Andrus Gerontology Center

Dept Biological Sciences

Keck School of Medicine

UNIVERSITY
OF SOUTHERN
CALIFORNIA

Caleb Finch:

NIA Workshop 'Bench to Bedside: Estrogen as a Case Study'
Sept 28-29, 2004
"Ovarian steroids,
neuroinflammatory responses, & aging"

100%

Dementia prevalence aging accelerates doubles each 5 yrs

10%

By age 70 in US, 10% cognitive impairment

1%

0.1%

expected remaining life
with cognitive impairment
women>men, because of
greater life expectancy
Suthers et al J Gerontol, 2003

OOCYTE LOSS DURING AGING

universal ovarian aging:

>95% estrogen loss at midlife precedes acceleration of dementia by 10 yrs

Shared inflammatory mechanisms?

Finch CE Neurobiol Aging, in press

	atheroma	senile plaque	
cells			
macrophages (CD68)	+++ (foam cells)	++ (microglia)	
T helper (Th1)-cells	++	0	
mast cells, platelets	++	0	
neovascularization	++	+	
proteins			
amyloids	++	++	
Abeta	? (platelet APP)	+++	
C-reactive protein (CRP)	++	+	
serum amyloid P (SAP)	++	++	
clotting factors	++	0	
complement: C3, C5b-9	++	++	
cytokines: IL-1, IL-6	++	++	

oral equine estrogens

increase IL-6 & CRP at *higher BMI*systemic proinflammatory effect of estrogen
vs pro-vascular endothelial benefit by NO
which inhibits expression of cell adhesion molecules
[Herrington D et al JCEM 2001]

inflammatory markers in Alzheimer & usual brain aging

	senile plaque	aging human	aging rodent
glial activation: GFAP (astro), MhcII (µglia)	++	+	+
	+		
apoE , apoJ, CRP, HOX-1, RAGE	++	+	+
Complement C1q, C3	++	corpora amylacea	+ C1q mRNA
Cytokines IL-1, IL-6, TNF-≫	++	+	+

Complement activation in normal aging (CDR 0)

C3,C4 on diffuse A&\(\rightarrow \) deposits

H Zanjani, C Finch J Morris, J Price, ADRD, 2005

E2 increases microglial uptake of Abeta Li et al., J Neurochem 2000

Treatments

Aging decreases responsiveness of synaptic sprouting to E2

Stone, Rozovsky, Morgan, Finch (2000) Exp Neurol

Astrocyte aging increases GFAPcontaining intermediate filaments

GFAP mRNA in normal aging rat brain Nichols et al Neurobiol Aging 1995

Laminin/MAP-5 double immunolabeled astrocyte-neuron co-cultures

aging
astrocytes
(24 vs 3 mo)
support less
neurite
growth
(E18 neurons)
Rozovsky et al
Neurobiol Aging, 2005

young glia

old glia

enhances
neurite
outgrowth
after
wounding
by GFAP
repression

astrocyte: neuron cocultures

neonatal astrocytes; E18 neurons

Rozovsky Endocrinology 2002

Aging astrocytes

less responsive to E2

- *neurite support
- *GFAP repression

reversed by SiRNA to decrease GFAP

Rozovsky et al Neurobiol Aging, in press Old astrocytes do not support E2-mediated neuronal sprouting in "wounding-in-a-dish

Neuronal sprouting is enhanced if lesioninduced GFAP inhibited by RNAi in co cultures of both ages

open questions in neuroinflammatory processes of 'normal' brain aging and dementia

- *effects of blood IL-6 and CRP etc on brain aging
- *NSAIDs/aspirin/statins on brain aging
- *estrogen-progestin interactions on brain aging
- *apoE alleles and hormone therapy on brain aging