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Computer Model Developed to Predict Rail
 Passenger Car Response to Track Geometry

SUMMARY

The Federal Railroad Administration sponsored research to develop a computer model to predict the

interaction between vehicle and track as a  railroad passenger car travels over track with known geometry.

Th is computer model is capable of identifying potentially hazardous sections of track when given the track

geometry and the vehicle speed.  These predictions will improve safety of railroad operations by helping to

determine the maintenance needs for tracks. 

This computer model, known as a neural network system, estimates the vertical and lateral forces on the

wheel/rail interface as a function of the geometry of the track and the operating characteristics of the vehicle.

Unlike conventional computer models, a neural network simulates the analytical workings of the human brain.

A series of computer models of a railroad passenger car were developed to evaluate the effectiveness of the

neural network.  This series of computer models accurately represents the dynamic response of an actual

railroad passenger car.  In Figure 1, the neural network output closely predicts the series of computer models.

In the future, the fully developed system will be used to identify track locations where the estimated lateral and

vertical forces exceed the lim its recommended for safe operations.  Only the track geometry and train speed,

which are routinely and easily measured parameters, need to be known in order to identify the potentially

hazardous locations.

Figure 1.  Wheel Force Comparison of the Neural Network and Model.
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Figure 2.  Recurrent Neural Network

Layout.

BACKGROUND

Artificial neural networks, an emerging technology

that frequently performs better than conventional

technologies, is increasingly  being used in both

commercial and military applications.  This

investigation analyses the application of neural

network technology for predicting wheel and ra il

interaction forces generated from a railroad

passenger car traveling over track with known

geometry.  Once properly trained on the operating

characteristics of a vehicle, a neural network

should be able to estimate the vertical and lateral

forces on the wheel/rail interface as a function of

the geometry of the track. The neural network

technology has the ability to learn relationships

between a mechanical system’s input and output.

When given the track geometry and the vehicle

speed, a neural network should be capable of

identifying potentially hazardous sections of track.

NEURAL NETWORK SELECTION AND
CONFIGURATION

Of the numerous types of neural networks

available, four types were considered for this

investigation: the perceptron, feedforward, Jordan

and Elman, and recurrent network.  The recurrent

neural network was chosen because it is the most

powerful of the four networks, having multiple input

layers and an infinite memory depth which enables

it to extract temporal information needed for

studying a dynamic mechanical system. 

A typical recurrent neural network configuration

was used in this investigation.  Two neural

networks were developed utiliz ing the same basic

layout consisting of one input layer, one hidden

layer, and one output layer.  The number of nodes

in each layer differs.  A node is a processing

element which receives input, performs a function

on this input, and then passes it to the next layer.

Figure 2 shows the schematic layout of a smaller

version of the recurrent neural network.  The

actual network developed in this study has more

nodes in the input layer and hidden layer.  Both

models used a single output  node for a vertical

force at a single location.

Most neural networks process data in a similar

manner.  Each input layer node passes the

current input value straight through to the hidden

layer.  In this study, the track surface was used for

this input.  The surface is sometimes referred to as

profile, which is the vertical displacement of a rail

relative to a reference plane.   Each node in the

hidden layer performs three functions.  First, the

outputs of all the nodes from the input layer and

the recurrent nodes are multip lied by their

corresponding weights, W ij.  Second, the

summation of these products plus a bias factor, B i,

is computed.  The bias factor simply shifts the

output up or down.  Third, this summation is

passed through an activation function, which in this

case is a hyperbolic tangent.  The output from the

activation function is passed to the output layer

and the recurrent node.  The recurrent node is

represented by z-1 since it delays and stores one

sample of the hidden layer output before it is sent

back to the hidden layer. The output layer is similar

to the hidden layer except that it uses a linear

activation function without a recurrent node.  The

output from the output layer is the vertical force in

this study.  Although a detailed analysis could be

done on choosing the ideal activation function, the

hyperbolic tangent on the hidden layer and linear

on the output layer produced the best initial

results.

ANALYTICAL MODELS DEVELOPED

Two analytical models were developed to generate

the relationships between the geometry input and

the vertical force output used to teach the neural

network.  Analytical models were used instead of

actual force measurements in order to avoid the

complexity of measurement errors.  The models
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were the two degree-of-freedom (2DOF) and the

multiple degree-of-freedom (MDOF).  

The neural network used to simulate the  2DOF

ana lytical model has two input nodes,

co r respond ing  to  the  ver t ic a l  su r face

displacements in the track.  The hidden layer

consists of ten nodes with a feedback delay of one

sample corresponding to one foot.  The output

layer is comprised of one node, which generates

a vertical force at one location.

The neural network used to simulate the MDOF

analytical model has four input nodes,

corresponding to the left and right surface and the

left and right alignment.  The hidden layer consists

of thirty nodes with a feedback delay of one

sample.  The output layer is comprised of one

node, which generates the left vertical force.

TWO DEGREE-OF-FREEDOM (2DOF)
ANALYTICAL MODEL

A simplified linear 2DOF model of a rail car was

generated to evaluate the effectiveness of the

neural network.  The input for the 2DOF model

was a cosine wave with varying wavelengths

representing an artificial track geometry surface.

The technique used allowed for the development

of both a balanced training dataset and a cross-

validation dataset.   The neural network learned

and mimicked the model’s structure-in-time while

only being given the track geometry in distance

and a constant traveling speed.  

Results of the 2DOF Model

The simple 2DOF model was primarily used to

highlight the issues of trying to develop a network

that operates over a full range of speeds and track

wavelengths.  Despite some problems, the

network produced very reasonable results with a

training error standard deviation of 200 pounds

and cross-validation error standard deviation of

170 pounds.  (The nominal vertical wheel load is

around 15,000.)  However, this model could not

train the neural network to match the full model

dynamic characteristics exactly.

MULTIPLE DEGREE-OF-FREEDOM (MDOF)

ANALYTICAL MODEL

The neural network was further refined with the

development of a more complex vehicle model

called the MDOF model.  The MDOF model

consisted of  a computer simulation program which

was used to predict the dynamic behavior of a

standard passenger coach used in intercity

operation.  A rigid vehicle model, developed and

refined for several previous investigations, was

used.  This vehicle model is comprised of 11 rigid

bodies having a total of 53 degrees of freedom,

and is interconnected by a total of 40 linear and

nonlinear force elements, such as springs,

dampers, and friction sliders.  The equations used

in this system’s model are derived from the multi-

body dynamics software and integrated into the

simulation to solve for forces and displacements in

response to track input. 

The input for the MDOF model was measured

track geometry data that was collected from

Amtrak’s 10002 test car, while traveling on the

Northeast corr idor between Washington, DC and

New York City, NY.  The main parameters

recorded by the car include left and right surface

(profile), left and right alignment, gage, curvature,

and crosslevel.  Only the left and right alignment

and surface were used to train and evaluate the

neural network (see Figures 3 and 4).

Figure 3.  Track Geometry (Alignment) Inputs

as a Function of Distance for MDOF Model

and Neural Network Training Dataset.

Figure 4.  Track Geometry (Surface) Inputs as

a Function of Distance of MDOF Model and

Neural Network Training Dataset.
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Results of the MDOF Model

The neural network trained very well using the

MDOF model (see Figure 1).  The neural network

wheel force output and the MDOF force output for

2500 feet of the training dataset had a force error

standard deviation of 850 pound and the mean

values were nearly identical.  The neural network

produced similar resu lts for the cross-validation

dataset.   The cross-validation data set presents

the neural network with track geometry that has

not been used to train the system to determine if

the neural network has learned the actual system

dynamics. The error for the cross-validation data

had a standard deviation of 1,100 pounds.  This

shows that the recurrent neural network can

predict the MDOF model wheel forces with

reasonable accuracy.  Unlike the network trained

with the 2DOF model, the MDOF trained network

predicted the lower forces with a higher level of

accuracy than the higher forces on the cross-

validation dataset.

These results  can be improved by carefully

designing a training dataset that contains more

information on  the relationship between the forces

being generated and the track geometry.   A quick

review of a common training approach which uses

a larger dataset containing almost all possible

permutations could result in the network becoming

“over trained on the average” and losing the

transient response characteristics. To prevent this

problem, a custom data filter that only passes a

balanced amount of response data needs to be

developed. 

FUTURE RESEARCH

Future research on the development of the neural

network to predict wheel forces will be conducted

in four s teps. 

1. Selectively train the neural network using

measured wheel forces instead of simulated

forces. 

2.  Introduce curvature and crosslevel geometry

parameters into the network design and training

dataset. 

3.  Train the network using lateral force along with

vertical force. 

4. Train the network on car body and truck

accelerations in order to have a more complete

relationship between the track geometry and the

vehicle dynamics.

CONCLUSIONS

This investigation showed that recurrent neural

networks can successfully predict the vertical

wheel forces produced by a complex MDOF model

with a well-designed track geometry training

dataset.  Once a neural network is trained for a

specific railroad vehicle, it can predict the dynamic

response of that vehicle to a variety of track

geometry.   The purpose of the neural network

system is to estimate the vertical and lateral forces

on the wheel/rail interface as a function of the

geometry of the track and the operating

characteristics of the vehicle.  In the future, the

fully  developed system will be used to identify

track locations where the estimated lateral and

vertical forces exceed the limits recommended for

safe operations.  Only the track geometry and train

speed need to be known in order to identify the

potentially hazardous sections of the track.
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