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Abstract 
 

There is a need to develop methods to automatically 
incorporate prior knowledge to support the prediction 
and validation of novel functional associations. One 
such important source is represented by the Gene 
Ontology (GO)  and the many model organism 
databases of gene products annotated to the GO.  We 
investigated quantitative relationships between the 
GO-driven similarity of genes and their functional 
interactions by analyzing different types of 
associations in Saccharomyces cerevisiae and 
Caenorhabditis elegans. Interacting genes exhibited 
significantly higher levels of GO-driven similarity 
(GOS) in comparison to random pairs of genes used as 
a surrogate for negative interactions. The Biological 
Process hierarchy provides more reliable results for 
co-regulatory and protein-protein interactions. GOS 
represent a relevant resource to support prediction of 
functional networks in combination with other 
resources. 
 

1. Introduction 
 

The reliable prediction of functional networks of 
genes may be achieved by integrating multiple data 
sources, such as gene expression and high-throughput 
protein-protein interaction experiments. This is 
necessary because such individual sources may be 
considered as weak prediction models. Several studies 
have reported significant links between different types 
of genomic data sets, as well as techniques to combine 
them and improve prediction quality for relatively 
simple model organisms [1], [2].  Furthermore, it is 
crucial to integrate prior knowledge resources, such as 
annotation databases and the literature, not only for 

building advanced functional classifiers, but also to 
assist in the validation of technique-independent 
predictions (e.g., to detect potential spurious 
associations). The Gene Ontology   (GO) is one such 
source of prior knowledge, which has become the de 
facto standard for annotating gene products [3]. 
Information extracted from model organism databases 
annotated to the GO has been applied to gene 
expression analysis and for making de novo functional 
predictions [4].  Methods based on the GO have been 
proposed for measuring similarity between genes. 
Previous research showed significant relationships 
between GO-driven similarity of pairs of genes and 
their sequence-based similarity [5]. We have also 
evaluated relevant relationships between GO-driven 
similarity and gene expression correlation [6].  

Prior to integrating a predictive resource, Res, it is 
first necessary to assess its predictive relevance in 
relation to data sets of known positive and negative 
interactions.  In this case the hypothesis to prove is: 
Can information extracted from Res be in principle 
applied to distinguish pairs of interacting genes 
(positives) from those that have not shown evidence to 
be interacting (negatives)? Are there significant 
quantitative relationships to indicate that Res may be 
used as an input to different prediction models? 

The application of information from model 
organism databases annotated to the GO to support the 
prediction of functional networks has not been 
rigorously investigated.  Jansen et al. [1] integrated 
different data sets including annotations derived only 
from the GO Biological Process hierarchy to predict 
protein-protein (PP) interactions.  The GO-driven 
similarity of a pair of genes was used as an indicator of 
PP interactions in yeast.  Between-gene similarity was 
calculated by identifying the set of GO terms shared by 
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the two sets of annotations.  For a given database of 
protein pairs, the total number of protein pairs sharing 
the same set of annotations was used as an estimator of 
similarity.  Thus, the lower this frequency, the more 
similar the gene pair under consideration. They found 
that lower term frequencies were correlated with a 
higher likelihood of finding two proteins in the same 
complex. Nevertheless, such a similarity assessment 
approach does not fully exploit relevant topological 
and information content features that may be useful for 
estimating between-gene similarity. In some cases 
genes annotated to closely related but distinct GO 
terms may actually exhibit no similarity according to 
this method. 

Using annotations from the three GO hierarchies: 
Molecular Function (MF), Biological Process (BP) 
and Cellular Component (CC), we sought to assess 
relationships between the GO-driven similarity of a 
pair of genes and their functional interactions.  This 
study investigated the feasibility of applying GO-driven 
similarity to support the prediction of functional 
interactions of genes, including physical and regulatory 
interactions, in Saccharomyces cerevisiae and 
Caenorhabditis elegans. A key question addressed 
was: Can GO-driven similarity be applied to estimate 
the functional coupling of genes? Our hypothesis is that 
the GO-driven similarity among genes is a relevant 
indicator of functional interaction. 
 

2. Materials 
 
2.1. Data sets 
 
 Gene co-regulation in S. cerevisiae (CoReg) 

This data set originated from a comprehensive 
collection of annotated regulons compiled by Simonis 
et al. [7]. Their data set comprised more than 1400 
pairs of gene-factor associations retrieved from public 
databases and literature.  More than 13000 pairs of co-
regulated genes were then extracted from these data.  
These pairs comprised the CoReg reference data set 
analyzed in this investigation. 

 
Functional network of yeast genes (FunNet)   

This data set was obtained from an extensive, high-
quality functional gene network investigated by Lee et 
al. [2].  Unlike the CoReg data set, FunNet comprises 
different types of functional associations, mediated or 
not by physical interaction. This network was inferred 
by integrating diverse, high-quality functional data sets 
(e.g. mRNA coexpression, gene-fusions). A sub-sample 
of 19,216 pairs of genes representing the most reliable 
interaction predictions were analyzed in this study. 

PP interactions in C. elegans (PPInt) 
This data set represents another level of complexity, 

in which 860 protein-protein (PP) interactions were 
obtained from the Worm Interactome (WI5) map. The 
selected data set, from now on referred to as PPInt, 
contains the highest-confidence WI5 interactions [8]. 

 
2.2. The GO 
 

The GO hierarchies provide controlled terms for 
describing the role played by a gene product, the 
biological goals to which a gene product contributes 
and the cellular localization of the gene product 
respectively. Within each hierarchy, GO terms are 
organized in a directed acyclic graph, whose nodes are 
the terms. There are two types of relationships among 
GO terms: “is a” and “part of”. The first type is used 
when a child term is more specific than its parent term. 
The second type is used when a parent has the child as 
its part. This study takes advantage of both types of 
links for computing similarity between terms as 
justified elsewhere [5]. The annotations recorded in the 
model organism databases consist of associations 
between gene products and GO terms. The evidence 
supporting such annotations is captured by evidence 
codes, including TAS (Traceable Author Statement), 
ISS (Inferred from Sequence or structural Similarity) 
and IEA (Inferred from Electronic Annotation). While 
TAS refers to peer-reviewed papers and indicates strong 
evidence, IEA and ISS denote automated predictions, 
i.e., generally less reliable annotations. The reader is 
also referred to [6] and [9] for an introduction to some 
of the predictive data analysis applications of the GO. 

 
2.3. GO annotation databases 
 

The pairs of interacting genes in the three data sets 
presented earlier are annotated to the GO.  We 
performed experiments on data excluding the less 
reliable annotations (i.e., ignoring annotations whose 
evidence code is either ISS or IEA). Moreover, we 
compared these results against those obtained from 
excluding only IEA annotations. The August 2005 
database releases of the Saccharomyces Genome 
Database (SGD) and WormBase (WB), all available at 
www.godatabase.org, provided the GO annotations for 
these data sets. CoReg has 8,839, 10,874, and 11,309 
interacting pairs with both genes linked to at least one 
GO term under the MF, BP and CC hierarchies 
respectively. FunNet had 11,767, 15,520 and 16,865 
pairs of interacting genes with both genes associated 
with at least one GO term under the MF, BP and CC 
hierarchies respectively. In PPInt the numbers of 



interacting pairs of genes in which both genes were 
described by at least one GO term were 152 under the 
BP hierarchy and 5 under the CC hierarchy. This data 
set did not contain any valid annotations under MF. 
The number of annotations reported above refers to 
non-ISS/non-IEA annotations.  

 

3. Methods 
 
3.1. GO-driven similarity 
 

To estimate the similarity between two genes gk and 
gp, annotated with sets of GO terms Ak and Ap 
respectively, one must first understand how to calculate 
the similarity between two GO terms. Several 
information-theoretic approaches to measuring 
ontology-driven similarity have been studied 
previously [5], [9]. Unlike traditional edge-counting 
techniques, these methods are based on the assumption 
that the more information two terms share in common, 
the more similar they are. Lin’s similarity model, for 
example, has shown to produce both biologically 
meaningful and consistent similarity predictions [5], [6] 
in comparison to related approaches. Given terms ci ∈ 
Ak and cj ∈ Ap, the between-term Lin’s similarity is 
defined as: 

 

(1) 

where S(ci,cj) represents the set of ancestor terms 
shared by both ci and cj, ‘max’ represents the maximum 
operator, and p(c) is the probability of finding c or any 
of its descendants in the database analyzed. It generates 
normalized values between 0 and 1. 

Between-gene similarity results from the 
aggregation of similarity values between the annotation 
terms of these genes. In practice, given a pair of gene 
products, gk and gp, with sets of annotations Ak and Ap 

comprising m and n terms respectively, the between-
gene similarity, SIM(gk , gp), is defined as the simple 
average (inter-set) similarity between terms from Ai 
and Aj:  

 

 

 
(2) 

where sim(ci,cj) may be calculated using (1). 
Nevertheless, this method might not always produce 
consistent results.  For example, intuitively, the 
similarity between two genes having the same sets of 
annotation terms is expected to be equal to 1.  
However, this is not true when several annotations 

within a hierarchy are assigned to the genes. It will 
estimate, for instance, SIM(gi, gj) = 0.5, for gi = gj when 
Ai and Aj are described by the same set of annotations 
with more than one GO term within a hierarchy. In 
order to address this limitation, we have introduced an 
alternative approach that selectively aggregates highest 
average (inter-set) similarity values [9] as follows: 
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(3) 

These approaches and their relationships to 
sequence-based similarity and co-expression have been 
investigated in [5] and [6]. From now on we will refer 
to (2) and (3) as the simple and highest average 
similarity methods respectively. 

 
3.2. Linking GO-driven similarity and 
functional interactions 
 

Comparing GO-driven similarity to other 
indicators of functional relations. GO-driven 
similarity values were calculated for all the annotated 
pairs of genes in the data sets described in Section 2. 
These data represented our sets of true positive 
interactions, which were statistically analyzed to show 
significant relationships with GO-driven similarity.  In 
order to illustrate such links, similarity values from 
these sets of true positive interactions were compared 
to similarity values measured in a set of randomly 
associated genes, used as a surrogate for negative 
interactions, i.e. pairs of genes not showing evidence of 
interaction. In practice, a set of “non-interacting genes” 
was produced as follows. For a given data set, P, 
comprising M true positive interactions, a set N, with M 
negative interactions was built by randomly pairing 
genes from P. Moreover, the resulting sets were 
verified to ensure that newly formed pairs were not 
included in P. One has to take into account that some 
of the pairs included in N may actually be false 
negatives (i.e., interacting genes whose interaction has 
not been not recorded in P) and this might influence the 
comparisons performed. However, at least with regard 
to the data sets analyzed (evidence available) this could 
not be demonstrated. The resulting data sets N 
represent a valid approximation of counter-examples, 
which are essential to explore potential associations 
between functional interactions and GO-driven 
similarity.  Furthermore, the random effects and 
variability linked to this data sampling procedure is 
reduced by generating K independent N sets.  These K 
sets are then analyzed as an aggregated set, N’, 
consisting of K x M pairs of (non-interacting) genes. 
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Fundamental relationships between GO-driven 
similarity and the existence/absence of interactions 
were estimated by comparing similarity values 
exhibited in P versus values observed in N’.  This was 
done for each of the three problems described in 
Section 2 and for the three GO hierarchies 
independently.  Differences between P and N’ were 
summarized by estimating their respective mean 
similarity values. The significance of their differences 
was tested by applying the Student’s t-Test.  The 
relevant null hypothesis tested was that these mean 
similarity values originated from the same sample, i.e. 
there are no significant differences between mean 
values in P and N’.   

Using GO-driven similarity to predict 
interactions. After identifying significant differences, 
the capacity of GO-driven similarity to predict 
functional interactions was analyzed. Given a similarity 
value, SIM(gk, gp), and a pre-defined predictive 
similarity threshold value, GOS-Th, genes gk  and gp are 
predicted to be an interacting pair (positive interaction) 
if SIM(gk,gp) ≥ GOS-Th.  Some of these predictions 
will obviously be false.  Therefore, the next task was to 
estimate the rate of falsely predicted interactions.  
More generally, this is related to the problem of 
estimating the decisive false discovery rate, which has 
shown to be a robust and conservative estimator of the 
probability, P, of detecting spurious associations [10]. 
To estimate P, AbN’ and AbP are calculated. AbN’ 
represents the number of interactions that would occur 
by chance and AbP the number of pairs correctly 
predicted as positive interacting pairs. The ratio 
AbN’/AbP represents the rate of falsely predicted 
interactions. AbN’ was estimated using the mean 
number of interacting pairs obtained from the K data 
sets, N, i.e. the total number of interactions observed in 
N’, divided by K.  A rate of falsely predicted 
interactions, P, close to 1 corresponds to random 
prediction. In contrast, low P values indicate strong 
evidence to support the validity of the positive 
interactions detected by the GO-driven similarity 
method. P values were calculated for the data sets 
described above using different GOS-Th values. This 
analysis allows one to have a better idea about how 
many false positive predictions may potentially be 
made when applying the GO-driven similarity method 
as a single prediction model. The analysis tasks 
described above were carried out with K = 10.   

 
 
 
 

4. Results 
 
4.1. Results from CoReg 
 

Differences between the sets P (positives) and N’ 
(negatives) with regard to their mean similarity values 
from the simple and highest average methods 
respectively were summarized for. Unknown, IEA and 
ISS annotations were excluded. Interacting pairs of 
genes generally exhibit higher similarity values than 
non-interacting pairs using both methods. Significant 
differences (p < 0.001) for all GO hierarchies were 
obtained. This suggests the feasibility of applying GO-
driven similarity to support the distinction of co-
regulated from non-co-regulated pairs of genes.  Figure 
1 shows the estimated probabilities, P, that such 
predictions are false as a function of the predictive 
threshold, GOS-Th. 

 

 
Figure 1 CoReg: Rate of false positive 
predictions, P, as a function of the GOS-Th for 
all GO hierarchies. P estimates the probability 
of predicting spurious associations. 

 



 
Figure 2 FunNet: Rate of false positive 
predictions, P, as a function of the GOS-Th for 
all GO hierarchies. P estimates the probability 
of predicting spurious associations. 

 
4.2. Results from FunNet 
 

Significant differences (p < 0.001) for all GO 
hierarchies were obtained. With both methods, pairs of 
interacting genes tend to exhibit higher similarity 
values than pairs of non-interacting genes. This 
suggests the feasibility of using GO-driven similarity to 
help to distinguish interacting from non-interacting 
genes (including physical and non-physical 
interactions). Figure 2 shows the estimated 
probabilities, P, that such predictions are false as a 
function of GOS-Th 

 
4.3. Results from PPInt 
 

Significant differences (p < 0.05) were observed 
only in connection to the BP hierarchy. Figure 3 
presents the estimated probabilities, P, that such 
predictions are false as a function of GOS-Th.  
Interpretations should also take into account the very 
low number of gene pairs with CC annotations. 

 

 
Figure 3. PP-Int: Rate of false positive 
predictions, P, as a function of the GOS-Th for 
all GO hierarchies. P estimates the probability 
of predicting spurious associations. 
 

5. Discussion and Conclusions 
 
This study demonstrated significant relationships 

between functional similarity and known interactions.  
This pattern was remarkably observed under all 
hierarchies for CoReg and FunNet.  GO-driven 
similarity of pair of genes may be applied to support 
the prediction of functional interactions (including co-
regulatory and PP interactions) in yeast. We also 
performed a manual verification to assess the potential 
biological significance of some of the “false positive” 
(novel) links. This procedure reported nine pairs of 
proteins (with unknown interactions), which are 
feasible candidates to be interacting partners in C. 
elegans, such as F28D1.2 and B0547.1, which are 
involved in DNA repair and ubiquitination, 
respectively. 



Our research does not of course suggest that this 
approach is sufficient or even necessary to detect 
relevant interactions. It motivates the application of this 
functional similarity measure as a complementary 
predictive resource. This, in combination with other 
sources, such as gene co-expression, may support more 
accurate and biologically-meaningful predictions.  

P.H Lee and D. Lee [11] recently integrated 
ontology-driven similarity information as part of their 
modularized network learning method (MONET). 
They first identified modules of interrelated genes 
using gene expression correlation and MIPS (Munich 
Information center for Protein Sequences database) 
annotations.  Bayesian networks were then inferred 
from the detected modules that successfully predicted 
relevant gene regulation networks in yeast.  Ontology-
driven similarity was used to aid in the identification of 
clusters of genes on the basis of their MIPS 
annotations. Between-gene similarity was estimated 
using the between-term Resnik’s method [12]. We 
showed that these relationships go beyond the 
regulatory level and can support applications involving 
uni- and multi-cellular organisms. Previous research 
has shown that Lin’s technique may outperform 
Renisk’s and other information-theoretic approaches 
[6], [12].  

The results suggest that in general the larger the 
GOS-Th, the lower the probability of making false 
positive predictions.  But it also highlights the fact that 
many of the false positive interaction predictions might 
show relatively high similarities. This may be 
explained by the difficulties in creating exact true 
negative data sets. Nevertheless, the results strongly 
suggest that there is a tendency to reduce the number of 
false positive interactions by applying more rigorous 
thresholds.  

Alternative assessments may incorporate other 
estimators of P, including less conservative methods. 
We are applying the GOS assessment approach to 
support the prediction of integrated, large scale 
functional networks [13].  
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