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Nearest Neighbor Affects G:C to A:T
Transitions Induced by Alkylating Agents

by Barry W. Glickman,* Michael J. Horsfall,* Alasdair J. E.

Gordon,* and Philip A. Burns*

The influence of local DNA sequence on the distribution of G:C to A:T transitions induced in the lacl
gene of E. coli by a series of alkylating agents has been analyzed. In the case of nitrosoguanidine, two
nitrosoureas and a nitrosamine, a strong preference for mutation at sites proceeded 5’ by a purine base
was noted. This preference was observed with both methyl and ethyl donors where the predicted common
ultimate alkylating species is the alkyl diazonium ion. In contrast, this preference was not seen following
treatment with ethylmethanesulfonate. The observed preference for 5'PuG-3' site over 5'-PyG-3' sites
corresponds well with alterations observed in the Ha-ras oncogene recovered after treatment with NMU.
This indicates that the mutations recovered in the oncogenes are likely the direct consequence of the
alkylation treatment and that the local sequence effects seen in E. coli also appear to occur in mammalian

cells.

Introduction

Alkylating agents represent a major class of potential
human mutagens and carcinogens. These agents give
rise to a large number of DNA adducts, both in vive
and in vitro (1,2). The major adducts suspected of being
responsible for the mutational and carcinogenic effects
of these agents are the (O°-alkylguanine and the 0*-
alkylthymine adduct. Evidence indicating the potency
of these adducts is derived from a number of sources.
These include the observation that persistence and/or
existenee of adducts generally correlates with careine-
genesis in the target organs (3-5). Furthermore, these
adducts have been shown to mispair in #r vitro systems
(6-8). In addition, O%-methylguanine and O*-methylthy-
mine have been shown to mispair with thymine and
guanine, respectively, in semi- in vivo site-gpecific mu-
tational systems (9-11). Hence, there would appear to
be more than adequate evidence indicating a role for
these adducts in alkylation-induced mutagenesis.

Our approach to these questions has eoncentrated on
the analysis of mutational specificity. These studies also
indicate major roles in mutagenesis for the 0%-guanine
and O*-thymine adducts. For example, agents produc-
ing almost exclusively the O° adduct such as ethylme-
thanesulphonate (EMS), N-methyl-N-nitro-N-nitroso-
guanidine (MNNG), and N-nitroso-N-methylurea
(NMU) yield almost exclusively G:C to A:T transitions
(12-14). In contrast, N-nitroso-ethylurea (ENU), which
produees both the 0° and O* lesions, induces both G:C
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to AT and A:T to G:C transitions in a ratio similar to
that of the adducts (15,16). Finally, the analysis of mu-
tation in strains defective in DNA repair are also con-
sistent with these models (12,15).

While these mutagenic lesions thus appear capable of
accounting for the specificity of the base substitutions
encountered following treatment with a wide variety of
alkylating agents, there are multiple steps between the
exposure to the chemical and the final observation of
the mutation. Among the major factors requiring con-
sideration are the deposition of damage and the influ-
ence of DNA repair. Others include the nature and
quantities of other molecules in the cell that ean act as
traps and thereby protect the DNA by essentially al-
tering the effective dose. Further ceonsiderations need
te include the nature of the mutation being selected, as
a large fraction of DNA sequence changes are unlikely
to lead to selectable phenotypic alterations.

The analysis of mutation at the DNA sequence level
is also eapable of shedding light on some of these ques-
tions as well, For example, a knowledge of mutational
specificty at the DNA sequence level can also provide
information on the influence of local DNA sequence. We
have recently reported a nearest neighbor effect on G:C
to A:T transition mutations induced by MNNG (13). The
hature of this effect was that mutations were found to
be much more likely to occur at guanine residues pro-
ceeded 5" by a purine base; thus developed the “PuG
rule” for mutation induced by MNNG. In this commu-
nication we examine the validity and possible cause of
the PuG rule following mutagenesis with other alkyl-
ating agents,
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Materials and Methods

The approach used in this study involves the analysis
of mutation in the lacl gene of Escherichia coli. Mu-
tations in the first 180 base pairs of the gene were ge-
netically identified and then cloned onto a specially con-
structed M13 vector, mRS81, by in vive recombination.
The methodologies in obtaining mutants are identical to
those described elsewhere (13). Those methods for the
cloning and sequencing of mutations are as described
by Schaaper et al. (17). All the lael mutations reported
here were induced in a repair proficient strain of E'. coli
known as NR3335.

Results and Discussion
Mutation Induction by Alkylating Agents

The survival and Lacl™ mutation induction data for
a number of alkylating agents is given in Table 1. In
addition to agents already mentioned, the table includes
data on the nitrosamine N-nitroso-N-methyl-N-oa-ace-
toxybenzylamine (NMAB). This is a direct-acting ana-
log of the esophogeal carcinogen N-nitroso-N-methyl-
N-benzylamine {NMB). As can be seen in Table 1, the
treatments cover a range of doses and some of the
agents are clearly more toxie and/or mutagenic than
others. From the table, however, it can be concluded
that only a very small fraction of mutations sequenced
following treatment are likely to be spontaneous in or-

igin,

Preference for Mutation at 5'-Pu(z-3'Sites

The reported experiments with MNNG (73) indicate
an influence of the 5’ base on mutation induction. This
effect is documented in Table 2, where it ean be seen
that 1256 MNNG-induced mutations occurred at the 8
available 5'-PuG-3’ sites, compared with 39 mutations
occurring at the 17 potential 5'-PyG-3' sites. From these
data it appears that mutation is almost seven times more
likely to occur at a G residue proceeded by a purine
than a pyrimidine. A similar analysis of the data for

-MNU, ENU, and MNARB also indicate a strong pref-
erence for mutation occurring at 5-PuG-3' over that
seen for 5'-PyG-3’ sites,

In the case of the EMS treatment, the preference for

Table 1. Survival and mutagenesis data.

Mutation
Treatment Survival, % frequency® Fold increase®
MNNG, 0.16 mM 88 2400 800
NMAR, 1 mM a7 1900 630
MNU, 10 mM 32 270 90
ENU, 30 mM 4 630 210
EMS, 280 mM 51 80 27

* Mutation frequency x 10°,

" Ratio of induced over spontaneous mutation frequency.

Abbreviations: MNNG, N-methyl-N-nitrosoguanidine; NMAB, N-
nitroso-N-methyl-N-o-acetoxybenzylamine; MNU, methylnitro-
sourea; ENU, N-nitroso-N-ethylurea; EMS, ethylmethanesulfonate.

Table 2. Influence of 5’ flanking base.

Mutations per available site®

b' Flanking base Ratio

Treatment A G C T Pu/Py
MNNG T.7{23)  20.4(102) 2.0(16) 2.6(23) 6.8
NMAB 7.0(21)  12.8(64) 1.8(14) 1.3(12) 7.6
MNU 9.0(27) 8.6(43) 1.5(12)  0.4(4) 9.8
ENU 3.7(11) 7.2(36) 1L.0(8) 1.4(13) 4.9
EM3 2.0(6) 4.2(21) 2.8(22) 0.8(7) 2.0

* Number of known available sites in this 180 bp target sequence are
A, 3 G, 5 C, 8 T, 9. The numbers in parentheses give the actual
number of mutations recovered. See footnotes of Table 1 for abbrevi-
ations.

5'-Pu(3-3' sites is much less obvious. 5'-PuG-3' sites are
preferred over 5'-PyG-3' sites by a factor of only 2.0.
Moreover, mutations are most commonly recovered at
sites proceeded by a C. This observation, however, is
further complicated by the fact that DNA repair influ-
ences the distribution of mutation (12). As we previously
demonstrated, the excision of the 0%-ethylguanine res-
idues by the E. coli uvrABC repair pathway did not
occur with equal efficiency at all sites; sites flanked by
A:T base pairs are more efficiently repaired than sites
flanked by G:C base pairs. In the absence of excision
repair, i.e., in a UvrB ™~ strain, the slight bias favoring
5'-PuG-3’ sites disappears (12), and we concluded that
the PuG rule does not apply to EMS-induced mutation.

The mutational spectra for the above treatments are
summarized in Figure 1.

Origin of the Nearest Neighbor Effect

The observation that the mutability of a site might
be influenced by local DN A sequence was first proposed
by Benzer (18) as an explanation for the occurrence of
mutational hotspots in the bacteriophage T4 rI1 gene.
Since then, 2 number of examples of sequence effects
have been observed (16,19). These influences have been
shown to reflect reactivity (20), secondary structure of
DNA {21,22), and repairability (12,23).

If we assume that the primary source of G:C to A:T
transitions induced by these agents is the Of-alkyl-
guanine adduct, then the 5’ flanking base pair may in-
fluence mutation distribution by affecting the initial dis-
tribution of these lesions; the efficiency of repair of these
lesions; and the fidelity of DNA polymerase at those
positions in the sequence.

The 5" flanking sequence may exert its effect by af-
fecting the distribution of O°-methylguanine lesions by
modifying the reactivity of the O° position of guanine.
Pullman and Pullman (24) have shown that the molec-
ular electrostatic potential, an important component of
a site’s reactivity, can be strongly influenced by neigh-
boring base pairs. Another important component of
reactivity is steric accessibility, clearly a factor also
subject to influence by local DNA sequence.

Similarly, any influence of local DNA base sequence
on the efficiency of repair of the O° adduet will affect
mutation distribution. Topal et al. (23) demonstrated
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GATGGCGGAGCTGAATTACATTCCCAACCGCGTGGCACAACAACTGGCGGGCAAACAGTC

185 210

Distribution of G:C to A:T transitions induced by alkylating agents in the lael gene of E. coli. The numbering is as given by

Farabaugh (27). Available sites where mutants were not recovered in this study are indicated.

that the efficiency of repair of O°-methylguanine could
vary several-fold with respect to the position of the
lesion. However, in this case the influence of the 5’
flanking base was modest, less that twofold. We note
that differential repairability is unlikely to play a major
role in the observed preference, since under the treat-
ment conditions employed here, the repair capacity of
the methyltransferase system is most likely fully sat-
urated (25). Finally, the distribution of mutations may
reflect the influence of neighboring base sequence on
the fidelity of DNA synthesis past miscoding lesions.

On the whole we tend to favor the hypothesis that it
is the initial DNA damage distribution that is respon-
sible for the observed 5'-Pu(G-3’ preference. The ar-
gument is that this preference is observed under a num-
ber of conditions and at different doses (results not ail
shown). It is seen when the alkyltransferase repair
pathway is quite probably saturated and when ethyl
adduets, which are very much less efficiently repaired,
are involved. We prefer the suggestion that the reac-
tivity of the O° position of guanine is substantially en-
hanced when proceeded by a purine.

Relevance of This Effect to Carcinogenesis

The 5" flanking base influence seen in these studies
has an important counterpart in the results of studies
on the activation of Ha-ras oncogenes by methylnitro-
sourea (MNU) (26). MNU was found to preferentially
induce the activation of the protooncogene by a G:C to
A:T transition at the second guanine in codon 12 (GGC),
even though a transition at the first guanine can activate
this gene. The finding that all the alkylating agents
predicted to have a common intermediate, the alkyl dia-

zonium ion, show this preference can be taken as a
strong indication that the oncogene alteration was a
direct consequence of the mutagenic treatment. Henee,
this reactive intermediate may demonstrate the same
mutational specificity in hacteria as in mammalian cells.
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