
The assumption that deconstructive
methodologies accurately describe the
complexity of biological processes is inade-
quate at best. Until recently, functional
genetic studies have been of limited scope
and able to elucidate the role of only one
or a few genes at a time. Several limitations
render these techniques nonconducive to
large-scale expression analysis;  therefore,
nucleotide hybridization technologies are
now used to monitor the expression of
thousands of genes at a given point in
time. A fundamental goal of genomics
research is to understand individual gene
expression patterns within the symphonic
context of the transcriptome and to
unravel the genetic networks responsible
for health and disease. However, the inter-
active gene networks responsible for
expression of altered cellular phenotypes
have not been fully defined. 

To date, most microarray experiments
have used correlation analysis to identify
common genomic responses to a particular
stimulus, or multivariate methodologies to
examine more complex gene–gene interac-
tions. Univariate methodologies can be used
to identify common genomic responses to a
particular stimulus but do not account for
multiple influences on gene expression.
Logistic regression and stepwise regression,
on the other hand, are multivariate
approaches successfully used to examine
more complex genomic interactions but
require prior knowledge of the system and
assume linearity in assigning biological
relatedness.

To understand the complex nature of
cellular transformation in cancer, computa-
tional prediction methodology has been
used to examine global patterns of gene
expression (Kim et al. 2000a, 2000b). This
method identifies associations between the
expression patterns of individual genes by
determining whether knowledge of the
transcriptional levels of a small gene set
predicts the associated transcriptional state
of another gene. Although mRNA is not
the final product of a gene, transcription is
a critical component in the regulatory cas-
cade and therefore provides an ideal point
of investigation. A key goal in networks
analysis is the development of analytical
tools to delineate how individual gene
actions are integrated into complex biologi-
cal systems at the organelle, cell, organ, and
organism levels. 

The goal of this study was to unravel
biological networks regulated by ligands of
the aryl hydrocarbon receptor (Ahr). Ahr is
a ligand-activated transcription factor
involved in the regulation of cellular
growth, differentiation, and metabolism in
all species examined (Carlson and Perdew
2002). Ahr is a member of the large basic
helix–loop–helix–PAS (bHLH-PAS)
homology domain family of transcription
factors that includes proteins involved in
myoblast differentiation, such as myogenic
differentiation antigen 1; the cellular
response to hypoxia, such as Ahr nuclear
translocator (Arnt) and hypoxia-inducible
factor-1; the Drosophila neurogenic protein
Sim (single-minded), and the Drosophila

circadian rhythm protein Per (period).
bHLH-PAS proteins generally form het-
erodimeric transcription factors, of which
Ahr is the only member conditionally acti-
vated in response to ligand binding.
Polycyclic aromatic hydrocarbon contami-
nants and by-products of aspartate amino-
transferase metabolism are now recognized
as ligands of the Ahr (Bittinger et al. 2003).
After ligand binding within the PAS
domain, the cytosolic Ahr undergoes a con-
formational change, dissociates from two
90-kDa heat shock proteins and the hepati-
tis B virus X-associated protein 2, and
translocates to the nucleus where it dimer-
izes with Arnt (Carver and Bradfield 1997).
The Ahr/Arnt heterodimer interacts with
Ahr-responsive elements (5´-TNGCGTG-
3´) upstream of target genes to activate/
repress transcription of target genes. Several
drug-metabolizing enzymes (Nebert 1994)
are regulated by Ahr, but key molecular tar-
gets involved in regulation of cellular dif-
ferentiation and growth have remained
largely elusive. The complexity of Ahr sig-
naling is emphasized by recent studies
showing that Ahr also participates in post-
transcriptional regulation of gene expres-
sion (Falahatpisheh and Ramos 2003).

The target genes chosen for study
included Ahr, cytochrome P450 1B1
(Cyp1b1), insulin-like growth factor-binding
protein-5 (Igfbp-5), lysyl oxidase (Lox), and
osteopontin (Opn). Gene networks were
defined  on the basis of the co-determination
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of transcriptional states resolved by statistical
evaluation of data sets derived from large-
scale simultaneous measurements made
using Affymetrix microarray technology. 

Materials and Methods

Model Systems

Gene transcription information from three
independent Affymetrix microarray experi-
ments was used for comprehensive compu-
tational analysis. The model systems used
included mouse embryonic heart, kidney,
and thoracic aorta challenged with hydro-
carbon ligands to activate Ahr signaling.
Vascular smooth muscle cells (vSMC) and
fetal kidneys were exposed in vitro, whereas
fetal hearts were exposed in vivo. This
approach enabled us to identify common
gene sets across tissue types without regard
for contextual differences in transcriptional
status under basal conditions. The objec-
tive was to identify highly conserved inter-
actions regulated by Ahr regardless of
genomic context.

Data set 1. Vascular smooth muscle
cells were isolated from the thoracic aorta
of adult C57BL6J untreated mice (Jackson
Laboratories, Bar Harbor, ME) (6 weeks of
age) and maintained in serial culture as
described (Ramos and Cox 1993). All stud-
ies were initiated using cells seeded in
150-mm plates at 75% confluence. To
induce G0 synchronization, cultures were
incubated for 72 hr in 0.1% fetal bovine
serum in Medium 199 (Invitrogen Corp.,
Carlsbad, CA). Cells were challenged for 8
or 24 hr with dimethyl sulfoxide (DMSO)
or 3 µM benzo[a]pyrene (B[a]P) and RNA
was isolated. B[a]P is a hydrocarbon ligand
of the Ahr that modulates growth and dif-
ferentiation of vascular cells (Kerzee and
Ramos 2000). Normalized data from
12 chips were used for the analysis.

Data set 2. Day 11.5 mouse embryos
were surgically resected from C57bL/6J
wild-type or Ahr knockout mice and placed
in Hanks’ balanced salt solution. Embryonic
kidneys (approximately 0.5 mm × 1 mm)
were isolated by microsurgical dissection
and deposited on culture inserts. B[a]P was
added to the medium at 3 µM daily for
4 days, and an equivalent volume of DMSO
was added to controls. On day 4, kidneys
were harvested for RNA isolation.
Normalized data from a total of 8 chips
were used for analysis.

Data set 3. After exposure to 1.5, 3, and
6 µg/kg 2,3,7,8-tetrachlorodibenzo-p-dioxin
(TCDD) in utero on gestation day 14.5
(n = 4 litters/treatment), gestation day 17.5
fetal mouse hearts were surgically resected
and RNA was isolated. TCDD is a potent
hydrocarbon ligand that binds and activates

Ahr signaling. Normalized data from a total
of 20 chips were used from this study. 

RNA Isolation
Total RNA was extracted using TRI
Reagent (Molecular Research Center, Inc.,
Cincinnati, OH) according to manufac-
turer’s specifications.

Affymetrix GeneChip
The Affymetrix Murine Genome U74A
Array (Affymetrix, Inc., Santa Clara, CA)
used in these studies represents all func-
tionally characterized sequences (approxi-
mately 6,000) in the Mouse UniGene
database (http://www.ncbi.nlm.nih.
gov/entrez/query.fcgi?db=unigene). In
addition, approximately 6,000 expressed
sequence tag clusters are included.
Experimental procedures including double-
stranded cDNA synthesis and biotinylated
cRNA preparation were conducted as rec-
ommended in the Affymetrix GeneChip
Expression Analysis Technical Manual
(Affymetrix, Inc. 2003).

Double-Stranded cDNA Synthesis
Total RNA was processed using Qiagen
RNeasy kit (Qiagen, Inc., Valencia, CA)
according to manufacturer’s specifications.
For double-stranded cDNA synthesis,
15–20 mg total RNA was first hybridized
with 100 pmol T7-(dT)24 primer [5´-
(biotin)-GTCGTCAAAGATGCTAC-
CGTTCAGCA-3´] and high performance
liquid chromatography (GENSET Corp.,
La Jolla, CA) purified at 70°C for 10 min.
Primer hybridization was completed in a
20-mL reaction containing a final concen-
tration of 10 mM dithiothreitol (DTT),
500 mM each of deoxyribonucleoside
triphosphate (dNTP) mix, and 1× first-
strand cDNA buffer. The reaction was
incubated at 42°C for 2 min followed by
addition of 400–600 U SuperScript II
Reverse Transcriptase (Gibco Life
Technologies, Rockville, MD) to synthe-
size first-strand cDNA. After 1 hr, second-
strand cDNA synthesis was carried out by
adding 200 mM each dNTP, 10 U
Escherichia coli DNA ligase, 40 U E. coli
DNA polymerase I, 20 U E. coli RNase H,
and 1× second-strand reaction buffer in a
150-mL volume and incubated at 16°C for
2 hr. T4 DNA polymerase was added at
the end of the reaction for an additional
5 min and soaked in 10 mL 0.5 M EDTA.
Phase Lock Gel (Eppendorf Scientific, Inc.,
Westbury, NY) extraction with phenol/
chloroform followed by ethanol precipita-
tion was subsequently performed to clean
up the double-stranded cDNA. The cDNA
pellet was resuspended in 12 mL RNase-
free water (Ambion, Inc., Austin, TX).

Biotin-Labeled cRNA Preparation
Biotin-labeled cRNA target for hybridiza-
tion to GeneChip Array (Affymetrix, Inc.)
was prepared by in vitro transcription using
BioArray High Yield RNA Transcript
Labeling Kit (Affymetrix, Inc.). Briefly,
3.3–5 mL double-stranded cDNA was
mixed gently with 4 mL each of 10× high-
yield reaction buffer, 10× biotin-labeled
ribonucleotides, 10× DTT, 10× RNase
inhibitor mix, and 10× T7 RNA poly-
merase provided by the kit and incubated
at 37°C for 4–5 hr, with gentle mixing
every 30 min. Labeled cRNA was then
cleaned with RNeasy Mini Kit (Qiagen,
Inc.) to obtain an accurate quantification
of the labeled cRNA. Twenty to 30 mg
labeled cRNA was then fragmented to
35–200 bp with 8 mL 5× fragmentation
buffer containing 200 mM Tris-acetate,
pH 8.1; 500 mM potassium acetate; and
150 mM magnesium acetate in a total vol-
ume of 40 mL for 35 min at 94°C. Before
hybridization onto GeneChip Array, the
quality of labeling and fragmentation was
verified on agarose gel, transferred onto
nylon membrane, and detected with alka-
line phosphatase streptavidin and DuoLuX
Chemiluminescent/Fluorescent Substrate
using UltraSNAP Biotinylated Nucleic
Acid Detection Kit (Vector Laboratories,
Inc., Burlingame, CA).

Hybridization to GeneChip Array
After labeling and fragmentation, 15 µg
fragmented biotinylated cRNA was hybrid-
ized to the Affymetrix GeneChip Array in a
300-mL cocktail containing 5 mL of 3 nM
control oligonucleotide B2, 15 mL 20×
eukaryotic hybridization controls, and
150 mL 2× hybridization buffer provided
in the GeneChip Eukaryotic Hybridization
Control Kit (Affymetrix, Inc.) together
with 3 mL 10 mg/mL herring sperm DNA
and 3 mL 50 mg/mL acetylated bovine
serum albumin (BSA). The hybridization
was carried out at 45°C and 60 rpm in
GeneChip Hybridization Oven 640
(Affymetrix, Inc.) for 16 hr.

Washing, Staining, and Scanning 
the Array 
After hybridization the washing and staining
procedures were carried out on a GeneChip
Fluidics Station 400 in conjunction with
Affymetrix Microarray Suite 5.0 software
(MAS 5.0; Affymetrix, Inc.). Briefly, the
array was first washed with 10 cycles of
2 filling and draining cycles in a nonstrin-
gent buffer containing 6× SSPE (52.9 g
sodium chloride; 8.28 g sodium phosphate;
monobasic, 2.82 g EDTA, pH 7.9) and
0.01% Tween 20 at 25°C, followed by
4 cycles of 15 filling and draining cycles in a
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stringent buffer containing 100 mM MES
[2-(N-morpholine)ethanesulfonic acid],
0.1 M Na+ and 0.01% Tween 20 at 50°C.
The probe array then was first stained with a
600-mL streptavidin-phycoerythrin (SAPE)
solution containing 1× MES stain buffer
(100 mM MES, 1 M Na+, and 0.05%
Tween 20), 2 mg/mL acetylated BSA, and
10 mg/mL SAPE (Molecular Probes, Inc.,
Eugene, OR) for 10 min at 25°C. After the
first staining the array was washed with
10 cycles of 4 filling and draining cycles in
nonstringent buffer at 25°C. The stained
signals were then amplified in a 600-mL
antibody solution containing 1× MES
stain buffer, 2 mg/mL acetylated BSA,
0.1 mg/mL normal goat IgG, and 3 mg/mL
antistreptavidin biotinylated antibody
(Vector Laboratories, Inc.) for 10 min at
25°C, followed by a second SAPE staining
at the same temperature for another 10 min.
Finally, the probe array was washed for
15 cycles of 4 filling and draining cycles in
nonstringent buffer and scanned by the
Agilent GeneArray Scanner (Affymetrix,
Inc.) at an excitation wavelength of 570 nm. 

Data Analysis
After scanning, each image was inspected
for major chip defects or abnormalities in
hybridization signal as a quality control
and analyzed using MAS 5.0. The data
were then normalized using a scaling factor
of 500 according to the Affymetrix
GeneChip Expression Analysis Technical
Manual (Affymetrix, Inc. 2003). The
expression of approximately 12,000 genes
across 40 different Affymetrix microarrays
was quantified and normalized. Each of the
targets was correlated to the complete
Affymetrix gene data set (MATLAB 6.0;
The MathWorks, Inc., Natick, MA). 

Computational Methodology
After chip normalization, the mean (x–),
standard deviation (sd) and coefficient of
variation 

cv = sd/x– [1]

were calculated for each gene across all
samples, and the intensity level (x) for each
gene was standardized across all arrays by 

x̂ = x–x–/sd. [2]

All genes were sorted by cv, and, because of
computational constraints, the 200 clones
with the greatest cv were selected for use as
predictors. The genes to be predicted (i.e.,
targets) were selected on the basis of bio-
logical relevance and included Ahr,
Cyp1b1, Igfbp-5, Lox, and Opn. A heuristic
method was used to discretize the data into
ternary states that describe their behavior,

with –1 used for downregulated genes, 0
for invariant genes, and +1 for upregulated
genes. Each array was ordered from lowest
to highest standardized values x̂  without
regard to gene identity and the means
across all arrays at the 33rd and 66th per-
centile were used as the cutoffs for the dif-
ferent values x– of the standardized data set.
These percentiles were chosen because they
divided the data evenly to provide suffi-
cient variation throughout the computa-
tional analysis. Our goal was to yield good
estimates of the transcriptional state of the
target using ternary discrete functions. The
computation of prediction strengths was
completed using a stochastic model of gene
intensities, defining Xi as the random vari-
able that represents the ternary intensity (or
transcription rate) of gene Gi. 

Realizations of Xi were denoted by
lower case xi. A microarray experiment
consisted of a realization x1 to xv of v ran-
dom variables X1 to Xv representing the
intensities of the v genes G1 to Gv. Given
N microarrays, the values x1(j) to xv(j) rep-
resented the values for the microarray j,
with j = 1 to n. Without loss of generality
the predictive strength of genes G1, G2,
and G3 over gene G4 was unknown and
therefore needed to be computed. In this
context, genes G1, G2, and G3 were

regarded as predictors, and G4 as target. An
example of ternary intensity values x1(j),
x2(j), x3(j), and x4(j), j = 1 to 9 (or realiza-
tions of X1, X2, X3, and X4), for G1, G2,
G3, and G4, across nine conditions (micro-
arrays) is illustrated in Figure 1 (rows 1–4).
The function with the smaller expected
error was denoted by ψopt. The optimal
constant function was denoted by ψ0, and
was the one with minimal error over the
three possible constant functions. 

The optimal functions ψopt and ψ0,
and their errors ε[ψopt] and ε[ψ0], respec-
tively, were estimated from the microarray
data by splitting them randomly in two sets
of conditions, with n conditions for test
(estimation of the error) and N–n condi-
tions for train (estimation of the function),
where N was the total number of condi-
tions. The optimal function ψopt and the
optimal constant function ψ0 were esti-
mated from the N–n examples using plug-
in rule (Devroye et al. 1996). Let ψ̂opt and ψ̂0
be the estimates of ψopt and ψ0, respec-
tively; the errors ε[ψopt] and ε[ψ0] were
estimated using the following equations:

[3]  
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Possible combination of values

Figure 1. Schematic representation of gene ternary values and predictor functions ψ. The intensity of
genes G1, G2, and G3 can be used to predict the values of the target G4 via a ternary function ψ. An arbi-
trary ternary function ψ defined by ψ(X1, X2, X3) = X1 + X2 – X3 [with the sum defined inside (–1, 0, 1)] is
shown on line 5. The quality of ψ to explain G4 from G1, G2, and G3 can be measured by its expected
absolute error ε[ψ] = E [|ψ(X1, X2, X3)–X4|], where | | denotes absolute value, and the expectation is com-
puted over the joint distribution of the random variables X1, X2, X3, and X4. In line 6, the difference |ψ(x1(j),
x2(j), x3(j)) – x4(j)|, for j = 1 to 9 is shown to exemplify absolute differences. An estimation of the value of X4,
assuming a constant value, is shown on line 7. 
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Table 1. Genes that predict selected target gene behavior.a

Targets Predictor Probe set IDa Percentageb Correlationc

Ahr Lymphocyte antigen 6 complex, locus e 101488_r_at 18 0.77
160495_at Insulin-like growth factor binding protein 3 95082_at 16 0.83

Tumor necrosis factor receptor superfamily, member 1b 94928_at 14 0.70
Insulin-like growth factor binding protein 6 103904_at 13 0.72
Brain derived neurotrophic factor 102727_at 13 0.80
Secreted phosphoprotein 1 97519_at 9 0.87
Stratifin 96704_at 7 0.23
Small proline-rich protein 2f 94120_s_at 6 0.18
Actin, alpha, cardiac 101028_i_at 6 –0.84
NADH dehydrogenase (ubiquinone) 1 100628_at 6 –0.84
Fibroblast growth factor receptor 4 92937_at 5 0.31
Ras-related protein 97319_at 5 –0.83
Small proline-rich protein 2b 99701_f_at 5 0.20

Cyp1b1 Spleen tyrosine kinase 162363_at 31 –0.44
99979_at Squalene epoxidase 94322_at 18 0.37

NADH dehydrogenase 92330_r_at 14 0.64
Calbindin-28k 98133_at 10 –0.20
Renin 1 structural 98480_s_at 10 –0.10
Carboxylesterase 3 101539_f_at 10 0.86
Cytokine receptor-like factor 1 161046_at 9 0.92
Mitogen regulated protein, proliferin 3 93929_s_at 9 0.92
Tumor-associated calcium signal transducer 2 160651_at 9 –0.12
Fos-like antigen 1 99835_at 9 0.89
Forkhead box a2 93950_at 8 0.86
Proliferin 2 93883_at 8 0.93
Thrombomodulin 104601_at 8 0.73
Fibroblast growth factor 7 99435_at 8 0.94
Actin, alpha, cardiac 101028_i_at 7 –0.68
Matrix metalloproteinase 9 99957_at 7 0.13
Forkhead box f2 99846_at 7 0.70
Cytochrome p450, 1a1 94715_at 7 0.01
Insulin-like growth factor 2 98623_g_at 6 –0.03
Ras-related protein 97319_at 6 –0.65
Follistatin 98817_at 6 0.73
Lymphocyte antigen 6 complex, locus A 93078_at 5 0.37

Igfbp-5 Secreted phosphoprotein 1 97519_at 14 –0.64
100566_at Matrix metalloproteinase 3 98833_at 9 –0.61

RNA binding motif, single stranded interacting protein 1 96207_at 8 –0.57
Alpha-2-hs-glycoprotein 99862_at 7 0.27
Angiotensinogen 101887_at 7 –0.86
Actin, alpha 1, skeletal muscle 100381_at 7 0.68
Renin 1 structural 98480_s_at 7 0.23
Interferon activated gene 202a 94774_at 6 0.04
Retinol binding protein 4, plasma 96047_at 6 0.40
Integrin beta 4 103305_at 6 0.43
Insulin-like growth factor binding protein 3 95082_at 5 –0.40
Hydroxysteroid 11-beta dehydrogenase 2 100493_at 5 0.24
Small proline-rich protein 2c 101761_f_at 5 0.09
Follistatin 98817_at 5 –0.57
Integrin alpha 6 95511_at 5 0.85
Carbonic anhydrase 3 160375_at 5 0.26

Lox Lymphocyte antigen 6 complex, locus H 103487_at 36 –0.37
160095_at Single stranded interacting protein 1 96207_at 36 0.55

Glutamyl aminopeptidase 102373_at 23 –0.55
Peripherin 161482_f_at 21 –0.35
Cadherin 16 93515_at 16 –0.40
Coagulation factor II 101899_at 11 –0.30
Fibroblast growth factor 7 99435_at 11 0.95
Forkhead box a2 93950_at 11 0.95
Thrombomodulin 104601_at 11 0.91
Alcohol dehydrogenase 1, complex 94906_at 9 –0.35
Fos-like antigen 1 99835_at 9 0.97
Proliferin 2 93883_at 9 0.93
Forkhead box f2 99846_at 7 0.87
Actin, alpha, cardiac 101028_i_at 5 –0.60
Cyclin-dependent kinase inhibitor 1a (p21) 94881_at 5 –0.53
High mobility group at-hook 2 99058_at 5 0.85
Integrin alpha 3 104211_at 5 0.32
Interferon gamma 99334_at 5 0.53
Mitogen regulated protein, proliferin 3 93929_s_at 5 0.98
Phospholipase a2 group VII 101923_at 5 –0.48
Ras-related 97319_at 5 –0.56

(Continued)



and

[4]

In our study with N = 40, n was defined as
n = N ⁄ 3, so 2n was used to train the func-
tions and n to estimate the error.

The performance of the predictor set
was defined by the coefficient of determi-
nation (CoD), that is, the degree to which
the transcriptional state of a given set of
genes improves the prediction of the tran-
scriptional state of a target gene relative to
the best possible constant function (defined
by a fixed value) (Devroye et al. 1996) and
was defined by 

[5]

The CoD was estimated from the data
using the following equation:

[6]

This process defines an estimate θˆ of the
CoD for the set of predictor genes G1, G2,
G3 and the target gene G4. The process was
repeated 1,000 times with different random
splitting and the final estimates θ

–
as the

average value of θ̂ over the 1,000 replica-
tions. The mean error ε–(ψopt) was also esti-
mated as the average of the 1,000 estimates
ε̂(ψopt). The higher the CoD, the more
accurate the prediction of the target gene
transcriptional state derived from the tran-
scriptional state of the three predictor
genes. All possible combinations of three

predictor genes were studied for each target,
where the number of combinations was on
the order of 8 million sets of 3 selected
from 200, and the estimated CoD θ

– 
was

computed for all combinations. The predic-
tor sets (or combinations) were ordered
from best to worst based on θ

–
, and the

analysis focused on the predictor combina-
tions with θ

– 
> 0.9 and ε–(ψopt) < 0.05. The

cutoff used was selected heuristically to
restrict the number of sets to those with
good prediction potential. Because of the
nature of the analysis, there was no measure
of false-positive rates other than future bio-
logical experimentation and scrutiny of the
literature. Each gene Gi was ranked by fs,
the percentage of sets in this family of good
combinations that contain such a gene.

Network Plot
The possible relationships predicted by the
predictor algorithm were illustrated using
the program developed by Breitkreutz et al.
(2003). All three gene combinations that
met the cutoff criteria on the basis of test
errors and CoD values  [θ

– 
> 0.9 and

ε–(ψopt) < 0.05] were linked to their respec-
tive targets. These schematics were overlaid
to form a linkage diagram showing the
relationship of target genes to predictors, as
well as connections among target genes.
The diagrams generated represent the total
hypothetical interrelationships between all
200 predictor genes and the five target
genes used in the analysis. 

Results

The expression of 200 genes across 40
different Affymetrix arrays from three dif-
ferent tissues after activation of Ahr signal-
ing was used to predict the behavior of

selected targets. Ahr activation by a wide
range of structurally divergent agents plays a
major role in vascular, renal, cardiac, skin,
bone marrow, liver, eye, ovary, and immune
system function, as well as in carcinogenesis
(Denison and Nagy 2003). Table 1 ranks
predictor genes by the fi commonly identi-
fied for each target. The Ahr receptor itself
was most commonly predicted by lympho-
cyte antigen 6 complex, locus e (selected
18% of the time for all good three-gene
combinations), Igfbp-3 (16%), and tumor
necrosis factor receptor super family-mem-
ber 1b (14%). Cyp1b1 was best predicted
by spleen tyrosine kinase (31%), squalene
epoxidase (16%), and nicotinamide adenine
dinucleotide (NADH) dehydrogenase
(Ndufc1) (14%). Igfbp-5 was most fre-
quently predicted by Opn (14%), matrix
metalloproteinase 3 (9%), and RNA bind-
ing motif–single-stranded interacting pro-
tein 1 (8%). Lox was best predicted by
lymphocyte antigen 6 complex, locus H
(Ly6h) (36%), single-stranded interacting
protein 1 (36%), and glutamyl aminopepti-
dase (23%). Finally, Opn was most often
predicted by brain-derived neurotrophic
factor (Bdnf) (15%), interleukin 6 (14%),
and proliferin (14%). The frequency of pre-
dictor usage was influenced by the cutoffs
used, thus emphasizing the importance of
arbitrary cutoff selection. For comparison,
each target was also correlated to the com-
plete 12,000 Affymetrix gene data set using
normalized intensity values. The results
indicated that in many instances genes fre-
quently identified as predictors in the CoD
algorithm also exhibited strong correlation
to their targets. This is best exemplified for
Ahr and Opn, where Ndufc1 and α-actin
(Actc1) exhibited strong correlations and
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Table 1. Continued.

Targets Predictor Probe set IDa Percentageb Correlationc

Opn Brain derived neurotrophic factor 102727_at 15 0.73
97519_at Interleukin 6 102218_at 14 0.70

Proliferin 94838_r_at 14 0.52
Tumor necrosis factor receptor superfamily, member 1b 94928_at 13 0.76
Insulin-like growth factor binding protein 3 95082_at 12 0.92
Gro1 oncogene 95348_at 10 0.73
Epiregulin 98802_at 9 0.71
Ras-related protein 97319_at 8 –0.91
NADH dehydrogenase 100628_at 7 –0.91
Actin, alpha, cardiac 101028_i_at 7 –0.92
Actin, alpha 1, skeletal muscle 100381_at 7 –0.85
Cyclin-dependent kinase inhibitor 1a (p21) 94881_at 6 0.04
Interferon gamma 99334_at 6 0.38
Angiopoietin-like 4 96119_s_at 6 0.69
Cd44 antigen 103005_s_at 5 0.71
Cytokine receptor-like factor 1 161046_at 5 0.72
High mobility group at-hook 2 99058_at 5 0.80
Tumor-associated calcium signal transducer 2 160651_at 5 0.31
Forkhead box a2 93950_at 5 0.67
Fos-like antigen 1 99835_at 5 0.72
Matrix metalloproteinase 3 98833_at 5 0.55

aMurine genome U74v2 (for complete details: http://www.affymetrix.com). b Percentage representing the number of times a given predictor was used for given target. c Linear correlation
of the predictor genes to the given target.



were good predictors. As demonstrated by
CoD, however, genes exhibiting low corre-
lation to specific targets may play an impor-
tant role in predicting target behavior. This
is exemplified by the best predictor for Lox,
with a frequency of 36% but a correlation
coefficient of only –0.37. Thus, the CoD
methodology identified interactions
between targets and predictors that could
potentially be missed when examined on a
gene-by-gene basis. 

The complex nature of biological inter-
actions between targets and predictors is
illustrated in Figure 2. The linking diagram
was built using the fi ranks for each predic-
tor gene and each target gene. The inclu-
sion of any singular gene does not represent

a causal relationship between predictor and
target, but rather that gene Gi with two
other genes was also a good predictor of a
specific target. To some degree, all targets
were predictive of each other, a relationship
not surprising given that targets were
selected a priori on the basis of their
responsiveness to Ahr ligands. Several genes
predominated as predictors of each target.
These relationships were denoted by the
thickness of the connective lines (Figure 2)
and the percentage of time used in three
gene combinations (Table 1). The number
of unique predictors varied with target and
cutoff range, with 85% of all possible pre-
dictors used to estimate Ahr, 63% Cyp1b1,
98% Igfbp-5, 22% Lox, and 53% Opn.

Given our cutoff range, a total of 34 genes
were resolved to provide a comprehensive
association of all targets and predictors
(Figure 3). The predominant linkages were
between all five targets, particularly Opn as
a predictor of Ahr and Cyp1b1. The best
nontarget predictors included Bdnf, Actc1,
c-myc single-strand–binding protein,
Igfbp-6, and integrin beta4. Figure 4A–E
shows the use of individual gene predictor
values for construction of three gene pre-
dictor set models. It should be noted that
predictor genes may lie upstream or down-
stream from the target or be part of a chain
of interaction among various intermediates
within the biological network. A large
number of three-clone combinations met
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Figure 2. Gene–gene interaction networks activated by ligands of the Ahr. All three gene combinations for each target that met the cutoff of COD > 0.9 and error
< 0.5 were individually plotted using a program developed by Breitkreutz et al. (2003). The thickness of the line denotes the selection frequency for individual gene
for each target. 



the selection criteria [(θ
–

> 0.9 and ε–(ψopt)
< 0.05], with one or two clones identified as
predominant predictors within the sample
pool. A complete listing of target–predictor
clone combinations is presented in Table 1
of the  Supplemental Material (http://www.
ehponline.org).

When examined as three-gene predictor
sets, the best combinations for Ahr were
Igfbp-3, lymphocyte antigen 6, and Actc1
with CoD of 0.963; Ras-related, proliferin,
and Igfbp-6 with CoD of 0.96; and throm-
bomodulin, lymphocyte antigen 6, locus,
and Igfbp-6 with CoD of 0.953 (Figure 4A).
The best combinations for Cyp1b1 were
Ahr, melanoma growth-simulating activity-
alpha (Gro1) oncogene, and Cd44 antigen
with CoD of 0.944; Actc1, Bdnf, and epireg-
ulin with CoD of 0.939; and Ahr, Cd44
antigen, and proliferin 3 with CoD of 0.944
(Figure 4B). The best combinations for
Igfbp-5 were signal transducer and activator
of transcription 1 (Stat1), Opn, and procol-
lagen-lysine, 2-oxoglutarate 5-dioxygenase 3
(Plod3) with CoD of 0.98; Opn, Igfbp-1,
and interleukin 1 alpha with CoD of 0.97;
and insulin II, Opn, and Igfbp-1 with CoD
of 0.97. These combinations performed best
when used collectively (Figure 4C). When
examined as three gene predictor sets, the

best predictor combinations for Lox were
lymphocyte antigen 6, locus H, Ndufc1, and
perpherin with CoD of 0.902; perpherin,
lymphocyte antigen 6, locus H, and prolif-
erin 2 with CoD of 0.923; and cadherin 16,
single-stranded interacting protein 1,
and Cd44 antigen with CoD of 0.924
(Figure 4D). For Opn the best three-gene
predictor combinations were Ahr, Gro1
oncogene, and Cd44 antigen with CoD of
0.944; Actc1, Bdnf, and epiregulin with
CoD of 0.939; and Ahr, Cd44 antigen, and
proliferin 3 with CoD of 0.944 (Figure 4E).

Discussion

The identification of relevant components
of the biological response to Ahr ligands
was modeled using the transcriptional pro-
files of cells from murine embryonic heart
and kidney or vasculature. Genes whose
transcription levels exhibited coupling by
CoD methodology were hypothesized to be
predictive of one another, whether lying
upstream or downstream within the biolog-
ical network or distributed about the net-
work in such a way that their relation to
the target gene was only based on chains of
interactions among various intermediate
genes. Linear correlation was found to
identify predominant genomic responses to

a particular stimulus but was unable to
identify sets of genes whose actions and
interactions drive the transcriptional level
of a target. This is problematic, as a gene in
and of itself may not be highly correlated
to a target but in combination with other
genes may be predictive of the behavior of
the target. For example, Ly6h was identi-
fied as the most frequently used Lox predic-
tor but showed only modest correlation
with Lox as a target. Similarly, the small
proline-rich proteins 2b and 2f were only
poorly correlated to Ahr but rank among
the top predictors of Ahr behavior. 

When used individually, each predictor
gene exhibited a CoD measure comparable
to the value obtained using a linear correla-
tion coefficient model. In contrast the CoD
method detected multivariate nonlinear
influences on gene expression in complex
genetic networks and enabled the calcula-
tion of a CoD value that mathematically
reflected interactions among all predictors.
Use of different treatment modalities was
advantageous and allowed identification of
genes that move across the transcriptome in
unison after activation of Ahr signaling
regardless of contextual differences in gene
expression or tissue-specific patterns of dif-
ferentiation. For example, the constitutive
and inducible expression of Cyp1b1, a gene
involved in steroidogenesis, is highly tissue
specific. Cyp1b1 is expressed constitutively
in the adrenal gland, ovary, and testes and is
highly inducible by adrenocorticotropin,
cAMP, peptide hormones, and Ahr ligands
(Buters et al. 2002). Cyp1b1 is a complex
gene, as Ahr-independent induction is
observed in certain tissues (Kerzee and
Ramos 2001), and the gene is overexpressed
as a function of transformation (Vondracek
et al. 2002). Similarly, Opn is differentially
expressed under constitutive and inducible
conditions and interacts with surface recep-
tors in a context-specific manner. In the nor-
mal human kidney, Cd44 is the primary
receptor partner of Opn, whereas integrin
binding and activation are predominant
under stressful conditions (Xie et al. 2001).
This dichotomy is also observed within the
context of injury, as Opn promotes accumu-
lation of macrophages and participates in
macrophage-mediated renal injury but exerts
renoprotective actions during acute ischemia.
Such differences give rise to unique finger-
prints that influence gene–gene interactions.
Thus, combined data sets within different
contextual networks increased the power of
the prediction and allowed better integration
of biological complexity. 

As a biological target, Ahr was best pre-
dicted by lymphocyte antigen 6e (Ly6e), a
retinoic acid–responsive gene involved in
T-cell activation (Mao et al. 1996; Schedlich
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Figure 3. Focused predicted gene networks activated by ligands of the Ahr. The common predictor genes
across all targets (Ahr, Cyp1b1, Igfbp-5, Lox, and Opn) are illustrated as described by Breitkreutz et al.
(2003) to identify focused gene networks regulated by the Ahr.



and Graham 2002). Ahr has been implicated
in the immune suppressant activity of aro-
matic hydrocarbons (Kerkvliet et al. 2002)
and in the regulation of retinoic acid metab-
olism. Two other predictor genes for Ahr,
Igfbp-3, and Igfbp-6, have also been identi-
fied as retinoic acid–regulated genes
(Dailly et al. 2001; Schedlich and Graham
2002), suggesting that Ahr may couple to
predictor genes through retinoic acid linkage
(Andreola et al. 1997). Recent studies
demonstrate that retinoids activate Ahr sig-
naling (Soprano and Soprano 2003),
whereas Ahr controls the expression of genes
involved in retinoic acid metabolism
(Gonzalez and Fernandez-Salguero 1998).
Thus, computational strategies delineated
connections between Ahr and retinoic acid
that otherwise could not have been predicted
in the absence of biological information.

Cyp1b1 was predicted by syk tyrosine
kinase (Syk) in all cases, a relationship
consistent with work by Mounho and
Burchiel (1998) showing that oxidative
metabolites of B[a]P increase tyrosine
phosphorylation of Syk. Syk participates in
integrin signaling, leading to nuclear factor-
kappa B activation and increased levels of

cytokine mRNAs (Lin et al. 1995) and
regulation of cancer cell growth and metas-
tasis (Coopman et al. 2000). Similarly,
Ndufc1 appeared in each predictor set, with
recent microarray experiments showing
common responses in cancer cells for
Cyp1b1 and Ndufc1 (Huang et al. 2003).
Cyp1b1 catalyzes activation of molecular
oxygen in an NADH-dependent electron
transport pathway, so a connection with
Ndufc1 and the mitochondrial electron
transport chain is consistent with the
known biology. Individuals with clefts of
the lip and/or palate often share genetic
variations in both Ndufc1 and cytochrome
P-450, thus raising intriguing links
between the two enzyme systems (Johnston
and Bronsky 1995). 

In several instances, the algorithm
selected a predominant gene, such as Opn,
when Igfbp-5 was chosen as a target. Opn is
a secreted acidic phosphoprotein contain-
ing a conserved GRGDS sequence that reg-
ulates a variety of cellular processes,
primarily through the αvβ3 integrin. Opn
is a component of the human athero-
sclerotic plaque that promotes adhesion
and spreading of vascular cells and is a

potent chemotactic factor for vSMC
(Wilson et al. 2002). The strong relation-
ship between Igfbp-5 and Opn is in keeping
with studies showing that Opn binds to
Igfbp-5 with high affinity (Nam et al.
2000) and that this interaction concen-
trates Igfbp-5 on the matrix and modulates
cooperative interactions between Igf-I
receptor and integrin αvβ3 in atheroscle-
rotic lesions (Nichols et al. 1999). Igfbp-5
is the most conserved member of the
IGFBP family and a regulator of bone, kid-
ney, and mammary gland function. Igfbp-5
plays a decisive role in tumor cell prolifera-
tion (Schedlich and Graham 2002) and
together with Opn promotes IGF-I–
inducible biological effects. Other genes
selected as predictors have been linked to
Igfbp-5, such as signal transducer and acti-
vator of transcription (Chapman et al.
1999) and insulin (Duan et al. 1996).

For other targets, such as Lox, the con-
nections between predictor and target gene
were less clear. Lox is an extracellular and
intracellular copper-containing enzyme
that initiates cross-linking of collagen and
elastin by catalyzing oxidative deamination
of the epsilon-amino group in certain
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Figure 4. Predictor/target relationships identified
using modeling methodology. Three gene combi-
nations were used to predict the behavior of
selected target genes: (A) Ahr ,  (B) Cyp1b1 ,
(C) Igfbp-5, (D) Lox, and (E) Opn.  The values
shown are CoD values for each individual predic-
tor and the amplified effect of combining multiple
predictors for one target.



lysine and hydroxylysine residues of colla-
gens and lysine residues of elastin. Lox is
found in smooth muscle cell nuclei and is
speculated to be involved in oxidative
deamination of peptidyl lysine (Kuivaniemi
et al. 1984; Li et al. 1997). As such, the
finding that matrix-related genes such as
peripherin and proliferin2 were selected as
predictors is of interest. Integrins may link
Lox and peripherin, with both collagen and
peripherin modulated by the α2β1 integrin
(Khalsa et al. 2000). The connection with
immune-related genes such as Cd44 and
Ly6h is intriguing and may involve inter-
feron. Interferon-gamma, a proinflamma-
tory cytokine, downregulates Lox gene
expression in rat aortic smooth muscle cells
(Song et al. 2000), and Ly6h has also been
identified as a target of interferon (Horie
et al.1998). Lox and Ndufc1 are coregu-
lated under sheer stress (Ando et al. 1996),
so a link between these two genes may
also exist. 

The relationship between Opn and Ahr
is intriguing. Recent studies have shown
that resveratrol (3,5,4´-trihydroxystilbene),
an Ahr antagonist, modifies the inhibitory
effect of TCDD on Opn expression (Singh
et al. 2000). Opn is a ligand for the Cd44
receptor and stimulates Cd44 expression on
the osteoclast surface (Chellaiah et al.
2003; Sodek et al. 2002). The relationship
between Cd44 and Opn is well established
(Denhardt et al. 2001). The analysis also
predicted a relationship between Opn and
Actc1, a connection consistent with reports
by Shu and co-workers (2002) showing
that Opn-expressing tubuli in kidney were
tightly associated with a peritubular influx
of alpha-smooth muscle actin. It is also not
surprising that Opn expression was pre-
dicted by two growth factors such as
epiregulin and Bdnf (Lee et al. 2001;
Toyoda et al. 1995). The observed associa-
tions indicate that measurement of the
transcriptional state of multiple gene sets
can be combined to better predict the
expression level of a target gene The
strongest interaction between targets was
the interplay between Ahr, Cyp1b1, and
Opn (Figures 2 and 3). Although these bio-
logical connections are novel, they are in
keeping with studies showing that Ahr sig-
naling is critical to Opn regulation (Singh
et al. 2000) and that ligands of the Ahr
modulate Opn expression. For some of the
target/predictor relationships, no direct
linkages could be established. An example
is Bdnf, a protein that allows the survival of
specific neuronal populations and found to
be highly predictive of Opn. As both Bdnf
and Opn are involved in matrix regulation,
the relationship could be an interesting
area for future investigation.

Conclusions
Novel putative interactions were defined to
investigate gene–gene interactions regu-
lated by the Ahr. In many instances, the
relevance of the biological relationships
uncovered using CoD methodology was
ratified by published reports, whereas in
others, novel interactions were identified.
The computational approach used afforded
us the ability to begin constructing gene
networks that define broad-ranging interac-
tive biological relationships. Although the
biological bases for these theoretical rela-
tionships must be investigated further, the
number of possible combinations is now
reduced to a manageable size that can be
systematically scrutinized using established
molecular methodologies. 
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