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Involvement of Free Radicals in the
Mechanism of 3-Methylindole-Induced
Pulmonary Toxicity: An Example of
Metabolic Activation in Chemically Induced

Lung Disease

by Tammy M. Bray* and Stan Kubow*

3-Methylindole (3-MI) is a metabolite of tryptophan which causes acute pulmonary edema and emphy-
sema in ruminants when administered orally or intravenously. 3-MI is metabolized by mixed-function
oxidases to a reactive intermediate which may play a role in 3-MI-induced pneumotoxicity. Electron spin-
trapping techniques have been used to investigate the ir vitro and in vivo formation of free radicals during
3-MI metabolism by goat lung. A nitrogen-centered free radical of 3-MI has been generated from 3-MI in
goat lung microsomal incubations. Although a nitrogen-centered free radical can be generated chemically
from most of the indolic compounds, only the 3-MI free radical can be generated enzymatically. The
formation of the nitrogen-centered 3-MI free radical was followed by the appearance of a carbon-centered
lipid radical in microsomal preparations. The findings that an identical carbon-centered free radical was
generated by FeSo, in the microsomal system in the absence of 3-MI and that malonaldehyde formation
is stimulated by 3-MI in microsomes led to the conclusion that 3-M1 metabolism induces lipid peroxidation
of microsomal membranes. The formation of 3-MI-induced lipid radicals was inhibited by vitamin E and
glutathione. A carbon-centered radical was spin trapped ir vive in the lungs of goats infused with 3-MI.
This radical had the same splitting constants as the carbon-centered lipid radical trapped in microsomal
incubations containing 3-ME. This finding indicates that the metabolism of 3-MI in goat lung in vive
generates a lipid radical. When lung glutathione levels were depressed by pretreatment with diethylma-
leate, tissue concentrations of the carbon-centered lipid radical were increased and 3-Ml-induced pul-
monary toxicity became more severe. These studies support the hypothesis that free radicals are involved
in 3-MI-induced pneumotoxicity and that tissue glutathione plays an important role in the defense of the

lung against 3-MI toxicity.

Introduction

Although the major role of the lung is in external gas
exchange, it is also a metabolic organ of extreme com-
plexity. As a consequence of its location, its architec-
ture, and the metabolic activities of more than 40 types
of cells, the nonrespiratory functions of the lung play
important roles in maintaining general health. Damage
to lung tissue can result from exposure to a variety of
chemicals. Many pulmonary toxins share a common
mechanism of action by which the parent compounds
induce lung injury as a result of metabolic activation to
reactive intermediates (7). 3-Methylindole (3-MI, ska-
tole)-induced lung disease is an excellent example of
pulmonary toxicity in which formation of free radicals
by metabolic activation is involved in the initial step of
pulmonary toxicosis.
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3-MI is a microbial fermentation product of trypto-
phan in the rumen of cattle (2,3). 3-MI is also present
in the feces of pigs, rats and man as a result of microbial
fermentation of dietary tryptophan in the lower gas-
trointestinal tract (4-6). Another source of 3-MI is cig-
arette smoke; each cigarette generates 4 to 50 pg of 3-
MI as a result of pyrolysis of tryptophan in tobacco
leaves (7). The most prominent feature of 3-MI toxicity
is its consistency in indueing a lung disease experimen-
tally in ruminants with selective damage to specific lung
cells. Oral or intravenous administration of 3-MI ean
induce acute pulmonary edema and emphysema in cattle
(8), goats (9}, and sheep (10). 3-MI is considered a major
etiologieal factor in naturally occurring acute bovine pul-
monary edema and interstitial emphysema, an impor-
tant respiratory disease of grazing cattle (8). The pos-
sible risk of exposure of 3-MI to man has not been
assessed. The extent of the risk of 3-MI to man would
depend on the source and the route of exposure to 3-
MI as well as the characteristics of the metabolie en-
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zymes associated with activation and detoxification.
Elucidation of the primary mechanism of action and the
pathological changes associated with 3-MI-induced pul-
monary injury in ruminants would provide a basis for
comparative studies on the risk of 3-MI toxieity in other
species, including man.

Metabolism of 3-Methylindole

3-MI, as the parent compound, has been shown to
adversely affect biological membrane systems and to
alter membrane function in vitro (11-13). The devel-
opment of the.disease, however, is not due to these
direct effects on membranes, but is dependent on the
metabolism of 3-MI by microsomal mixed-function ox-
idases (MF'Q) (24). A shorter half-life of 3-MI in the
plasma of goats treated with phenobarbital (an MFO
inducer) and a longer half-life in goats treated with pi-
perony! butoxide (an MFO inhibitor) clearly indicate
that compounds known to alter MF O activity can change
the rate of 3-MI metabolism. Goats pretreated with
phencbarbital developed more severe clinical signs and
pulmonary lesions following 3-MI infusion. Pretreat-
ment with piperonyl butoxide prevented the develop-
ment of clinical signs and pulmonary lesions. The en-
hanced pulmonary injury in phenobarbital-treated goats
and the protection by piperonyl butoxide implicate me-
tabolites of 3-MI formed by the MFO system in the
mechanism of pulmonary injury (74).

Two pathways of 3-MI metabolism have been pro-
posed. 3-MI is rapidly metabolized by MFO and ex-
creted in the urine mainly as oxidation products, 3-
methyloxindole and its hydroxy! derivatives (15). A mi-
nor pathway leads to the formation of indole-3-carbox-
ylic acid and conjugated produects (75). Ineubation of
[**C]-3-MI with goat lung microsomal preparations re-
sults in covalent binding of radicactivity to microsomal
protein. The degree of covalent binding is NADPH- and
0Os-dependent and is organ specific (16,17). A reactive
intermediate generated from 3-MI at a metabolic step
prior to the formation of 3-methyloxindole is indieated
since 3-methyloxindole does not lead to covalent binding
in microsomal suspensions (16,17) or to pneumotoxicity
in vivo (28). Although these studies did not define the
exact mechanism of 3-MI toxicity, the production of free
radicals from 3-MI may be of significance.

Evidence of 3-Ml Radical Formation

To demonstrate that free-radical metabolism is in-
volved in the initiation of 3-MI-induced pulmonary tox-
icity, the following eriteria have to be satisfied. First,
the 3-MI molecule must be capable of generating a free
radical and the free-radical metabolite of 3-MI must be
demonstrated to exist. Second, specific and predictable
interactions between the 3-MI free radical and cell com-
ponents must be identified, such as covalent binding to

macromolecules or lipid peroxidation produets. Third,
compounds known to modulate free-radical seavenging
defense svstems must alter the produetion of 3-MI free
radicals and the toxic effect of 3-MI.

Electron spin resonance (ESR) spin-trapping tech-
niques have been utilized to detect free radicals gen-
erated during 3-MI metabolism. ESE spin trapping is
a unique methed which detects free radicals selectively
among many types of metabolites in a reaction mixture,
and this method has been extensively applied to detect
free radicals in biological systems (79). This technique
consists of using a spin trap, a nitrose or nitrone com-
pound, which reacts covalently with an unstable radical
to form a stable nitroxide (spin adduet). The unstable
radical is, therefore, “trapped” as a long-lived species
which can be observed at room temperature using con-
ventional ESR equipment. Since the relatively stable
spin adduct accumulates, spin trapping is an integrative
method for measuring free radicals and is inherently
more sensitive than measures which detect:only instan-
taneous, or steady-state, levels of free radicals. The
hyperfine splitting of the spin adduct provides infor-
mation which can aid in the identification and quanti-
tation of the original radical. Spin trapping has been
used in a microsomal system to detect free radicals
formed in the metabolism of various toxins including
nitrosoamines (20), halocarbons such as carbon tetra-
chloride (£1) and halothane (22), and hydrazines (23).

In order to demonstrate that the 3-MI molecule is
capable of producing a free radical, 3-MI was incubated
with KO, and irradiated with ultraviolet light (24,25).
A nitrogen-centered 3-MI free radical was detected by
using the spin trap phenyl-tert-butyl nitrone (PBN). The
hyperfine splitting constant of its 18-line spectrum was
an = 13.9G, a” = 3.6 Gand a,N = 2.3 G. It has also
been possible to use PBN to trap a nitrogen-centered
3-M1 free radical with identical hyperfine splitting con-
stants which is produced enzymatically in a lung micro-
somal preparation after a 3 min incubation with a
NADPH generating system. The nitroxyl adduct was
dependent on the presence of 3-MI, NADPH, O, and
microsomes (24,25).

A nitrogen-centered radical can also be generated
from indole, indole-3-earbinol, 3-methyloxindoie, and in-
dole-3-acetic acid when treated with KQ.. No free rad-
ical has been observed, however, in microsomal prep-
arations of these indolic compounds (24), and they do
not cause pneumotoxicity in vivo (18). Indole and 3-MI
have qualitatively similar effects on biological mem-
branes and similar chemical properties (11). 3-Methy-
loxindole and indole-3-carbinol are postulated to be the
products of the major and minor pathways of 3-MI me-
tabolism (15). 1-Methylindole does not cause disruption
of biological membranes (11) and does not generate a
nitrogen-centered free radical when treated with KO,
or incubated with microsomes (24). The methyl group
on the nitrogen atom in the indole ring of 1-methylindole
inhibits abstraction of a hydrogen from the nitrogen to
form a radical. The exact relationship between radical
formation and 3-MI toxicity is not known. However, the
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formation of a nitrogen-centered 3-MI radieal by the
lung mierosomal system provides strong support for the
hypothesis that such 3-MI radicals are involved in 3-
MI-induced pulmonary texicity.

3-Methylindole Free Radical and
Lipid Peroxidation

It is possible to predict the potential reaetions of a
reactive 3-MI free radical in a biological system. The 3-
MI radical metabolite can bind covalently to cellular
components such as proteins and nucleic acids. The 3-
MI radical metabolite can initiate the formation of alkyl
and peroxy free radicals derived from membrane lipids.
To follow the sequence of events of 3-MI free radical-
initiated reactions in a biological system, a time series
experiment was carried out to follow the appearance of
free radieal signals in a microsomal system over an in-
cubation period of 60 min (25). ESR spectra of the PBN
spin adduet extracted after various incubation intervals
are shown in Figure 1. Incubation of 3-MI with lung
microsomes for 3 min in the presence of NADPH and
PBN gave a very weak multiline ESR spectrum (Fig.
1A) which developed into a strong signal after 6 min
(Fig. 1B). Incubation of 3-MI with microsomes for 12
min resulted in a composite spectrum of nitrogen- and
carbon-centered radical adducts (Fig. 10). After 30 and
60 min incubations (Fig. 1D,£), a six-line spectrum with
hyperfine splitting constants (ay = 14.4 G and ot =
3.2 G) typical of a carbon-centered free radical adduct
of PBN was detected. However, the carbon-centered
radical trapped in the microsomal system was shown
not to be a 3-MI radical and is likely derived from mem-
brane lipids. To test the hypothesis that the carbon-
centered free radical is a 3-Ml-induced lipid peroxida-
tion product, the ESR spectra from the 30 and 60 min
mierosomal incubations were compared with those ob-
tained from a FeS0,-induced lipid peroxidation system
(25). In the absence of 3-MI, a carbon-centered radical
adduct of PBN with the same splitting constants was
obtained after the addition of FeSQ, to microsomes.
These data indicate that the initially formed nitrogen
radicals of 3-MI preferentially react with some mem-
brane component, probably lipids, and that the resulting
carbon-centered lipid radicals are then trapped by PBN
to give the carbon-centered radical adduet. Malonal-
dehyde, an index of lipid peroxidation, also increased
in the lung microsomal incubation system containing 3-
MI during the 6{-min time-course study (Fig. 2) (25).
The stimulation of malonaldehyde production by 3-MI
supports the concept that the metabolism of 3-MI by
the microsomal MFO system to its free radical inter-
mediate initiates lipid peroxidation. Formation of the
carbon-centered lipid radicals in vitro can be inhibited
by free-radical scavenging agents such as vitamin E and
glutathione {24). Spin trapping of fatty acid radicals in
microsomal preparations has also been reported in var-
ious studies (26-28). Recently, McCay and co-workers
(28) reported the presence of a carbon-centered lipid
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FicUure 1. Time-course study of ESR spectra of PBN spin adduets:
{A) ESR spectrum of a microsomal incubation system containing
approximately 16 mg of microsomal protein/mL, 0.1 M PBN in
0.05 M phosphate buffer (pH 7.4), 0.063 M 3-MI, 0.2 oM NADPH,;
incubation was stopped after a 3-min incubation period at 37°C;
(B) scan of A after a 6-min incubation period; (C) scan of A after
a 12-min incubation period; (D) scan of A after a 30-min incubation
period; (£} scan of A after a 60-min incubation period.

adduct of PBN in microsomal incubations containing
CC1, with the same splittings as the carbon-centered
radical found in 3-MI incubations.

3-Mi-Induced Free-Radical
Production and Pulmonary Toxicity

Before the 3-MI free radical and its interaction with
cellular components can be implicated as the cause of
pulmonary toxicosis, it is essential to demonstrate the
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FIGURE 2. Time courses for 3-MI (0.063 M); (e) stimulation of ma-
lonaldehyde production by lung microsomes (16 mg/mL) incubated
aerobically at 37°C for 60 min; () without 3-MI; () boiled micro-
somes; (A) without NADPH. Values are the means + SD of three
determinations,

existence of 3-MI-induced free radicals in vivo. Spin
trapping of free radicals in an in vivo system has been
attempted only recently (21,22,25,27-29). Although the
spin trap, PBN, has been used successfully to trap free

radicals induced by toxins in vivo, the organ and cellular .

distribution, metabolism, and toxicity of the spin trap
itself have not been studied. Furthermore, the appro-
priate time for the measurement of concentrations of
spin adduct after administration of the spin trap and
the toxin to the animal needs to be determined. Since
spin trapping is an integrative technique, the spin ad-
duct accumulates over time. However, the spin adduct
may also decompose, be metabolized, or be excreted
from the body. Thus, the time of maximal concentra-
tions of the spin adduct is dependent on the relative
contributions of these factors.

PBN has been used in vivo to trap free radicals gen-
erated from liver metabolism of halothane (22,29) and
CCl, (21,28) and from lung metabolism of 3-MI (25).
These studies indirectly suggest that PBN is capable of
trapping free radicals generated from MFO metabolism
of foreign compounds in both lung and liver. Albano et
al. (27) have shown that PBN at concentrations of 5 and
50 mM inhibited CCl,-stimulated lipid peroxidation,
4C.CCl, binding to microsomal protein and aminopyr-
ene demethylase activity in the rat. PBN acts as a sub-
strate in the MFO system and gives Type 1 binding
spectra. These findings suggest that PBN is capable of
reaching the gite of the MFQ enzyme system where
toxins are metabolized to free radicals. However, when
PBN was used to trap free radicals induced by 3-MI in
in vitro microsomal incubations, PBN did not show any
inhibition on metabolic activation of 3-MI by MFO of
goat lung at coneentrations up to 0.1 M. The LD, of

PBN has not been determined; however, infusion of 0.1
g PBN/kg of body weight over 1 hr to goats did not
induce any visible toxic effect.

The methods of tissue sample preparation and spin
adduct extraction are still in the developmental stage.
As the PBN adduct is lipid-soluble, extraction proce-
dures have focused upon chloroform-methanol extrac-
tion of total lipids and then concentration of the CHCly
layer (21,28). However, this indiscriminate extraction
of total lipids from the organs of large animals results
in a viscous extract which iz difficult to concentrate.
Another method is to extract spin adducts more selec-
tively by using hexane, which yields a less viscous lipid
extract that ean be concentrated (25).

An attempt was made to spin trap in vivo either the
primary radical of 3-MI or the secondary lipid radicals
(25). Goats were infused with the spin trap PBN and 3-
MI in propylene glycol for 1.0 hr. The dose of 3-MI used
had been shown previously to induce moderate to severe
pulmonary lesions in goats. Control goats received an
infusion of PBN in propylene glycol. All goats were
killed immediately after the infusion, and the lungs as
well as the liver were analyzed for tissue concentrations
of spin adducts. The ESR signal (Fig. 3A) obtained from
the lungs of goats which had been infused with 3-MI
had splitting constants identical to those of the carbon-
centered radical obtained from lung microsomes ineu-
bated with 3-MI (Fig. 3C). This radical was demon-
strated to be a lipid peroxidation product (Fig. 3B).
These findings provide evidence that the metabolism of
3-MI in goat lung in vivo generates a lipid radical. No
ESR signal was observed in the livers of goats following
administration of 3-MI.

If the carbon-centered lipid free radical induced by
3-MI is related to the initiation of pulmonary injury,
then manipulation of the free-radical-scavenging de-
fense system should alter the production of 3-MI-in-
duced free radicals and the toxic effect of 3-MI. This
hypothesis is supported by an experiment in which tis-
sue levels of vitamin E and glutathione were manipu-
lated by administration of vitamin E, cysteine {(a glu-
tathione inducer), and diethyl maleate (a glutathione-
depleting agent) in order to cbserve the effect of these
variables on levels of free radicals generated by 3-MI
in the lung of intact goats (30). Prior to intrajugular
infusion of 3-MI, the goats were given one of four pre-
treatments: (i) vitamin E + cysteine; (ii) vitamin E +
diethyl maleate; (iii) cysteine; (iv) diethyl maleate. The
amount of free radicals obtained from the lungs after
these various pretreatments, was expressed as picom-
oles of PBN-trapped radicals per lung (Fig. 4). Animals
pretreated with vitamin E + c¢ysteine or cysteine had
the lowest concentrations of the trapped radical. How-
ever, when tissue glutathione levels were depressed by
diethyl maleate pretreatment, higher concentrations of
the PBN-trapped radical were detected, regardless of
vitamin E pretreatment. The effect of these pretreat-
ments on the severity of 3-MI-induced lung lesions was
alsoinvestigated. The severity of the disease was scored
by clinical signs, lung to body weight ratio, moisture
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FiGUre 8. Comparison of ESR spectra obtained from i wivo and
in vitro studies: (A) ESR spectrum of a hexane extract from lung
of a goat infused with 3-MI in propylene glycol together with PBN;
{B) ESR spectrum produced by incubation of 0.05 M FeSO0,, 2.5
pM NADPH, and 0.1 M PBN after a 60-min incubation; (C} ESR
spectrum of a 60-min microsomal ineubation containing approxi-
mately 16 mg of microsomal protein/mL, 0.1 M PBN in 0.05 M
phosphate buffer (pH 7.4), 0.063 M 3-MI, and 0.2 pM NADPH at
37C.

content of the lung, respiration rate and microscopic
lesions. The results showed that the severity of the
disease followed the same trend observed in the con-
centrations of the carbon-centered free radicals. The
severity of the disease and the concentrations of free
radicals both increased with decreasing lung glutathione
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Ficure 4. Caleulated amount of free radicals from ESR spectra of
extracted lung expressed as picomoles of PBN-trapped radicals
per lung. Cysteine, the precursor of glutathione, was administered
as l-cysteine hydrochloride and vitamin E (dl-a-tocopherol acetate)
was given in corn oil intramuscularly (130 IU 0.75W in kg) once
every 24 hr for 3 consecutive days. Diethylmaleate (0.2 mL/W x
0.75) was given by a single intraperitoneal injection 1.0 hr before
the infusion of 3-MI. On day 4, the animals were challenged with
3-MI in propylene glycol at a dose of 0.02 g 3-MI’kg and 0.10 g
PBN/W x 0.75) by intrajugular infusion at a rate of 0.05 mL/min
for 1.0 hr.

content. These findings agree with the hypothesis that
the metabolism of 3-MI to a free radical is the initial
step in the sequence of events leading to lung toxicity
and that tissue glutathione is an important defense
mechanism against 3-MI-induced free radicals.

Possible Mechanisms of Pulmonary
Toxicity of 3-Ml

The enzymatic formation of reactive 3-MI free radi-
cals may lead to a number of toxic effects. A hypothet-
ical scheme is presented in Figure 5. A possible
NADPH-mediated, cytochrome P-450-dependent mech-
anism for the activation of 3-MI to a nitrogen-centered
free radical and the chemical reactions that may be of
importance in the toxicity of this compound are de-
picted. A highly reactive 3-MI free radical eould ab-
stract a hydrogen atom from an unsaturated fatty acid
to form lipid carbon-centered free radicals which react
with molecular oxygen, thereby initiating lipid peroxi-
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FIGURE 5. Schematic illustration of the metabolism of 3-MI. OX, oxidized; red, reduced.

dation, The latter event may be a significant feature of
the overall cell damage resulting from exposure to 3-
MI. The patholegical consequences of lipid peroxidation
may be associated with alterations of membrane func-
tion resulting in changes in membrane permeability or
inactivation of integral enzymes (31).

A second possible reaction is the covalent binding of
the 3-MI-induced radicals to proteins and nucleic acids.
The nitrogen-centered free radical of 3-MI may cova-
lently bind to proteins which are erucial in the regulation
of cellular metabolism, such as enzymes which control
phospholipid synthesis and affect surfactant produetion
in the lung (32,3%).

The third important reaction is the reaction of sulfhy-
dryl groups of cysteine and reduced giutathione with
the 3-MI free radical. Glutathione and cysteine have
been shown to inhibit the iz vitro formation of the ni-
trogen-centered 3-MI free radical as well as carbon-
centered fatty acid radieals induced by 3-MI (24). These
thiol compounds alse¢ dramatically decrease covalent
binding of 3-MI metaholites to protein (16,84) and drast-
ically reduce the eytotoxic effect of 3-MI i vive (35,36).
In spin-trapping studies, higher concentrations of car-
bon-centered lipid radicals were seen in animals with
reduced lung tissue levels of glutathione compared to
animals with induced lung glutathione levels (30). Pul-

monary toxicity due to 3-MI was also more severe when
tissue concentrations of glutathione in the lung were
depleted (35,36). If 3-MI toxicity is due to covalent bind-
ing and peroxidative damage by a free radical inter-
mediate, sulfhydryl groups may decrease its toxicity by
functioning as hydrogen donors, since thiol compounds
are very reactive towards earbon-, oxygen-, and nitro-
gen-centered radicals (27).

These studies support the hypotheses that 3-MI-in-
duced lung damage results from activation of 3-MI by
the mixed-function oxidase system in the lung to a free
radical which ean covalently bind to protein and induce
lipid peroxidation and that tissue glutathione plays an
important role in the lung’s defenses against 3-MI-me-
diated lipid peroxidation.

This work was supported by the Natural Sciences and Engineering
Research Couneil, Grant No. A6632 to T. M. Bray and by Ontario
Ministry of Agriculture and Food. The authors would like to give
special thanks to Dr. E. G. Janzen for his invaluable advice throughout
this research.
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