
Although airborne chemicals can cause a
number of harmful effects, the most common
effect is sensory irritation (De Ceaurriz et al.
1981). Exposure to a sensory irritant may
stimulate the trigeminal nerve endings and
laryngeal receptors, eliciting any one or a
combination of the following symptoms:
burning sensation of the eyes, nose, or throat,
as well as coughing sensations (Alarie et al.
2000). Sensory irritation is also the most
common end point for occupational exposure
levels (OELs). For one specific OEL measure,
threshold limit values (TLVs) [developed by
the American Conference of Governmental
Industrial Hygienists (ACGIH 2006)] are cal-
culated based on sensory or pulmonary irrita-
tion for > 50% of the compounds. Kane et al.
(1979) reported that approximately two-
thirds of the compounds for which they
found a TLV acted as sensory irritants. A
qualitative evaluation of sensory irritants indi-
cated that sensory irritation responses in the
mouse are predictive of responses in humans
(Alarie 1973a).

In 1966, Alarie initially proposed the use
of an animal test to evaluate the potency of
airborne sensory irritants. The bioassay uses
male Swiss-Webster mice to measure decreases
in respiratory frequency resulting from expo-
sure to a geometric series of concentrations of

airborne irritants (Alarie 1966). The concen-
tration inducing a 50% decrease in respiratory
frequency is termed the RD50. From these
measured RD50s, Alarie (1981b) ranked irri-
tant potencies and found a good correlation
(R2) between RD50s and TLVs. The Alarie
test evolved over the years and was adopted in
1984 as a standard test by the American
Society for Testing and Materials (ASTM
2004). The “RD50 test” or the “Standard Test
Method for Estimating Sensory Irritancy of
Airborne Chemicals” (ASTM 2004) quantita-
tively measures irritancy as indicated by the
reflex inhibition of respiration in mice
exposed to sensory irritants. For the test, four
mice are first acclimatized to the chamber and
are then simultaneously exposed to the air-
borne chemical. A sufficient number of
groups are exposed to a geometric series of
concentrations so that a concentration–
response curve can be constructed from the
analysis. The mice are placed in a body
plethysmograph attached to an exposure
chamber so that only the head is exposed to
the test material. The plethysmographs are
connected to pressure transducers, which
sense changes created by inspiration and expi-
ration. The amplified signals are transmitted
to a polygraph recorder. The concentration of
airborne irritant that produces an RD50 is

determined from the concentration–response
curve constructed from the various data points
obtained with a series of concentrations.

Sensory irritation is a reflex reaction from
stimulation of the trigeminal or laryngeal
nerve endings (Boylstein et al. 1996). The
sensory irritant response is mediated through
binding to the trigeminal nerve receptors and
appears to follow Michaelis-Menten receptor
kinetics. Although the RD50 concentration
has been described as “intolerable” to
humans, as indicated in the ASTM standard,
“the test method will detect irritation effects
at concentrations far below those at which
pathological changes are observed” (Alarie
2000; ASTM 2004). Further, as demon-
strated by Barrow et al. (1986), pathologically
detectable responses are expected only after
prolonged repeated exposure.

RD50s are a basis, at least partially, for a
number of OELs by ACGIH (ACGIH
2006). The calculation methodology is based
on Kane et al. (1979), who evaluated data
from 11 sensory irritants and concluded that
a level one-hundredth of the RD50 would
produce “minimal or no sensory irritation” in
humans. The current suggestion of setting
OELs at 0.03 RD50 comes from Alarie
(1981a, 1981b), because 0.03 RD50 is
halfway between 0.1 RD50 and 0.01 RD50 on
a logarithmic scale. Alarie (1981a) reported a
strong correlation (R2 = 0.89) between 0.03
RD50 and OELs for the 26 chemicals tested.
Subsequently, both analyses, one using 41
chemicals (Alarie and Luo 1986) and most
recently another using 89 chemicals (Schaper
1993), resulted in a lower but still strong cor-
relation (R2 = 0.78). Although most of the
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Evaluation and Application of the RD50 for Determining Acceptable Exposure
Levels of Airborne Sensory Irritants for the General Public
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BACKGROUND: The RD50 (exposure concentration producing a 50% respiratory rate decrease) test
evaluates airborne chemicals for sensory irritation and has become an American Society for Testing
and Materials (ASTM) standard method. Past studies reported good correlations (R2) between
RD50s and the occupational exposure limits, particularly threshold limit values (TLVs).

OBJECTIVE: The main purpose of this study was to examine the relationship between RD50s and
human sensory irritation responses in a quantitative manner, particularly for chemicals that pro-
duce burning sensation of the eyes, nose, or throat, based on lowest observed adverse effect levels
(LOAELs) reported for human subjects.

METHODS: We compared RD50s with LOAELs and acute reference exposure levels (RELs). RELs,
developed by the California Environmental Protection Agency’s Office of Environmental Health
Hazard Assessment, represent a level at which no adverse effects are anticipated after exposure. We
collected RD50s from the published literature and evaluated them for consistency with ASTM pro-
cedures. We identified LOAELs for human irritation and found 25 chemicals with a corresponding
RD50 in mice.

DISCUSSION: We found the relationship between RD50s and LOAELs as log RD50 = 1.16 (log
LOAEL) + 0.77 with an R2 value of 0.80. This strong correlation supports the use of the RD50 in
establishing exposure limits for the public. We further identified 16 chemical irritants with both
RD50s and corresponding acute RELs, and calculated the relationship as log RD50 = 0.71 (log REL)
+ 2.55 with an R2 value of 0.71. This relationship could be used to identify health protective values
for the public to prevent respiratory or sensory irritation.

CONCLUSION: Consequently, we believe that the RD50 has benefits for use in setting protective lev-
els for the health of both workers and the general population.

KEY WORDS: Alarie test, exposure levels, LOAEL, RD50, REL, sensory irritation, TLV. Environ
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applications of the RD50 have focused on
OELs, Nielsen et al. (1995) found that pro-
tection against indoor sensory irritation
effects could be achieved at a level of
0.025–0.25 of the OEL. Multiple studies
show strong correlations between RD50s and
OELs, supporting the continued use of the
Alarie test for establishing OELs (Kane et al.
1979, 1980; Schaper 1993).

In this study we examined the relation-
ship between RD50s and human sensory irri-
tation responses in a quantitative manner,
particularly for chemicals that produce burn-
ing sensation of the eyes, nose, or throat,
based on lowest observed adverse effect levels
(LOAELs) reported for human subjects. We
also analyzed the relationship between RD50s
and OELs for identified human sensory irri-
tants. Finally, we evaluated the relationship
between RD50s and acute reference exposure
levels (RELs) developed to protect the public
(Collins et al. 2004). RELs are defined as
“[t]he concentration level at or below which
no adverse health effects are anticipated for a
specified exposure duration [1 hr for the acute
RELs]. … RELs are based on the most sensi-
tive, relevant, adverse health effect reported in
the medical and toxicological literature.” A
strong correlation between RD50s and
LOAELs, TLVs, and acute RELs will support
the use of RD50s in establishing guidance
levels to protect the public from sensory
irritants.

Methods

LOAELs versus RD50s. Using published toxi-
cologic studies of human subjects exposed to
sensory irritants, we identified human
LOAELs. Criteria for selecting human
LOAELs required that the studies describe
mild irritating effects (Alexeeff et al. 2002)
resulting from acute inhalation exposure.
Published human studies on hazardous air
pollutants (HAPs) served as the primary
sources of information for these chemicals
(Alexeeff et al. 2002). We searched PubMed
(National Library of Medicine; http://www.
ncbi.nlm.nih.gov/sites/entrez), Biosis (www.
biosis.org/), Current Contents (http://
scientific.thomson.com/products/ccc/),
Toxline (National Library of Medicine;
http://toxnet.nlm.nih.gov/cgi-bin/sis/
htmlgen?TOXLINE), SciFinder Scholar
(Chemical Abstracts Service; http://www.cas.
org/support/scifi/sfsolutions/index.html),
Oldmedline (http://www.nlm.nih.gov/
databases/databases_oldmedline.html), Web
of Science (http://scientific.thomson.com/
products/wos), and Environmental Sciences
and Pollution Management Databases
(Cambridge Scientific Abstracts; http://www.
csa.com/factsheets/envclust-set-c.php) to
identify toxicologic studies published between
1970 and 2005 for all 189 HAPs. Search

terms included the chemical name, the type
of LOAEL effects (e.g., irritation), route of
exposure (inhalation), and exposure duration
(acute). We also conducted online searches
for additional non-HAP chemicals with an
identified RD50. Further, we conducted man-
ual searches from secondary sources through
2005. Five criteria were developed for inclu-
sion of a study in the analysis: a) peer-
reviewed and published, well-conducted
industry-sponsored studies or doctoral disser-
tations; b) inhalation exposure; c) discrete
acute exposure; d) available LOAEL for a
mild adverse health effect; and e) the original
research. For each human study analyzed,
information about the chemical, exposure
time, end-point category (eye and/or respira-
tory irritation), and LOAELs were recorded.
If multiple mild responses were reported at
various dose levels for the same chemical and
exposure time, then the lowest adverse effect
level was considered the LOAEL.

For RD50s, we first reviewed references
identified from the database developed by
Schaper (1993). We identified additional
studies from Alarie et al. (2000). We also
searched the scientific literature during the
period 1992–2005 to identify newer pub-
lished studies containing RD50s. For each
identified study, we recorded information on
the chemical, exposure time, species, and
RD50. We reviewed the methodology used to
attain each RD50 for consistency with current
ASTM methods (ASTM 2004); for this rea-
son, we included studies with mice, but
excluded studies with rats in this analysis.

In cases where both RD50s and human
LOAELs were available for the same chemi-
cal, we log transformed and fit the data with a
linear relationship using Microsoft Office
Excel 2003 (Microsoft, Redmond, WA) and
SAS version 9.1 (SAS Institute Inc., Cary,
NC) for Windows. This procedure was simi-
lar to previous RD50 comparisons (e.g., Alarie
1981b). When we found multiple LOAELs
or RD50s for a single chemical, we considered
each reported value in the analysis. Sensitivity
analyses were conducted by evaluating the
correlation generated from the regression of
LOAELs with RD50 value data sets, which
varied by exposure time, or strain tested. We
also conducted subanalyses using upper and
lower respiratory tract effects.

RELs versus RD50s. As reported by
Collins et al. (2004), the California
Environmental Protection Agency (EPA) has
developed 51 acute inhalation RELs. We eval-
uateds these RELs to identify those based on
eye or respiratory irritation end points in
humans, and compared with RD50s. Using
Microsoft Office Excel 2003 (Microsoft) and
SAS version 9.1 (SAS) for Windows, we log
transformed and fit the data with a linear
relationship.

TLVs versus RD50s. For all RD50s used in
the above analyses, we identified TLVs from
ACGIH (2006). The TLVs included time-
weighted averages, short-term exposure limits
and ceilings. If the documentation reported
more than one TLV value, we used the low-
est, more protective value. A third compari-
son between RD50s and TLVs of identified
human irritants, based on identification of a
human LOAEL for irritation, was conducted
using log-transformed data, fit with a linear
relationship, and analyzed with Microsoft
Office Excel 2003 (Microsoft) and SAS ver-
sion 9.1 (SAS) for Windows.

Results

LOAELs versus RD50s. From our search, we
identified 25 chemicals with 72 human acute
irritation LOAELs from 49 studies (Table 1).
The adverse effects, exposure times, and
information reflecting the quality of the study
(e.g., placebo-control, blinding, subject selec-
tion, subject characteristics, exposure design,
and data reporting) are indicated in Table 1.
For the 25 chemicals identified, 63 RD50s
were found in mice (Table 2). The RD50s
were based on seven mouse strains and expo-
sure times ranging from 5 to 180 min.

Figure 1 shows the correlation between
RD50s and LOAELs for all RD50s identified in
all strains of mice for the 25 chemicals, allow-
ing for 198 comparisons. There is a strong
overall correlation (R2 = 0.80) between RD50s
and human irritation LOAELs. When we con-
ducted the analysis for Swiss-Webster mice
only (Table 3), we were able to include 75 data
points for 19 compounds, and the correlation
decreased slightly (R2 = 0.74). When we evalu-
ated only the data for non–Swiss-Webster mice
(Table 3), there was little change in the correla-
tion (R2 = 0.83). We conducted several sub-
analyses to consider the influence of the RD50
study exposure duration. As indicated in Table
3 there was little influence on the R2. Thus,
according to this analysis, the strain of mouse
tested does not appear to affect this evaluation
substantially. The equations do not change sig-
nificantly, and the correlation is still significant
for all analyses, validating the inclusion criteria
used. As indicated in Table 3, we also consid-
ered several subanalyses to address the influ-
ence of the human LOAEL variability.
Specifically, we considered the issue of LOAEL
sensitivity, the type of irritation end point,
study quality, and the duration of exposure for
the human LOAEL. The only significant effect
on the correlation was observed when consid-
ering human irritation end points of the lower
respiratory tract; the poor R2 appears to be
attributed partly to the few number of data
points (29) in the analysis.

RELs versus RD50s. From the 51 California
acute RELs, we identified 16 that had irritation
as their end point and a corresponding RD50.
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Table 1. LOAELs for human sensory irritation for each study found in the literature. 

Compound LOAEL (ppm) Time (min) No. of subjects % Responsea End pointb Reference

Acetaldehyde 7 5 27 0 Eye irritation Stephens et al. 1961
12 4 9 Averagec Bronchial hyperresponsiveness (L) Myou et al. 1994d

50 15 12 Majority Eye irritation Silverman et al. 1946
Acetone 300 3–5 10 Majority Eye irritation Nelson et al. 1943

800 20 27 Average Eye and weak nasal irritation Dalton et al. 1997d

990 240 16 100 Eye, mouth, and throat irritation Seeber et al. 1992
1,000 450 4 75 Eye and throat irritation Stewart et al.1975

Acrolein 0.44 NG 10 NG Conjuctival and nasal irritation Plotnikova 1960
0.5 5 36 20 Eye irritation Stephens et al. 1961
0.6 5 16 Average Eye and nasal irritation Hine et al. 1961

Allyl alcohol 0.78 5 6 Average Slight nasal irritation Dunlap et al. 1958
Ammonia 5 180 12 100 Eye irritation Sundblad et al. 2004d

30 10 5 40 Eye and nasal irritation MacEwen and Vernot 1972
50 30 16 44 Eye and throat irritation Verberk 1977

n-Butyl acetate 200 3–5 10 Majority Throat irritation Nelson et al. 1943
n-Butanol 25 3–5 10 Majority Eye, nasal, and throat irritation Nelson et al. 1943
Chlorine 0.95 240 8 Average Forced vital capacity decrease (L) Rotman et al. 1983d

1 60 5 Average FEV1 decrease (L) D’Alessandro et al. 1996d

1 480 29 100 FEV1 decrease (L) Anglen 1981d

1 120 29 100 Urge to cough Anglen 1981d

1 60 29 100 Throat irritation Anglen 1981d

2 60 8 100 Urge to cough Anglen 1981d

2 240 8 100 Forced vital capacity decrease (L) Anglen 1981d

2 120 8 75 Throat irritation Joosting and Verberk 1975
2 60 8 25 Nasal irritation Joosting and Verberk 1975
2 30 8 38 Nasal and throat irritation Joosting and Verberk 1975

Ethylacetate 400 3–5 10 Majority Nasal and throat irritation Nelson et al. 1943
402 240 16 Average Eye, nasal, and throat irritation Seeber et al. 1992

Formaldehyde 0.4 120 20 Average Rhinitis Pazdrak et al. 1993d

0.5 120 20 100 Nasal irritation Krakowiak et al. 1998d

0.69 480 109 Average Eye irritation Horvath et al. 1988
1 120 16 44 Conjunctival irritation Anderson and Molhave 1983
1 6 27 100 Eye irritation Bender et al. 1983
1 5 75 8 Eye irritation Stephens et al. 1961
1 1.5 48 Average Nasal irritation Weber-Tschopp et al. 1977
1 90 18 84 Eye, nasal, and throat irritation Day et al. 1984
1.01 180 19 21 Eye irritation Kulle et al. 1987d

2 10 15 53 Eye irritation Schachter et al. 1986
2 40 15 60 Eye irritation Schachter et al. 1987
3 180 9 Average Eye, nasal, and throat irritation Sauder et al. 1986
3 180 9 Average Eye, nasal, and throat irritation; Sauder et al. 1987

FEV1 decrease (L)
3.01 20 24 Average Eye, nasal, and throat irritation Green et al. 1989d

Isophorone 25 15 12 NG Eye, nasal, and throat irritation Silverman et al. 1946
Isopropyl acetate 200 15 12 Majority Eye irritation Silverman et al. 1946
Isopropanol 400 3–5 10 Majority Eye, nasal, and throat irritation Nelson et al. 1943
Methanol 1025 240 1 100 Eye irritation Apol 1981
Methyl ethyl ketone 100 3–5 10 Majority Nasal and throat irritation Nelson et al. 1943d

200 240 19 Average Subclinical rhinitis Muttray et al. 2002
Methyl isocyanate 0.5 10 6 100 Eye, nasal, and throat irritation Smyth et al. 1970

1.75 1 8 38 Nasal irritation Smyth et al. 1970
2 1 4 100 Eye irritation Kimmerle and Eben 1964
2.5 120 7 57 Nasal irritation Pozzani and Carpenter 1963

Nitrogen dioxide 1.5 180 15 Average Increased airway reactivity (L) Frampton et al. 1991d

2 60 18 Average Increased airway reactivity (L) Mohsenin 1988d

2.5 120 16 Average Increased airway resistance (L) Beil and Ulmer 1976
5 120 16 Average Increased airway resistance (L) von Nielding and Wagner 1977

n-Pentanol 100 3–5 10 Majority Throat irritation Nelson et al. 1943
n-Pentyl acetate 100 3–5 10 Majority Throat irritation Nelson et al. 1943
Styrene 14.7 15 2 100 Bronchospasm (L) Moscato et al. 1987

216 20 3 3 Nasal irritation Stewart et al. 1968
600 1 NG NG Eye and nasal irritation Wolf et al. 1956
800 240 2 100 Eye and throat irritation Carpenter et al. 1944

Sulfur dioxide 5 300 14 Average Increase in discomfort, irritation Andersen et al. 1981
Toluene 100 360 16 Average Eye irritation Anderson and Molhave 1983

100 390 24 Average Nasal and lower airway irritation Baelum et al. 1990
200 210 2 100 Eye and throat irritation Carpenter et al. 1944
300 3–5 10 Majority Eye and throat irritation Nelson et al. 1943

Toluene-2,4-diisocyanate 0.01 900 15 7 Increased airway resistance (L) Baur 1985
Triethylamine 4.35 480 2 100 Visual disturbances, discomfort Akesson et al. 1986

8.22 240 2 100 Visual disturbances, discomfort Akesson et al. 1986
11.6 60 2 100 Visual disturbances, discomfort Akesson et al. 1986

p-Xylene 100 450 11 18 Eye and respiratory irritation Hake et al. 1981

Abbreviations: FEV1, forced expiratory volume in 1 sec; NG, not given. For some studies, multiple experiments were conducted with different exposure times or end points resulting in
multiple LOAELs for the compounds.
aNumerical values indicate the percent of subjects responding. bEnd points with (L) depict “Lower” respiratory end points; all others are “Upper” respiratory end points. c“Average”
indicates that the response was a mean response. dStudy was considered to be of higher quality due to study design (e.g., placebo-controlled, blinding, subject selection, subject
characteristics, exposure conditions, and/or data reporting). 



Figure 2 indicates a good correlation (R2 =
0.71) between RD50s and RELs for 16 chemi-
cals with 37 comparisons.

TLVs versus RD50s. For the compounds
identified with RD50s and LOAELs, 24 had a
corresponding TLV. Figure 3 shows the cor-
relation of TLVs to RD50s with an R2 value of

0.81. Thus, when focusing specifically on
human irritants, the relationship between the
TLV and RD50 remains strong.

Conclusions

The focus of this paper is on the applicability
of RD50s for human health risk assessment.

Exposure guidelines to protect workers and
the public often focus on mild irritating signs
or symptoms. For example, > 50% of the
TLVs and > 60% of the California acute RELs
based their end points on irritation (Collins
et al. 2004). However, human studies from
which to develop acute exposure guidance are
not available for many of the hundreds of sub-
stances of concern, and therefore reliance on
animal studies is necessary. The RD50 test
method is appealing because it generates data
rapidly, requires minimal animal use, is low in
cost, and is validated, calibrated, and standard-
ized. The method was computerized, adding
to the reproducibility of the results (Alarie
1998, 2000; Vijayaraghavan et al. 1994). The
availability of RD50s in male mice for 89
chemicals (Schaper 1993), and their correla-
tion with OELs suggests potential applicability
to air exposure guidelines for the public. The
result of this analysis quantitatively supports
the applicability of RD50s in setting exposure
guidelines for the public and workers.

We found a strong correlation between
RD50s and human LOAELs, TLVs, and
California RELs. Focusing on human studies
where the subjects developed eye or respira-
tory irritation responses, we observed a strong
correlation (R2 = 0.80) between RD50s and
LOAELs for 25 chemicals with irritating
effects. The correlation remained close to 0.8
after conducting various subanalyses, indicat-
ing that the strains of mice or the RD50 expo-
sure time does not substantially affect the
correlation. Previously, Nielsen et al. (1995)
proposed an indoor air guideline for the pub-
lic between 0.025 and 0.25 times the OEL,
similar to 0.0008 and 0.008 times the RD50.
In our analysis, the RD50 to REL correlation
can be expressed as REL = 0.00026 ×
RD50

1.4. Derived as follows:

logRD50 = 0.71(logREL) + 2.55

logRD50 = log(REL0.71) + 2.55

10logRD50 = 10[log(REL0.71) + 2.55]

RD50 = REL0.71 × 102.55

REL = RD50
(1/0.71) × 10(–2.55/0.71)

REL = RD50
1.4 × 10(–3.59)

REL = 0.00026 × RD50
1.4.

Exposure times in the human studies var-
ied from 1 to 480 min, and a subanalysis look-
ing specifically at the effect of the duration of
exposure made no significant change to the
correlation. Further, subanalyses using
LOAELs more closely associated with either
upper respiratory or lower respiratory effects
did not make a significant change to the corre-
lations. Although the variability in the response
rate, interindividual sensitivity, and differences
in human study design, as described in Table 1,
would be expected to have reduced the cor-
relation with the RD50, specific factors were
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Table 2. RD50s of male mice with their corresponding TLVsa and RELsb (ppm), along with the specific strain
of mice used in the experiment and reference.

Exposure
Compound RD50 (ppm) time (min) TLV (ppm) REL (ppm) RD50 strain RD50 reference

Acetaldehyde 2,845 10 25 NA SW Steinhagen and Barrow 1984
2,932 10 25 NA B6C3F1 Steinhagen and Barrow 1984
4,946 10 25 NA SW Kane et al. 1980

Acetone 23,480 5 500 NA OF1 de Ceaurriz et al. 1981
77,156 10 500 NA SW Kane et al. 1980

Acrolein 1.03 10 0.1 0.00009 SW Steinhagen and Barrow 1984
1.41 10 0.1 0.00009 B6C3F1 Steinhagen and Barrow 1984
1.66 10 0.1 0.00009 BALB/c Muller and Greff 1984
1.7 1 0.1 0.00009 SW Kane and Alarie 1977
2.9 30 0.1 0.00009 CF1 Nielsen et al. 1984

Allyl alcohol 1.6 5 0.5 NA OF1 Muller and Greff 1984
2.5 30 0.5 NA ICR James et al. 1987
3.9 30 0.5 NA CF1 Nielsen et al. 1984

Ammonia 303 30 25 4.5 SW Barrow et al. 1978
789.6 10 25 4.5 CF1 Tomas et al. 1985

n-Butyl acetate 730 5 150 NA OF1 Muller and Greff 1984
n-Butanol 1,268 5 20 NA OF1 de Ceaurriz et al. 1981

4,784 10 20 NA SW Kane et al. 1980
11,696 30 20 NA CF1 Kristiansen et al. 1988

Chlorine 3.50 120 0.5 0.07 OF1 Gagnaire et al. 1994
9.3 10 0.5 0.07 SW Barrow et al. 1977

11.97 10 0.5 0.07 BALB/c Tomas et al. 1985
Ethylacetate 580 5 400 NA OF1 de Ceaurriz et al. 1981

614 10 400 NA SW Kane et al. 1980
Formaldehyde 3.1 10 0.3 0.076 SW Kane and Alarie 1977

4 10 0.3 0.076 BALB/c Nielsen et al. 1999
4.9 10 0.3 0.076 B6C3F1 Chang et al. 1981
5.3 5 0.3 0.076 OF1 de Ceaurriz et al. 1981

Isophorone 27.8 5 5 NA OF1 de Ceaurriz et al. 1981
Isopropyl acetate 4,259 5 100 NA OF1 Muller and Greff 1984
Isopropanol 5,000 5 200 1.3 OF1 de Ceaurriz et al. 1981

17,693 10 200 1.3 SW Kane et al. 1980
Methanol 25,222 5 200 NA OF1 Muller and Greff 1984

41,514 10 200 NA SW Kane et al. 1980
Methyl ethyl ketone 9,000 10 200 4.5 SW Stone et al. 1981

10,745 5 200 4.5 OF1 de Ceaurriz et al. 1981
31,426 30 200 4.5 CF1 Hansen et al. 1992

Methyl isocyanate 1.3 90 0.02 NA SW Ferguson et al. 1986
2.9 30 0.02 NA ICR James et al. 1987

Nitrogen dioxide 349 10 3 0.25 SW Alarie 1981c

Phenol 166 5 1.5 OF1 de Ceaurriz et al. 1981
n-Pentanol 4,039 10 NA NA SW Kane et al. 1980

5,933 5 NA NA OF1 Muller and Greff 1984
n-Pentyl acetate 1,531 10 50 NA SW Alarie 1981a

1,562 5 50 NA OF1 Muller and Greff 1984
Styrene 156.3 3 20 5.1 SW Alarie 1973b

586 5 20 5.1 OF1 de Ceaurriz et al. 1981
980 10 20 5.1 SW Alarie 1981a

Sulfur dioxide 117 2 0.25 SW Alarie et al. 1981a

Toluene 3,373 5 50 9.8 OF1 de Ceaurriz et al. 1981
4,900 10 50 9.8 SW Dudek et al. 1990
5,300 30 50 9.8 SW Nielsen and Alarie 1982

2,4-Toluene 0.24 40 0.005 NA OF1 de Ceaurriz et al. 1981
Diisocyanate 0.39 30 0.005 NA SW Barrow et al. 1978

0.78 180 0.005 NA SW Sangha and Alarie 1979
Triethylamine 156 15 1 0.68 OF1 Gagnaire et al. 1989

186 30 1 0.68 CF1 Nielsen and Yamagiwa 1989
p-Xylene 1,325 5 100 5 OF1 Muller and Greff 1984

NA, not available.
aRELs as described in Collins et al. (2004). bTLVs developed by ACGIH (2006). 



not identified in our subanalyses. Thus, we
conclude that the irritating symptoms in
humans correlate well with the RD50s of ani-
mals irrespective of the specific acute exposure
duration. These results not only support the
use of the RD50 in setting guidelines for
acutely irritating compounds, but also suggest
that a concentration–time extrapolation for
these effects appears unwarranted. This is con-
sistent with the finding by Shusterman et al.
(2006) that the human response to sensory irri-
tants reached a plateau rapidly. Thus, the
response appears to be influenced to a greater
extent by the exposure concentration rather
than the exposure time over the period of
observation for most animal and human exper-
iments considered in the present analysis, and
over the periods of concern for the TLVs
(15 min to 8 hr) and acute RELs (1 hr).

The results of this analysis are subject to
several limitations. First, the number of avail-
able human studies limits the LOAEL data,
and it is unlikely that human data will signifi-
cantly increase in the future. The number of
comparisons could increase as the numbers of

RD50s increase for chemicals with human
data. However, considering the robustness of
the subanalyses, and the historical correlation
of the RD50 to the TLV, a significant change
in the RD50 to LOAEL correlation is unlikely

after adding other sensory irritants in the
analysis. Finally, we address issues raised by
Bos et al. (1992, 2002, 2003). 

First, Bos et al. (2003) claimed that the
RD50–OEL correlation is expected because
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Table 3. Summary of linear least-squares regression analyses for various comparisons.

No. of No. of
Basic analyses compounds included data points included Regression line R 2 value

Description of analysis
All RD50s identified in all strains of mice 25 198 logRD50 = 1.16(log LOAEL) + 0.77 0.82

vs. all human LOAELs identified (Figure 1)
Evaluation using male mice and RELs 16 37 logRD50 = 0.71(log REL) + 2.55 0.71

set by OEHHA for airborne toxicants (Figure 2)
Evaluation using male mice and the 24 61 logRD50 = 0.86(log TLV) – 1.13 0.86

TLV (Figure 3)
Addressing issues of human LOAEL variabilities

Evaluation using all RD50s identified in all strains of 25 58 logRD50 = 1.13(log LOAEL) + 1.26 0.81
mice vs. the lowest human LOAEL for each compound

Analysis for male mice log RD50 vs. log LOAEL using 25 25 logRD50 = 1.01(log LOAEL) + 1.21 0.77
lowest RD50 values with the lowest LOAEL values

Analysis for male mice log RD50 and human 5 29 logRD50 = 1.06(log LOAEL) + 1.21 0.58
log LOAEL for lower respiratory end points

Analysis for male mice log RD50 and human 23 166 logRD50 = 1.22(log LOAEL) + 0.69 0.82
log LOAEL for upper respiratory end points

Analysis for male mice log RD50 and human 7 43 logRD50 = 1.40(log LOAEL) + 0.98 0.82
log LOAEL for higher quality human studies

Analysis for male mice log RD50 and human log LOAEL 25 155 log RD50 = 1.16(log LOAEL) + 0.73 0.79
for human studies not selected as higher quality

Evaluating influence of mouse strain
Evaluation using only Swiss-Webster mice 19 75 logRD50 = 1.12(log LOAEL) + 0.93 0.74

and all human LOAEL values (Figure 2)
Evaluation using all non–Swiss-Webster mice 23 120 logRD50 = 1.20(log LOAEL) + 0.73 0.83

and all human LOAEL values (Figure 3)
Evaluating changes in exposure duration

Evaluation using male mice and human LOAEL 16 67 logRD50 = 1.27(log LOAEL) + 0.726 0.76
values from exposures of ≤ 10 min

Evaluation using male mice and human LOAEL 18 127 logRD50 = 1.11(log LOAEL) + 0.838 0.80
values from exposures of > 10 min

Evaluation using male mice and human LOAEL 15 101 logRD50 = 1.08(log LOAEL) + 0.89 0.80
values from exposures of ≥ 60 min

Log RD50 vs. log RD50 for RD50 values 16 44 logRD50 = 1.04(log LOAEL) + 0.76 0.77
with time < 10 min

Log LOAEL vs. Log RD50 for RD50 values 10 43 logRD50 = 1.51(log LOAEL) + 0.56 0.87
with time > 10 min

Log RD50 vs. log LOAEL for RD50 values 16 111 logRD50 = 1.3(log LOAEL) + 0.78 0.80
with time equivalent to 10 min

LogRD50 vs. log LOAEL for RD50 values 22 86 logRD50 = 1.09(log LOAEL) + 0.77 0.8
at times not equivalent to 10 min

OEHHA, Office of Environmental Health Hazard Assessment.

Figure 1. Linear least-squares regression analysis for log RD50 (for all mouse strains) vs. log LOAEL (human
irritation end points) for 25 compounds, using 195 data points. Log RD50 = 1.16(log LOAEL) + 0.77; R 2 = 0.80.
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most OELs are based on animal data.
Although many OELs are based on animal
data, many are based on human data as well.
Of the 24 substances we evaluated in our
RD50–OEL correlation, the OEL for only
one compound, n-pentyl acetate, relied on
the RD50 for its derivation, which was based
solely on animal data. The strong correlation
between RD50s and human LOAELs also
addresses this concern. 

Second, Bos et al. (2002) reported the
RD50s did not correlate well with histopatho-
logic changes in the respiratory tract or with
corrosivity, and therefore RD50s were inap-
propriate to evaluate respiratory tract irrita-
tion. However, the stated purpose of the
ASTM standard is to evaluate sensory irrita-
tion potential, not histopathology or corrosiv-
ity. In our comparison of the RD50s with
human irritation LOAELs, the correlation
was strong with the inclusion of respiratory
tract irritation end points in the analysis.
Further, the risk assessment framework for

occupational and public exposure levels
addresses the concerns regarding the potential
for other, more severe effects. In cases where
other health effects occur at or below levels
producing sensory irritation, exposure guide-
lines use the more sensitive adverse effect. 

Third, Bos et al. (1992) raised concerns
regarding the inconsistency of RD50s among
strains and species. Although RD50s have been
generated for various strains and species with
varying test procedures, adhering to the ASTM
standard method addresses this concern.
Limiting the RD50 test to those conducted in
mice, or Swiss-Webster mice, and limiting the
exposure time keeps the test to a more stan-
dardized method, although intrastrain variabil-
ity was not a cause for concern in our
subanalyses. Finally, we addressed the concern
regarding time–concentration response curves
(Bos et al. 1992), with separate subanalyses
based on exposure time. These analyses show
that time did not appear to be a factor in our
analyses. Our presumption is that if the study

adheres adequately to the ASTM standard
method, experimental exposure time plays a
minor role. It is also worth pointing out that
all of the figures comparing RD50s to
LOAELs, RELs, and TLVs are plotted on a
log–log plot because of the wide range of val-
ues. Because of the nature of log–log plots, the
correlation is higher compared with the same
correlation using a nonlogarithmic scale.

The applicability of the RD50 test to
human health protection has been demon-
strated in several analyses, but extrapolation of
the test results to the general public would be
improved with greater focus on the tail of the
dose–response curve, to ensure protection of
sensitive subpopulations. One solution would
be for RD50 studies to report sufficient infor-
mation to calculate a benchmark dose (BMD)
value, and not focus solely on the specific
RD50 value. A standardized BMD value could
be calculated at the tail of the distribution,
taking into account the slope of the
dose–response curve. Alternatively, the test
procedure could be refined to identify the
“just detectable effect level,” which is approxi-
mately a 12% decrease in the respiratory rate
(Alarie 1998). Although some work has been
done in this area (Boylstein et al. 1996), addi-
tional information is needed to better under-
stand the tail of the dose–response curve and
to address any concerns for spurious results
from low exposure concentrations. The
reported just detectable effect level of 12%
appears to be close to the no observed effect
level of the procedure. Use of this response
rate in risk assessment is consistent with the
recommendation by the U.S. EPA (2007) that
the BMD for a continuous response may be
set on statistical criteria of distinguishability
from the control value, as well as on grounds
of anticipated biological significance. A major
benefit of focusing on the just detectable effect
level would be to reduce potential animal suf-
fering, and possibly animal usage.

In conclusion, the RD50 test is a good
starting point for setting exposure standards
for acute airborne irritants. As noted by
Alarie et al. (2000), the TLV may need to be
< 0.03 RD50 to prevent other toxic effects.
Consequently, the literature should be ade-
quately evaluated to determine that sensory
irritation is likely the most sensitive adverse
effect. The application of RD50s appears most
useful when qualitative data are available indi-
cating sensory irritation as the most sensitive
adverse effect, but quantitative human data
are lacking. The RD50 has proven its useful-
ness with the ability to appropriately rank the
potency of airborne chemicals as sensory irri-
tants and help establish exposure limits. A
strong correlation between RD50s and
LOAELs provides further support for using
RD50s in determining guidance levels to pro-
tect the general public from sensory irritants.
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Figure 2. Linear least-squares regression analysis for log RD50 (mice) vs. log REL (set by OEHHA for air-
borne toxicants) for 16 compounds. Log RD50 = 0.71(log REL) + 2.55; R 2 = 0.71.
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Figure 3. Linear least-squares regression analysis for log RD50 (male mice) vs. log TLV for 24 compounds
(no TLV for n-pentanol). Log RD50 = 0.86(log TLV) – 1.13; R2 = 0.86.
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