#### Low Dose Estrogen, fMRI, and Cognitive Function

Vincent P. Clark, Ph.D. University of New Mexico & The MIND Institute

Michael Stevens, Yale University Karen Prestwood, University of Connecticut Health Center

## Goals

To examine the effects of low-dose 17  $\beta$ -estradiol on behavioral performance and brain function during a sustained visual attention task.

Questions:

- 1. What are the effects of low-dose estradiol on behavioral performance during a simple visual attention task?
- 2. What are the effects of low-dose estradiol on brain function during performance of this task?

# Background

- Some studies and meta-analyses support the positive effects of estrogen compounds on neural and cognitive function, and some do not.
- Anderer et al. *Electroencephalography & Clinical Neurophysiology: Evoked Potentials* (1998)
  - Estrogen shortens the P300 ERP response
    - P300 lengthens with age
    - Results suggests a more "youthful" P300 with estrogen

# Participants

- Recruited from a larger study to evaluate the effects of ultra-low dose micronized estradiol on bone density
  - Prestwood, K. M., Kenny, A. M., Kleppinger, A., Kulldorff, M., (2003). Ultralow-dose micronized 17 β-estradiol and bone density and bone metabolism in older women: A randomized controlled trial. *JAMA*, 290, 1042-1048.
- 112 women completed full β-estradiol study
  - Approximately 60 of these women completed full neuropsychological evaluation
  - Of these 60, <u>16 women agreed to do the fMRI portion</u>
- Studied after 3 years of randomized double blinded administration of 25 mg/d 17  $\beta$ -estradiol
  - progesterone 100 mg per day for 2 weeks every 6 months
  - calcium citrate 1300 mg and 1000 IU vitamin D per day

### Participant Characteristics

|                      | Mean <u>(</u> SD) or % |             |
|----------------------|------------------------|-------------|
|                      | E                      | Placebo     |
| Age                  | 76.9 (3.94)            | 79.0 (3.93) |
| Handedness           |                        |             |
| Right                | 87.5%                  | 100.0%      |
| Education            |                        |             |
| High school grad     | 12.5%                  | 0.0%        |
| Some college or grad | 87.5%                  | 62.5%       |
| Post grad work       | 0.0%                   | 37.5%       |

# Effects of β-Estradiol Hormone Levels

|                         | Mean (SD) or % |             |  |
|-------------------------|----------------|-------------|--|
|                         | $E_2$          | Placebo     |  |
| Estradiol level (pg/ml) |                |             |  |
| Baseline                | 8.4 (4.32)     | 9.3 (3.52)  |  |
| 3-year                  | 21.0 (14.23)   | 7.6 (2.25)  |  |
| Estrone level (pg/ml)   |                |             |  |
| Baseline                | 13.4 (5.33)    | 14.7 (6.01) |  |
| 3-year                  | 50.9 (50.73)   | 13.2 (4.17) |  |

| Effects of β-Estradiol<br>Depression & Anxiety |                |            |  |
|------------------------------------------------|----------------|------------|--|
|                                                | Mean (SD) or % |            |  |
|                                                | E              | Placebo    |  |
| Geriatric Depression Scale                     |                |            |  |
| Baseline                                       | 3.0 (4.28)     | 3.9 (2.70) |  |
| 3-year                                         | 3.8 (5.70)     | 4.6 (5.26) |  |
| Beck Anxiety Scale                             |                |            |  |
| Baseline                                       | 2.0 (2.98)     | 3.8 (3.65) |  |
| 3-year                                         | 5.5 (5.73)     | 4.3 (2.87) |  |
|                                                |                |            |  |

# Effects of β-Estradiol Personality & Behavior

|                     | Mean (SD) or % |               |  |
|---------------------|----------------|---------------|--|
|                     | $E_2$          | Placebo       |  |
| Folstein MMSE score |                |               |  |
| Baseline            | 28.8 (1.39)    | 29.5 (0.53)   |  |
| 3-year              | 28.8 (1.04)    | 29.4 (0.53)   |  |
| PASE                |                |               |  |
| Baseline            | 134.7 (52.27)  | 122.0 (87.09) |  |
| 3-year              | 102.2 (50.50)  | 84.5 (32.86)  |  |

## fMRI Methods

- 1.5 Tesla Siemens Vision MRI
- Visual stimuli displayed using virtual reality goggles (Resonance Technologies)
- Eight 3-minute runs of the three-stimulus oddball task

### Three Stimulus Oddball Task

QuickTime<sup>™</sup> and a Motion JPEG OpenDML decompressor are needed to see this picture.

200 msec duration, ISI averages 1 per sec (550-2050 msec) Rare Target - "X" - 8% - Requires button press response Rare Distractor - "C" - 8% - No response Standard - "T" - 82% - No response

Robustly sensitive to CNS function:

- Clark et al. (2000; 2001; 2002), Stevens et al. (2001)
- R01 DA12852 "Neural Function in Cocaine Dependence and Relapse"

#### P300 Evoked by the Three Stimulus Oddball Task



## Analyses

- Behavioral analyses
  - Accuracy, reaction time, false alarms
- FMRI analyses
  - Used SPM99 to examine amplitude of event-related responses to target, distractor and standard stimuli
  - Examined differences between groups in these measures

# Stimulus Sequences & Predicted HRFs



Orthogonality allows independent testing of each stimulus type.

### Predicted HRFs



### **Behavioral Results**

• No significant differences were found in behavioral performance.

|                                    | Mean (SD)     |               |
|------------------------------------|---------------|---------------|
|                                    | E             | Placebo       |
| Target Reaction Time ( <i>ms</i> ) | 530.4 (47.52) | 518.9 (53.61) |
| Distractor False Positives         | 0.03 (0.06)   | 0.00 (0.00)   |
| Standard False Positives           | 0.61 (0.45)   | 0.93 (0.60)   |
| Accuracy                           | 98.7          | 99.6          |

## fMRI Results

- Altered hemodynamic responses to stimuli
  - Target stimuli
    - increased hemodynamic activity in visual and motor areas
    - less activation in parietal areas
  - Distractor stimuli
    - greater activity in anterior cingulate and other prefrontal cortical and adjacent subcortical areas
    - reduced parietal activity

# β-estradiol and Placebo Target Response

#### Placebo



#### Estrogen



β-estradiol and Placebo Distractor Response

#### Placebo



#### Estrogen



### Placebo > $\beta$ -estradiol



Novels

Targets

#### $\beta$ -estradiol > Placebo



# Random Effects Analysis and Evoked Response



## Conclusions

- Low-dose 17  $\beta$ -estradiol does not greatly alter behavioral responses in a simple reaction time task.
- Brain activation patterns are consistent with our findings in younger persons.
- BOLD responses in posterior brain areas were reduced.
- Responses in anterior subcortical and cortical regions were enhanced, but to a lesser degree.
- Because fMRI is an indirect measure of neural activity, these results may be due to either the neural or hemodynamic effects of 17  $\beta$ -estradiol.

### Collaborators

- <u>Michael C. Stevens</u>
  Thomas Shepherd
- Karen M. Prestwood
  - Allison Kleppinger