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Abstract: The recent achievements in the Human Genome Project have made possible a 
high-throughput “systems approach” for accelerating bioinformatics research. 
In addition, the NIH Whole Genome Association Studies will soon supply 
abundant clinical data annotated to clinical ontologies for mining. The 
elucidation of the molecular underpinnings of human diseases will require the 
use of genomic and ontology-anchored clinical databases. The objective of this 
chapter is to provide the background required to conduct biological discovery 
research with clinical ontologies. We first provide a description of the 
complexity of clinical information and the main characteristics of various 
clinical ontologies. The second section illustrates several methods used to 
integrate clinical ontologies and therefore databases annotated with 
heterogeneous standards.  Finally the third section reviews a few genome-wide 
studies that leverage clinical ontologies.  We conclude with the future 
opportunities and challenges offered by the Semantic Web and clinical 
ontologies for clinical data integration and mining. Discovery research faces 
the challenge of generating novel tools to help collect, access, integrate, 
organize and manage clinical information and enable genome wide analyses to 
associate phenotypic information with genomic data at different scales of 
biology. Collaborations between bioinformaticians and clinical informaticians 
are poised to leverage the Semantic Web. 
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1. INTRODUCTION 

Achievements in the Human Genome Project have made possible for a 
high-throughput “systems approach” to understand, prevent and treat human 
diseases. While the platform of molecular networks, especially gene 
profiling under homeostatic or disease conditions has been intensively 
explored as a gateway to “systems medicine,” this approach to analyzing 
genomic data is often complicated by genetic heterogeneity and the lack of 
cellular, tissue, organ, anatomical or environmental context to accurately 
interpret the gene functions which are highly context-dependent. Further, as 
mutations in different genes may yield identical or related phenotypes, a 
molecular characterization solely based on genes may neglect important 
relationships between molecularly distinct diseases at the level of phenotype. 
While altered phenotypes are among the most reliable manifestations of 
altered gene functions that can be observed, described, and quantified, 
research using systematic analysis of phenotype relationships to study 
human biology is still in its infancy [1]. In addition, the advent of large scale 
genetic databases together with the NIH Whole Genome Association Studies 
have intensified the need for high-throughput discovery technologies to 
efficiently manage, access, integrate, and reuse the wealth of phenotypic and 
genomic data.   

As we will describe in this chapter, Clinical Ontologies and related tools 
offer a unique opportunity to organize and access well-networked and 
integrated clinical phenotypes from otherwise heterogeneous information 
sources. 

1.1 Complexity of Representation of Clinical 
Information  

The issue of complexity of phenotypic information and knowledge 
representation includes (i) definition, (ii) composition, (iii) scale, and (iv) 
context. Clinical phenotypes are sometimes ambiguously defined. Mahner 
has found at least five different definitions of phenotypes in the literature 
[2].  Clinical Ontologies represent clinical phenotypes, diseases, syndromes 
and many other clinical elements such as medications and personal habits 
(e.g. smoking), which are considered “environmental conditions” in 
biological communities.  

1.1.1 Ontologies and Terminologies 

Ontologies and their associated systems [3-7] are robust architectures 
designed for knowledge representation of concepts and the relations among 
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them in a formal language (often frames or description logics). They have 
been widely used in biology and medicine [8-11]. However, few phenotypic 
terminologies satisfy these criteria [12]. Obstacles in modeling phenotypic 
knowledge in a formal ontology involve the difficulties and costs of (i) 
achieving consensus regarding the definition of phenotypic entities, and (ii) 
enumerating the context features and the background knowledge required to 
ascribe meaning to a specific phenotypic entity[13-15]. In this chapter, we 
adhere to a looser definition of Clinical Ontology, which also includes well-
organized–but not always formally represented–clinical classifications, 
nomenclatures and terminologies. 

1.1.2 Compositional Clinical Phenotypes 

First we will provide examples of the compositional nature of clinical 
phenotypes, followed by the ambiguity that can arise from different 
information models representing these phenotypes.  Clinical phenotypes are 
highly compositional in nature [14, 16-19], one can refine a phenotypic 
description with additional modifiers. For example, the concept right tibial 
dysplasia can be represented by associating the following components: 
{Regional Anatomy: Laterality: “right”} and {Systemic Anatomy: Bone: 
“tibia”}, characterizing an anatomical entity, which can be further modified 
by {Abnormal Anatomical Structure: Morphology: “dysplasia”}.  

Information models help delineate which representation styles are used to 
store and query clinical phenotypes. When components of a composite 
phenotypic concept are implemented in a database schema, implicit 
knowledge about the composite clinical phenotype is buried in the 
information model. For example, “right tibial dysplasia” can be coded as a 
single field in a broad accident database, using a pre-coordinated term. In 
contrast, in order to support detailed queries with respect to anatomy and 
morphology, the same concept can be decomposed into several fields 
(possibly located in different tables) in the clinical information system of an 
orthopedic surgery department. While the information stored may be 
equivalent in both cases, the split terminological components of the overall 
concept can only be construed as equivalent to the whole by post-
coordinating (i.e., reassembling) the overall concept using metadata often 
implicitly buried in the local information model [20]. 

1.1.3 Context of Clinical Phenotype usage 

The context in which a clinical phenotype is stated is very important to 
its pertinent reuse. The meaning of a term varies with context in normal 
language, but context must be represented explicitly if one is to 
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meaningfully organize related phenotypic data, collected under diverse 
conditions or from distinct databases. For example, the views of different 
professions using a specific term may carry some implicit knowledge since 
the nature of the source database may not be associated with the concept. For 
example, the term “mole” found in a dermatology database does not carry 
the same meaning as in a gynecology database.  While in dermatology, 
“mole” refers to a skin lesion, the “mole” phenotype in gynecology describes 
an intrauterine tumor [21]. Similarly, the context of the experimental 
conditions, the organism under study, and its stage of development may also 
significantly modify the meaning of a phenotype.  
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Figure 5-1. Quantitative Comparison of the Content of Clinical Ontologies 

1.2 Clinical Ontologies, Terminologies, Classifications 
and Nomenclatures 

This section will summarize the properties of clinical ontologies that are 
well known and used by different clinical communities to annotate datasets. 
Figure 5-1 provides an overview of the number of concepts and relationships 
in each ontology. The linear relationships between the axes of Figure 5-1 
imply that relationships “R” in clinical ontologies are increasing as a power 
function of the number of concepts “C” (e.g. R=Cn), where “n” can be 
calculated from the figure. Table 5-1 provides the details on the clinical 
entities covered by these ontologies.  
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Table 5-1. Content coverage of distinct ontologies according to the scale of 
biology and scientific field. Legend: ●= biological scale covered, ○= 
biological scale partially covered, “empty box”= biological scale not covered 
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Scientific Fields 

Clinical Proteins  ○ ○ ○ ○ 
Clinical Gene Functions  ○ ○ ● ● 

Proteome, interactome, 
Structural Genomics, 
Gene product pathways 

Cell Morphologies  ● ● ● ● 
Cell types  ○ ● ● ● 
Tissues, Morphologies  ○ ● ● ● 

Histology, Pathology 

Organs  ● ● ● ● 
Systems  ● ● ● ● 

Clinical Genomics, 
Pharmacogenomics 

Diseases, Syndromes, 
Populations ○ ○ ● ● ● Medicine, Nursing, 

Public Health 
 

1.2.1 Properties of Clinical Ontologies 

Some ontologies are more convenient to compute with, due to superior 
design. Table 5-2 summarizes the different properties of each clinical 
terminology. Cimino proposed the following list of properties used in Table 
5-2 to summarize the computability of clinical ontologies [22, 23]: 
o Concept-Oriented: the preferable unit of symbolic processing is the 

concept. 
o Formal semantic definition: the semantic definition of concepts in an 

ontology as defined in Section 5-1.1.1. 
o Concept permanence: the meaning of a concept should not change over 

time and obsolete concepts are retired, not deleted.  
o Nonredundancy: the definition of a concept should be unique. 
o Nonambiguity: distinct concepts should not share the same terminology 

or code. 
o Relationships between concepts differentiate expressiveness of 

ontologies: 
• Monohierarchy (Tree): each concept has only one parent. 
• Polyhierarchy : Concepts may have more than one parent. 
• Directed Acyclic Graph (DAG): no cycles are allowed in the graph. 
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Table 5-2. Properties of Biomedical Ontologies 
legend: ●= property provided, ○= property partially provided, “empty 
box”= property not provided 
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Concept-Oriented ● ○ ○ ● ● ● 
Formal Semantic 
Definition    ●  ○ 
Concept Permanence ●  ● ● ● ● 
Concept Nonredundancy ● ○ ● ● ● ● 

Architecture 

Concept Nonambuiguity ● ○ ● ● ● ● 
Monohierarchy (Tree) ● ●     
Polyhierarchy  ○ ○ ● ● ● ● Relationships 
DAG (Cycle-free) ● ● ○ ●   

 

1.2.2 The Systematized Nomenclature of Medicine (SNOMED CT) 

As shown in Figure 5-1, SNOMED CT is the most comprehensive set of 
clinical concepts. It is organized as a Directed Acyclic Graph (DAG) that 
builds on a model of well-formed concepts based on description logics. In 
addition to the partonomy and type relationships, it contains relationships 
that relate morphologies and anatomies with diseases. It is owned and 
approved by the College of American Pathologists and is available for free 
perpetual use in the USA through a license by the National Library of 
Medicine. 

1.2.3 International Statistical Classification of Diseases (ICD-9, 
ICD9-CM, ICD-10) 

ICD-9 and ICD-10 are detailed classifications of known diseases and 
injuries. ICD-10 is used world-wide for morbidity and mortality statistics, 
reimbursement systems and automated decision support in medicine. ICD-9 
and ICD-10 are owned by the World Health Organization. The use of ICD-
10 is subject to a licensing agreement with the WHO, though the terms are 
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generally free for research. ICD-9-CM is a clinical modification of the ICD-
9 chiefly used for clinical billing in the USA. 

1.2.4 Medical Subject Headings (MeSH) 

MeSH is a terminology developed by the National Library of Medicine 
for the purpose of indexing journal articles and books in the life sciences 
[24]. It is used to index the MEDLINE/PubMed® article database. MeSH 
comprises about 23,000 descriptors and 150,000 supplementary concepts. 
MeSH is available electronically at no charge. 

1.2.5 International Classification of Primary Care, Second Edition 
(ICPC-2) 

ICPC-2 is a classification of about 1,000 terms of patient data and 
clinical activity in the domains of primary care. It has a biaxial structure 
consisting of (i) 17 clinical systems (chapters) and (ii) of 7 types of data (e.g. 
symptoms, diagnostic, screening and preventive procedures medication, 
treatment, test results, etc.).  

1.2.6 Diagnostic and Statistical Manual of Mental Disorders, 4th 
Edition (DSM-IV) 

DSM-IV has been developed though a stringent experimental 
methodology to normalize the meanings of mental health disorder terms. It is 
published by the American Psychiatric Association. Its codes are defined to 
be compatible with ICD-9. 

1.2.7 Logical Observation Identifiers Names and Codes (LOINC) 

LOINC is a standard for identifying laboratory and clinical observations. 
It is approved by the American Clinical Laboratory Association and the 
College of American Pathologist. LOINC is not exactly an ontology. Rather, 
it supports the development of formal, distinct, and unique names 
corresponding to the description of the observation entities along six axes. 

1.2.8 PaTO 

To provide a unified framework for phenotypic representation, the Gene 
Ontology consortium has initiated the development of the Phenotype 
Attribute Ontology (PAtO) to reduce the structural barriers that limit the 
reuse of phenotypic databases. It consists of an ontology of phenotypic 
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attributes and an information model to communicate phenotypes across 
different communities as illustrated in Figure 5-2.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 5-2. Simplified  Phenotype Attribute Ontology Information Model 

1.2.9 Unified Medical Language System® (UMLS®) 

The UMLS of the National Library of Medicine is a semi-automated 
integration effort covering over one hundred terminologies [25-27]. It has 
been designed as a network (not a Directed Acyclic Graph) to honor 
relationships that it aggregates from source terminologies. The UMLS 
models the actual relationships among disparate concepts taken from 
information sources, achieving coordinated linkage of alternate encoding of 
data without the difficulty of pairwise integration. It also provides extensive 
semantic and lexical information about the terms associated with these 
concepts. It is one of the most comprehensive harmonized cross-mapping 
frameworks for biomedical terminologies currently available.  

1.2.10 National Cancer Institute (NCI) Metathesaurus 

The NCI Metathesaurus is another massive undertaking in the integration 
of terminologies. It has been developed by National Cancer Institute and 
contains 850,000 concepts mapped to 1,500,000 terms by over 4,500,000 
relationships [28] and includes parts of the UMLS Metathesaurus. 
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2. INTEGRATION OF CLINICAL ONTOLOGIES 

Phenotypes are poorly integrated across model organism database 
systems, the literature and human disease databases. Representation of 
phenotypic information is more complicated compared to biological data and 
consequently there are few data standards and data models for phenotypic 
information across species and within human repositories. In addition, the 
granularity of phenotypic data varies from database to database. Further, 
current methods for accessing phenotypic information across databases are 
inefficient.  

The problem of integrating phenotypes across heterogeneous sources is 
compounded by a number of issues rooted in the complexity of phenotypic 
information and knowledge representation (ref. Section 5-1.1, Complexity of 
Representation of Clinical Phenotypes). These issues are due to differences 
in (i) definitions [2, 29, 30] and standards, (ii) compositionality and 
granularity [17-19, 31] (iii) biological scale [32], and (iv) context [14, 21, 
33-35]. Moreover, the biomedical community has yet to reach a consensus 
on whether diseases, syndromes and behaviors are phenotypes, and the 
distinction between traits and phenotypes.  

2.1 Integration of Ontologies’ Concepts with the UMLS 
and Related Tools 

The UMLS also has a number of related tools such as MetaMap (MMTx) 
for mapping terms to concepts in the UMLS Metathesaurus [36] and 
Metamorphosys for customizing the UMLS Metathesaurus (tailoring a 
subset of terminologies and their network of relationships by filtering the 
UMLS).  

Mapping of various medical terminologies to the UMLS and other 
biomedical terminologies has been explored extensively  [31, 37-48] and the 
utilization of semantics to interoperate terminologies was first proposed over 
a decade ago [49]. However, the attempted methods have had limited 
success. On average, they are only able to map 13 - 60% of the terms. These 
classes can be unified to create an integrated schema for the sources. Blake 
et al. have demonstrated that clustering techniques allow for the evaluation 
of candidate classes in different sources of terminologies. Hill et al. have 
manually integrated the Gene Ontology with external vocabularies [50]. 
While the use of description logics allow for automated evaluation of 
semantic relationships in the thesaurus, clustering techniques permit the 
evaluation of candidate classes in different sources that maybe unified in the 
global schema.  
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There are at least two problems associated with pre-coordination of 
terminologies for biomedical science: (i) slow or rate-limiting updates of the 
cross-index due to the resource intensive knowledge engineering, and 2) 
computational ambiguity of the reuse of a concept increases with the size of 
its terminology unless it is implemented with computable information about 
the context(s) of its usage. Further, part of the complexity lies in the variety 
of ways that a single biological concept may be represented [51]. As 
disparate systems often use the same information resources, it is imperative 
that redundancy be kept to a minimum in pre-coordinated systems. However, 
the issues of context and complexity make the pre-coordinated approach 
increasingly expensive and/or challenged for timeliness in the face of the 
escalating needs of biologists whose terminologies are undergoing 
accelerated updates. Additionally, different terminologies may represent the 
same concept in a very different way.  

 

2.2 Integration via Information Models 

There are few data model standards for combining phenotypic data across 
distinct databases.  As shown in section 5-1, clinical phenotypes are usually 
specified in distinct sub-languages specific to scientific and professional 
subspecialties leading to restricted opportunities for relevant conceptual 
mappings across organisms or across disease databases. This is also 
compounded by the fact that clinical ontologies are generally developed 
independently of one another. Even when the sub-languages are similar and 
share the same structural representation, the granularity (detail) of their 
representation may still differ across databases. Indeed, ICD-9 comprises 
only about 25,000 clinical conditions while SNOMED CT describes over 
100,000 clinical conditions.  We briefly present two information models that 
may be used with clinical information: the broad HL7 and PAtO, specific to 
phenotypes. 

2.2.1 HL7  

Health Level Seven (HL7), is a volunteer-based and not-for-profit 
organization involved in the development of common data models for 
sharing clinical information. While version 2 of HL7 did not provide 
formalism for vocabulary support, version 3 now provides such structure. 
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2.2.2 PAtO Information Model  

The PAtO information model presented in Figure 5-2 was originally 
intended to share phenotypic information across model organism databases 
and provides some insight on how to map clinical information with model 
organisms’ phenotypes. 

2.3 Integration of Clinical and Genomic Databases 

Gene-Phenotype analyses are currently driven by quantitative trait loci 
studies requiring carefully curated pedigrees of patients of functional 
genomic studies. One of the limiting factors hindering the progress of 
clinical genomics discovery research is the lack of accurate and timely 
access to comprehensive gene-phenotypes networks associated with 
knowledge about biology and diseases due to the lack of integration across 
clinical and genomic databases.  However, with the advent of the NIH 
Whole Genome Association studies, large volumes of well-organized 
clinical information are about to become available for high-throughput 
research. 

Currently, while many genomic databases of model organisms contain 
some phenotypic information, phenotypes are often coded at different levels 
of granularity, in different formats, and with different aims [52]. Some 
efforts have been made in the integration and standardization of this data for 
sharing purposes. For example, the PhenomicDB [53] database provides a 
single portal for heterogeneous phenotypic information from a number of 
different model organisms and humans. It contains over 15,000 distinct 
phenotypic terms and 120,000 genotypes for the mouse and human species. 
Similarly, Gene2Disease was constructed over the Online Mendelian 
Inheritance in Men (OMIM) using text mining methods coupled with 
analysis of the chromosomal locations of diseases [54]. However, these 
systems make limited usage, if any, of clinical ontologies. In these two 
systems, the integration of phenotypes relies on the juxtaposition of the 
original lexical string of text in the same field across species. Thus a textual 
search for a concept may miss synonyms, as well as related or subsumed 
concepts. In contrast, the Mammalian Phenotype Ontology [55] is used by 
the Mouse Genome Database [56] to normalize representation across model 
organism databases (mouse and rat), via curation of annotations and a shared 
standard. 
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2.4 Integration with Natural Language Processing and 

Computational Terminologies  

Among all natural language processing (NLP) technologies, MedLEE, 
developed by Friedman, has performed consistently and effectively in 
extracting clinical information, as evidenced by results of numerous 
independent evaluations [57-62]. BioMedLEE, is a NLP system derived 
from MedLEE and focused on parsing and coding gene-phenotype 
associations [63, 64].  In addition, lexico-semantic mapping of various 
medical terminologies to the UMLS and other biomedical terminologies has 
been explored extensively [31, 36, 38-44, 47, 49, 50, 65]. Previous NLP 
technologies would generally parse clinical data, but not encode them in 
clinical ontologies. New NLP systems for mining clinical narratives and 
coding in clinical ontologies are being developed. For example, the NIH 
National Center for Biomedical Computing “Informatics for Integrating 
Biology & the Bedside” (I2B2), headed by Isaac Kohane, is developing and 
distributing such a system as open source software [66]. 

3. DISCOVERY AND CLINICAL ONTOLOGIES 

In the new millennium, the inception of the Gene Ontology (GO) 
precipitated a flurry of discovery methods and studies anchored on GO. 
Indeed, about one thousand scientific articles cite GO in their keywords. In 
comparison, about four thousand scientific articles cite ICD-9 and one 
thousand cite the UMLS or SNOMED. However, a dozen studies cite both 
GO and a clinical ontology, showing the tremendous opportunity for 
discoveries with ontology-anchored methods joining the biological and 
clinical scales.    

3.1 Text Mining and Discovery 

To overcome the limitations of manual annotation to create clinical 
phenotypic datasets, many informaticians have conducted high-throughput 
phenotype-genotype analyses by mining text on phenotype-genotype 
relationships from the scientific literature [67-75]. Recently, we have 
extended these approaches with semantic models of phenotypes to associate 
phenotypes with Gene Ontology Annotations in high-throughput [63], thus 
creating expressive and distinctive ternary relationships between genes, 
molecular classes and phenotypes. 
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3.2 UMLS and Discovery Systems 

We and others have pioneered the integration of genomic databases with 
ontology-anchored clinical databases. Since clinical decision support 
systems like Quick Medical Reference (QMR) [76] contain densely coded 
descriptions of diseases, we hypothesized that they can be used as a proxy 
for clinical databases in genetic studies. To unveil systems biology 
properties of phenotypes via conducting genome-scale clustering analysis of 
phenotypes associated with diseases, we conducted two studies with QMR. 
In the first study, we applied terminological mapping and semantic 
techniques.  Briefly, trait-disease-gene relationships buried in three 
databases (QMR, OMIM and SNOMED) were successfully integrated [77]. 
We also performed a clustering of OMIM’s genes against QMR’s traits of 
diseases and demonstrated a classification of diseases according to genes 
[77] comparable to the hierarchies found in ICD-9 or SNOMED. This study 
was followed up with the GenesTrace method, a large scale integrative study 
of ontology-anchored phenotypes from the UMLS and their statistical and 
semantic relationships to GO and model organism databases [78]. We were 
able to predict about three million phenotype-gene associations relationships 
between 22,040 phenotypic concepts in the UMLS and 16,894 gene products 
annotated using GO and its associated databases [78]. We validated our 
computed correlations by using OMIM’s known gene-disease relationships 
as a gold standard. 30% of the predictions were  found in OMIM, and 
similarly 9% of OMIM’s relationships were found in GenesTrace [78]. Our 
methods provided direct links between genomic databases and clinically 
significant diseases through established clinical ontologies. 

Recently, Butte and Kohane [79] conducted a study based on mapping 
results between phenotypically-related concepts in UMLS [80] and the 
microarray gene expression data from the NCBI’s Gene Expression 
Omnibus (GEO) [81] using a term presence/absence method. Significantly 
expressed genes above a threshold were correlated with UMLS phenotypic 
concepts using a re-sampling-based multiple testing simulation generating 
64,003 relations between 281 biomedical concepts and 7,466 genes. More 
importantly, their predictions were experimentally validated with microarray 
studies. 

4. FUTURE CHALLENGES AND CONCLUSIONS 

In this chapter, we highlighted the feasibility of computational 
approaches to conducting large-scale integrative studies anchored on clinical 
and biological ontologies and presented some realizations. Among various 
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strategies that could facilitate computational genomics studies, clinical 
ontologies are increasingly proving to be effective in integrating and 
organizing large amounts of phenotypic concepts. The success of the UMLS 
integration and reuse also attests the importance of ontologies in clinical 
research. Additionally, text mining techniques are increasingly relying on 
coded output in ontologies. The emerging field of high-throughput 
phenomics is likely to require the use of both clinical and biological 
ontologies as demonstrated in a few studies. Resources such as the UMLS, 
the NCI Metathesaurus, along with modern computational terminology tools 
will likely play an important role in the Semantic Web for Health Care and 
Life Sciences, encouraging the sharing and reuse of datasets. The Semantic 
Web offers a unique opportunity to commoditize access to these ontologies 
via OWL-based ontology servers and to provide tools automating the 
integration of databases coded in heterogeneous standards. Future interaction 
between the Semantic Web and clinical ontology is likely to proceed from 
the clinical concepts that have crisp definitions and require relatively simpler 
translational tables between distinct terminological standards, such as basic 
anatomical terms, simple lists of phenotypes, diseases and medications. 
Providing translation services via the Semantic Web is plausible in a near 
future. 

DEFINITIONS 

Terminologies: An ensemble of technical terms used in a specific domain. 
Classification: A terminology with a  systematic categorical arrangement. 
Nomenclature: A comprehensive  terminology enumerating extensively the 

terms used in a specific domain.  
Ontologies: In this chapter, this term is used in its inclusive meaning in 

biology, which pertains to well-organized terminologies. 
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