energy minimization. Simulated annealing is oftenapplied to potentials, V (~R), that include unphysical energy terms, as when annealing structures toreduce crystallographic R factors.8 What is Unique to Computer Experiments?� May look very closely (~ri(t), ~vi(t)) at the behavior of any atomic subset of the system. In princi-ple, any function of the atomic positions and velocities, whether time-averaged or instantaneous,is computable.� May modify potential function V (~R) arbitrarily. Examination of what nature does not domay provide a new understanding for what it does do. For example, we have investigatedthe contribution of torsional transitions to the anharmonicity of protein dynamics by comparingsimulations of MbCO dynamics performed with and without in�nitely high barriers that prohibitthese transitions. Our conclusion: Dihedral transitions account for nearly all the motional30
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Figure 13: Simulated annealing can overcome barriers by heating and cooling the system.anharmonicity of dried MbCO but for less than half of the motional anharmonicity of hydratedMbCO [18].� May mutate structures or environments slowly (Free Energy Perturbation Theory) and approx-imate di�erences in free-energy di�erences, ��G. By taking di�erences in �G, the states ofzero energy are consistently de�ned and errors due to approximations in the simulation protocoltend to subtract out. See `Classical vs. Quantum Mechanics: The Harmonic Oscillator in OneDimension' above.9 Worth Worrying About:Ultimately, simulations are judged according to two basic criteria:I. How well do the empirical energy surface and the chosen system composition approx-imate Nature?V (~R): How realistic are the chosen functional form and the associated numerical constants?PSF Generation: Which titratable groups should be protonated? Without employing quantummechanics, protonations are assumed at the beginning and maintained throughout the simula-tion. Also, how much water is needed [17]? How many ions should be included?II. How well is the energy surface (phase space) explored?32



MD Simulation: What length of simulation is suÆcient? First, the system must be equilibratedsuch that system properties such as potential energy, temperature, and volume appear to havestopped drifting. Then the simulation must continue long enough to obtain reliable equilibriumaverages.MC Simulation: Does the chosen `move set' embody all motions relevant to the question beingasked of the simulation? Have enough steps been taken?Mistakes to Avoid:Inconsistent V (~R): The potential function (long-range cuto� keywords, distances, ...) should notbe changed at di�erent stages of a simulation study. All input scripts used in a research projectthat evaluate energies and forces (energy minimizations, annealings, dynamics simulations, ...)should explicitly (Don't trust the defaults!) do so in the same way.Submit and Forget: Don't let a simulation run unmonitored. Check intermediate results daily.Plot the time dependences of the potential and total energies, the temperature, the pressure andvolume (if applicable), and the root-mean-square deviation from a reference (crystallographic ort = 0) structure. Remember:Simulations are �ction aspiring to emulate reality. Pretty pictures and even a few good numbers donot guarantee good science.References[1] L.I. Schi�, `Quantum Mechanics', 3rd ed., (McGraw-Hill, New York, 1968), chap 1,2.[2] L. Pauling and E.B. Wilson, Jr., `Introduction to Quantum Mechanics', (McGraw-Hill, New York,1935), chap 3.[3] W. Doster, S. Cusack and W. Petry, (1989) Nature 337, 754{756.[4] Krupyanskii, Y.F., Parak, F., Goldanskii, V.I., M�ossbauer, R.L., Gaubman, E.E., Engelmann,H., & Suzdalev, I.P. (1982) Z. Naturforsch., C: Biosci. 37C, 57{62.[5] B.R. Brooks, R.E. Bruccoleri, B.D. Olafson, D.J. States, S. Swaminathan and M. Karplus, (1983)J. Comp. Chem. 4, 187{217.[6] P.J. Steinbach and B.R. Brooks, (1994) Chem. Phys. Letters 226, 447{452.33
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