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Abstract 

PROBLEM: Automatic keyword assignment has been largely 
studied in medical informatics in the context of the MEDLINE 
database, both for helping search in MEDLINE and in order 
to provide an indicative “gist” of the content of an article. 
Automatic assignment of Medical Subject Headings (MeSH), 
which is formally an automatic text categorization task, has 
been proposed using different methods or combination of 
methods, including machine learning (naïve Bayes, neural 
networks…), linguistically-motivated methods (syntactic pars-
ing, semantic tagging, or information retrieval. METHODS: 
In the present study, we propose to evaluate the impact of the 
argumentative structures of scientific articles to improve the 
categorization effectiveness of a categorizer, which combines 
linguistically-motivated and information retrieval methods. 
Our argumentative categorizer, which uses representation 
levels inherited from the field of discourse analysis, is able to 
classify sentences of an abstract in four classes: PURPOSE; 
METHODS; RESULTS and CONCLUSION. For the evalua-
tion, the OHSUMED collection, a sample of MEDLINE, is 
used as a benchmark. For each abstract in the collection, the 
result of the argumentative classifier, i.e. the labeling of each 
sentence with an argumentative class, is used to modify the 
original ranking of the MeSH categorizer. RESULTS: The 
most effective combination (+2%, p<0.003) strongly over-
weights the METHODS section and moderately the RESULTS 
and CONCLUSION section. CONCLUSION: Although mod-
est, the improvement brought by argumentative features for 
text categorization confirms that discourse analysis methods 
could benefit text mining in scientific digital libraries.  

Keywords: Text Mining; Abstracting and Indexing; Informa-
tion Storage and Retrieval; Natural Language Processing; 
Libraries, Medical; Artificial Intelligence. 

Introduction 
Systems for text mining are becoming increasingly important 
in biomedicine because of the exponential growth of written 
information in this domain. The mass of scientific literature 
needs to be filtered and categorized to provide for the most 

efficient use of the data. The problem of accessing this in-
creasing volume of data demands the development of systems 
that can extract pertinent information from unstructured texts, 
hence the importance of key words extraction, as well as key 
sentence extraction. While the former task has been largely 
addressed in text categorization studies [1], the latter has been 
more rarely studied. In this report, we propose to merge the 
two ideas to improve the first task. We intend to use sentence 
extraction and sentence ranking methods to improve text cate-
gorization in MEDLINE based on Medical Subject Headings 
(MeSH). Selecting a set of appropriate sentences likely to 
improve MeSH assignment is a complex task because, more 
than key words, the importance of a sentence is dependent on 
the point of view of every reader. However, as for key words, 
which can be more or less comprehensively listed in a con-
trolled vocabulary, we believe it is possible to propose task-
specific criteria, which can help to define such sentences. Our 
model is based on the implicit discourse-level information 
found in scientific reports; in particular, our model uses the 
argumentative sections as they often appear – sometimes ex-
plicitly but usually implicitly – in abstracts. The argumenta-
tive categories we are experimenting to rank the sentences 
originate from professional guidelines (ANSI Z39.14-1979). 
Indeed, articles in experimental sciences tend to respect strict 
argumentative patterns with at least four sections: purpose-
methods-results-conclusion. These four moves –leaving aside 
minor variation of labels- are reported to be very stable across 
different scientific genres and experimental sciences in gen-
eral (chemistry, anthropology, computer sciences, linguis-
tics…) [4]. They are also confirmed in biomedical abstracts 
and articles [5][6][29]. Following recent trends, which show 
that argumentative criteria can be useful to improve various 
text mining and information retrieval applications such as 
related articles search [7], blind feedback [27] for ad hoc 
search, or feature and passage selection for automatic index-
ing in full-text articles [30], our objective is to evaluate the 
benefit of using discourse analysis representation levels for 
keyword assignment in MEDLINE.  



Background: Argumentative Categorization 
In this section, we present a set of background methods and 
already reported results, which are useful to understand the 
rationales supporting our approach. Our argumentative cate-
gorizer is formally defined as a mono class classifier: for each 
piece of text the system will have to decide whether it is a 
PURPOSE, or a METHOD, or a RESULT, or a 
CONCLUSION. Sentences are natural candidate segments for 
such a classification [8] because they are more self-contained 
than phrases; however anaphoric phenomena may demand 
larger segments. 

Summarization has a related task 
Modern summarization systems use annotated corpora in or-
der to acquire appropriate knowledge; based on textual fea-
tures summarization tools are able to conduct general summa-
rization tasks. Thus, Kupiec et al. [10] report that in abstracts 
produced by professionals, 80% of sentences are also found in 
the source document. In such systems, the complex abstract-
ing task is recast into a more modest sentence selection prob-
lem. To do so, experts identify a set of relevant sentences 
from large corpora; these sentences are then used to train the 
learning system. Complementary to machine learning ap-
proaches, Teufel et al. in [23], who design a task very similar 
to our one, combine a set of manually crafted triggered ex-
pressions, such as finally, we have shown that, we conclude 
that… to classify sentences into seven argumentative classes. 

Basic classifiers, features selection and weighting 
Choosing a priori an appropriate classifier for a given task is 
a fairly difficult task; therefore, empirical comparisons are 
often necessary. Among state-of-the-art classifiers for text 
categorization, such as k-NN [11], SVM [12][28], neural net-
works [13], and rule-induction systems [14], Bayesian classi-
fiers [15] show a linear complexity, while most top perform-
ing algorithms have quadratic complexity; therefore they are 
often more adapted for rapid application development and 
exploratory studies [16] [24]. The basic features in text cate-
gorization are usually word-based. Possible variants are stems, 
which often implies stop-word removal, and/or sequences of 
stems, such as bi- or trigrams of stems.  Examples of stem-
ming algorithms are provided in Table 1. 

Table 1: String Normalization Methods 
 
Token Lovins Porter S-stemmer 
genetic 
genetically 
genetics 
gene 
genes 
homogeneous 
plaid 
play 

genet 
genet 
genet 
gene 
gene 
gene 
plai 
plai 

genet 
genetically 
genet 
gene 
gene 
homogen 
plai 
plai 

genetic 
genetically 
genetic 
gene 
gene 
homogeneous 
plai 
plai 

 
Our preliminary studies confirmed that elaborate string nor-
malization and stop-word removal strategies such as Porter 
and Lovins did not outperform simpler approaches, such as 
plural normalization, which process morphological variations 
of plural forms (-s, -ies). This strategy appears sufficient to 

help the classifiers to generalize without removing interesting 
features, such as verb tense (as suggested in [4]), which is 
usually removed by stemming (cf. Table 1). 
The last step concerns feature weighting. Indeed naive Bayes 
classifiers combine the log-likelihood of each feature in order 
to select the most probable category in the category space; 
however the real frequency observed in training corpora can 
follow different refinement and smoothing processes, known 
as feature weighting [11].  
 
PURPOSE: While gemcitabine (GEM) is widely accepted for 
the treatment of advanced pancreatic cancer, capecitabine 
(CAP) has shown single agent activity and promising effi-
cacy in combination with GEM. […] METHODS: Patients 
had advanced pancreatic adenocarcinoma, no prior systemic 
chemotherapy other than that given concurrently with radia-
tion therapy, at lease one measurable disease, and adequate 
organ functions. […] RESULTS: The objective RR among 
45 patients was 40.0% (95% CI; 25.1-54.9), including 1CR 
(2.2%). The median TTP and OS were 5.4 months (95% CI; 
1.8-9.0) and 10.4 months (95% CI; 6.2-14.5), respectively. 
[…] CONCLUSIONS: The combination of GEM with dose 
escalated 14-day CAP is well tolerated and offers encourag-
ing activity in the treatment of advanced pancreatic cancer. 
[…] 
Figure 1: Partial example of an explicitly structured abstracts 
in MEDLINE. 
 
We tested 3 weighting methods: tf-idf (term frequency-inverse 
document frequency), chi-2, and df-thresholding (only fea-
tures appearing frequenty in each class are selected). Our con-
clusion is that chi-2 and df-thresholding perform similarly, 
while tf-idf weighting should be avoided. Indeed, tf-idf 
weighting is appropriate for weighting content-bearing fea-
tures, while argumentative content is supported by functional 
words. Three types of features are linearly combined to get a 
final probability ranking per class: stems, stem bigrams and 
stem trigrams. As in [15], length normalization of sentences as 
been applied in order to overcome biases introduced by too 
long or too short sentences. 

Training and Test Data 

In text classification tasks, two types of strategies are compet-
ing: expert-driven and data-driven approaches. While the for-
mer, which rely on a domain expert, are often time and la-
bour-intensive, the latter are directly dependent on the avail-
ability of large training sets. Fortunately, training data for our 
task can be acquired in a cheap way. Most abstracts in 
MEDLINE are unstructured (i.e. provided without explicit 
argumentative markers, such as METHODS, PURPOSES…); 
but fortunately, a significant fraction of these abstracts contain 
explicit argumentative markers. Using PubMed and its Boo-
lean query interface, we collected a set of 12000 MEDLINE 
citations containing strings such as “PURPOSE:”, 
“METHODS:”, “RESULTS”, “CONCLUSION:”. This fully 
automatic data collection process introduces some argumenta-
tive noise since some of the explicit markers gather additional 
argumentative content. Thus, explicit markers such as 



“BACKGROUND AND PURPOSES:” were also collected as 
pure “PURPOSES:” markers by this simple method. The col-
lection was then split into two sets: 

• set A (10800 abstracts) was used for training and 
validation purposed, 

• set B (1200) was used for the final assessment. 

In addition to sets A and B, we also collected a smaller set (C) 
of marker-free abstracts (100 items). Then, two human anno-
tators were asked to manually annotate this set, using the four 
selected argumentative classes. In contrast with the automati-
cally acquired sets, here we do not assume that argumentative 
segments and sentences are overlapping items. As shown in 
Figure 2, some sentences in set C receive more than one label, 
because they may express two different argumentative moves 
in the same sentence. In such cases, we do not attempt to iden-
tify segment boundaries (as explored in [18] and [19]) and 
instead ask the system to provide any of the relevant classes. 
The interannotator agreement on the C set for argumentative 
segments is 0.81, when measured by kappa statistics, which 
indicates that agreement is good. 

As mentioned above, our goal is to extract conclusion sen-
tences, but because the information is available in our training 
data, this binary task has been modified into a four-class prob-
lem: {PURPOSE, METHODS, RESULTS, CONCLUSION}. 
We expect that working with more classes will help the sys-
tem to discriminate between classes that have been reported to 
be lexically similar [4][21], such as PURPOSE and 
CONCLUSION. In the data sets used for the evaluation (B 
and C), explicit argumentative markers have been removed.  
 
<CONCLUSION> Skin surface proteolytic activity in the living 
animal was detected </CONCLUSION> <METHODS> by a sensi-
tive, non-invasive methodol. Developed in our labora-
tory</METHODS>. <METHODS>A non-leaky well was con-
structed on the shaved back of an anesthetized guinea pig.  The well 
contained the reaction mixture  including the substrate     125I-S-
carboxymethylated <GPN> insulin B-chain</GPN> 
(<GPN>ICMI</GPN>)</METHODS>.  <RESULTS>The prote-
olytic activity was shown to be time-dependent.  The activity was 
strongly inhibited by <ASP_GPN>pepstatin A</ASP_GPN>, indi-
cating the involvement of aspartic proteinase(s) such as 
<ASP_GPN>cathepsin D</ASP_GPN> and/or 
<ASP_GPN>E</ASP_GPN>.  Pretreatment of the skin with propyl-
ene glycol blocked the proteolytic �ctiveity</RESULTS>.  
<CONCLUSION>The present study demonstrates the presence of 
proteolytic activity located on skin surface<CONCLUSION> 
<METHODS>using a unique, non-invasive method for in situ pro-
teinase detn. In the living animal</METHODS>. 

Figure 2: Example of an automatically structured abstracts. 
Four argumentative classes are annotated with XML tags; 
Gene and Protein Names (GPN and ASP_GPN), are also an-
notated. 

Combining positions of segments 
Optionally, we also investigated the sentence position’s im-
pact on the classification effectiveness through assigning a 
relative position to each sentence. Thus, if there were ten sen-
tences in an abstract: the first sentence has a relative position 

of 0.1, while the sentence in position 5 receives a relative po-
sition of 0.5, and the last sentence has a relative position of 1. 
The following distributional heuristics are encoded in a distri-
butional model: 1) if a sentence has a relative score strictly 
inferior to 0.4 and is classified as CONCLUSION, then its class 
becomes PURPOSE; 2) if a sentence has a relative score strictly 
superior to 0.6 and is classified as PURPOSE, then its class is 
rewritten as CONCLUSION. 

Categorization effectiveness 
Table 2 indicates the categorization effectiveness of our ar-
gumentative categorizer. In Table 2, we evaluate the effect of 
positional information on the categorizer. We also evaluate 
the performance of the system on explicitly and non-explicitly 
structured abstracts. Finally, with an F-score (i.e the harmonic 
mean, with recall and precision having the same importance; 
cf [22]) above 85%, recall and precision measures are com-
petitive with the trigger-based approach proposed by Teufel et 
al [23] (F-score ~ 68%), and the SVM learner used in 
McKnight and Srinivasan [25] (F-score ~ 80%). While recall 
exhibits excellent levels of performance, precision could still 
be improved. Thus, expected conclusion segments are well 
classified, but we observe that some non-conclusion sentences 
are also classified as conclusion (false positives). 
 
  Without sentence positions 

 PURP METH RESU CONC 
PURP 80.65% 0% 3.23% 16% 
METH 8% 78% 8% 6% 
RESU 18.58% 5.31% 52.21% 23.89% 
CONC 18.18% 0% 2.27% 79.55% 

  With sentence positions 
 PURP METH RESU CONC 

PURP 93.55% 0% 3.23% 3% 
METH 8% 78% 8% 6% 
RESU 12.43% 5.31% 74.25% 13.01% 
CONC 2.27% 0% 2.27% 95.45% 

Table 2: Confusion matrices expressing the classification ef-
fectiveness of the argumentative categorizer, with and without 
using positional information. 

Materials and Methods 
To conduct our key word assignment experiments and evalua-
tions, we used the OHSUGEN collection [25], which contains 
more than 300,000 MEDLINE records. From these records, 
we randomly selected 500 citations with abstracts and key-
words to tune our system and 1000 citations with abstracts 
and keywords to provide the final results. All experiments 
were conducted with the MeSH 2000 version, which roughly 
corresponds to the time period covered by the collection. Our 
baseline system, which was originally developed for the Bio-
Creative challenge 2003 to perform text categorization tasks 
with Gene Ontology categories, combine a vector space 
ranker and a pattern matcher. Both stems (Porter) and linguis-
tically-motivated features were used by the system [35]. The 
system achieved competitive results in the context of the Bio-



Cretative challenge; cf. [34] for a comparative presentation 
and [35] for a comprehensive presentation and evaluation. 
 
In our MeSH categorizer, the ranking was based on the cate-
gorization status value returned by the system. Thus, the best 
candidate categories (i.e. the relevance estimate) obtained the 
highest score, which directly expresses a similarity between a 
category and the input abstract. To overweight a given argu-
mentative section, we simply modified the term frequency of 
the feature in the abstract. Thus, if we wanted to emphasize 
features appearing in the METHODS section, then every fea-
ture in a sentence classified as METHODS by the argumenta-
tive categorizer received a boosting factor. The fine-tuning of 
the optimal model, which includes the calculus of the optimal 
boosting factor, was based on direct search. We worked with 
integer values, ranging from 1 to 7 and we strove to maximize 
the mean average precision of our system, which is the best 
metric to express the full ordering skill of the system. 

Results 
Figure 3 provides the expected list of Medical Subject Head-
ings for the abstract in Figure 1. 
 
Assigned MeSH: 
Adult; Cystic Fibrosis/genetics; DNA/analysis*; Genotype; HLA-
DQ Antigens/genetics; Humans; Research Support, Non-U.S. Gov't; 
Reverse Transcriptase Polymerase Chain Reaction; Sequence 
Analysis, DNA/methods*; Spectrum Analysis, Raman 
Top-12 categories proposed by the categorizer: 
12. dna mutational analysis 
11. dna 
10. genetics 
9. fibrosis [not in NP index] 
8. alleles 
7. sequence analysis, dna  
6. genotype 
5. mutation 
4. fluorescence 
3. oligonucleotides 
2. polymerase chain reaction 
1. cystic fibrosis 
Figure 3: Expected and predicted Medical Subject Headings 
for abstracts in Figure 1 (PMID: 12404725). Major headings 
are listed with a star. We do not separate between major and 
minor headings. Qualifiers are ignored in our benchmark. 
 
We observe that several headings, which relates to age, or 
population-related groups (Adult), and to grants (Research 
Support, Non-U.S. Gov't) cannot be inferred from the abstract; 
therefore, as is well known, both the average precision and the 
recall of MeSH categorizers are generally low. In contrast, 
some categories, in particular major headings, which are more 
important for annotators, can be relevantly inferred from ab-
stracts. Table 3 provides results of the final evaluation. In par-
ticular, we observe that the best combination emphasizes the 
PURPOSE section (x5 times) and the METHODS and 
RESULTS sections (each with a multiplicative factor of 2). 
The overall resulting improvement (+2%) is statistically sig-
nificant, although quite modest (p<0.003) [32]. We also see 
that another simpler yet quite effective combination can be 

obtained by boosting just the PURPOSE section (x3 times). It 
is also interesting to observe that the best combination regard-
ing the mean average precision (MAP), i.e. 0.217, is not the 
best one for precision at high ranks, as expressed by the Preci-
sion at recall = 0. In contrast, the best precision at high ranks 
(0.93) is achieved by trading recall for precision. Thus, in that 
setting, only 3064 relevant categories are proposed while 
3068 were proposed with the baseline system.  

Table 3: Results of the argumentative boosting on the effec-
tiveness of the MeSH categorizer (C=CONCLUSION, 
P=PURPOSE; M=METHODS, R=RESULTS, MAP= Mean 
average precision). 

Parameters 
Kc=C,P,M,R

Relevant 
Retrieved 

Prec. at Rec.=0 MAP 

Kc=1,5,2,2 3068 0.927 (+0.8%) 0.217 (+2%) 

Kc=1,3,1,1 3064 0.93 (+1.1%) 0.216 (+1.4%) 

Kc=1,1,1,1 
(Baseline) 

3068 0.92 (100%) 0.213 (100%) 

Conclusion 
Our results (precision at high ranks ~ 93%) suggest that ar-
gumentative contents as available in abstracts stored in digital 
libraries are helpful for text categorization tasks, such as auto-
matic assignment of Medical Subject Headings (MeSH). The 
reported improvement is statistically significant. Although 
modest (+2%), the improvement confirms that discourse 
analysis methods are useful for a growing number of text 
mining applications. Indeed, while attempts to apply lin-
guistically-motivated approaches based on syntactic tools 
(part-of-speech tagging, shallow or deep parsing) to informa-
tion retrieval and text categorization were rather inconclusive, 
methods inherited from discourse analysis could provide a 
more scalable and dependable improvement. Finally, it would 
be interesting to evaluate the benefit of argumentative features 
using more elaborate approaches such as those working with 
novelty detection [33], full-text articles [30], or with more 
advanced learners [31]. 
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