
An Overview of Issues Facing Carrier Screening in Large Populations

Presented at an NIH-Sponsored meeting: "Population-Based Carrier Screening for Single Gene Disorders: Lessons Learned and New Opportunities" Feb. 6, 2008

By Louis J. Elsas MD Professor and *emeritus* Director The Dr. John T. Macdonald Foundation Center for Medical Genetics University of Miami Miami, Florida **<u>Issues (Ethical, Economic and Technical)</u>** <u>from Carrier Screening for:</u>

- Tay Sachs Disease
- Cystic Fibrosis
- Sickle Cell Disease
- Spinomuscular Atrophy (SMA)
- Fragile X Premutation

The Cassandra Myth: Prediction as a Tragic Curse

<u>Putative Ethical Principles</u> <u>Relevant to Carrier Testing</u>

1. Beneficence

- The primary benefit is to give reproductive risk information and alternatives to high risk couples.
 Non-Malfeasance
 - Anxiety, discrimination, expense, stigmatization
 - Cultural sensitivity
- 3. Autonomy
 - Respect for the individual's rights
 - Informed consent
 - Voluntariness
- 4. Justice
 - All individuals are treated fairly and equally

Some Considerations for Carrier Screening

- 1. Disorder impairs health in the homozygous affected offspring.
- 2. High frequency of carriers in the screened population
- **3.** Technically and clinically valid screening methods are available and cost effective to all.
- 4. IVF, prenatal diagnosis and termination are options.
- 5. Consent (informed and voluntary participation) is protected.
- 6. Knowledge of benefit and harms for carrier testing is transmitted to the screenee pre and post test. Anxiety over probabilistic results is minimized.
- 7. Privacy is protected (non- discrimination for insurance and job).
- 8. Stigmatization of the carrier by the community is minimized.
- 9. Experienced professional resources are required.

UMMG Reimbursement for Carrier Testing

Man altak	List	Medicare	Medicaid	Private	Materials
	Price	\$	\$	Insurance	Cost
Ser Sta	\$		here	\$	\$
FRAX1	272.00	81.46	30.57	96.73	77.60
CFTR(70)	5,982.00	1,719.84	48.96	2,142.39	75.00
CFTR(43)	3,522.00	1,017.24	48.96	1,441.45	55.00
Ashkenazi Panel	1,104.00	439.86	65.46	402.59	135.25
SMA	285.00	87.06	61.85		13.20
S/S (DNA)	229.00	74.84	16.67		24.90
S/S	20.00	7.71	4.00		1.05
Screen					

Issues (Ethical, Economic and Technical) from Carrier Screening for:

Tay Sachs Disease

• Sickle Cell Disease

Fragile X Premutation

• Spinomuscular Atrophy (SMA)

Cystic Fibrosis

Carrier Screening for Tay Sachs Disease among Ashkenazim Worldwide (ca 1971-1998) Total Screened 1,400,000 Couples at Risk 1,400 Pregnancies Monitored 3,200 Pregnancies Terminated 600 2,600 Babies Saved

Kaback M. Euro. J. Pediatr. 3sup:192, 2000

Tay Sachs Disease Carrier Screening among Ashkenazim: Some Reasons for Success

- 1. Educated, motivated and accepting community for screening.
- 2. Pilot study developed data for allele and pseudoallele frequency, and demonstrated disease prevention.
- **3.** Funding from federal and philanthropic sources for pilot studies were followed by professional recommendations for expanding screening for additional diseases (Genet.Med.2008;10:54-56).
- 4. Fast throughput, valid, and economical methods developed that included both functional (HexA) and specific mutations.
- 5. Caution for expanding to additional ethnic groups: "admixture", residual risks and continued need for functional as well as DNAbased screening tests.

Carrier Testing for	Residual Risk		
Diseases More Frequent among Ashkenazim	A Priori Risk	Tested Negative	
Tay-Sachs disease (detection rate of 91%)	1 in 36	1 in 2,800	
Canavan disease (detection rate of 99%)	1 in 65	1 in 1,540	
Familial dysautonomia (detection rate of 99%)	1 in 42	1 in 5,000	
Gaucher disease (detection rate of 94%)	1 in 19	1 in 313	
Fanconi anemia group C (detection rate of 99%)	1 in 108	1 in 10,753	
Niemann-Pick disease (detection rate of 98%)	1 in 125	1 in 6,250	
Bloom syndrome (detection rate of 97%)	1 in 164	1 in 5,556	
Mucolipidosis type IV (detection rate of 95%)	1 in 182	1 in 3,704	

Technical standards and guidelines for reproductive screening in the Ashkenazi Jewish population, Genetics in Medicine, Vol 10:57-72, Jan. 2008

<u>Issues (Ethical, Economic and Technical)</u> <u>from Carrier Screening for:</u>

• Cystic Fibrosis

Tay Sachs Disease

• Sickle Cell Disease

Fragile X Premutation

• Spinomuscular Atrophy (SMA)

Cystic Fibrosis: Another Success Story from Pilot Research Studies of DNA-Based Carrier Detection

1) Began as a funded national consensus study (ACMG/ACOG/NHGRI, 1999-2001). Patient and provider education, test validation.

- 2) Determined allele frequency among different ethnic groups.
- 3) Determined acceptance for carrier screening from pregnant couples and pregnancy planners.
- 4) Differentiated "mutations" from polymorphisms in affected children.

				ala est dese	
CFTR Mutation Detection Rate	White	Hispanic American	African American	Asian American	Ashkenazi Jewish
ACMG/ACOG 25 mutations*	88.40	71.90	64.51	48.93	94.14
CF39+5**	89.75	73.45	68.61	54.53	94.14
CF 70+6**	91.22	81.03	77.54	54.53	94.14

*Genet Med. 2004 Sep-Oct;6(5):387-91 **Genet Med. 2007 Nov. 9:739-744

CFTR Carrier Testing: Residual Risk for Negative Test

Ethnic Group	Carrier Risk A priori (ACMG)	Residual Risk If 39+5 negative	Residual Risk If 70+6 negative
Ashkenazi Jewish	1/29	1/470	1/470
European Caucasian	1/29	1/280	1/310
Hispanic American	1/46	1/170	1/240
African American	1/65	1/210	1/290
Asian American	1/90	1/200	1/200

Some Points to Consider for Cystic Fibrosis Carrier Testing

- Most babies with CF are born to parents who do not know they are carriers*: Parental/professional acceptance for genetic testing has been lower in this group than for prenatal carrier testing.
- 2) Prenatal DNA testing could detect most carrier couples before they have their first baby with CF.

 Hypothesis: An international, controlled carrier testing pilot study of parents-to-be would be acceptable and reduce the frequency of CF in newborns.

*Massie J., et al, J. Paed. Child Health, 43:721-723, 2007

<u>Issues (Ethical, Economic and Technical)</u> <u>from Carrier Screening for:</u>

Sickle Cell Disease

Fragile X Premutation

• Spinomuscular Atrophy (SMA)

• Tay Sachs Disease

Cystic Fibrosis

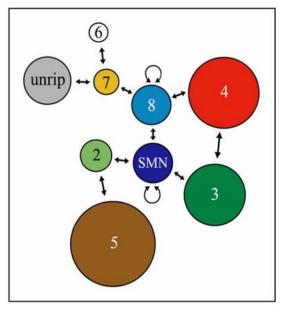
Screening for Carriers of Sickle Cell Disease Do not repeat mistakes of the past: Discrimination of the heterozygote; Need for genetic counseling resources for a common mutant allele (S/S=1/400 African Americans and S/A=1/10); Racism issues regarding reproductive genetic counseling; Should carrier screening be implemented through newborn screening (testing parents of an affected child)?; Stigmatization of the carrier; Expense of the test (inexpensive cellulose acetate and isoelectric focusing for NBS, but DNA-based costs are greater if prenatal monitoring is an option?); Validation of methods used.

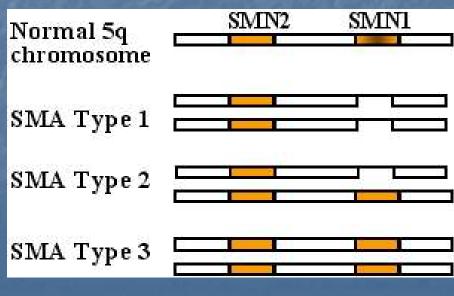
<u>Issues (Ethical, Economic and Technical)</u> <u>from Carrier Screening for:</u>

• Spinomuscular Atrophy (SMA)

Tay Sachs Disease

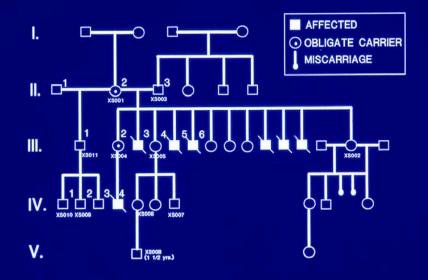
• Sickle Cell Disease


Fragile X Prenutation


Cystic Fibrosis

Carrier Screening for SMA 5q

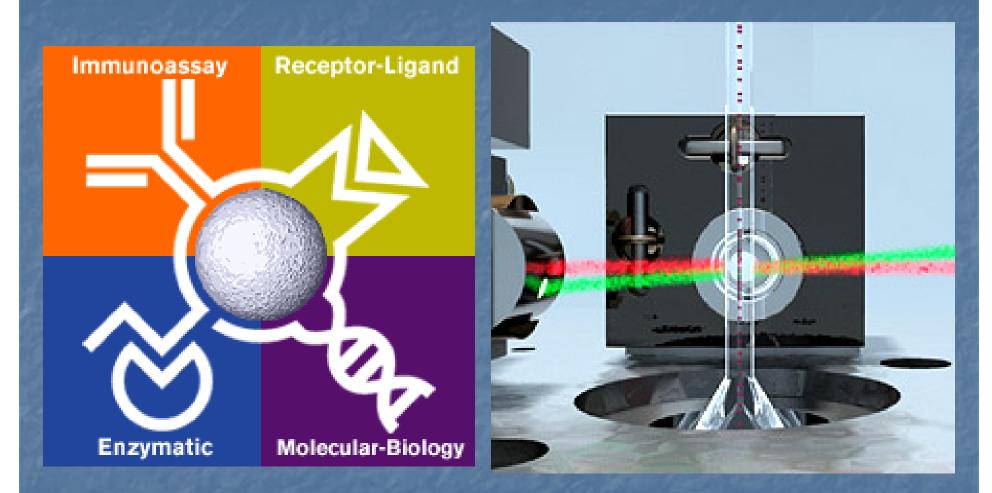
CURRENT CONCEPT OF SMN/GEMIN COMPLEX



Otter S et al, J Biol Chem. (2006) Dec 18

X-Linked Recessive SMA

PEDIGREE #1



(B. Best, J. Edwards, L. Baumbach)

"UBE-1", Am. J. Hum. Genetics Vol 82, Jan. 2008

Microsphere Technology (Luminex)

SMA carrier testing is a dosage assay for the SMN number (\$5/BS); Compare with multiplex PCR and SNP platforms for the CFTR and Jewish disease panels. **Issues (Ethical, Economic and Technical) from Carrier Screening for:**

Spinomuscular Atrophy (SMA)

Need federal support for a pilot research studies to: Determine community acceptance and allele frequency; Diagnose newborns for intervention that might prevent neuronal degeneration; Provide preand post-test Genetic counseling ; Determine economics of testing methodology (Dosage of SMN by fragment analysis using Luminex platform only 3 beads @\$5/test)

<u>Issues (Ethical, Economic and Technical)</u> <u>from Carrier Screening for:</u>

Fragile X Premutation

Spinomuscular Atrophy (SMA)

Tay Sachs Disease

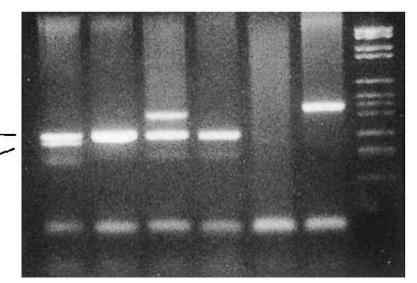
• Sickle Cell Disease

Cystic Fibrosis

Fragile X Syndrome: Diagnostic and Carrier Testing

Frequency of phenotype = 1/4,000 males; 1/8,000 females; 1/260 females carry a premutation; panethnic.

Genotype/Phenotype based on number of -CGG- repeats in 5' FRAXA gene; 6-45="Normal"; 45-55="Gray Zone"; 55-200="Premutation" (ovarian failure, FXTAS ?) ; >200="Full mutation" (almost always associated with MR in males, ? in females) Indications for prenatal Fragile X Testing; Family history; Mental


Indications for prenatal Fragile X Testing; Family history; Mental retardation, autism, developmental delay (either sex), fetuses of known carrier (premutation) mothers, other clinical suspicion.*

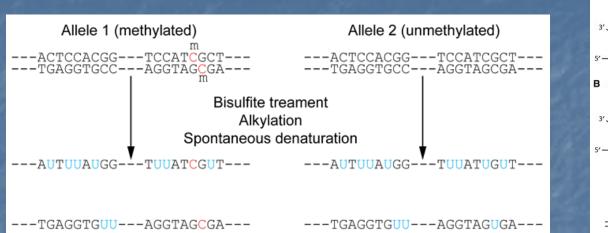
Population Based Carrier Screening was NOT recommended because: Limited knowledge about intermediate expansions; could not predict phenotype in females; both community and physicians lacked knowledge about fragile X; Limited counseling resources; Lack of knowledge about community acceptance; Costs of methods (PCR and Southern blot).*

*ACMG/ACOG Recommendations Ca.1994-2001

A Strategy for Fragile X Carrier Screening

1 2 3 4 5 6 M

309bp(29CGG)-


301bp(26CGG)⁻

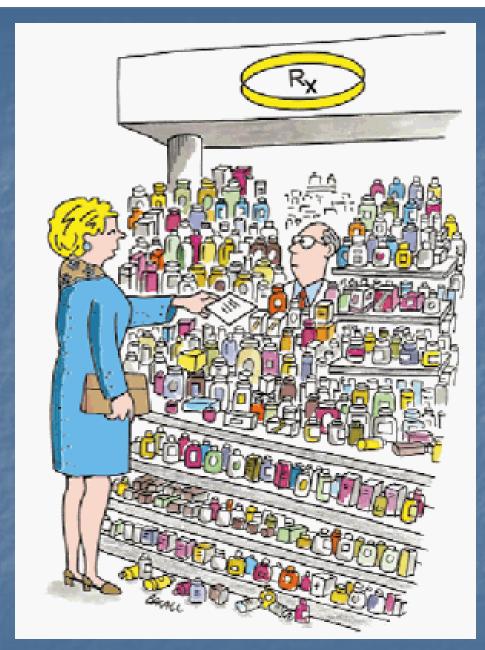
$\frac{-461 \text{bp}(77 \text{CGG})}{392 \text{bp}(57 \text{CGG})}$

Metaphore Gel electrophoresis of FMR1 PCR Fragments

Melis M., Addis m., et al Genetic Testing3:301-305, 1999

Fragile X Newborn Screening ??(Conceptual)

Bisulfite treated DNA


Ligation with methylation specific probes

A Unmethylated sequence

Dahl C and Guldberg P, Nucleic Acids Research, 2007, Vol. 35, No. 21

Aberrant Methylation of FMR1 Promoter

"Here's my sequence..." The New Yorker

Direct to consumer DNA Testing

The DNA Age: Direct to Consumer

A) 23andMe (<u>www.23andme.com</u>) Cost \$999; 580,000 SNPs

B) deCode Genetics (<u>www.decodeme.com</u>) Cost \$985; 1,000,000 SNPs

C) Navigenics (<u>www.navigenics.com</u>) Cost \$2,500; 1,000,000 SNPs

Caveat; "not designed to diagnose disease or medical conditions"

Hunter D, Khoury M, Drazen J, New Eng J Med, 358:105, 2008

<u>Summary of Points to Consider</u>

- 1. Is parental knowledge of increased risk for having an offspring with a serious heritable disorder, a necessary/sufficient benefit for public health carrier screening?
- 2. Heterozygote testing produces probabilistic results with residual risks when a screening test is negative for both the screenee and the physician (Wrongful birth). Do we have allele frequency data by ethnicity?
- 3. Is the community educated and accepting of the benefits and harms of carrier testing?
- 4. Do we have the professional resources to provide genetic counseling?
- 5. Do we have phenotypic knowledge and interventional resources for the at risk couples?
- 6. Is there technical and clinical validation of the test?
- 7. What is the Cost/benefit ratio of mass screening?
- 8. There are needs for pilot studies to: Validate methodology (technical and clinical); Determine allele frequency, genotype/phenotype outcome, public acceptance, benefits and harms.

MILLER SCHOOL OF MEDICINE