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NPY in affective disorders

Symptoms of anxiety and depression commonly co-exist and both disorders
are thought to reflect maladaptive changes in stress-responsive systems [1].
Known genetic factors increase vulnerability for both anxiety and depression
[2]. It has furthermore been suggested that the present classification of depres-
sive and anxiety disorders may be artificial, and that for a large proportion of
subjects with affective symptoms, a more appropriate categorization would be
“major depression — generalized anxiety disorder” [3]. Thus, the role of NPY
in these two conditions is dealt with jointly.

In rodent models, injections of nanomolar doses of NPY have been shown
to decrease anxiety-like responses in a variety of tasks, including the elevated
plus-maze {4, 5], social interaction task [6], fear potentiated startle and fear
conditioned responses [4, 5, 7, 8]. In addition, intracerebroventricular (icv)
administration of NPY to a large extent prevented gastric ulceration induced
by water restraint, a strong stressor [9]. Mutant mice lacking NPY show
increased anxiety-like behavior {10]. Although a transgenic mouse overex-
pressing NPY has been developed, only a limited phenotypic characterization
for this line is available [11]. However, transgenic rats overexpressing NPY in
hippocampus were shown to be resistant to stress-induced increases in anxi-
ety-like behavior |12, 13].

These studies together indicate that pharmacological or transgenic activa-
tion of NPY signaling is stress reducing. The physiological involvement of
endogenous NPY in mediation of stress responses and anxiety related behav-
ior was demonstrated in two studies showing that NPY gene expression in
amygdala and cortex is regulated by stress. Acute stress downregulates NPY-
IR and NPY mRNA expression within 1 h, with mRNA levels returning to noz-
mal levels within 10 h and peptide levels within 2 h {14]. This stress has been
shown to be anxiogenic on the elevated plus-maze. Interestingly, with repeat-
ed stress exposure, leading to a behavioral habituation, this effect is reversed.
Under these conditions, NPY expression is instead upregulated [15]. On the
basis of these pharmacological and expression studies, it was proposed that an
upregulation of NPY expression may contribute to successtul behavioral adap-
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tation to stress. This extends a previously introduced hypothesis that NPY may
act to “buffer” behavioral effects of stress-promoting signals such as CRF [16].

For depression, a differential NPY expression has been detected in a genet-
ic animal model, the Flinders Sensitive rats (FSL) [17-20]. This is in agree-
ment with the finding that chronic cocaine reduces NPY expression in the pre-
frontal cortex [21], since clinical hallmarks of cocaine withdrawal and
dependence are symptoms of depression. Treatment with clinically effective
antidepressants was early reported to increase NPY expression in several brain
regions in rats, with frontal cortex being the most consistent region [22]. Initial
attempts to replicate the effects of chronic antidepressant treatment and extend
them to mRNA level were unsuccessful [23, 24] for reasons which remain
unclear but may be related to assay specificity or, more likely, the half life of
the drugs used being insufficient to maintain adequate plasma concentrations.
Subsequently, a region-specific regulation of NPY and Y1 receptor expression
was reported following chronic treatment with the serotonin-selective reuptake
inhibitor (SSRI) fluoxetine, both in the “depressed” (FSL) line and the corre-
sponding control line (FRL) [17, 25]. In these studies, fluoxetine elevated
NPY-IR in the hypothalamic arcuate nucleus and anterior cingulate cortex, and
increased Y1 binding sites in the medial amygdala and occipital cortex in both
lines. In agreement with these findings, an increase in the NPY mRNA was
found in the arcuate nucleus in both lines. In other brain regions, fluoxetine
treatment caused a differential effect on the induction of NPY-related genes in
these two rat strains: in hippocampus, NPY mRNA expression was increased
in the “depressed” (FSL) subjects, but decreased in the “non-depressed” (FRL)
line. In contrast, Y1 mRNA levels tended to decrease by fluoxetine in the
nucleus accumbens of the FSL rats, but increased in the FRL. On the basis of
these findings, an involvement of NPY was suggested in the antidepressant
effect of fluoxetine.

Another established and effective antidepressive treatment, electroconvul-
sive shock (ECS), has been much more consistent in upregulating brain NPY-
levels, with hippocampus as a seemingly central target. An elevated NPY level
was demonstrated after repeated, but not single ECS, paralleling the require-
ments for clinical effect in depressed subjects [26-28]. These data has been
both replicated and extended [29-31] and this effect seems robust in both
“normal” laboratory rats and in the genetically selected FSL and FRLs. The
mechanism is an upregulation of preproNPY expression which leads to an
increased extracellular availability of the NPY peptide. Against the back-
ground of our behavioral finding in the transgenic rat model [12], upregulated
hippocampal NPY-expression might be of importance both for therapeutic and
amnesic effects of ECS.

The anti-anxiety and anti-depressive actions of NPY appear to be predomi-
nantly mediated via the Y1 receptor systemn. This was initially based on the
observation that full length NPY peptide produced an anti-anxiety effect in
elevated plus-maze, Vogel test [5] and Geller-Seifter test [7], while the C-ter-
minal, presumably Y2-selective fragment, NPY 3 35, did not generate this
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action. The in vivo use of intracerebral antisense oligonucleotides targeting Y1
receptor transcript made it possible to demonstrate a selectively lowered den-
sity of Y1 binding sites, with an outcome of decreased behavioral effects on
the elevated plus-maze [32]. With the development of more selective pharma-
cological tools, Y1 mediation of anti-stress effects of NPY appears to have
been confirmed.

Y2 receptors may also play a role in the regulation of emotionality. NPY-
Y2 receptors are located presynaptically on NPY-ergic neurons, and control
the release of endogenous NPY [33, 34]. Antagonizing this receptor is expect-
ed to potentiate the release of NPY and through this mechanism offer an
“NPY-mimetic” effect without developing an Y1 agonist. This mechanism
would therefore be an attractive target in the drug development efforts. Studies
of NPY Y2 receptor knockout mice have supported this idea [35, 36] and
results are consistent with the anxiogenic-like effects of intra-amygdala treat-
ment of Y2-preferring agonists in the rat social interaction test [37, 38].
Another more direct involvement of Y2 receptors has been suggested within
the locus coeruleus, where an anxiolytic-like effect was detected after a
10 pmol NPY microinjection into this structure, mimicked by NPY 3.6 but not
by [Leu31, Pro34]NPY, a “non-Y2” ligand [39].

The amygdala has so far been the most prominent region of interest with
regard to emotionality. Central amygdala was initially suggested to be the
mediating site of anxiolytic NPY actions [40]. However, subsequent microin-
jection studies using smaller injection volumes have prompted a re-evaluation
of the data, suggesting that the lateral/basolateral complex in fact mediates
anti-stress effects of NPY within the amygdala [6]. Periaqueductal grey mat-
ter (PAG) is involved in the behavioral output of fear responses, with subcom-
partments that are differentially involved in defensive behaviors [41, 42]. Its
dorsolateral compartment (DPAG) has been suggested to tonically inhibit the
amygdala. Microinjections of Y1 antagonists within DPAG produced an anx-
iogenic effect in elevated plus-maze [43] and social interaction task [44].

Septum has been implicated to be part of another important “behavioral
inhibition system” but septal lesion that studies demonstrated effects on anxi-
ety-like behaviors most likely reflected effects on fibers passing through this
structure, probably belonging to hippocampal output through fornix fimbriae
[45]. Hippocampus is an important component of neuronal circuitry control-
ling anxiety-related behaviors and stress responses, and in particularly dorsal
hippocampus [46, 47|, and septo-hippocampal circuits are likely to be impor-
tant for fear related behaviors. NPY microinjections into lateral septum repro-
duced anxiolytic-like actions of intracerebroventricular administration of NPY,
and reversed the anxiogenic action of corticotrophin releasing factor (CRF).
This was clearly mediated by the Y1 receptor, since a highly selective Y1
receptor antagonist, BIBO 3304, biocked this anxiolytic-like action [48].

Human studies support an involvement of NPY in depression and anxiety
disorders. An early study stated decreased levels of NPY in the cerebrospinal
fluid (CSF) of patients with major depression [49], which could reflect a
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decrease in central availability of NPY. Low levels of NPY in brain tissue were
also reported in suicide victims [50]. These studies were followed by reports
which failed to replicate their results [51, 52], although issues of assay speci-
ficity are particularly likely to complicate matters in this case. In a recent re-
examination of this issue in a large number of therapy-refractory depressed
patients, a highly significant, 30% reduction of CSF NPY was found {53}.
Interestingly, postmortem studies have meanwhile shown a decreased NPY
mRNA expression which is most prominent in bipolar disorder [54]. It is a
well-known fact that a proportion of patients diagnosed with unipolar disorder
in fact has a genetic vulnerability for bipolar disorder, but has not yet present-
ed with their first manic episode, and may never do so. i is therefore possible
that the involvement of NPY is primarily related to bipolar traits and that the
discrepant CSF results are partly due to varying proportion of this patient cat-
egory in the different clinical populations.

In summary, compelling evidence exists for a role of NPY as an endogenous
anti-stress compound, which is physiologically recruited to cope with pro-
longed stress. Dysfunction of this system seems to be present in affective ill-
ness. Targeting the NPY system, possibly through antagonism at presynaptic
Y2 autoreceptors, offers an attractive strategy to develop novel antidepressant
and anti-anxiety treatments.

NPY in alcoholism

In addition to involvement in mood disorders such as depression and anxiety
syndromes, NPY has been demonstrated to have a role in alcohol intake,
dependence, and withdrawal. The effect profile of NPY shows numerous sim-
ilarities with not only that of established anti-anxiety compounds, but also that
of alcohol. Furthermore, in clinical studies of alcohol dependence a correlation
between initial anxiety and subsequent alcohol abuse, possibly due to the anx-
iolytic action of alcohol, has been demonstrated [55, 56]. While this may only
be true for a subgroup of alcoholics, it may partially explain some of the
changes and effects seen for NPY in alcoholism.

A direct link between NPY signaling and regulation of alcohol consumption
was first shown in a study where mice with a transgenic overexpression of
NPY consumed less alcohol, while mice with a null-mutation, i.e. inactivation,
in the NPY gene had an increased alcohol consumption |11]. Genetic studies
in both experimental animals and humans provide tentative support for a role
of NPY in regulation of ethanol intake. Within the genome of a genetic rat
model of high alcohol drinking state, the P-rat (see below), a quantitative trait
focus was identified which spans the locus for the NPY gene [57, 58].
Furthermore, associations between alcoholism and polymorphisms within the
NPY gene have been suggested. A substitution (Pro7 for Leu7) in the signal
peptide region of the NPY precursor, prepro-NPY, leads to increased plasma
NPY in response to stress compared to control subjects without the substitu-
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tion [59, 60]. A 34% higher average alcohol consumption was reported in
Finnish men with this substitution compared to matched control subjects [59].
Another report showed alcoholic European/American men had a 5-5.5% Pro7
allele frequency while the frequency in the non-alcoholic control group was
2% [61]. However, this polymorphism has also been reported to be of lower
frequency in alcoholics or to not be significantly different between alcoholics
and controls [61, 62]. We have recently reanalyzed this issue by reconstructing
the haplotype structure of the preproNPY — gene using five polymorphic mark-
ers. This has yielded two preliminary insights: The coding Leu7Pro 1128 SNP
is in strong linkage disequilibrium with a novel promoter polymorphism, and
is present almost exclusively on a common haplotype. The frequency of this
haplotype differs significantly between alcohol dependent subjects and nor-
mals. All of this difference can be attributed to type I alcoholics, i.e., patients
with late onset of alcohol problems. Interestingly, this clinical subtype is char-
acterized by high trait anxiety, which makes the association of particular inter-
est considering the established role of NPY in anxiety. Finally, another poly-
morphism, a C-to-T substitution at the 5671 locus of the NPY gene, was
reported to be more frequent in a Japanese alcoholic patient population [63].

In animals, selective breeding for ethanol consumption or preference has
created several lines of mice and rats which have been well characterized with
regards to numerous behavioral, pharmacological, and biclogical traits. Mouse
lines include the high-alcohol-preference (HAP) and low-alcohol-preference
(LAP) line, and rat lines include the Sardinian preferring (SP) and non-prefer-
ring (SNP) lines, the Indiana alcohol-preferring (P) and non-preferring (NP)
lines, the Alko alcohol (AA) and Alko non-alcohol (ANA) lines, as well as the
high-alcohol drinking (HAD) and low alcohol drinking (LAD) lines [64]. Each
high drinking/preferring line consumes sufficient amounts of alcohol to
achieve pharmacologically significant blood levels (50-250 mg%), is motivat-
ed by ethanol’s pharmacological properties rather than smell, taste, or caloric
content, and develops physiological tolerance after long term access to alco-
hol. NPY and NPY receptor expression patterns have been examined in these
‘genetic models of alcohol dependence’. For example, P rats have been shown
to have low levels of NPY in amygdala, frontal cortex, and hippocampus com-
pared to the non-preferring NP-line, but higher levels in the paraventricular
nucleus, arcuate nucleus, and cingulate cortex [65, 66]. In the HAD line NPY-
IR was decreased in central nucleus of the amygdala, paraventricular nucleus
of the hypothalamus, and the arcuate nucleus as compared to LAD rats [67].
In the AA/ANA, a different pattern was seen, with lower hippocampal NPY
mRNA expression compared to the non-preferring line [68]. The NPY Y2
receptor subtype was also found to be reduced in the medial amygdala of the
AA line as compared to the ANA line.

The etfect of NPY on alcohol consumption appears to be in part dependent
on the individual’s history and state of alcohol consumption. In animal stud-
ies, central administration of NPY into the lateral ventricles, central nucleus of
the amygdala, or the third ventricle leaves level of ethanol intake unaffected in

Material may be protected by copyright law (Title 17, U.S. Code)




188 A. Thorsell et al.

norrmal, out-bred rat strains [69-72]. However, a significant suppression of
alcohol intake was found in the P-line as compared to NP and normal Wistar
rats, and in the HAD rat line [73, 71]. The lack of effect in states of low intake
but efficacy in the preferring lines which consume ethanol for its pharmaco-
logical properties is key to understanding a basic distinction, which is further
highlighted by experiments in animals with or without a history of depend-
ence. Thus, a basal component of ethanol consumption seems to be unrelated
to the pharmacological/rewarding actions of ethanol, but might instead be
related to its properties as caloric nutrient, regulated by factors modulating
appetite. This component is not suppressed by NPY; in contrary, it is stimulat-
ed by hypothalamic NPY injections, as would be expected from NPYs well
established effect to stimulate appetite [74]. In contrast to the suppressive
effects of NPY on ethanol intake in high-preferring animals, the modulation of
the Jow level intake component appears to be the same in rats genetically
selected for low and high preference, making it further unlikely that it is relat-
ed to the addictive properties of ethanol [75].

Further evidence for the dichotomy between effects of NPY on ethanol con-
sumption related to addictive properties of this drug, versus effects on low
level intake, has been provided using animals in which dependence and high
alcohol preference was induced using 8 weeks exposure to intermittent ethanol
vapor (14 h on/10 h off per day; target BAL 200 mg%). This models chronic
alcohol consumption and leads to similar clinical manifestations as well as
long-term changes in neurochemistry and increases in alcohol intake [76]. In
this model, NPY was shown to significantly suppress alcohol intake in
exposed animals as compared to saline treatment. Notably, consumption was
reduced back to but not below pre-vapor exposure levels {77].

Thus, the NPY systemn may offer an attractive target for developing novel
therapies for alcohol dependence. The likelihood of this has been strengthened
by recent findings that mice in which the Y1 receptor gene as been inactivated
consume increased amounts of ethanol [78]. Furthermore, icv administration
of the selective Y2 antagonist BIIE0246 lead to decreased ethanol intake in
non-dependent rats, and a sensitization to this effect was shown in post-
dependent (vapor exposed) rats [79, 80].

Conclusion

The NPY system may well be one of the most interesting target systems for
development of treatments for alcohol dependence as well as mood disorders
such as depression and anxiety syndromes. NPY is an endogenous anxiolytic
compound, functions as an antidepressant, and is effective in modifying alco-
hol intake in high drinking states. Through receptor subtype specific com-
pounds, the NPY system offers an interesting and innovative future approach
for treatment designs. Selective Y2 receptor antagonists and/or Y1 agonists
that are peripherally available and effectively penetrate the CNS are possible
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candidates. In conclusion, the NPY system offers attractive targets for devel-
opment of future treatments for depression, anxiety, and alcobol dependence.
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