
 

 

 

PGI® Server 8.0 
PGI® Workstation 8.0 
 
  
Release Notes  
 

 

 

 

 

 

The Portland Group®   
STMicroelectronics, Inc 
Two Centerpointe Drive 
Lake Oswego, OR  97035 
www.pgroup.com 



ID: 636  

While every precaution has been taken in the preparation of this document, 
The Portland Group® (PGI®), a wholly-owned subsidiary of 
STMicroelectronics, Inc., makes no warranty for the use of its products and 
assumes no responsibility for any errors that may appear, or for damages 
resulting from the use of the information contained herein. The Portland 
Group ® retains the right to make changes to this information at any time, 
without notice. The software described in this document is distributed under 
license from STMicroelectronics, Inc. and/or The Portland Group® and may 
be used or copied only in accordance with the terms of the license agreement 
(“EULA”). No part of this document may be reproduced or transmitted in 
any form or by any means, for any purpose other than the purchaser’s or the 
end user's personal use without the express written permission of 
STMicroelectronics, Inc and/or The Portland Group®. 

Many of the designations used by manufacturers and sellers to distinguish 
their products are claimed as trademarks. Where those designations appear in 
this manual, STMicroelectronics was aware of a trademark claim. The 
designations have been printed in caps or initial caps. 

PGF95, PGF90, and PGI Unified Binary are trademarks; and PGI, PGHPF, 
PGF77, PGCC, PGC++, PGI Visual Fortran, PVF, Cluster Development Kit, 
PGPROF, PGDBG, and The Portland Group are registered trademarks of 
The Portland Group Incorporated.  PGI CDK is a registered trademark of 
STMicroelectronics. Other brands and names are the property of their 
respective owners. 

PGI Server 8.0 /  PGI Workstation 8.0 
 Release Notes 

Copyright © 2007-2008 

The Portland Group®  
STMicroelectronics, Inc. - All rights reserved. 

 Printed in the United States of America 

      First Printing             Release 8.0-1 November 2008 

 

Technical support: www.pgroup.com/support 



 

 

  Table of Contents 
1 INTRODUCTION ............................................................................ 1 

1.1 PRODUCT OVERVIEW...................................................................... 1 
1.2 TERMS AND DEFINITIONS ............................................................... 2 

2 PGI RELEASE 8.0 OVERVIEW.................................................... 3 

2.1 PGI RELEASE 8.0 CONTENTS.......................................................... 4 
2.2 SUPPORTED PROCESSORS ............................................................... 4 
2.3 SUPPORTED OPERATING SYSTEMS.................................................. 6 

3 NEW OR MODIFIED COMPILER FEATURES......................... 9 

3.1 GETTING STARTED ....................................................................... 10 
3.2 USING –FAST, –FASTSSE, AND OTHER  PERFORMANCE-ENHANCING 

OPTIONS 10 
3.3 NEW OR MODIFIED COMPILER OPTIONS....................................... 11 
3.4 COMMON COMPILER FEEDBACK FORMAT   (CCFF) ..................... 13 
3.5 ENHANCEMENTS TO OPENMP ...................................................... 14 

3.5.1 New or Modified OpenMP Directives and Pragmas............... 14 
3.5.2 New or Modified OpenMP Run-time Library Routines ......... 15 
3.5.3 New or Modified OpenMP Environment Variables................ 15 

3.6 NEW OR MODIFIED MPI SUPPORT ................................................ 16 
3.7 LIBRARY INTERFACES .................................................................. 16 

4 PGI WORKSTATION 8.0 ............................................................. 17 

4.1 PGI WORKSTATION 8.0 FOR LINUX .............................................. 17 
4.1.1 Provisional x64+GPU Support................................................ 17 
4.1.2 Java Runtime Environment (JRE)........................................... 17 

4.2 PGI WORKSTATION 8.0 FOR WINDOWS, SFU, AND SUA ............. 17 
4.2.1 All-new Windows Licensing Installation................................ 18 



  

4.3 PGI WORKSTATION 8.0 FOR MAC OS X....................................... 18 

5 DISTRIBUTION  AND DEPLOYMENT .................................... 19 

5.1 APPLICATION DEPLOYMENT AND REDISTRIBUTABLES ................. 19 
5.1.1 PGI Redistributables ............................................................... 20 
5.1.2 Microsoft Redistributables...................................................... 20 

6 THE PGI WINDOWS CDK.......................................................... 21 

6.1 BUILD MPI APPLICATIONS WITH   MSMPI................................... 21 
6.1.1 Using MSMPI libraries ........................................................... 21 
6.1.2 Generate MPI Profile Data...................................................... 21 

6.2 DEBUG MSMPI APPLICATIONS WITH    PGDBG .......................... 22 
6.2.1 Bash Shell Example ................................................................ 22 
6.2.2 DOS Shell Example ................................................................ 23 

7 TROUBLESHOOTING TIPS  AND KNOWN LIMITATIONS 25 

7.1 GENERAL ISSUES.......................................................................... 25 
7.2 PLATFORM-SPECIFIC ISSUES ......................................................... 26 

7.2.1 Linux....................................................................................... 26 
7.2.2 Apple Mac OS X..................................................................... 26 
7.2.3 Windows................................................................................. 27 

7.3 PGDBG-RELATED ISSUES ............................................................ 28 
7.4 PGPROF-RELATED ISSUES........................................................... 30 
7.5 CORRECTIONS .............................................................................. 30 

8 CONTACT INFORMATION  AND DOCUMENTATION ....... 31 



 

PGI Workstation 8.0 1 

1   Introduction 
Welcome to Release 8.0 of PGI Workstation and PGI Server, a set of Fortran, 
C, and C++ compilers and development tools for 32-bit and 64-bit x86-
compatible processor-based workstations and servers running versions of the 
Linux, Windows, and Mac OS operating systems. 

All workstation-class compilers and tools products from The Portland Group, 
such as PGI Fortran Workstation, are subsets of the PGI Workstation 
Complete product.  These workstation-class products provide a node-locked 
single-user license, meaning one user at a time can compile on the one system 
on which the PGI Workstation compilers and tools are installed.   

PGI Server products are offered in configurations identical to the workstation-
class products, but provide network-floating multi-user licenses.  This means 
that two or more users can use the PGI compilers and tools concurrently on 
any compatible system networked to the system on which the PGI Server 
compilers are installed.   

These release notes apply to all workstation-class and server-class compiler 
products from The Portland Group.   

1.1 Product Overview 
Release 8.0 of PGI Workstation and PGI Server includes the following 
components: 

 PGF95 OpenMP* and auto-parallelizing Fortran 90/95 compiler. 

 PGF77 OpenMP and auto-parallelizing FORTRAN 77 compiler. 

 PGHPF data parallel High Performance Fortran compiler. 
Note:  PGHPF is supported only on Linux platforms. 

 PGCC OpenMP and auto-parallelizing ANSI C99 and K&R  
C compiler. 

 PGC++ OpenMP and auto-parallelizing ANSI C++ compiler. 

 PGPROF graphical MPI/OpenMP/multi-thread performance profiler. 



 

 Introduction 2 

 PGDBG graphical MPI/OpenMP/multi-thread symbolic debugger 

 MPICH MPI libraries, version 1.2.7, for both 32-bit and 64-bit 
development environments (Linux only) 

  Online documentation in PDF, HTML and man page formats. 

 A UNIX*-like shell environment for Win32 and Win64 platforms. 

Depending on the product configuration you purchased, you may not have 
licensed all of the above components. 

The MPI profiler and debugger included with PGI Workstation are limited to 
processes on a single node. PGI Workstation can be installed on a single 
computer, and that computer can be used to develop, debug, and profile MPI 
applications. The PGI CDK Cluster Development Kit supports general 
development on clusters. 

1.2 Terms and Definitions 
These release notes contain a number of terms and definitions with which you 
may or may not be familiar.  If you encounter a term in these notes with which 
you are not familiar, please refer to the online glossary at 

 www.pgroup.com/support/definitions.htm 

These two terms are used throughout the documentation to reflect groups of 
processors: 

AMD64 – a 64-bit processor from AMD designed to be binary compatible with 
32-bit x86 processors, and incorporating new features such as additional 
registers and 64-bit addressing support for improved performance and greatly 
increased memory range. This term includes the AMD Athlon64TM,  
AMD OpteronTM, AMD TurionTM, AMD Barcelona, and AMD Shanghai 
processors.  

Intel 64 – a 64-bit IA32 processor with Extended Memory 64-bit Technology 
extensions designed to be binary compatible with AMD64 processors. This 
includes Intel Pentium 4, Intel Xeon, and Intel Core 2 processors. 

 



 

PGI Workstation 8.0 3 

2     PGI Release 8.0 
Overview 

This document describes changes between previous releases and Release 8.0 
of the PGI compilers, as well as late-breaking information not included in the 
current printing of the PGI User’s Guide.  There are nine platforms supported 
by the PGI Workstation and PGI Server compilers and tools:  

 32-bit Linux – supported on 32-bit Linux operating systems running on 
either a 32-bit x86 compatible or an x64 compatible processor. 

 64-bit/32-bit Linux – includes all features and capabilities of the 32-bit 
Linux version, and is also supported on 64-bit Linux operating systems 
running an x64 compatible processor. 

 32-bit Windows – supported on 32-bit Windows operating systems 
running on either a 32-bit x86 compatible or an x64 compatible 
processor. 

 64-bit/32-bit Windows – includes all features and capabilities of the  
32-bit Windows version, and is also supported on 64-bit Windows 
operating systems running an x64 compatible processor. 

 32-bit SFU – supported on 32-bit Windows operating systems running on 
either a 32-bit x86 compatible or an x64 compatible processor. 

 32-bit SUA – supported on 32-bit Windows operating systems running on 
either a 32-bit x86 compatible or an x64 compatible processor. 

 64-bit/32-bit SUA – includes all features and capabilities of the 32-bit 
SUA version, and is also supported on 64-bit Windows operating systems 
running an x64 compatible processor. 

 32-bit Apple Mac OS X – supported on 32-bit Apple Mac operating 
systems running on either a 32-bit or 64-bit Intel-based Mac system. 

 64-bit Apple Mac OS X – supported on 64-bit Apple Mac operating 
systems running on a 64-bit Intel-based Mac system. 



 

 Introduction 4 

These release notes distinguish these versions where necessary. 

2.1 PGI Release 8.0 Contents 
Release 8.0 of PGI Workstation and PGI Server includes the following 
components: 

 PGF95 native OpenMP and auto-parallelizing Fortran 95 compiler.   

 PGF77 native OpenMP and auto-parallelizing FORTRAN 77 compiler. 

 PGHPF data parallel High Performance Fortran compiler.  
Note:  PGHPF is supported only on Linux platforms. 

 PGCC native OpenMP and auto-parallelizing ANSI C99 and K&R C 
compiler.  

 PGC++ native OpenMP and auto-parallelizing ANSI C++ compiler.   

 PGPROF multi-thread, OpenMP and MPI graphical profiler. 

 PGDBG multi-thread, OpenMP and MPI graphical debugger. 

 MPICH MPI libraries, version 1.2.7, for both 32-bit and 64-bit 
development environments (Linux only) 

 Complete online documentation in PDF, HTML and UNIX man page 
formats. 

 A UNIX-like shell environment for Win32 and Win64 environments. 

Depending on the product you purchased, you may not have licensed all of the 
above components. 

2.2 Supported Processors 
The following table contains the processors on which Release 8.0 of the PGI 
compilers and tools is supported.  The –tp <target> command-line option 
generates executables that utilize features and optimizations specific to a given 
CPU and operating system environment.  Compilers included in a 64-bit/32-bit 
PGI installation can produce executables targeted to any 64-bit or 32-bit target, 
including cross-targeting for AMD and Intel 64-bit AMD64 compatible CPUs. 

In addition to the capability to generate binaries optimized for specific AMD 
or Intel processors, the PGI 8.0 compilers can produce PGI Unified Binary 
object or executable files containing code streams fully optimized and 
supported for both AMD and Intel x64 CPUs. The –tp <target> option must 
be used to produce unified binary files. 



 

PGI Workstation 8.0 5 

The table also includes the CPUs available and supported in multi-core 
versions.   

Processors Supported by PGI 8.0 

Floating Point HW 

Brand CPU 

C
or

es
 

 

<target> 

 M
em

or
y 

A
dd

re
ss

 

S
S

E
1 

S
S

E
2 

S
S

E
3 

S
S

S
E

3 

S
S

E
4 

A
B

M
 

an
d 

S
S

E
4a

 

AMD Opteron/Quadcore 4 shanghai-64 64-bit Yes Yes Yes No No Yes 

AMD Opteron/Quadcore 4 shanghai 64-bit Yes Yes Yes No No Yes 

AMD Opteron/Quadcore 4 barcelona-64 64-bit Yes Yes Yes No No Yes 

AMD Opteron/Quadcore 4 barcelona 32-bit Yes Yes Yes No No Yes 

AMD Opteron/Athlon64 2 k8-64 32-bit Yes Yes Yes No No No 

AMD Opteron/Athlon64 2 k8-32 32-bit Yes Yes Yes No No No 

AMD 
Opteron Rev E/F 

Turion 
/Athlon64 

2 k8-64e 64-bit Yes Yes Yes No No No 

AMD Opteron Rev E/F 2 k8-32 32-bit Yes Yes No No No No 

AMD 
Turion64 

Turion 
/Athlon64 

1 k8-64e 64-bit Yes Yes Yes No No No 

AMD Turion64 1 k8-32 32-bit Yes Yes No No No No 

Intel Penryn 4 penryn-64 64-bit Yes Yes Yes Yes Yes No 

Intel Penryn 4 penryn 32-bit Yes Yes Yes Yes Yes No 

Intel Core 2 2 core2-64 64-bit Yes Yes Yes Yes Yes No 

Intel Core 2 2 core2 32-bit Yes Yes Yes Yes Yes No 

Intel P4/Xeon EM64T 2 p7-64 64-bit Yes Yes Yes Yes No No 

Intel P4/Xeon EM64T 2 p7 32-bit Yes Yes Yes Yes No No 

Intel Xeon/Pentium4 1 p7 32-bit Yes Yes No No No No 

AMD Athlon XP/MP 1 athlonxp 32-bit Yes No No No No No 

Intel Pentium III 1 piii 32-bit Yes No No No No No 

AMD Athlon 1 athlon 32-bit No No No No No No 

AMD K6 1 k6 32-bit No No No No No No 

Intel Pentium II 1 p6 32-bit No No No No No No 

Generic Generic x86 1 p5 or px 32-bit No No No No No No 



 

 Introduction 6 

2.3 Supported Operating Systems   
The table lists the operating systems, and their equivalents, that Release 8.0 of 
the PGI compilers and tools supports.  

To determine if Release 8.0 will install and run under a Linux equivalent 
version, such as Mandrake*, Debian*, Gentoo*, and so on, check the table for 
a supported system with the same glibc and gcc versions.  Version differences 
in other operating system components can cause difficulties, but often these 
can be overcome with minor adjustments to the PGI software installation or 
operating system environment. 

 Newer distributions of the Linux and Windows operating systems 
include support for x64 compatible processors and are designated 64-bit 
in the table.  These are the only distributions on which the 64-bit versions 
of the PGI compilers and tools will fully install.   

 If you attempt to install the 64-bit/32-bit Linux version on a system 
running a 32-bit Linux distribution, only the 32-bit PGI compilers and 
tools are installed.   

 If you attempt to install the 64-bit Windows version on a system running 
32-bit Windows, the installation fails. 

Most newer Linux distributions support the Native POSIX Threads Library 
(NPTL), a new threads library that can be utilized in place of the libpthreads 
library available in earlier versions of Linux.  Distributions that include NPTL 
are designated in the table.  Parallel executables generated using the OpenMP 
and auto-parallelization features of the PGI compilers automatically make use 
of NPTL on distributions when it is available.  In addition, the PGDBG 
debugger is capable of debugging executables built using either NPTL or 
earlier thread library implementations. 

Multi-socket AMD Opteron processor-based servers use a NUMA (Non-
Uniform Memory Access) architecture in which the memory latency from a 
given processor to a given portion of memory can vary.  Newer Linux 
distributions, including SuSE 9/10 and SLES 9/10, include NUMA libraries 
that can be leveraged by a compiler and associated runtime libraries to 
optimize placement of data in memory. 

In the table headings, HT = hyper-threading, NPTL = Native POSIX Threads 
Library, and NUMA = Non-Uniform Memory Access. For more information 
on these terms, refer to Terms and Definitions on page 2. 
 



 

PGI Workstation 8.0 7 

Operating Systems and  Features Supported  in PGI 8.0 

Distribution Type 64-bit HT pgC++ pgdbg NPTL NUMA glibc GCC 

RHEL 5.0 Linux Yes Yes Yes Yes Yes No 2.5 4.1.2 

RHEL 4.0 Linux Yes Yes Yes Yes Yes No 2.3.4 3.4.3 

RHEL 3.0 Linux Yes Yes Yes Yes Yes No 2.3.2 3.2.3 

Fedora 9 Linux Yes Yes Yes Yes Yes Yes 2.8 4.3.0 

Fedora 8 Linux Yes Yes Yes Yes Yes Yes 2.7 4.1.2 

Fedora 7 Linux Yes Yes Yes Yes Yes Yes 2.6 4.1.2 

Fedora 6 Linux Yes Yes Yes Yes Yes Yes 2.5 4.1.1 

Fedora 5 Linux Yes Yes Yes Yes Yes Yes 2.4 4.1.0 

Fedora 4 Linux Yes Yes Yes Yes Yes No 2.3.5 4.0.0 

Fedora 3 Linux Yes Yes Yes Yes Yes No 2.3.3 3.4.2 

Fedora 2 Linux Yes Yes Yes Yes Yes No 2.3.3 3.3.3 

SuSE 11 Linux Yes Yes Yes Yes Yes Yes 2.8 4.3.0 

SuSE 10.3 Linux Yes Yes Yes Yes Yes Yes 2.6.1 4.2.1 

SuSE 10.2 Linux Yes Yes Yes Yes Yes Yes 2.5 4.1.0 

SuSE 10.1 Linux Yes Yes Yes Yes Yes Yes 2.4 4.1.0 

SuSE 10.0 Linux Yes Yes Yes Yes Yes Yes 2.3.5 4.0.2 

SuSE 9.3 Linux Yes Yes Yes Yes Yes Yes 2.3.4 3.3.5 

SuSE 9.2 Linux Yes Yes Yes Yes Yes Yes 2.3.3 3.3.4 

SLES 10 Linux Yes Yes Yes Yes Yes Yes 2.4 4.1.0 

SLES 9 Linux Yes Yes Yes Yes No Yes 2.3.3 3.3.3 

SuSE 9.1 Linux Yes Yes Yes Yes Yes No 2.3.3 3.3.3 

SuSE 9.0 Linux Yes Yes Yes Yes No No 2.3.2 3.3.1 

SuSE 8.2 Linux Yes Yes Yes Yes No No 2.3.2 3.3 

RedHat  9.0 Linux No No Yes Yes Yes No 2.3.2 3.2.2 

Ubuntu 8 Linux Yes Yes Yes Yes Yes Yes 2.7 4.2.1 

XP No Yes Yes Yes NA Yes NA NA 

XP x64 Yes Yes Yes Yes NA Yes NA NA 
2003 No No Yes Yes NA Yes NA NA 

2003 x64 Yes Yes Yes Yes NA Yes NA NA 
2008 No Yes Yes Yes NA Yes NA NA 

2008 x64 Yes Yes Yes Yes NA Yes NA NA 
SFU No Yes Yes Yes NA Yes SFU 3.3 
SUA  No Yes Yes Yes NA Yes SUA 3.3 

SUA x64 Yes Yes Yes Yes NA Yes SUA 3.3 
Vista No Yes Yes Yes NA Yes NA NA 

Vista x86 Yes Yes Yes Yes NA Yes NA NA 

 
Microsoft 
Windows 

HPC 
Server 
2008 

Yes Yes Yes Yes NA Yes NA NA 

Tiger No No Yes Yes NA NA NA 4.0.1 Apple 
Mac OS X 

Leopard Yes No Yes Yes NA NA NA 4.0.1 

 



 

 Introduction 8 

Note: http://www.pgroup.com/support/install.htm lists any new Linux, Apple 
or Windows distributions that may be explicitly supported by the PGI 
compilers.  If your operating system is newer than any of those listed in the 
preceding table, the installation may still be successful.  

 

 

 



 

PGI Workstation 8.0 9 

3     New or Modified
 Compiler Features 

The following list contains the new features of Release 8.0 of the PGI 
compilers and tools as compared to prior releases.  

 OpenMP 3.0 parallel programming for multi-core x64 CPUs and multi-
socket servers, including full support for OpenMP 3.0 and TASKs in 
PGF95 and PGCC®, , as described in Enhancements to OpenMP on page 
14. 

 Common Compiler Feedback Format (CCFF) sections are now 
generated by all PGI 8.0 compilers; CCFF is a standardized format for 
storing and reporting of optimization information and hints to users, 
described in Common Compiler Feedback Format   
(CCFF) on page 13. 

 New and Improved PGPROF performance analysis and tuning tool. 
 All new look-and-feel with intuitive navigation and analysis features 
 Browse-able CCFF information correlated with source code 
 Improved multi-core scalability analysis using HW counters on Linux 
 Calculates Compute Intensity to identify regions of code suitable for 

Multi-core parallelization and/or offloading to a GPU/Accelerator  
 Improved performance of PGPROF timer-instrumented executables 

 Provisional x64+GPU Support on 64-bit Linux for CUDA-enabled 
NVIDIA GPUs using the new high-level PGI Accelerator Compilers 
programming model 

 Compiler Optimizations and Features 
 Computation and reporting of compute intensity of loops in all 

languages 
 Packed SSE code generation for unrolled loops 
 SSE vectorization of generalized reduction loops 
 Improved scalar prefetching, spill tuning and live range splitting 
 Improved static estimation of block execution frequencies 
 PGC++® STL is now thread safe; based on STLPort 4.6.2 



 

 Introduction 10 

 Incremental support for OpenMP 3.0 features in PGC++ 
 GCC variadic macro extensions 
 Auto-generation of DWARF for improved tools interoperability 
 Enhanced Fortran 95 DWARF generation 

 PGDBG Debugger Enhancements 
 OpenMP 3.0 debugging, including support for tasks 
 PGDBG OpenMPI debugging on Linux clusters with the PGI CDK 
 PGDBG OpenMPI debugging on MacOS  (a version of OpenMPI is 

now bundled with PGI Workstation 8.0 for MacOS) 
 Debug OpenMP & Auto-parallelized multi-core applications on  

Mac OS X. 
 Numerous PGDBG reliability and performance enhancements 

 Automatic licensing generation from www.pgroup.com, and license 
server setup during the with point-and-click Windows installation. 

 Expanded Platform Support 
 Support for the New Quad-Core AMD Opteron processor (AMD 

Shanghai) 
 PGI Unified Binary™ support for the latest AMD and Intel 

processors 
 Fedora 8, Fedora 9, SuSE 10.3, SuSE 11.0, and Ubuntu 8 Linux 
 Microsoft Vista 32-bit and 64-bit, Microsoft HPC Server 2008 
 Mac OS X Leopard for x86 32-bit and 64-bit 

 Updated Documentation including the PGI Users Guide, PGI Tools 
Guide and PVF Users Guide. 

3.1 Getting Started 
By default, the PGI 8.0 compilers generate code that is optimized for the type 
of processor on which compilation is performed, the compilation host.  If you 
are unfamiliar with the PGI compilers and tools, a good option to use by 
default is –fast or –fastsse.   

3.2 Using –fast, –fastsse, and Other 
 Performance-Enhancing Options 

These aggregate options incorporate a generally optimal set of flags for targets 
that support SSE capability. These options incorporate optimization options to 
enable use of vector streaming SIMD instructions for 64-bit targets.  They 
enable vectorization with SSE instructions, cache alignment, and flushz. 



 

PGI Workstation 8.0 11 

Note: The contents of the –fast and –fastsse options are host-dependent. 

 –fast and –fastsse typically include these options: 

– O2  Specifies a code optimization level of 2. 

–Munroll=c:1 
Unrolls loops, executing multiple instances of the 
original loop during each iteration.  

–Mnoframe 
Indicates to not generate code to set up a stack frame
Note. With this option, a stack trace does not work. 

–Mlre   Indicates loop-carried redundancy elimination. 

 These additional options are also typically included when using  
–fast for 64-bit targets and –fastsse for both 32- and 64-bit targets: 

–Mvect=sse Generates SSE instructions. 

–Mscalarsse 
Generates scalar SSE code with xmm registers; 
implies –Mflushz. 

–Mcache_align   

Aligns long objects on cache-line boundaries. 
Note. On 32-bit systems, if one file is compiled with
the –Mcache_align option, all files should be 
compiled with it. This is not true on 64-bit systems.  

–Mflushz Sets SSE to flush-to-zero mode. 

-M[no]vect Controls automatic vector pipelining. 

Note: For best performance on processors that support SSE instructions, use 
the PGF95 compiler, even for FORTRAN 77 code, and the –fastsse option.   

In addition to –fast and -fastsse, the –Mipa=fast option for inter-
procedural analysis and optimization can improve performance. You may also 
be able to obtain further performance improvements by experimenting with the 
individual –Mpgflag options detailed in the PGI User’s Guide, such as  
–Mvect, –Munroll, –Minline, –Mconcur, –Mpfi/–Mpfo, and so on.  
However, increased speeds using these options are typically application- and 
system-dependent. It is important to time your application carefully when 
using these options to ensure no performance degradations occur.    

3.3 New or Modified Compiler Options 
Unknown options are treated as errors instead of warnings.  This feature 
means it is a compiler error to pass switches that are not known to the 
compiler; however, you can use the switch –noswitcherror to issue warnings 
instead of errors for unknown switches. 



 

 Introduction 12 

The following compiler options have been added or modified in PGI 8.0:  

 –Mnodwarf  is a new switch that specified not to add DWARF debug 
information  

 –Mnofpapprox is a new switch that specifies not to use low-precision fp 
approximation operations  

 –Minfo has a number of new suboptions:  
   all Implies a number of suboptions: 
        –Minfo =accel,inline,ipa,loop,lre,mp,opt,par,unified,vect  
   accel Enable Accelerator information  
   ccff Append information, such as optimization info, to object file  
   ftn Enable Fortran-specific information  
   hpf  Enable HPF-specific information  
   inline Enable inliner information  
   lre Enable LRE information  
   par Enable parallelizer information  
   pfo Enable profile feedback information  
   vect Enable vectorizer information 

 –Mconcur has two new suboptions: allcores and bind.  
allcores  Use all available cores; specify at link time  
bind      Bind threads to cores; specify at link time 

 –Mprof has a new suboption:   
 [no]ccff Enable [disable] CCFF information 

 –Msmartalloc has a new suboption: 
   hugebss   Put the BSS section in huge pages  

 –Mvect has a new suboption: 
   [no]short Enable [disable] short vector operations. 
  –Mvect=short enables generation of packed SSE instructions for short  
   vector operations that arise from scalar code outside of loops or within 
    the body of a loop iteration. 

 –mp has 2 new suboption: 
   allcores Use all available cores; specify at link time  
   bind   Bind threads to cores; specify at link time  



 

PGI Workstation 8.0 13 

  –Mneginfo  has a number of new suboptions: 
   all Implies a number of suboptions: 
    –Mneginfo=accel,inline,ipa,loop,lre,mp,opt,par,vect  
   accel  Enable Accelerator information  
   ftn   Enable Fortran-specific information  
   hpf   Enable HPF-specific information  
   inline Enable inliner information  
   ipa   Enable IPA information  
   lre  Enable LRE information  
   mp  Enable OpenMP information  
   opt  Enable optimizer information  
   par  Enable parallelizer information  
   pfo  Enable profile feedback information  
   vect    Enable vectorizer information 

 –tp has 3 new target cpu types: 
   shanghai   AMD Shanghai processor, 32-bit mode  
   shanghai-32 AMD Shanghai processor, 32-bit mode  
   shanghai-64 AMD Shanghai processor, 64-bit mode 

 --pedantic is a new switch that prints warnings from included  
<system header files>  

3.4 Common Compiler Feedback Format   
(CCFF) 

Using the Common Compiler Feedback Format (CCFF), PGI compilers save 
information about how your program was optimized, or why a particular 
optimization was not made, in the executable file. To append this information 
to the object file, use the compiler option –Minfo=ccff. Using the compiler 
option –Mprof=ccff also appends this information. 

The PGPROF performance profiler provides an interface for browsing CCFF 
compiler feedback and associating it with the performance of components of 
your program. 

 

 



 

 Introduction 14 

3.5 Enhancements to OpenMP  
OpenMP is a specification for a set of compiler directives, an applications 
programming interface (API), and a set of environment variables that you can 
use to specify shared memory parallelism in FORTRAN and C/C++ programs. 
You may use OpenMP to obtain most of the parallel performance you can 
expect from your code, or to serve as a stepping stone to parallelizing an entire 
application with MPI. 

PGI Workstation 8.0 supports OpenMP 3.0. There are a number of 
enhancements that are associated with this support.  

Important. The C++ Standard Template library has been made thread-safe to 
the extent allowed in the STLport code.  Simultaneous accesses to distinct 
containers are safe, simultaneous reads to shared containers are also safe.  
However, simultaneous writes to shared containers must be protected by 
#pragma omp critical sections.  Users must compile and link with the –mp 
switch to get the thread-safe version of  the template header files and library. 

Note. For more information and examples related to the directives, pragmas, 
clauses, run-time library routines, environment variables, and other 
information in this section, refer to Chapter 5 of the PGI Workstation User’s 
Guide: Using OpenMP. 

3.5.1 New or Modified OpenMP Directives and 
Pragmas 

Every part of an OpenMP program is part of a task. In this release, PGI 
supports the following directives and clauses that are part of OpenMP 3.0. 

 The Task directive and omp task pragma, which define an explicit task. 

 The Taskwait directive and omp taskwait pragma. Which specify a wait on 
the completion of child tasks generated since the beginning of the current 
task. 

 The Collapse (n) clause, associated with the DO...END DO, PARALLEL DO, 
and PARALLEL WORKSHARE directives. This clause specifies how many loops 
are associated with a loop construct. 

 



 

PGI Workstation 8.0 15 

3.5.2 New or Modified OpenMP Run-time Library 
Routines 

PGI Workstation 8.0 supports these new run-time library routines.  

 omp_get_ancestor_thread_num 
This routine returns, for a given nested level of the current thread, the 
thread number of the ancestor. 

 omp_get_active_level 
This routine returns the number of enclosing active parallel regions 
enclosing the task that contains the call. PGI currently supports only one 
level of active parallel regions, so the return value currently is 1. 

 omp_get_level 
This routine returns the number of parallel regions enclosing the task that 
contains the call. 

 omp_get_team_size 
This routine returns, for a given nested level of the current thread, the size 
of the thread team to which the ancestor belongs. 

 omp_set_schedule 
This routine sets the value of the run_sched_var. 

 omp_get_schedule 
This routine retrieves the value of the run_sched_var. 

3.5.3 New or Modified OpenMP Environment 
Variables 

PGI Workstation 8.0 supports these OpenMP environment variables. 

 OMP_MAX_ACTIVE_LEVELS 
This variable currently has no effect. It typically enables (TRUE) or 
disables (FALSE) nested parallelism. 

 OMP_THREAD_LIMIT 
This variable, whose default is 64, specifies the absolute maximum 
number of threads that can be used in a program. 

 OMP_STACKSIZE 
Formally OMP_STACK_SIZE, this variable overrides the default stack 
size for a newly created thread  Formally Omp_Stack_Size 



 

 Introduction 16 

3.6 New or Modified MPI Support 
Prior to PGI Release 7.1, PGI provided MPI support only in the PGI CDK. In 
release 7.1, a version of MPICH1 was included with PGI Workstation on 
Linux, and the debugger and profiler were enabled to support MPI applications 
running locally with a limited number of processes. 

In this release, PGI Workstation 8.0-1, the local MPI capability continues to 
expand.  You can debug and profile MPI applications for MPICH-1 (using the 
included version of MPICH-1), HP-MPI for Linux, MPICH-2, or MVAPICH. 
This chapter describes how to use these capabilities and some of their 
limitations. 

The PGI Tools Guide describes the MPI-enabled tools in detail: 

 PGPROF graphical MPI/OpenMP/multi-thread performance profiler. 

 PGDBG graphical MPI/OpenMP/multi-thread symbolic debugger 

For specific information about how to use MPI, refer to Chapter 6, Using MPI, 
of the PGI User’s Guide. 

3.7 Library Interfaces 
PGI provides access to a number of libraries that export C interfaces by using 
Fortran modules. These libraries and functions are described in Chapter 8 of 
the PGI User’s Guide. 

 

 

 

   



 

PGI Workstation 8.0 17 

4    PGI Workstation 8.0 
This chapter describes the updates and changes to PGI Workstation 8.0 that 
are specific to Linux, Windows, and Mac OS X, such as using the module load 
command on Linux. 

4.1 PGI Workstation 8.0 for Linux 

4.1.1 Provisional x64+GPU Support 
PGI Workstation 8.0 for Linux supports provisional x64+GPU Support on  
64-bit Linux for CUDA-enabled NVIDIA GPUs using the new high-level PGI 
Accelerator Compilers programming model. 

4.1.2 Java Runtime Environment (JRE) 
Although the PGI installation on Linux includes a 32-bit version of the Java 
Runtime Environment (JRE), sufficient 32-bit X Windows support must be 
available on the system for the JRE and the PGI software that depends on it to 
function properly.  On some systems, notably recent releases of Fedora Core, 
these libraries are not part of the standard installation.   

The X Windows support generally includes these libraries:  
 
     libXau                           libXdmcp                    libxcb  
     libX11                           libXext 

4.2 PGI Workstation 8.0 for Windows, 
SFU, and SUA 

PGI Workstation 8.0 for Windows supports most of the features of the 32- and 
64-bit versions for linux86 and linux86-64 environments. 



 

 Introduction 18 

4.2.1 All-new Windows Licensing Installation 
PGI Workstation 8.0 for Windows, during the point-and-click installation, now 
supports automatic license generation from www.pgroup.com, and license 
server setup. 

4.3 PGI Workstation 8.0 for Mac OS X 
PGI Workstation 8.0 for Mac OS X supports most of the features of the 32- 
and 64-bit versions for linux86 and linux86-64 environments. Except where 
noted in these release notes or the user manuals, the PGI compilers and tools 
on Mac OS X function identically to their Linux counterparts. 



 

PGI Workstation 8.0 19 

5   Distribution  
and Deployment 

This chapter contains a number of topics that are related to using the 
compilers, including optimizing through the use of PGI Unified Binary 
technology, using the linking options on Windows, and customizing with 
siterc and user rc files. 

 For more information on generating PGI Unified Binaries, including 
PGI Unified Binary command-line switches, directives, and pragmas, 
refer to Chapter 9, Distributing Files – Deployment, of the PGI User’s 
Guide. 

 For more information and usage examples of the PGI compiler options 
that allow you to select static or dynamic linking, as well as 
information on using and creating static and dynamically-linked 
libraries, refer to Chapter 8, Creating and Using Libraries, of the PGI 
User’s Guide. 

 For examples and information on customizing with siterc and user rc 
files to tailor a given installation for a particular purpose, refer to 
Chapter 1 of the PGI User’s Guide, specifically, Examples of Using 
siterc and User rc Files. 

5.1 Application Deployment and 
Redistributables 

Programs built with PGI compilers may depend on run-time library files.  
These library files must be distributed with such programs to enable them 
to execute on systems where the PGI compilers are not installed. There are 
PGI redistributable files for all platforms. On Windows, PGI also supplies 
Microsoft redistributable files. 



 

 PVF Release Notes 20 

5.1.1 PGI Redistributables 
The PGI 8.0 release includes these directories: 

 $PGI/linux86/8.0/REDIST 

 $PGI/linux86-64/8.0/REDIST 

 $PGI/win64/8.0-6/REDIST 

 $PGI/win32/8.0/REDIST 

These directories contain all of the PGI Linux runtime library shared object 
files or Windows dynamically linked libraries that can be re-distributed by 
PGI 8.0 licensees under the terms of the PGI End-user License Agreement 
(EULA).  For reference, a text-form copy of the PGI EULA is included in 
the 8.0 directory. 

The Linux REDIST directories contain the PGI runtime library shared 
objects for all supported targets.  This enables users of the PGI compilers 
to create packages of executables and PGI runtime libraries that will 
execute successfully on almost any PGI-supported target system, subject to 
these requirements: 

 End-users of the executable have properly initialized their 
environment 

 On Linux, users have set LD_LIBRARY_PATH to use the relevant 
version of the PGI shared objects. 

5.1.2 Microsoft Redistributables 
The PGI products on Windows include Microsoft Open Tools. The 
Microsoft Open Tools directory contains a subdirectory named “redist”.   
PGI 8.0 licensees may redistribute the files contained in this directory in 
accordance with the terms of the PGI End-User License Agreement. 



 

PGI Workstation 8.0 21 

6  The PGI Windows CDK  
If you have a PGI Windows CDK (Cluster Development Kit) license, then 
your PGI software includes support for working with Microsoft Compute 
Cluster Server and MSMPI.  Specifically, this software includes support 
for these things: 

 Building MPI applications with MSMPI 

 Using PGPROF to do MPI profiling of MSMPI applications  

 Using PGDBG to do MPI debugging of MSMPI applications 

 This chapter provides information on these tasks. 

6.1 Build MPI Applications with   
MSMPI 

Note. For the options -Mprof=msmpi and -Mmpi=msmpi to work 
properly, the CCP_HOME environment variable must be set. This variable 
is typically set when the Microsoft Compute Cluster SDK is installed.  

6.1.1 Using MSMPI libraries 
To build an application using the MSMPI libraries, use the -Mmpi=msmpi 
option. This option inserts options into the compile and link lines to pick 
up the MSMPI headers and libraries.  

6.1.2 Generate MPI Profile Data 
To build an application that generates MPI profile data, use the 
-Mprof=msmpi option. This option performs MPICH-style profiling for 
Microsoft MSMPI. For Microsoft Compute Cluster Server only, using this 
option implies –Mmpi=msmpi.  



 

 PVF Release Notes 22 

The profile data generated by running an application built with the option  
-Mprof=msmpi contains information about the number of sends and 
receives, as well as the number of bytes sent and received, correlated with 
the source location associated with the sends and receives. -Mprof=msmpi 
must be used in conjunction with -Mprof=func or -Mprof=lines. When 
invoked using this type of profile data, PGPROF automatically displays 
MPI statistics.  

6.2 Debug MSMPI Applications with  
  PGDBG 

To invoke the PGDBG debugger to debug an MSMPI application, use the 
pgdbg -mpi option: 

$ pgdbg -mpi[:<path>] <mpiexec_args> [-program_args 
arg1,...argn]  

The location of mpiexec should be part of your PATH environment 
variable. Otherwise, you should specify the pathname for mpiexec, or 
another similar launcher, as <path> in -mpi[:<path>]. 

To start a distributed debugging session, you must use the job submit 
command on the command line, as illustrated in the example that follows. 
You must also ensure that the debugger has access to the pgserv.exe 
remote debug agent on all nodes of the cluster used for the debug session.  

To make pgserv.exe available, copy it from the PGI installation 
directory, such as C:\Program Files\PGI\win64\8.0-6\bin\ 
pgserv.exe, into a directory or directories such that the path to 
pgserv.exe is the same on all nodes in the debug session. Then you can 
start the debug session as follows:  

$ pgdbg -pgserv:<path_to_pgserv.exe> -mpi[:<job submit command>]  

If you use a command similar to the following one, it copies pgserv.exe  
to the current directory and also sets the path to pgserv.exe to this copy. 

$ pgdbg -pgserv -mpi[:<job submit command>]  

6.2.1 Bash Shell Example 
Suppose you wanted to debug the following job invoked in a bash shell:  

PGI$ "job.cmd" submit /numprocessors:4 
/workdir:\\\\cce-head\\d\\srt /stdout:sendrecv.out 



 

PGI Workstation 8.0 23 

mpiexec sendrecv.exe  

You use this command: 

$ pgdbg -pgserv "-mpi:c:\Program Files\Microsoft 
Compute Cluster Pack\Bin\job.cmd" submit 
/numprocessors:4 /workdir:\\cce-head\d\srt 
/stdout:sendrecv.out mpiexec sendrecv.exe  

Important. For this command to execute properly, a copy of pgserv.exe 
must be located in   \\cce-head\d\srt.  

Since the CCP installation updates the default PATH, the following 
command is equivalent to the previous one: 

$ pgdbg -pgserv -mpi:job.cmd submit /numprocessors:4 
/workdir:\\cce-head\d\srt /stdout:sendrecv.out mpiexec 
sendrecv.exe 

Note. The use of quotes around the -mpi option varies, depending on the 
type of shell you are using. In the example, or if you are using cmd, specify 
the option as "-mpi:...", including the quotes around the option as well 
as around the optional job submit command. When invoking in a 
Cygwin bash shell, you can specify the -mpi option as -mpi:"...", 
using the quotes around only the job submit command. 

6.2.2 DOS Shell Example 
Suppose you wanted to debug the following job invoked in a DOS shell:  

DOS>  job submit /numprocessors:4 /workdir:\\cce-
head\d\srt /stdout:sendrecv.out mpiexec sendrecv.exe  

You use this command: 
$ pgdbg -pgserv "-mpi:c:\Program Files\Microsoft 
Compute Cluster Pack\Bin\job.cmd" submit 
/numprocessors:4 /workdir:\\cce-head\d\srt 
/stdout:sendrecv.out mpiexec sendrecv.exe  

 

 

 

 

 

 



 

 PVF Release Notes 24 

 

 

 

 

 

 



 

PGI Workstation 8.0 25 

7    Troubleshooting Tips  
and Known Limitations  

This chapter contains information about known limitations, documentation 
errors, and corrections that have occurred to PGI Workstation 8.0. 

The frequently asked questions (FAQ) section of the pgroup.com web page 
at http://www.pgroup.com/support/index.htm provides more up-to-date 
information about the state of the current release.  

7.1 General Issues   
Most issues in this section are related to specific uses of compiler options 
and suboptions. 

 Object and module files created using PGI Workstation 8.0 compilers 
are incompatible with object files from PGI Workstation 5.x and prior 
releases. 

 Object files compiled with –Mipa using PGI Workstation 6.1 and 
prior releases must be recompiled with PGI Workstation 8.0. 

 The –i8 option can make programs incompatible with the bundled 
ACML library.  Visit developer.amd.com to check for compatible 
libraries. 

 The –i8 option can make programs incompatible with MPI and 
ACML; use of any INTEGER*8 array size argument can cause 
failures with these libraries. 

 Using –Mipa=vestigial in combination with –Mipa=libopt with 
PGCC, you may encounter unresolved references at link time.  This 
problem is due to the erroneous removal of functions by the vestigial 
sub-option to –Mipa.  You can work around this problem by listing 
specific sub-options to –Mipa, not including vestigial. 



 

 PVF Release Notes 26 

 OpenMP programs compiled using –mp and run on multiple 
processors of a SuSE 9.0 system can run very slowly.  These same 
executables deliver the expected performance and speed-up on 
similar hardware running SuSE 9.1 and above. 

 ACML 4.1-0 is built using the –fastsse compile/link option, which 
includes –Mcache_align.  When linking with ACML using the  
–lacml option on 32-bit targets, all program units must be compiled 
with –Mcache_align, or an aggregate option such as –fastsse, which 
incorporates –Mcache_align.  This process is not an issue on 64-bit 
targets where the stack is 16-byte aligned by default.  The lower-
performance, but fully portable, libblas.a and liblapack.a libraries 
can be used on CPUs that do not support SSE instructions.  

 When compiling with –fPIC and linking with –lacml, you may get 
the message “error while loading shared libraries: libacml_mv.so: 
cannot open shared object file: No such file or directory.”  In this 
case, you must add -lacml_mv library to the link line.  

 Using -Mpfi and -mp together is not supported. The -Mpfi flag will 
disable -mp at compile time, which can cause run-time errors in 
programs that depend on interpretation of OpenMP directives or 
pragmas. Programs that do not depend on OpenMP processing for 
correctness can still use profile feedback. The -Mpfo flag does not 
disable OpenMP processing. 

7.2 Platform-specific Issues 

7.2.1 Linux 
 Programs that incorporate object files compiled using  

–mcmodel=medium cannot be statically linked.  This is a limitation 
of the linux86-64 environment, not a limitation specific to the PGI 
compilers and tools. 

7.2.2 Apple Mac OS X 
 On Apple Mac OS platform, the PGI Workstation 8.0 compilers do 

not support static linking of user binaries. For compatibility with 
future Apple updates, the compilers support dynamic linking of user 
binaries.    



 

PGI Workstation 8.0 27 

7.2.3 Windows 
The following are known issues on Windows: 

 On Windows, the version of vi included in Cygwin can have 
problems when the SHELL variable is defined to something it does 
not expect.  In this case, the following messages appear when vi is 
invoked: 
E79: Cannot expand wildcards  
Hit ENTER or type command to continue  
To workaround this problem, set SHELL to refer to a shell in the 
cygwin bin directory, e.g. /bin/bash.  

 On Windows, runtime libraries built for debugging (e.g. msvcrtd and 
libcmtd) are not included with PGI Workstation.  When a program is 
linked with –g, for debugging, the standard non-debug versions of 
both the PGI runtime libraries and the Microsoft runtime libraries are 
always used.  This limitation does not affect debugging of application 
code. 

 Dynamic Link Libraries (DLLs) built on the Microsoft Windows 
platform by the PGI Workstation 8.0 compilers have the following 
known limitations: 

 DLLs cannot be produced with the PGI Workstation C++ 
compiler. 

 If a DLL is built with the PGI Workstation compilers, the runtime 
DLLs must be used. The compiler option –Mmakedll ensures 
the correct runtime libraries are used.  

 If an executable is linked with any PGI Workstation-compiled 
DLL, the PGI Workstation runtime library DLLs must be used; 
this means the static libraries, which are used by default, cannot 
be used. To accomplish this, use the compiler option –
Bdynamic when creating the executable. 

These are known issues on Windows and PGDBG:    

 In PGDBG on the Windows platform, use the forward slash ('/') 
character to delimit directory names in file path names.  
Note. This requirement does not apply to the PGDBG debug 
command or to target executable names on the command line, 
although this convention will work with those commands. 



 

 PVF Release Notes 28 

 In PGDBG on the Windows platform, Windows times out stepi/nexti 
operations when single stepping over blocked system calls. For more 
information on the workaround for this issue, refer to the online 
FAQs at www.pgroup.com/support/tools.htm. 

 On  SFU/SUA – Due operating system limitations, PGDBG does not 
support hardware watchpoints, that is, the "hwatch" command, on 
SFU/SUA systems. 

 On SFU/SUA – Due to operating system limitations, PGDBG 
supports multi-thread debugging only with 32-bit SUA programs, 
with one restriction: once stopped, the process may be continued by 
continuing all threads, or a single thread, but not a partial set of the 
threads.  Attempts to continue a partial set of threads results in the 
entire process, all threads, being continued. 

These are known issues on Windows and PGDBG:    

 Do not use –Mprof with PGI Workstation runtime library DLLs. To 
build an executable for profiling, use the static libraries. When the 
compiler option –Bdynamic is not used, the static libraries are the 
default. 

7.3 PGDBG-related Issues 
 Before PGDBG can set a breakpoint in code contained in a shared 

library, .so or .dll, the shared library must be loaded. 

 PGDBG supports debugging Open MPI programs with the caveat 
that Open MPI be built with static libraries. When Open MPI is built 
with dynamic libraries, many shared libraries are loaded by the Open 
MPI application.  With the current implementation of PGDBG's 
shared object load/unload event handlers, debugging a MPI job 
linked with Open MPI shared objects causes MPI_Init and 
MPI_Finalize to execute very slowly. Therefore, we recommend that 
Open MPI be built via static libraries by configuring the build of 
Open MPI with the following options:  
 --enable-static –-disable-shared 

 PGDBG 8.0 release introduces better support for debugging MPI 
programs on newer Linux systems where the loading of shared 
libraries to randomized addresses is enabled.  
When this Linux kernel mode is enabled, the current implementation 



 

PGI Workstation 8.0 29 

of PGDBG uses significantly more memory, which may degrade 
performance. PGI currently recommends disabling this mode in the 
Linux kernel when debugging MPI programs via PGDBG.   
To disable this Linux kernel mode, run the following command as 
root: 
 sysctl -w kernel.randomize_va_space=0 

 Due to problems in PGDBG in shared library load recognition on 
Fedora Core 6 or RHEL5, breakpoints in processes other than the 
process with rank 0 may be ignored when debugging MPICH-1 
applications when the loading of shared libraries to randomized 
addresses is enabled. 

 Do not use “./” to specify an executable in the current directory when 
debugging an MPICH-1 application with  
‘mpirun –dbg=pgdbg’. For example, if you do use 
     mpirun -dbg=pgdbg -np 2 ./a.out 
when the Linux kernel mode is enabled, breakpoints may be lost in 
processes other than the process with rank 0.  
To work around this problem invoke the job to be debugged using 
this command: 
     mpirun -dbg=pgdbg -np 2 a.out 

 When debugging an MPI job that is launched under pgserv, the 
processes in the job are stopped before the first instruction of the 
program. Since there is no source level debugging information at this 
point, issuing the source level next command executes very slowly. 
To avoid having to run the job until it completes, stops due to an 
exception, or stops by a PGDBG halt command entered by the user, 
the user should set an initial breakpoint. If a Fortran program is being 
debugged, set the initial breakpoint at main, or MAIN_, or at another 
point on the execution path before issuing the continue command. 

 The watch family of commands is unreliable when used with local 
variables.  Calling a function or subroutine from within the scope of 
the watched local variable may cause missed events and/or false 
positive events. Local variables may be watched reliably if program 
scope does not leave the scope of the watched variable. Using the 
watch family of commands with global or static variables is reliable. 



 

 PVF Release Notes 30 

 Debugging of unified binaries, that is, programs built with the 
-tp=x64 option, is not fully supported.  The names of some 
subprograms are modified in the creation of the unified binary, and 
PGDBG does not translate these names back to the names used in the 
application source code.  For detailed information on how to debug a 
unified binary, see www.pgroup.com/support/tools.htm. 

7.4 PGPROF-related Issues 
 Using –Mprof=func, –mcmodel=medium and –mp together on any of 

the PGI compilers can result in segmentation faults by the generated 
executable.  These options should not be used together. 

 Programs compiled and linked for gprof-style performance profiling 
using –pg can result in segmentation faults on system running version 
2.6.4 Linux kernels. 

 Times reported for multi-threaded sample-based profiles, that is, 
profiling invoked with –pg or –Mprof=time options, are for the 
master thread only.  PGI-style instrumentation profiling with  
–Mprof={lines | func} or hardware counter-based profiling using  
–Mprof=hwcts or pgcollect must be used to obtain profile data on 
individual threads.   

7.5 Corrections 
A number of problems have been corrected in the PGI Workstation 8.0 
release.  Most were reported in PGI Workstation 7.1 or previous releases. 
Problems found in PGI Workstation 7.1 may not have occurred in previous 
releases.  

Refer to www.pgroup.com/support/release_tprs.htm for a complete and up-
to-date table of technical problem reports, TPRs, fixed in recent releases of 
the PGI compilers and tools. This table contains a summary description of 
each problem as well as the release in which it was fixed. 



 

PGI Workstation 8.0 31 

8      Contact Information 
 and Documentation 

You can contact The Portland Group at: 

The Portland Group  
STMicroelectronics, Inc. 
Two Centerpointe Drive 
Lake Oswego, OR  97035 USA 

The PGI User Forum is monitored by members of the PGI engineering and 
support teams as well as other PGI customers.  The forum newsgroups may 
contain answers to commonly asked questions. Log in to the PGI website 
to access the forum: 

www.pgroup.com/userforum/index.php 

Or contact us electronically using any of the following means: 
Fax:  +1-503-682-2637 
Sales:  sales@pgroup.com 
Support:  trs@pgroup.com 
WWW:  www.pgroup.com   

All technical support is by email or submissions using an online form at 
http://www.pgroup.com/support.  Phone support is not currently available.  

Many questions and problems can be resolved at our frequently asked 
questions (FAQ) site at www.pgroup.com/support/faq.htm.   

Online documentation is available at www.pgroup.com/resources/docs.htm 
or in your local copy of the documentation in the release directory 
doc/index.htm. 

  

 


