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Misclassification of exposure has long been
recognized as an inherent limitation of epi-
demiologic studies of the environment and
disease (1). For many agents of interest, expo-
sures take place over time and in multiple
locations so that it is difficult to accurately
estimate the relevant exposures for individual
study participants, particularly within the lim-
its set by feasibility, participant burden, and
cost. In general, exposure measurement error
tends to blunt the sensitivity of epidemiologic
studies for detecting the effects of environ-
mental agents, although the specific impact of
exposure error on effect estimates depends on
several factors including the study design, the
types of error, and the relationships between
the outcome and the independent variables
(1,2). As the problem of exposure error has
become well recognized, researchers have
taken steps to control its consequences by lim-
iting the degree of error through careful study
design and data collection, by estimating the
degree of error using a nested validation study,
and by making adjustments for measurement
error in statistical analyses.

In this paper, we address the problem of
exposure error in observational ecologic
time–series studies of air pollution and health.

The pollution of outdoor air is a public health
concern throughout the world. For decades,
epidemiologic studies have been a cornerstone
of our approach to investigating the health
effects of air pollution and have been a princi-
pal basis for setting regulations to protect the
public against adverse health effects. Two
broad types of observational study designs
have been used in research on air pollution:
ecologic or aggregate-level studies, either cross-
sectional or time–series in design, and individ-
ual-level studies, primarily of the cross-section-
al or cohort designs. In ecologic studies, popu-
lation-level indicators of exposure are typically
drawn from centrally sited air pollution moni-
tors. In individual-level cross-sectional and
cohort studies, exposure estimates for individ-
ual participants may be based on centrally
located monitors, on the combination of cen-
tral monitors with personal records of envi-
ronments where participants spend time, or
on personal exposure monitoring (3). 

Regardless of study design, any pollution
exposure assessment strategy introduces some
degree of exposure measurement error. For
example, in the Six Cities Study (4,5), a
prospective cohort study of air pollution and
respiratory health and mortality, exposure

estimates for persons from each of the six
cities were based on centrally sited monitors.
Exposures were further characterized for sam-
ples of participants using personal monitors
and monitors placed in their homes; the
resulting data provide an understanding of
the components of error associated with using
the central site data for all participants. 

The problem of measurement errors in
predictor variables in regression analysis has
been carefully studied in the statistics and epi-
demiologic literature for several decades.
Fuller (6) summarized early research on linear
regression with so-called “errors-in-x” vari-
ables. Carroll et al. (7) extended this literature
to generalized linear models including
Poisson, logistic, and survival regression
analyses. Thomas et al. (2) presented an
overview of the exposure error or misclassifi-
cation problem from the general epidemio-
logic perspective. Spiegelman et al. (8),
Willett (9), and Pierce et al. (10) provided
recent illustrations of statistical approaches to
measurement error in epidemiologic research. 

In one of the early papers on the topic of
exposure error in studies of air pollution, Shy
et al. (11) described the problem and
addressed its consequences in an epidemio-
logic framework. Goldstein and Landovitz
(12,13) recognized that a single monitoring
station may not adequately represent a geo-
graphic area and conducted an analysis of
correlations among concentration data from
several monitors in New York City. In the
ensuing decades, there has been deepening
understanding of measurement error in gen-
eral and of its potential implications for the
study of air pollution (14,15). 
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Misclassification of exposure is a well-recognized inherent limitation of epidemiologic studies of
disease and the environment. For many agents of interest, exposures take place over time and in
multiple locations; accurately estimating the relevant exposures for an individual participant in epi-
demiologic studies is often daunting, particularly within the limits set by feasibility, participant
burden, and cost. Researchers have taken steps to deal with the consequences of measurement error
by limiting the degree of error through a study’s design, estimating the degree of error using a nest-
ed validation study, and by adjusting for measurement error in statistical analyses. In this paper,
we address measurement error in observational studies of air pollution and health. Because mea-
surement error may have substantial implications for interpreting epidemiologic studies on air pol-
lution, particularly the time–series analyses, we developed a systematic conceptual formulation of
the problem of measurement error in epidemiologic studies of air pollution and then considered
the consequences within this formulation. When possible, we used available relevant data to make
simple estimates of measurement error effects. This paper provides an overview of measurement
errors in linear regression, distinguishing two extremes of a continuum-Berkson from classical type
errors, and the univariate from the multivariate predictor case. We then propose one conceptual
framework for the evaluation of measurement errors in the log-linear regression used for
time–series studies of particulate air pollution and mortality and identify three main components
of error. We present new simple analyses of data on exposures of particulate matter < 10 µm in
aerodynamic diameter from the Particle Total Exposure Assessment Methodology Study. Finally,
we summarize open questions regarding measurement error and suggest the kind of additional data
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During the 1990s, substantial new evi-
dence, largely from ecologic time–series analy-
ses of air pollution and mortality, showed that
daily variation in ambient measures of particu-
late air pollution within the current standards
of the U.S. Environmental Protection Agency
was associated with daily mortality levels (16).
There are strong concerns about interpreting
these associations in view of potential errors in
the exposure measurements. In a series of
papers, Lipfert and Wyzga (17) and Lipfert
(18,19) suggested that the central monitoring
data used in the time–series analyses have
uncertain relationships with the exposures of
individuals in the study communities; they
further argued that those errors vary among
pollutants, complicating interpretation of any
multipollutant models. Lipfert and Wyzga
(17) referred specifically to an analysis by
Schwartz et al. (20) that attributed effects on
mortality to fine rather than coarse particles,
based in part on the results of multivariable
models which included variables for both par-
ticulate measures. 

A number of exposure assessment studies
found sizable differences between actual per-
sonal exposures to particles and estimates
based on central monitor values (21). Some
investigators have questioned whether the
observed associations are plausible given these
findings. However, Schwartz et al. (20)
responded that as the number of deaths per
day is calculated over the population, the
relevant exposure measure is the mean of
personal exposures on that day, which is prob-
ably more tightly correlated with central sta-
tion monitoring than individual exposures.
Janssen et al. (22) reported that much of the
variation in particulate matter ≤ 10 µm in
aerodynamic diameter (PM10) measurements
is between people and that the longitudinal
correlation between average and ambient
PM10 measures is relatively high. The debate
over measurement error and its consequences
has taken place, however, without the devel-
opment of a more comprehensive formulation
of the problem.

Because exposure measurement error may
have substantial implications for interpreting
epidemiologic studies on air pollution, partic-
ularly the time–series analyses, we developed
one systematic conceptual formulation of the
problem of exposure error in epidemiologic
time–series studies of air pollution and con-
sidered the possible consequences for relative
risk estimation. We used available and rele-
vant data to obtain rough estimates of the
magnitudes of the effects of measurement
error for one city. 

Overview of Measurement Error
Effects in Regression Models
The fundamental concepts of how exposure
error can affect an epidemiologic study of

pollution and health can be shown by consid-
ering the effects of exposure measurement
error in a standard linear Gaussian regression
model. The effects in Gaussian models have
been discussed in full detail elsewhere
(2,6,7,23,24). For simplicity, consider a
regression of the health response (e.g., log
mortality rate on day t) and predictors (e.g.,
PM10, O3, and weather):

yt = α + βx xt + εt [1]

where α and βx are regression coefficients to
be estimated, and εt represents residual error
that is assumed to be independent of xt. Here
βx is the expected change in mortality per unit
change in true exposure. Given observations
(xt, yt), t = 1, ..., T and appropriate assump-
tions about the distribution of the residuals,
ordinary least-squares estimation provides
optimal (unbiased and minimum varianced)
estimates of the regression coefficients.

Now we assume that instead of the true
exposure levels xt, we have only an imperfect
measure of exposure, denoted zt. The overall
difference between xt and zt comprises multi-
ple components of error, including differences
between individual- and population-average
exposures; between population-average expo-
sures and ambient levels at central sites; and
between actual ambient levels and the mea-
surements of those levels. Suppose we regress
the health outcome yt on the imperfect zt
rather than xt, which is unavailable: 

yt = α* + βzzt + εt*. [2]

How will β^z differ from β^x?
To answer this question, we first assume

that zt is a surrogate for xt, which means that,
given xt, there is no additional information in
zt about yt. We then can distinguish two fun-
damentally distinct types of relationships
between the true and measured exposures,
which represent poles of a measurement error
continuum. The first type is referred to as the
classical error model (7), in which we assume
that z is an imperfect measure of x, so that the
average z within each x stratum equals x
[E(z|x) = x]. Then it follows that the measure-
ment error z - x is uncorrelated with the true
value x. This classical model is a reasonable
one for the difference between measured
ambient levels of pollution and the true values
for a measuring device that is unbiased. That
is, when the true level of pollution is x, an
unbiased instrument will measure x on aver-
age, even if individual measurements z differ
from x.

The second type of model for measurement
error is the Berkson error model (2). In this
model, we assume that the average value of the
true exposure x within each stratum of mea-
sured level z equals z [E(x|z) = z]. This Berkson
model is appropriate when z represents a mea-
surable environmental factor that is shared by a

group of participants whose individual expo-
sures x might vary because of time–activity pat-
terns. For example, z might be the spatially
averaged ambient level of a pollutant without
major indoor sources and x might be the per-
sonal exposures that, when averaged across peo-
ple, match the ambient level. 

Classical and Berkson models for exposure
measurement errors represent two extremes of
a continuum. Most exposure errors combine
elements of each, but because the conse-
quences on risk assessment of classical and
Berkson errors differ, it is useful to consider
each in turn. In the case of the Berkson error,
if we regress yt on zt, rather than on xt, the
estimate β^z is an unbiased estimate of the
coefficient βx that would be obtained by
regressing yt on the actual exposure xt. Having
zt rather than xt does not lead to bias in the
regression coefficients under the surrogacy
assumption. The exposure measurement error
increases the variance of the regression coeffi-
cient, however, because having zt rather than
xt is obviously not as informative about the
coefficient βx. Bias is not introduced, howev-
er. The same is true if the average x at each
value of z differs from z by a fixed amount a,
i.e., E(x|z) = z - a.

In contrast, under the classical error
model β^z, obtained by regressing yt on the
imperfect measure exposure zt, is a biased esti-
mate of βx. In the simple linear regression
with one explanatory variable, β^z is expected
to be smaller than βx, or attenuated. The
degree of attenuation increases as the variance
of the exposure error increases. Again, a con-
stant difference in the expected values of the
two measures does not change this result.

It is useful to establish these results on the
effects of exposure error on simple linear
regression coefficients and helpful to do so in
advance of considering a multiple regression
case. The model of interest is Equation 1, but
because xt is unobserved we instead might
regress yt on zt (Equation 2).

The question is how will β^z from Equa-
tion 2 estimate βx in Equation 1. Under the
Berkson model, xt is assumed to vary about zt,
so that by Equation 1, 

E(yt|zt) = α + βx E(xt|zt) = α + βxzt. [3]

Comparing Equation 3 and Equation 2
shows that βz = βx in the Berkson error case;
that is, β^z is an unbiased estimate of βx.
Adding a constant to one exposure variable
only affects the intercept.

Under the classical model, zt is assumed to
vary about xt or E(zt|xt) = xt, which does not
imply E(xt|zt) = zt. If we further assume that xt
and zt - xt are jointly normally distributed, it
can be shown that

E(yt|zt) = α** + cβxzt,

where c is an attenuation factor between 0 and
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1 given by c = var(xt)/|[var(xt) + var(δt)] where
δt = zt - xt is the exposure error. Again, a con-
stant difference between the two exposure
measures only changes the intercept.

Thus, the estimated regression coefficient
is biased toward zero. In one pertinent case,
βx = 0, the naive estimate β^z is unbiased with
E(β^z)= βx = 0; that is, under the classical
error model, measurement error does not
lead to spurious associations if there is truly
no association. Random variation, of course,
can produce such associations by chance, as it
can when there is no measurement error.
How-ever, the probability of such false posi-
tive associations (the type 1 error rate)
remains the same.

Realistic models for estimating the
effects of air pollution on mortality have ele-
ments of both classical and Berkson error
models. In general, the effect of such expo-
sure errors is intermediate between the two
extreme models. The effect of measurement
error, therefore, likely depends on the direc-
tion and magnitude of the correlation of
measurement errors with the measured
exposures and not just on the variance of the
measurement errors. 

More complex multipollutant models are
often applied in an attempt to estimate the
independent effect of a pollutant present in a
mixture with other pollutants. For example,
in an analysis of air pollution and mortality
in Philadelphia, Kelsall et al. (25) regress
mortality on as many as five pollutants.
Because little empirical evidence about the
simultaneous errors in multiple pollutants is
currently available, we only lay a foundation
that can inform the design of future studies,
as discussed in “Summary and Research
Recommendations.” Confining our attention
to the classical and the Berkson error cases,
we again assume a linear regression model of
the form given by Equation 1, where xt now
represents a vector of exposure variables, with
a corresponding vector of regression coeffi-
cients βx, and zt denotes a vector of measure-
ments of each exposure variable. In the
Berkson error case, the assumption that xt is
an imprecise version of zt or E(xt|zt) = zt still
assures that the estimates of the regression
coefficients are unbiased, as in the univariate
instance. Under the classical error model,
however, the multiple regression extension is
not so straightforward. We again assume that
zt is an imprecise measure of xt, i.e., E(zt|xt) =
xt. To compute E(xt|zt), the average xt at each
zt, let V denote the covariance matrix of xt
and let T denote the covariance matrix of the
difference δt = zt - xt, and, as before, we
assume that δ and x are independent. The
matrix generalization of the earlier result is
that β^z = β^xC, where C = T (T + V)-1. Now
it is no longer true that β^zj < β^xj for each
component (j) and estimates of regression

coefficients can be biased toward or away
from the null; that is, positive associations
can be produced when the component is cor-
related with at least one component having a
nonzero effect, even though the true coeffi-
cient for a particular component is zero. 

Table 1 illustrates the magnitude of bias
that can result from regressing yt on two pre-
dictors z1t and z2t instead of on x1t and x2t.
This example might refer to estimating the
effects of PM10 and O3 on mortality when
ambient values (z values) instead of personal
exposure (x values) are available. We assume
z1t = x1t + δ1t and z2t = z2t + δ2t, V11 = var(x1t)
= V22 = var(x2t) = 1. Table 1 presents the
expected values for the estimated regression
coefficients when the true values are both one
(βx1 = βx2 = 1) for varying values of the corre-
lation between x1t and x2t, the variances of δ1t
and δ2t, and the correlation between the mea-
surement errors δ1t and δ2t. At present, there
is little empirical evidence about the nature or
size of the correlations between pairs of pollu-
tant measurements and Table 1 is intended to
illustrate the consequences of measurement
error in the two-predictor model. 

The first line of Table 1 refers to an
example in which there is no correlation
between x1t and x2t and there is equal vari-
ability of the two exposure errors δ1t and δ2t,
and these errors are not correlated; that is,
the error in one predictor does not predict
the error in the other. Here, there is an equal
degree of attenuation in the coefficients for
the two variables. With unequal variances
but no correlation, i.e., the sixth row, the
degree of attenuation is greater for the vari-
able with greater variance. If the exposures
are correlated but the errors are uncorrelated
(the second and third rows), the two effect
estimates are similarly altered with the direc-
tion of the effect depending on the sign of
the correlation. Introducing correlation
between the errors, i.e., the fourth and fifth
rows, has an effect that depends on the pat-
tern of correlation. The bottom half of Table

1 shows more complex patterns with differing
patterns of correlation and variation of the
two errors. Some of the scenarios introduce
substantially different effects of the two
variables, but none yield effect estimates
above the true value of one, even with more
extreme differences in error variances or the
two correlations.

Table 2 also addresses the consequences of
measurement error in a two-variable model,
but in this example only one variable (x2) has
a true effect; the other exposure (x1) has no
effect on the health outcome (y). Either corre-
lation between x1t and x2t or their errors can
introduce an apparent effect of x1 on y. Some
scenarios of variance and correlation even
bring the apparent effects of the two variables
quite close (e.g., the tenth and eleventh rows),
but in every case, including more extreme sit-
uations than shown, the estimate for the true
predictor (β2) is always larger than for the null
predictor (β1). 

Some general conclusions can be offered
concerning multipollutant models under this
simple classical error model.

Conclusion 1. There is a general tendency
for the coefficient from the regression on zt to
be smaller than the corresponding coefficient
from the regression on xt, i.e., β^zj> β^xj if all
βxj > 0.

Conclusion 2. The degree of attenuation
of each coefficient depends, in large part, on
its measurement error variance relative to the
variance of the true exposure—i.e., Tjj/Vjj.
Thus, the coefficients for variables that are
measured with considerable error will be
attenuated more than those of variables with
less error.

Conclusion 3. Depending on the correla-
tion structure of the attenuation matrix C,
some of the effect of one variable, βxj, may be
transferred to the estimate of another vari-
able’s effect, β^zk. Such transfers of effect are
generally from a more poorly measured vari-
able to a better measured variable. However,
for such transfers to be large, the true exposure
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Table 1. Predicted bias in bivariate regression coefficients under different correlations (corr) between the
true exposures and measurement errors with indicated variances (var) when both variables have a true
effect: βx1 = βx2 = 1.0. 

Corr(x1,x2) Var(δ1) Var(δ2) Corr(δ1, δ2) E(β̂z1) E(β̂z2)

0.0 1.0 1.0 0.0 0.50 0.50
0.5 1.0 1.0 0.0 0.60 0.60
-0.5 1.0 1.0 0.0 0.33 0.33
0.0 1.0 1.0 0.5 0.40 0.40
0.0 1.0 1.0 -0.5 0.67 0.67
0.0 0.5 2.0 0.0 0.67 0.33
0.5 0.5 2.0 0.0 0.71 0.53
0.5 0.5 2.0 0.3 0.66 0.27
0.5 0.5 2.0 0.5 0.64 0.21
0.5 0.5 2.0 0.7 0.64 0.14
0.5 0.5 2.0 -0.5 0.83 0.50
0.5 0.5 2.0 -0.7 0.91 0.57
0.5 0.5 2.0 -0.9 1.00 0.66

We assume var(x1) = var(x2) = 1.



variables or their measurement errors need to
be substantially correlated.

Conclusion 4. As a consequence of
conclusion 3, the estimate of a parameter can
be biased away from the true value. How-
ever, this type of bias generally arises only
with a very strong negative correlation
between the measurement errors (e.g., rows
9–11 of Table 2).

Conclusion 5. Also as a consequence of
conclusion 3, there will generally be spurious
associations for a variable xj that, in fact, has
no effect only if xj is substantially correlated
with one or more variables which actually
have an effect. Generally, the correlation
among the errors has a larger influence on the
bias than the correlation among the true pol-
lutant levels.

These conclusions are obtained from and
therefore pertain to the classical linear regres-
sion model with two predictors, assuming
that zt is a surrogate for xt (nondifferential
errors). The actual exposure measurement
situation in the air pollution–mortality con-
text is obviously more complex. First, log-lin-
ear, not linear, models are used, although the
degree of nonlinearity is usually small in
mortality studies. Second, the measurement
errors are not purely of the classical nondif-
ferential type. For example, the degree of
error for gaseous pollutants may depend on
temperature or other covariates. Finally,
errors may be multiplicative rather than addi-
tive. Nonetheless, the linear regression with
classical measurement error is a leading case
that provides insight into the major possible
consequences of exposure errors.

Framework for Assessing
Measurement Error Effects in
Pollution–Mortality Studies
We now build on the fundamental concepts
underlying statistical models of exposure
measurement error and focus on the specific
log-linear regressions used for assessing the
pollutant–mortality association, controlling
for weather variables. Our discussion is based
on the premise that the ideal investigation of

the health effects of air pollution would be
conducted at the individual level with
measurements of personal exposure to pollu-
tants. However, exposure and mortality data
are generally only available after aggregation to
a municipal level; little or no data from indoor
air monitoring are available. Finally, air pollu-
tant measurements are imprecise and this
imprecision has consequences for estimates of
pollutant effects on mortality. 

To investigate the effects of exposure error
in the log-linear regressions widely used to
assess the pollutant–mortality association, con-
sider the following model for an individual’s
risk of mortality:

λit = λ0it exp(xitβx) [4]

where λit is the risk of death for person i on
day t; λ0it is that individual’s baseline risk in
the absence of exposure, i.e., xit = 0, and
exp(xit βx) is the relative risk of death associat-
ed with the explanatory variables xit. Let yit = 1
if person i dies on day t and 0 if that person
does not. We typically observe the total num-
ber of deaths for a population

yt = Σ
i=1

nt
yit, 

where nt ≈ n is the population size on day t.
By Equation 4, the expected total number of
deaths λt in a community is

λt = Eyt = ∑
i

λit = ∑
i

λ0it exp(xitβx). [5]

In analyzing population-level data on mortali-
ty and air pollution, log-linear regressions of
the following form have been fit

λt = exp[s(t) + ztβz + utβu] [6]

where s(t) is an arbitrary but smooth function
of time introduced to control for the
confounding of longer-term trends and
seasonality, zt is the average of multiple
monitor measurements of ambient pollution
measurement for day t, and ut are other
possible confounders such as temperature
and dew point temperature on the same and
previous days. 

If the regression coefficient βx for a pollu-
tant in the personal risk model Equation 4 is

the target for inference, how closely do esti-
mates of βz from model Equation 6 approxi-
mate βx? 

Figure 1 poses a model of the relationship
between the personal exposure to a pollutant
xit for person i on day t and the available
ambient values zt measured with error by
monitors. Assuming, for simplicity, a high
degree of spatial homogeneity in ambient lev-
els, personal exposure is contributed to by zt

*,
the true outdoor level, and wit, the indoor
level, which is also influenced by zt

* from
penetration of the pollutant in outdoor air
into indoor spaces. For example, personal
exposure to PM10 is determined by the time
spent outdoors, the concentration during that
time, and by the concentrations in indoor
environments that are determined by indoor
sources such as cigarette smoking and the
penetration of particles indoors because air is
exchanged between the outdoors and the
indoor environments. Figure 1 further shows
that the personal risk of dying is influenced
by an individual’s baseline risk in addition to
the unobserved personal exposure to pollu-
tant xit. Only the measured ambient pollution
data are observed and are therefore shown in
a rectangular box.

In considering the consequences for β^z
as an estimate of βx with an imprecise mea-
sure of ambient pollution zt, rather than
actual personal exposure xit, it is useful to
begin by decomposing the pollution mea-
surement difference between xit and zt into
three components:

xit = zt + (xit - x–t) + (x–t - zt
*) 

+ (zt
* - zt). [7]

Here, (xit - x–t) is the error due to having aggre-
gated rather than individual exposure data; (x–t
- zt

*) is the difference between the average per-
sonal exposure and the true ambient pollutant
level; and (zt

* - zt) represents the difference
between the true and the measured ambient
concentration. 

The first term (xit - x–t) is an example of
Berksonian error so that, in a simple linear
model, having aggregate rather than individual
exposure does not itself lead to bias into the
regression coefficient. The second term (x–t -
zt

*) is not Berksonian and is likely to be a
source of bias. The final term (zt

* - zt) is largely
of the Berkson type if the average of the avail-
able monitors zt is an unbiased estimate of the
true spatially averaged ambient level zt

*.
We can now further study the effects of

these three terms on risk estimation by substi-
tuting the decomposition in Equation 7 into
Equation 5. After some straightforward calcu-
lations detailed in the “Appendix,” the expect-
ed number of deaths on day t can be written 

Eyt = exp[log(nt λ
–
0t) + ztβx + {(x–t

(w) - x–t)

+ (x–t - zt
*) + (zt

* - zt)}βx]. [8]
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Table 2. Predicted bias in bivariate regression coefficients under different correlations (corr) between the
true exposures and measurement errors with indicated variance (var) when only one variable has a true
effect: βx1 = 0, βx2 = 1. 

Corr(x1,x2) Var(δ1) Var(δ2) Corr (δ1, δ2) E(β̂z1) E(β̂z2)

0.0 0.5 2.0 0.0 0.00 0.33
0.0 0.5 2.0 0.5 -0.12 0.35
0.0 0.5 2.0 -0.5 0.12 0.35
0.5 0.5 2.0 0.0 0.06 0.29

-0.05 0.5 2.0 0.0 -0.06 0.29
0.5 0.5 2.0 0.3 -0.01 0.28
0.5 0.5 2.0 0.5 -0.07 0.29
0.5 0.5 2.0 0.7 -0.15 0.29
0.5 0.5 2.0 -0.5 0.17 0.33
0.5 0.5 2.0 -0.7 0.21 0.36
0.5 0.5 2.0 -0.9 0.26 0.39

We assume var(x1) = var(x2) = 1.



Here βx is the personal log-relative risk of
interest from Equation 5. Note the approxi-
mation Equation 8 retains only linear terms in
the expansion of an exponential function. The
second-order terms are an order of magnitude
smaller and are ignored to simplify the exposi-
tion. For studies of particulate pollution
effects on mortality, the effect sizes are on the
order of 1 or 2% so that ignoring second-
order terms should not qualitatively affect the
results. In studies of morbidity, higher order
terms may be more important.

The total baseline risk (ntλ
–

0t) almost
certainly varies smoothly over time because it
is an average risk over a large population.
Hence, it will be appropriately controlled for
in log-linear regressions by inclusion of the
smooth s(t) in Equation 6. We now consider
ztβx and the three components of error in
turn.

The first error term x–t
(w) - x–t is the differ-

ence between the baseline risk-weighted aver-
age personal exposure and the unweighted
average personal exposure. It derives from the
Berkson error (xit - x–t) and produces no bias in
the linear unaggregated model. This difference
due to risk weighting in our log-linear model
with person-specific baseline risks is likely to
be small and to vary slowly over time. Hence,
it can be adequately controlled by inclusion of
the smooth function s(t) in the log-linear
regression of yt on zt. One scenario in which
this difference would vary from day to day
and therefore not be adequately controlled
would occur if the more frail individuals
were to follow pollution reports (or a corre-
late such as weather) and reduce their expo-
sures to ambient air on high pollution days
by, for example, staying indoors. Current
warning systems for air pollution alerts are
intended to reduce exposures of susceptible
persons in this fashion.

The second error term x–t - zt
* is non-

Berksonian and has the greatest potential to
introduce bias in the estimate β^z when zt

* is
correlated with x–t - zt

*. Even if the terms are

uncorrelated so that β^z will be a roughly unbi-
ased estimate of βx, it will reduce efficiency
relative to a study in which xt is available
because zt and x–t - zt share the same coefficient
in Equation 8.

The difference x–t - zt
* between average per-

sonal exposures and the true ambient value
can be analyzed further by considering an
individual personal exposure xit. Because indi-
vidual i’s exposure on day t derives either from
indoor or ambient sources, we can write xit =
αitzt

* + (1 - αit)Iit where Iit is the concentration
of pollutant generated by indoor sources such
as tobacco smoke and pets and αit is his or her
fraction of exposure from ambient sources that
take place either outdoors or result from the
penetration of ambient pollution indoors. It
follows that x–t = α–tzt

* + I
–

t where I
–

t = ∑
i
(1 -

αit)Iit/nt. That is, the average personal expo-
sure is proportional to the ambient level offset
by the effects of the population average of the
non-ambient indoor sources.

Wilson and Suh (26) argued that the daily
population average concentrations of fine par-
ticles derived from indoor sources I

–

t are
approximately independent of ambient levels
zt across time. When this is true, failure to
measure indoor sources will not introduce fur-
ther bias in the estimation of βx because the
deviations due to indoor air exposure are a sec-
ond example of Berkson error, and the errors
will tend to cancel one another out when aver-
aged over the population. Never-theless, zt

* is
only proportional to x–t so that even if α–t varied
little over time (αt ≈ α), the coefficient β^z
from a regression of yt on zt

* would estimate
αβx, not βx. Hence, if 20% of daily exposure
results from indoor sources independent of
the ambient levels, the regression on ambient
levels will yield coefficients that are roughly
20% smaller than would have occurred with
actual personal exposures. However, this may
be the appropriate coefficient for policymakers
seeking an estimate of the effect of an inar-
guable measure of ambient levels. This, how-
ever, assumes that particles from indoor
sources and outdoor sources are identical; that
is, they are similar in composition and toxici-
ty. If this is not the case, then the two types of
particles are more appropriately treated as sep-
arate pollutants, and the personal exposure
measure desired would be αitzt

*, the personal
exposure to particles from outdoor sources.
Studies that use sulfates as a tracer for parti-
cles from outdoor sources indicate that
indoor/outdoor ratios are < 1. Because people
spend most of their time indoors, this suggests
that αit will be < 1 and that the second term
in Equation 8 will be negatively correlated
with zt, and will bias the estimated coefficient
downward. This also illustrates that the model
is not restricted to cases where E(x) = E(z). 

The final of the three error terms in
Equation 8, zt

* - zt, represents the instrument

measurement error in the ambient levels; like
xit - x–t, it is close to the Berkson type. This
term would tend to be cancelled out by spatial
averaging across multiple unbiased ambient
monitors in a region. For example, Kelsall et
al. (25) averaged daily total suspended particu-
late data from up to nine monitors in their
analysis of the effects of particles on mortality
in Philadelphia. However, in many cities there
is only one monitor or a few monitors operat-
ing concurrently. Even with a small number
of monitors, longer term drift in instruments
will not substantially affect estimates of βx
because the time–series models control for
such trends by inclusion of s(t) in Equation 6.
For this final error term to cause substantial
bias in β^z, the error zt

* - zt must be strongly
correlated with zt at shorter time scales.
Further investigations of this correlation in
cities with many monitors are warranted.

We have discussed three components of
measurement error: a) an individual’s devia-
tion from the risk-weighted average personal
exposure; b) the difference between the aver-
age personal exposure and the true ambient
level; and c) the difference between the mea-
sured and the true ambient levels, which
includes spatial variation and instrument
error. We argue that the first and third com-
ponents are of the Berkson type and there-
fore are likely to have smaller effects on the
relative risk estimates. However, the second
component can be a source of substantial
bias if, for example, there are short-term asso-
ciations of the contributions of indoor
sources with ambient concentrations. We
present one simple analysis of the Particle
Total Assessment Methodology (PTEAM)
data (27) that illustrates how we can further
study the effects of the most important sec-
ond component. 

Evaluating Potential
Measurement Error Bias in
Pollutant–Mortality Relative
Risk Estimates

The “Framework for Assessing Measure-
ment Error Effects in Pollution–Mortality
Studies” can be used, in combination with
data on the components of error, to quantify
the consequences of exposure measurement
error. One of the few available data sets with
ambient and personal measurements will be
used to illustrate one approach. We used
daily measurements of personal exposure for
persons followed in the PTEAM Study (27)
to quantify the difference between concentra-
tion measured by an ambient monitor and
the average of personal exposures. We stud-
ied one approach for estimating the size of
bias in estimated PM10–mortality regression
coefficients β^z as an estimate of the true rela-
tive risk for personal exposure βx with data
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Figure 1. Schematic relating ambient measured
pollution level (zt) to true ambient level (zt

*), indoor
exposure (wit), personal exposure (xit), and risk of
death (λit) assuming spatial homogeneity in ambi-
ent levels.
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from one or a few ambient monitors rather
than personal exposure data for PM10. 

Data from the PTEAM Study. The
PTEAM Study (27,28) generated a daily mea-
surement of personal exposure to PM10 for a
sample of 178 nonsmoking residents of
Riverside, California, 10 years of age or older
for the period 22 September through 9
November 1990. In addition, a daily average
PM10 value from an ambient monitor posi-
tioned near the homes was also collected;
Pellizzari and Spengler (29) provided details
on the methods used to collect these data. 

We used the PTEAM Study data to esti-
mate the correlation between the daily PM10
concentration for the ambient monitor zt and
the difference between the average personal
exposure and concentration measured by the
ambient monitor x–t - zt. These estimates cor-
rectly account for the varying number of
observations on a given day; however, the
average personal exposure value is based on
relatively few measurements and is therefore
more variable across time than the actual
mean exposure. Equation 8 includes a weight-
ed average of personal exposures, with weights
determined by the baseline personal risk for
each individual. Those weights were unavail-
able in the PTEAM Study and hence, we used
an unweighted average. Figure 2 displays a
time–series plot of the daily ambient values
and the average personal exposures. The corre-
lation across time of these two series is esti-
mated to be 0.58 [95% confidence interval
(CI), 0.35–0.74]. This correlation is much
greater than the more widely cited cross-sec-
tional correlation from the same study. It
would likely be even greater if the mean
personal exposure was calculated on a larger
number of persons each day. The corre-
sponding correlation across time between the
ambient monitor concentrations and the daily
differences between the personal and ambient
values is -0.63 (CI, -0.77 to -0.42). Hence, the
hypothesis that the measurement error x–t - zt is
uncorrelated with zt is not consistent with the
PTEAM Study data. Some bias in the regres-
sion coefficient is therefore expected. Because
the correlation of x–t - zt and zt is negative, the
coefficient β^z in the regression on zt will tend
to underestimate the co-efficient in the regres-
sion on x–t in a single-pollutant analysis. We
now assess the size of the bias that will result
from this measurement error.

Addressing the Bias in
PM10–Mortality Regression
Coefficients
The PTEAM Study results or other, perhaps
more appropriate, data sets on the difference
between average risk-weighted personal expo-
sure and ambient monitor concentrations, can
be used to estimate bias in the results of log-
linear regression models. 

If available, we would have used the aver-
age personal exposure series, x–t, for at-risk resi-
dents of each city in the standard log-linear
regression model rather than zt, as was used in
the original analyses. We would then have
compared the regression coefficients obtained
when x–t is the predictor with those using zt to
assess the bias.

Obviously, x–t is not available except in
special circumstances. However, from the
PTEAM Study data (shown in Figure 2) or
similar data, we can estimate the relationship
of x–t and zt, for example, by assuming:

x–t = θ0 + θ1zt + εt [9]

where θ0 and θ1 are the intercept and slope to
be estimated from the available data. We can
then use the fitted Equation 9 to predict the
unobserved x–t from the available zt and then
use the predicted value x–̂t as the desired
exposure values when estimating the pollu-
tion–mortality relative risk βx. In fact the esti-
mate of βx has the simple form β^x = β^z/θ

^
1.

This well-known approach to adjust for expo-
sure measurement error is called regression
calibration (7). As an illustration, we applied
this strategy to a regression of daily mortality
on ambient concentrations of PM10 for River-
side, California, for the period 1987–1994.
We estimated θ^0 = 59.95 (SE = 7.21), θ^1 =
0.60 (SE = 0.080), and var(ε) = 22.4. 

Calibration is easy to implement and
apply. Its limitations are that confidence inter-
vals for β^x depend on large sample theory and
that it does not extend easily to situations
where multiple sources of information about
the x–t, zt relationship are available.

It is simple to overcome the possible lim-
itations of calibration by using a simulated
value x–t

* rather than the predicted value x–̂t
from Equation 9. That is, we use Equation 9
to simulate the average personal exposure, x–t

*,
from the ambient exposure, zt, for a city or
period of interest when x–t is not available,
under the assumption that the estimated θs
and var(ε) are applicable. This simulated
series x–t

* is then used instead of zt in the log-
linear regression. The result is one estimate
of βx—call it β^x. If we then repeatedly simu-
late x–t

*s and fit the log-linear regression for
each to obtain β^x, we obtain a distribution of
β^xs. The difference between the mean of the
simulated β^xs and the β^z derived from the
log-linear regression of mortality on z–t

* is a
measure of the bias resulting from having zt
rather than the average personal exposure for
that city. By simulating x–t

*s rather than using
a fixed predicted value x–̂ t, we properly
account for nonlinearities and sources of
variation in β^x and can extend the analysis to
more complicated situations.

Figure 3 shows the distribution of the β^xs
for Riverside (solid curve). Also shown is the
normal approximation of the likelihood func-

tion for the coefficient β^z from the log-linear
regression of mortality directly on zt (dotted
curve). Solid and dotted lines are at the cen-
ters of these distributions. We find that the
β^xs have a mean 1.42% increase in mortality
(CI, -0.11–2.95) per 10-unit change in
PM10. In comparison, the estimate of βz from
the usual log-linear model (dashed vertical
line) is β^z = 0.84% (CI, -0.06–1.76). Hence,
measurement error has biased the result
toward the null. Second, the distribution of
the β^xs is more dispersed than the distribution
of β^z. This is because we have taken into
account the variability due to having zt, not
x–t, i.e., arising from var(εt) in Equation 9. The
results are very similar to what we obtain
from calibration.

This calculation assumes that the estimat-
ed relationship between x–t and zt for the
PTEAM Study is the true one, and hence, we
ignored a second component of uncertainty
due to estimation of the relationship between
x–t and z–t from the finite sample size of the
PTEAM Study data taken at one site and at a
particular time period. That is, even if we
assume that the relationship between x–t and zt
is known, estimating the association of mor-
tality with x–t is less precise than with zt, given
only zt in that particular city. Of course, the
relationship of x–t and zt is not precisely known
and needs to be quantified further. Dominici
et al. (30) provided a more complete analysis
of the bias in β^z as an estimate of βx using the
PTEAM Study and four other data sets and a
more complete statistical model. Their find-
ings were qualitatively similar to those present-
ed here. Finally, our assessment of bias
assumed that the health effects of personal
exposure to particles originating outdoors and
indoors are the same. To assume otherwise
would require substantially more detailed data
and modeling.

Summary and Research
Recommendations
The differences between true personal expo-
sure for every individual (xit) and measured
ambient concentrations, averaged over a few
fixed imprecise monitors (zt), are inherently
complex, as is the effect of this exposure mea-
surement error on estimates of pollution–mor-
tality relative risks. Nonetheless, it is useful
and imperative to analyze these effects in light
of our current understanding of the measure-
ment process. This paper presented one
framework for doing so. We distinguished two
extremes of a continuum of types of measure-
ment errors: Berkson and classical errors. The
former is likely to create little bias in mortali-
ty–relative risk estimates; the latter has more
serious consequences.

We posited a relative risk model in which
an individual’s hazard of death on a given day
is expressed as a function of his or her personal
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exposure, which is decomposed to highlight
three types of exposure errors. We then aggre-
gated the model to produce the model for the
expected total deaths in a population used in
most time–series analyses. This model showed
that a risk-weighted average personal exposure
measure is the desired exposure measure. The
likely consequence of using ambient concen-
trations instead is to underestimate the pollu-
tion effects. In contrast, differences between
individual exposures on a given day and the
risk-weighted average of personal exposures
are examples of Berkson error and are not like-
ly to cause substantial bias in coefficients from
time–series morbidity studies. Our analysis
suggested that the largest biases in inferences
about the mortality–personal exposure relative
risk will occur because of the more complex
errors between ambient and average personal
exposure measures. If indoor sources produce
particles of similar composition and toxicity as
outdoor source particles, indoor sources may
be a major component of this error. Finally, we
used the best available data (from the PTEAM
Study in Riverside) with both personal expo-
sure and ambient time–series data to quantify
the size of this error. Our analysis indicated
that the coefficient obtained from regressing
mortality on measured ambient levels (zt) is
smaller than what we expect if we regress mor-
tality on average personal exposure (x

_
t).

For tractability and clarity, we conducted
a first-order analysis of exposure errors and

ignored possible second- and higher order
effects in which daily fluctuations in the vari-
ance of personal exposures across a popula-
tion or in the covariations among the mea-
surement errors could introduce additional
biases. Second-order terms will be insignifi-
cant in studies of particulate effects on mor-
tality where the first-order terms are on the
order of percent. Such higher order analyses
for other studies of, for example, morbidity,
are beyond the scope of this paper and will
require substantially more detailed models
and data. It is, however, possible that higher
order effects are important; further investiga-
tion is necessary.

Epidemiologic research is necessarily lim-
ited by the quality of the health outcome and
risk factor measurements (31). Time–series
studies of the acute effects of air quality on
mortality are subject to the limitations posed
by the available measurements of pollution
levels. The generic criticism—that measure-
ment errors render the results of such
time–series models uninterpretable—is inac-
curate. The consequences of measurement
error can be quantified, although only a few
informative data sets are presently available.
Differences between the average personal
exposure and ambient measurements are the
most likely source of substantial bias. Data
should be collected for the comparison of
risk-weighted average personal exposure with
ambient levels in several cities with varying

degrees of spatial heterogeneity in ambient
levels, population composition, and indoor
pollution sources. Given such data, models
like those summarized by Dominici et al. (32)
can be used to quantify more precisely the
biases due to pollutant measurement errors. 

This paper focuses on the effects on rela-
tive risk estimates of using zt (measured
ambient particle levels) rather than xit (actual
personal exposures in log-linear regressions).
Such effects are important from a scientific
perspective to quantify the health risks of
exposure to particulate pollution. From a
regulatory perspective, the effect of having
the imprecise zt rather than the true ambient
value zt

* may be of greater interest because it
is ambient levels that may or may not be reg-
ulated further. A more detailed error analysis
of the zt–zt

* difference would investigate the
spatial variation in particulate levels and how
the number of monitors used to calculate zt
reduced this source of measurement error. 

In measurement errors in a single pollu-
tant measure, PM10, simultaneous errors in
several pollutants can complicate the analysis.
However, qualitative biases—that is, changes
in the sign of a coefficient—can occur only
when the measurement errors for different
pollutants are highly correlated with one
another. This level of correlation might arise
if two or more pollutants are measured by
the same instrument (e.g., different fractions
of particulate matter) or if multiple instru-
ments are housed in the same location, which
is subject to atypical exposure patterns. The
possibility nevertheless requires detailed
investigation, because in this case the find-
ings of epidemiologic studies could be mis-
leading. Personal exposure studies that collect
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Figure 2. Daily time–series data of (A) personal and (B) outdoor central site PM10 concentrations in
Riverside, California, from 22 September to 9 November 1990. Modified from Ozkaynak et al. (27). 
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Figure 3. The solid line is the distribution of the
relative rate β̂x obtained when the simulated
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multiple exposures can provide the necessary
data to investigate the effects of co-occurring
errors using straightforward extensions of the
approaches in “Framework for Assessing
Measurement Error Effects in Pollu-
tion–Mortality Studies” and “Evaluating
Potential Measurement Error Bias in Pol-
lutant–Mortality Relative Risk Estimates.”

We considered the effects of exposure
measurement error on regression coefficients
from log-linear models in which serial correla-
tion is accounted for using flexible smoothing
splines. An alternate analytic strategy is to fit a
linear regression with time–series errors
[ARIMA model (33)]. In certain specific
time–series models, the degree of attentuation
due to classical error might be reduced because
to account for the autocorrelated errors, the
ARIMA filters or smooths both the responses
and the predictors that might reduce the
degree of measurement error. Further research
on this possibility is warranted.

The measurement error framework and
the illustrative calculations discussed here
make apparent several open questions and
opportunities for additional data collection.
These opportunities would enable more
accurate quantification of the effects of mea-
surement error in assessing the air pollu-
tion–mortality relationship. In relation to
single-pollutant models, the two most impor-
tant questions are a) Is the average personal
exposure to pollutants from indoor sources
correlated over time with ambient levels? and
b) Does the difference between baseline risk-
weighted average exposure and population
average exposure vary slowly over time?

For models with multiple pollutants, the
additional key question follows: How do the
components of error identified in Equation 5
covary across pollutants? For example, how do
the differences between actual ambient levels
and the measured levels correlate across the
different pollutants and how do these differ-
ences depend on the true values of other pol-
lutants or covariates?

Wilson and Suh (26) conducted a meta-
analysis of data from multiple sites and con-
cluded, in answer to the first question above,
that concentrations of fine particles originat-
ing from indoor sources are independent of
ambient levels over time. To confirm this
finding and to address the remaining key
questions, additional research is warranted. A
stratified sample of the population in several
cities with diverse pollution sources and pat-
terns should be drawn, with one stratum
representing the entire population and the
second representing the frail subgroup. Daily
measurements of personal exposure and indi-
cators of indoor sources should be collected
for multiple pollutants for each person.
Ambient levels should also be monitored.
Decisions about the number of persons

within each subgroup and the number of days
of monitoring for each person should be made
based on preliminary analyses of data from
one city.
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Appendix

We start with a personal risk model (Equation 5) and a decomposition of the exposure
error (Equation 7) to obtain

Eyt = Σ
i

λ0it
exp{ztβx + [(xit - x–t) + (x–t - zt

*) + (zt
* - zt)]β} [A.1]

= exp{ztβx + [(x–t - zt
*) + (zt

* - zt)]βx} Σi
λ0it

exp{(xit - x–t)βx}.

Now 
Σ
i

λ0it
exp[(xit - x–t)βx] ≈ Σ

i
λ0it

[1 + (xit - x–t)βx]
= nt λ

–

0t [1 + (x–t
(w) - x–t)βx]

where λ
–

0t = nt
-1Σλ0it

is the average baseline risk across the population on day t, nt is popula-
tion size on day t, and x–t

(w) = Σ
i

λ0it
x–it/Σλ0it

is the baseline risk-weighted average exposure.
We can now rewrite

ntλ
–

0t [1 + (x–t
(w) - x–t)βx] ≈ exp[log(nλ

–

0t ) + (x–t
(w) - x–t)βx],

which, when substituted back into Equation A.1, gives Equation 8.




