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Abstract
Prescription of the brain’s time course of exposure to experimentally administered ethanol can be achieved with intravenous infusion profiles

computed from a physiologically-based pharmacokinetic (PBPK) model of alcohol distribution and elimination. Previous parameter estimation

employed transformations of an individual’s age, height, weight and gender inferred from the literature, with modeling errors overcome with real-

time, intermittent feedback. Current research applications, such as ethanol exposures administered during fMRI scanning, require open-loop

infusions, thus improved transformation of morphometric measurements.

Records of human breath alcohol concentration (BrAC) clamp experiments were analyzed. Optimal, unique PBPK parameters of a model of the

distribution and elimination of ethanol were determined for each record and found to be in concordance with parameter values published by other

investigators. A linear transformation between the readily measurable physical characteristics or morphometrics, including gender, age, height,

weight, and TBW estimates, and the model parameters were then determined in a least squares sense according to the formula u = F(x) = Fmx

where x = (age height weight TBW)T 2 R4 and u = (RC VP VB mmax kAT)T 2 R5.

The transformation was then evaluated with several parameter prediction performance measures. A substantial improvement in all error

statistics, in relation to an earlier affine transformation that used only body weight as the relevant morphometric was obtained. Deviation from the

measured response was reduced from 27 to 20%. Error in parameter estimation was reduced from 109 to 38%. Percent alcohol provided in error

was reduced from 46 to 28%. Error in infusion profile estimation was reduced from 55 to 33%.

The algorithm described, which optimizes individual pharmacokinetic parameter values and then subsequent extension to a priori prediction,

while not unique, can be readily be adapted to other molecules and pharmacokinetic models. This includes those used for distinct purposes, such as

automated control of anesthetic agents.
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1. Introduction

Alcohol dependence is a major cause of morbidity and

mortality in America. Nearly one in ten people who imbibe will

develop a serious addiction to alcohol in their lifetime and one-

third of those will die from complications of the illness [1,2]. In

people with a familial history of alcoholism, more than 40% of

the lifetime risk for alcohol dependence is attributable to

mailto:mplaweck@iupui.edu
http://dx.doi.org/10.1016/j.bspc.2007.04.001


Fig. 1. Graphical depiction of an ideal alcohol clamp, denoted by CRef(t). For

the experimental records described here, the clamp consisted of a linear rise in

concentration to 60 mg% in 15 min, 180 min at 60 mg%, and then an uncon-

trolled, but monitored descent. Major experimental regions are identified.
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genetic influences [3]. The influence of genes on the brain’s

response to ethanol is thought to be an important contributor to

the risk for dependence. An enormous amount of research

continues on the premise that there is a genetic influence on the

central nervous system reinforcing properties of ethanol

exposure that can be ascertained. The experimental measure-

ment of the brain’s response to alcohol exposure is a phenotype

of interest in this search for susceptibility genes and gene-

environmental interactions. Hopefully, this information can be

then used to identify those individuals who are at high risk in

time for effective prevention.

Research that attempts to quantify the brain’s response to

alcohol depends on the conditions and constraints of an alcohol

challenge: the methods used to prescribe the brain’s exposure to

alcohol following alcohol administration. One of the most

common alcohol challenge research paradigms employs directed

oral consumption (please see [4–7] as examples). The advantages

of the oral route of administration include the reality that most

social use of alcohol is the result of voluntary ingestion, and this

route embraces the cultural, gustatory and olfactory cues that

influence, via expectation learned from experience, the drinker’s

subjective responses to consumption. However, with the current

availability of more than 500 commercial preparations of alcohol

beverages, any attempt to control subjective expectation makes

the selection of some standard beverage(s) for a particular

experiment virtually impossible.

A more serious problem facing oral alcohol-challenge

research is overcoming the variability in alcohol pharmaco-

kinetics [8–10]. Pharmacokinetics is formally defined as ‘‘the

study of the time course of a drug and its metabolites in the

body after administration by any route’’ [11]. Sound

pharmacologic research requires delivery of the proper drug

at the appropriate concentration at the desired site of action over

the desired time course. Unfortunately, substantial, potentially

heritable [8], pharmacokinetic variability exists within and

among individuals who ingest ethanol [9,10,12]. These

pharmacokinetic parameter values have been evaluated as risk

factors for developing dependence [13].

Despite the inability to control the subsequent brain exposure

to alcohol, oral ethanol challenge paradigms are common in the

literature, dosing subjects according to their body weight or total

body water. Typically, results are reported with respect to the

time course of mean and standard error of the mean breath

alcohol concentrations (BrAC) over time. However, back

calculation based upon the number of participating subjects

reveals standard deviations of 20–50 mg% of the desired target

peak BrAC [14–16] requiring consideration of this variation as a

group covariate [17]. Recently, this effect has been formally

studied and the variability confirmed, e.g. a 2.5-fold range in peak

concentrations, an 8-fold range in the time to peak alcohol

concentration, and a 3-fold range in the estimated area

underneath the blood alcohol concentration curve [9] (graphical

results can also be seen within [10]).

The major source of variability in alcohol pharmacokinetics

arises due to factors influencing the uncontrollable absorption

kinetics of alcohol. This experimental uncertainty has led to the

use of an intravenously (IV) administered alcohol, which
avoids both the process and variability associated with

absorption kinetics. An additional advantage of IV adminis-

tration is the ability to manipulate or minimize a subject’s

expectation of potential effects attributed to the consumption of

alcohol. However, the major advantage is the potential for

controlling the time course of alcohol exposure in the brain. IV

infusion is the method of alcohol delivery used in the

investigation described below, and the basis for numerous

other investigations [8–10,12,18–31].

Early paradigms employed constant IV infusion rates of

ethanol [16], but inter-individual variability of distribution and

elimination kinetics remained; making large group compar-

isons still inefficient at best. An alternative, developed in

Neural Systems Laboratory of the Alcohol Research Center at

the Indiana University School of Medicine, was to administer

intravenous infusions of solutions of a low concentration of

ethanol in saline or Ringer’s lactate, with manual adjustments

of the ethanol infusion rate [26,28]. These adjustments were

based upon manual feedback of serial BrAC measurements so

that a linear rise to a target concentration in a specified interval

was achieved and then maintained over 2–3 h of testing of brain

function, after which elimination took place without any

control. This experimental paradigm, known as the ‘‘Indiana

Alcohol Clamp’’ and shown in Fig. 1, is particularly useful for

assessing the brain’s adaptation to alcohol as a function of time

([29,30], please also see [23] for the use of this application in

animal subjects), with BrAC used as a reasonable surrogate for

arterial concentration in the cooperative human subject [32].

During the ‘‘clamp’’ at the target concentration, a standardized

battery of tests was administered so that the brain’s response to

alcohol can be assessed at precisely prescheduled intervals.

Components of this battery include, but are not limited to,

electroencephalography, evoked response potential tasks, eye-

movement tasks, neuropsychological and subjective perception

tasks (please see [18,19,22,29,30] for examples).

Although adequate, the ability to achieve the desired

tracking of the clamp with manual feedback was limited; the

frequent BrAC measurements required for near perfect tracking
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interfered with the collection of dependent measurements of the

brain’s response to alcohol. In addition, time courses of brain

exposure that manual clamping methods could not achieve were

of interest. For example, infusions achieving a sawtooth

waveform of BrAC might address the question of whether and

when the brain responds to the rate of change of ethanol

exposure versus the absolute level. Finally, a pre-experimental

computation of an individual’s alcohol infusion profile that

would reliably achieve a prescribed time course of brain

exposure could be used as a first step towards open-loop/

technician-free experimental control, allowing for the use of

ethanol challenge paradigms in previously untenable environ-

ments. Examples include fMRI and PET scanning environ-

ments, where subject movement required for BrAC

determination would ruin image acquisition and analysis.

The pre-computation was based upon a physiologically-based

pharmacokinetic (PBPK) model for the distribution and

elimination of ethanol. PBPK models are compartmental models

that extract the underlying mathematical nature with respect to

specific physiological behavior. This physiological approach is

in contrast to phemenologically based PK compartmental

models, which utilize generic compartments that may not have

any relationship to physiological function [33]. A major appeal

of the PBPK modeling approach is that all the coefficients in the

equations can have a physiologic interpretation. Moreover, the

values can be estimated from regression analysis of a

mathematical transformation of morphometric measurements

of a subject’s age, weight, height and gender.

When an accurate PBPK model of an individual’s BrAC

produced by intravenous infusion of ethanol is available, then

that model’s output can be made to follow nearly any desired

time course by proper tuning of a mathematically rendered

infusion profile. The computation is achieved by greatly

amplifying the error, the difference between the model and

desired outputs, and using it to drive a control that generates the

desired mathematical infusion profile and results in the desired

simulated BrAC output. Computer-controlled pumps can then

be used to deliver the pre-computed profile in the experimental,

human subject, setting. Our results have demonstrated that,

compared to oral administration, this approach yielded good

experimental fidelity to the task of achieving nearly the same

time course of brain exposure to alcohol in all subjects

[25,26,28]. This model-based pre-computed infusion approach

has previously demonstrated its utility for overcoming variable

inter-individual kinetics [8–10,12,18–31]) in studies evaluating

the pharmacokinetics and brain responses to alcohol in humans

and animals.

Nonetheless, the utility of PBPK modeling was constrained

by inaccuracies in a naı̈ve morphometric transformation, and

the investigators reasoned that better estimates of an

individual’s PBPK model parameters of alcohol distribution

and elimination should yield closer fidelity to the desired

experimental time course of brain exposure to alcohol. Our

resource was a wealth of input/output measurements obtained

on many subjects from the Indiana clamp experiments. The

purpose of this investigation was to improve the ability to

prescribe the time course of brain exposure to alcohol in human
subjects employed in laboratory research on the genetics of the

response to alcohol. This paper presents the methods used to

improve a priori PBPK modeling of individual subjects and the

results obtained from retrospective application of those

methods in our laboratory.

2. Modeling the pharmacokinetics of ethanol

A previously published three-compartment PBPK model of

the distribution and elimination of alcohol was used to estimate

the required infusion profile based on an individual’s readily

measurable physical characteristics [26,28] and is a component

of the methodology described herein. As such, the basics of

alcohol metabolic modeling will be discussed, with focus upon

the parameters of interest to this application. (For more

information, including examples of model validity or mathe-

matical derivation, please see [26–28].) The compartments

within this model represent the liver, the periphery (the slowly-

perfused volume of distribution for alcohol), and the vasculature

(the rapidly-perfused volume of distribution for alcohol) likely

including arterial, venous, capillary, and some interstitial fluid.

The ‘‘liver’’ is the alcohol eliminator, with behavior defined

by Michaelis–Menten [34] enzyme kinetics adapted to ethanol

mass flow with a constant liver volume,

@MLiver

@t
¼ MLiver �

mmaxCLiver

km þ CLiver

(2.1)

where MLiver denotes the mass flux of ethanol in the liver, mmax

is the maximal metabolism rate of alcohol, km is the Michaelis–

Menten constant or concentration of the alcohol at which

metabolism is one-half the maximal rate, and t is time. Finally,

the concentration entering the liver, CL, can be computed as:

CLiver ¼
MArterial þMVena Cava

RCFL

(2.2)

where volume flow is physiologically apportioned at resting

cardiac output rates (RC), e.g. the volume flow to the liver would

be the product of the fractional blood flow to the liver (the remain-

der attributed to the periphery), FL, and the resting cardiac output

rate, RC, and MVena_Cava = (1 � FL) � MArterial � MPeriphery is

the mass flow leaving the peripheral compartment.

Mass flow in the ‘‘vasculature,’’ the rapidly-perfused

compartment, follows a first order differential equation for

equilibration;

@MArterial

@t
¼ RC

VB

ðMVenous þMInfused �MArterialÞ (2.3)

Here VB is the volume of the ‘‘blood’’ or vascular

compartment, and MInfused(t) is the input alcohol concentration

time profile that is to be tuned to the individuals morphometrics

and therefore their pharmacokinetic model parameters. MVenous

can be calculated as

MVenous ¼ MHepatic Vein þMVena Cava (2.4)

where MHepatic_Vein = FL(MArterial + MVenacava) � mmaxCLiver/

(km + CLiver) is the mass flow leaving the liver. The terms

‘‘artery’’ and ‘‘vein’’ or ‘‘venous’’ reflect mass flow to and
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from the mentioned compartments, with nomenclature taken

from physiology when possible. These terms can be derived

with proper cardiac apportionment as mentioned herein, the

mass flow and concentration equations for each compartment,

and the fact the model, and therefore each compartment, obeys

conservation of mass of ethanol. This states that the total

ethanol mass stored within the model at a given time T is

the total ethanol provided and metabolized until that time and

can be expressed mathematically as below, with.�
CPeripheryðTÞ � VP þ

VB

RC

ðMArterialðTÞ þMVenousðTÞÞ
�

¼
Z T

0

�
MInfusedðtÞ �

mmaxCLiverðtÞ
km þ CLiverðtÞ

�
@t (2.5)

These calculations and further derivations are both beyond

the scope and interest of this manuscript. Those interested are

encouraged to see [26–28] for numerical and analytical

examples.

The ‘‘periphery,’’ the slowly-perfused compartment, acts as

a storage reservoir obeying a linear diffusion process.

@CPeriphery

@t
¼ MPeriphery

VP

(2.6)

with

MPeriphery ¼ kATRPeriphery � rðCModel � CPeripheryÞ

� kTVRPeriphery � rðCPeriphery � CModelÞ (2.7)

where kAT is the partition coefficient from the arterial supply to

the tissue, kTV is the partition coefficient from the tissue to the

venous system, RPeriphery = RC � (1 � FL) is the volume flow to

the peripheral component of the model, VP is the volume of the

peripheral compartment, CModel(t, V) is the model estimated

breath and thus arterial alcohol concentration, V is the com-

plete set of model parameters to be defined explicitly later, and

r(x) is defined to be the unit ramp function (i.e. r(x) = xu(x)

where u(x) is the unit step function). Eqs. (2.1)–(2.7) constitute

the basics of the PBPK model of the metabolic process of

interest with respect to the application presented within this

manuscript. Emphasizing parsimony of parameters, numerous

experiments employing this model adequately predict the

heterogeneity of human pharmacokinetic responses to intrave-

nous administration of alcohol [8–10,12,18–31]. This model is

scalable across species, with demonstrated application to ani-

mal studies with appropriate parameter selection [21,23].

3. The morphometric transformation and input profile

construction

3.1. Mathematical definition of morphometric

transformation

Parameters of the PBPK model may not be directly

observable, and estimates based upon the pharmacokinetic

literature and morphometrics, or readily measurable physical

characteristics, are used [28]. Specifically, let x = (age height
weight TBW)T 2 R4 denote a vector of morphometric

measurements given in units of years, cm, kg, and L

respectively, where TBW denotes estimated total body water

[35,36]. Inherent in this selection is the assumption that TBW is

the principal volume of distribution for the tiny, polar molecule,

ethanol [36–38], and that age, height, weight, and gender (by

group separation) [35,40] account for body fat into which

ethanol also perfuses, albeit weakly [40].

We define a morphometric transformation as a mapping from

the relationship between the morphometric variables to the

model parameters u = (RC VP VB mmax kAT)T 2 R5, i.e., u = F(x)

for some mapping F(�) with units expressed in dL/min, L, L, g/h,

mg/dL, and unitless fraction. (mmax is determined in the clinically

relevant, previously published, unit of g/h. For use within

Eqs. (2.1)–(2.7) multiplication by a scaling factor of 16.67

converts it to mg/min.) This approach is consistent with the

literature as peripheral and vascular volumes have been related to

weight, height, age, and lean body mass [35,39,41]; body surface

area [42,43] is estimated as a function of height and weight; and

TBW can be estimated as a function of age, gender, height, and

weight [36]. To the best of the authors knowledge, there is no

known analytical form for the (nonlinear) mapping F(�).
Prior to the developments reported herein, parameter values

for the PBPK ethanol model were calculated with the following

empirically determined morphometric transformation as an

affine map, denoted by u = F(x) = Fm1(x):

u ¼

RC

VP

VB

mmax

kAT

2
66664

3
77775

¼

0 0 56=70 0

0 0 56=ð70� 2:4Þ 0

0 0 0:2 0

0 0 0 0:17

0 0 0 0

2
66664

3
77775

age

height

weight

TBW

2
664

3
775þ

0

0

0

1:53

0:7

2
66664

3
77775

with kAT = kTV = 0.7, FL = 0.8, and kM = 5 mg/dL [12,26].

Of note, these baseline parameter calculations can vary with

respect to previously published pharmacokinetic studies of a

similar fashion. In a prior study, Takeda and Reeve examined

the metabolism of autologous radiolabeled albumin with

several previously published models. Their results, and a review

of other investigations, showed plasma volume estimates,

determined as the quotient of delivered radioactivity to

measured per milliliter, to be 0.0383–.0435 L/kg [44].

However, as previously mentioned, the ‘‘blood volume,’’ as

adopted from prior investigations, might better be termed

‘‘rapidly perfusing’’ as it comprises a much larger distribution

space. DeFronzo et al. used intravenous glucose solutions to

‘‘clamp’’ subjects to a hyperglycemic or euglycemic state with

a ‘‘glucose space’’ or volume of distribution calculation of

0.19 � weight [45]. Saad et al. then used this methodology as a

benchmark for the development of minimal model of insulin

sensitivity, including a determination of distribution volume

[46]. However, as glucose is metabolized, synthesized, actively
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transported and concentrated under hormonal influence, direct

comparison is difficult.

For ethanol, however, the physiological distribution is

approximately equal to the total body water space [36–38]

including extra- and intra-cellular volumes; a relationship

maintained in this manuscript, as well as prior studies with this

model. Thus, it would be expected that the compartmentalized

volumes of distribution of ethanol would be substantially

different based solely upon molecular weight (�67 kDa,

�180 Da, and �46 Da for albumin, glucose, and ethanol,

respectively) and co-transport requirements (e.g. glucose) [47].

As it was primarily dependent upon body weight, it is clear

that Fm1 failed to account for the full use of the readily available

information provided by additional, easily attained measure-

ments that are commonly used for pharmacokinetic parameter

estimation [39–43]. Further, this formulation did not explicitly

allow for gender variation in parameter determination, as other

investigators have observed [12,20,48]. Finally, success of the

clinical experiment was highly dependent upon technician

feedback adjustments to the estimated infusion profile. Hence,

a rigorous derivation of a new transformation, denoted Fm2, was

needed to achieve better initial profile estimates and an

improved level of automation.

The structure of a simple yet meaningful map was taken as a

linear one which is valid in a neighborhood of the statistical

averages of the morphometics of each gender, i.e.,

u = F(x) = Fmx where the matrix Fm 2 R5x4 and for which ū ¼
Fðx̄Þ ¼ Fmx̄ is an exact relationship at the average values

denoted by x̄ and ū for each gender.

Further, let C = (km kTV FL)T = (10 kTV = kAT 0.26)T 2 R3

with units expressed in mg/dL, unitless fraction, and unitless

fraction, respectively, be the set of fixed PBPK parameters

consistent with the literature as per other investigators [48–54].

Finally, let V = [u, C] be the complete set of PBPK model

parameters.

3.2. Input profile construction

Based upon the estimated parameter values of the PBPK

model, an individual’s approximate infusion rate profile,

MInfused(t), initialized at a value of zero, of a 6% ethanol

solution is pre-computed as per the algorithm depicted in Fig. 2

to achieve the ‘‘clamped’’ BrAC time course, CModel(t,

V) ffi CRef(t), which is the ideal alcohol clamp depicted within

Fig. 1. In the algorithm of Fig. 2, MInfused(t) = M0 for 0 � t � T1

for some small constant rate M0 and a small time increment

set by T1. A model simulation is then implemented over [0, T1]

to produce CModel(t, V) over [0, T1]. The error, e(T1) =

CRef(T1) � CModel(t, V) is then computed. The computer adjust

box in Fig. 2, simply a high gain amplifier with saturation limits

representing the infusion pump capability, modifies the infusion

profile over the next interval of time [T1, T2] according to the

formula, MInfused(t) = k(e(t)) where

kðeðtÞÞ ¼
kþsat ¼ 2000mL=hr eðtÞ>0:2

k0eðtÞ ¼ 10;000mL � eðtÞ=ðmg%hrÞ 0<eðtÞ � 0:2
k�sat ¼ 0 eðtÞ � 0

8<
:

This is simply a proportional controller, which strongly,

within the limits of the physical infusion pump, drives the

‘‘instantaneous value’’ of the infusion profile up or down to

achieve the clamp. Of course, a more sophisticated controller

(e.g. a proportional-integral-derivative type controller) and/or

infusion pumps that have a broader and faster infusion rate

change capability (when and if they become available) should

achieve better results. The resulting time course of MInfused(t),

smoothed using interpolation techniques in MATLAB for

example, represents the estimated infusion profile tuned to an

individual’s morphometrics.

Compared to attempts at maintaining a target BrAC using

oral administration of quantlets of ethanol, the intravenous

infusion methodology displayed a high degree of reliability

[10,26]. In addition, it provided the pharmacologic background

upon which numerous investigations have been based

[19,20,24–26,29–31].

The input profile computed via u = Fm1(x), however useful,

was not sufficient to produce an accurate nominal BrAC time

course. For the experimental procedure recounted in the

Appendix A to achieve the desired time course of blood alcohol

concentration, proper BrAC monitoring and infusion adjustments

by a trained technician were still necessary to achieve the desired

time course of blood alcohol concentration, CBrAC(t) ffi CRef(t)

where t=tk, k = 0, 1, . . ., K the determination of which is described

within the Appendix A. Since the input profile depends critically

on the conversion of the morphometrics into the model

parameters, the investigators reasoned that an improved

morphometric transformation linearized about statistical gender

dependent averages would significantly improve results.

4. Development of a new morphometric transformation

Fm2

To develop Fm2, experimental manual BrAC clamping

records of 126 women and 91 men were collected for use as a

data source. The collection was divided into experimental and

control sets: 50 men and 50 women were randomly assigned to

the experimental set with the remaining 76 females and 41 males

assigned to the control sets. Table 1 demonstrates a proper match

of both demographics and physical characteristics.

For each subject, the actual infusion profile, denoted MEtOH

(t), that produced a clamp of the type of Fig. 1, i.e.,

CBrAC(t) ffi CRef(t), was used in a separate algorithm that

computed an optimal set of PBPK model parameters, V*, such

that when the PBPK model input MInfused(t) = MEtOH(t) the

model’s output response matched the measured CBrAC(t), i.e.,

CModel(t, V) ffi CBrAC(t). This process is known as model

parameter identification based on input–output measurements

[55,56]. The parameter identification scheme (Fig. 4) employs

repeated simulations of the PBPK model inside a parameter

optimization algorithm as will be described.

4.1. Determination of optimal parameter values

In order to set up the parameter identification, the actual

infusion profile was reconstructed as a piecewise constant



Fig. 2. Estimation procedure for the alcohol infusion profile. To begin, a desired Reference BrAC response, CRef(t), is identified; an alcohol clamp for the context of

this paper. Next, the model response to an initially zero infusion profile, MInfused(t), is calculated, yielding Model BrAC response CModel(t, V). This is compared to the

reference response, creating an error signal, e(t), which drives the computer adjust k(�). This process adjusts the next value of the estimated infusion profile. This

process is repeated for each step of the simulation interval, pre-computing the infusion profile.
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(staircase) function MInfused(t) = MEtOH(tk), tk � t < tk+1, where

MEtOH(tk) are the values of the actual input rate profile as

implemented by the infusion pump at time tk, which is

consistent with the experimental procedure used in clamping.

Next, a continuous BrAC response, denoted CBrAC(t), was

interpolated from the recorded samples, with results illustrated in
Table 1

Subject characteristics

Experimental set Control set

Men Women Men Women

Number 50 50 41 76

Age [years] 25.7 (3.5) 26.0 (4.0) 26.4 (3.7) 25.9 (3.6)

Height [cm] 178.7 (7.9) 165.7 (6.8) 178.7 (7.8) 165.7 (6.1)

Weight [kg] 89.3 (22.6) 75.6 (19.2) 89.5 (20.6) 72.4 (17.1)

Range 61.2–183.8 51.4–122.6 59.9–163.2 48.9–120.7

TBW [L] 49.2 (7.9) 34.3 (5.0) 49.2 (7.2) 33.5 (4.5)

Range 39.2–81.5 27.6–47.0 38.0–73.1 26.7–45.9

Mean (standard deviation) and range, if indicated, are provided.
Fig. 3. Because the measured input and output were to be used in

a continuous time simulation of the PBPK model as part of the

parameter identification, interpolation of the discrete measure-

ments was necessary, especially since the measured samples

were taken over infrequent and non-uniform time intervals due to

practical constraints during the clinical trials. The interpolation

process entailed time intervals associated with the ascending,

steady state, and descending segments (the ‘‘knees’’) of the

experimental time course of BrAC. Then, for each segment, a

least squares fit polynomial, whose maximum order was six,

fifteen, or three respectively, subject to continuity constraints at

the knees, was determined by the MATLAB1 (Math Works Inc.,

Natick, MA) function polyfit. The maximal polynomial orders

were selected based upon the nature of the data of the segment

(e.g. six was chosen to accommodate the potential oscillations at

the ‘‘knee’’ of the predominantly linear ascending limb), if non-

feasible physiological or experimental behaviors were detected

the maximal order for that segment was reduced and the

polynomial re-determined. Examples of impossible behaviors

within the ascending limb would include inflection points or,



Fig. 3. Infusion profile and BrAC reconstruction. A typical clamp infusion

profile and its resultant BrAC and reconsultant are depicted. As noted within

Appendix A, the infusion rate is provided in terms of dL of infusate per hour

where the infusate is a 6% by volume mixture of alcohol in Ringer’s lactate.
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alternatively, too large an estimate (caused by remnant

‘‘blinding’’ mouth alcohol as explained in the Appendix A);

either of which would have been weighted significantly less in

other approaches. When an interpolation adequately fit the data,

without violation of physiological and experimental constraints,

the process was stopped for that segment.
Fig. 4. Optimization block diagram. The computations
Two advantages of the algorithm were that the combination

of least-squares curve-fitting and experimental constraints upon

the results served as an automatic weighting system regarding

the accuracy of the measured data (independent of user

intervention and therefore bias) and that it provided a method of

arbitrary sample-rate determination for compatibility with the

Simulink1 implementation of the PBPK model as mentioned

earlier.

To complete the set up of the parameter identification, the set

of independent parameters,C, was determined using informa-

tion from the literature [48–54], and an initial guess for the

model parameters was computed based on the individuals

morphometrics according to the formula u1 = Fm1x. It is well

known that parameter identification algorithms are initial

condition sensitive [55,56].

Using the actual input, MEtOH(t), and interpolated response

profile, CBrAC(t), an identification strategy (see Fig. 4),

consisting of two steps within a loop, was implemented. In

the first cycle of the algorithm, the model BrAC response,

CModel(t, V1), to the actual infusion, MEtOH(t) was calculated.

Second, a set of physiological constraints on the ranges and

relationship between of the entries in u, x were fed to fmincon.

These included 0 < kAT < 1, 0 � VP + VB � 1.2�TBW,

0.25 min � VB/RC � 0.5 min, VP > VB, and 20 � RC � 100.

The outside loop of the parameter identification algorithm uses

the MATLAB function fmincon, then computes an improved

values uj with entries satisfying the physiologically constrained
required for the optimization loop are illustrated.
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parameter ranges so that:

min
u

1

N

XN

k¼1

½eðt; uÞ�2

¼ min
u

1

N

XN

k¼1

½CBrACðkDtÞ � CModelðkDt; uÞ�2 (4.1)

is achieved to some tolerance by numerically implementing a

steepest descent algorithm. The process of simulation using the

latest estimate uj or more generally Vj is then repeated and the

simulation result CModel(t, Vj) is returned to fmincon to com-

pute uj+1.

It is important to indicate how the physiological constraints

that were imposed in fmincon were determined. First, a

numerical algorithm such as fmincon simply chooses the

‘‘best’’ parameter set to meet the given data. Hence, it was

important and physiologically meaningful to make the PBPK

model parameter values consistent with ranges documented in

the pharmacokinetic literature and with other experimental

observations. For example, the blood compartment time

constant was observed experimentally to fall within the range

of 2–4 min, specifying that the ratio VB/RC fall between

0.25 min and 0.5 min. As suggested, an unconstrained

optimization does not mandate that VP (the ‘‘peripheral’’

volume) be larger than VB (the ‘‘blood’’ volume) or even

positive, an obvious physiological constraint. Further, as the

estimated volume of distribution for alcohol is approximately

equal to the entire total body water [36–38,57], the sum of VP

and VB was constrained to be less than 120% of TBW, allowing

for error in that estimation and the influence of weak perfusion

of alcohol into body fat [40,57]. Additionally, the diffusion

constant kAT was held to be within the bounds of [0 1],

mandating that this process must occur (non-zero), and is

neither instantaneous and not facilitated (less than unity).

Finally, RC was constrained to be positive and within a range

greatly encompassing values reported elsewhere [50].

As mentioned, these physiologic constraints are necessary

because parameter optimization schemes produce values that

best match the input-output data. Attaching a physiological or

clinical metric to values determined only by least squares

matching is, at best, misleading. Both mathematically and

clinically, it is critically important to find a select set of

parameter values within a physiologically meaningful set of

possible parameter values. Only under such constrained

solution values would it be possible to attach a clinical metric

to the obtained parameter values. This process was repeated for

each individual in the test set producing the set of parameter

vectors u	k and consequently V	k, for k = 1, 2, . . ., 100.

4.2. Morphometric transformation determination

From these parameters and the corresponding morpho-

metrics, a least squares fit for Fm2 was obtained using SVD

techniques [58]. Specifically, a linear morphometric transform

Fm2 was then computed for each gender, as pharmacokinetic

differences by sex are now being routinely observed [13,48],
according to the formula:

F̂m2fm; fg ¼ ½u	1; . . . ; u	50� � ½x1; . . . ; x50�þ (4.2)

where ‘‘+’’ indicates pseudoinverse which produces a least

squares solution [60].

Fm2m ¼

1:1619 �1:3864 �3:7935 12:4370

�0:5368 0:6768 2:0088 �5:0372

�0:2708 0:0791 0:1673 �0:1484

0:0491 �0:0583 �0:1533 0:6755

0:0065 0:0035 0:0045 �0:0167

2
6666664

3
7777775
;

Fm2 f ¼

�0:2368 �3:4172 �9:1239 38:1773

0:1290 0:1923 0:6101 �1:5920

�0:1435 �0:7215 �1:9897 8:3123

0:0348 �0:3374 �0:8957 3:8095

0:0060 0:0274 0:0696 �0:2801

2
6666664

3
7777775

The resulting PBK model parameters are denoted u2 = Fm2,

x 2 R4 for each gender respectively, where x = (age height

weight TBW)T 2 R4 expressed in (years, cm, Kg and liters),

respectively, and u = (RC VP VB mmax kAT)T 2 R5 expressed in

(dL/min, L, L, g-ethanol/h, unitless fraction).

For example, a 26.4-year-old, 178.7 cm, 89.5 kg, and 49.2 L

male, e.g. x = (26.4 year 178.7 cm 89.5 kg 49.2 L)T, corre-

sponding to the average control male subject morphometrics as

seen in Table 1, would have parameter values of

u = Fm2m � x = (55.3dL/min 38.7 L 14.7 L 10.4 gm/hr

0.38)T, C = (10 mg/dL 0.38 0.26)T as previously defined, and

V = [u, C]. Similarly, for the average control female subject

depicted in Table 1 x = (25.9 year 165.7 cm 72.4 kg 33.5 L)T

and u = Fm2f � x = (46.0 dL/min 26.0 L 11.1 L 7.8 gm/hr

0.35)T.

5. Results and analysis

5.1. Results

As previously mentioned, all morphometric transforms were

evaluated on a set of experimental data from each of 76 females

and 41 males included in the control sets. Table 2 displays the

results of the PBPK parameter identification. When reported,

these results are compatible with other parameter estimates.

More specifically, as reported in the table, it is observed that the

approximate volume of distribution (VD), the sum of VB and VP,

was found to be 45.6 L, and 109.2% of the estimated TBW. This

trend is as expected, and consistent with other published

estimations of VD, since it is believed that alcohol distributes to

a volume approximately equal to the entire TBW space [37,38],

but potentially slightly high. This overestimation may be

explained as the average body mass index (BMI) of the

experimental group was 28.0 and 27.5 kg/m2 for men and

women respectively, near the obesity definition of greater than

or equal to 30 kg/m2 [59], and the presence of body fat may

distort body fluid volume estimates [39]. However, the ratio of

VD to body weight as reported by this study is 0.59 L/kg and



Table 2

PBPK parameter identification results for the experimental subject set

Fm2 identification

Men Women All

RC [mL/min] 55.4 (19.4) 45.8 (16.6) 50.6 (18.6)

VP [L] 38.6 (9.3) 26.8 (5.8) 32.7 (9.7)

VP [%TBW] 78.1 (11.7) 78.1 (11.6) 78.1 (11.6)

VB [L] 14.8 (5.5) 11.1 (3.3) 12.9 (4.9)

VB [%TBW] 30.0 (9.9) 32.3 (8.7) 31.1 (9.3)

VD [L] 53.4 (12.1) 37.9 (7.8) 45.6 (12.8)

VD [%TBW] 108.1 (13.5) 110.4 (15.5) 109.2 (14.5)

Mmax [gm/h] 10.4 (2.3) 7.8 (1.5) 9.1 (2.3)

kAT 0.376 (0.164) 0.364 (0.184) 0.370 (0.174)

Mean (standard deviation) provided.
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0.501 L/Kg, for men and women, respectively, and falls well

within the estimates of other investigators. Baraona et al.

reported ratios of 0.68 and 0.63 L/Kg for men and women [48].

Mumenthaler et al. reported 0.457 L/kg in women [60]. Further,

based upon other reports of Norberg et al. [61], a mean value of

0.501 L/kg could be calculated. Also as reported in Table 2, the

mean value of RC was 50.6 dL/min, with a standard deviation of

18.6. Compared to the ‘‘representative value’’ of 52 dL/min and

a range of 46–65 dL/min reported by Brown et al. [50] and

determined in a very different context, the obtained value

appears to be in direct agreement. Other PBPK model

parameters also displayed gender variation, as would be

expected [48]. Specifically, RC, a variable representing cardiac

outflow, was found to be larger in men than in women. Finally,

mmax, a variable representing the maximal mass elimination

rate was also larger in men than women, directly corresponding

to larger alcohol elimination rates in men versus women

observed in some studies [12], although this relationship is not

uniformly observed [20,48]. These observations, and support

by the work of other investigators [12,20,48], provided further

evidence and justification to distinguish between men and

women for Fm2.

5.2. Performance evaluation

As the principal use of improved morphometric transforma-

tion is to estimate PBPK parameters a priori in an attempt to

control BrAC response in newly-recruited subjects, quantifica-

tion of the input error in the test and control sets was

undertaken. The most obvious measure, given the experimen-

tally recorded subject data, was a dual of the Output Error. An

infusion profile, denoted MEtOH(t), was calculated as per the
Table 3

Error statistics for the control group

Fm1 transformation

Men Women All

eInputError 55.1 (17.7) 55.5 (17.9) 55.4

eOutputError 25.3 (11.8) 28.2 (16.4) 27.2

eAlcoholError 47.9 (15.3) 45.6 (10.0) 46.4

eParameterError 109.6 (59.2) 109.0 (65.5) 109.2
original experimental procedure (see Fig. 2), with one

exception: the reference BrAC response, CRef(t), was replaced

by the experimental data, CBrAC(t). Two relevant statistics

emerged; a normalized input comparison, denoted eInputError,

and percent grams of alcohol in error, labeled ealcoholError. The

statistics were calculated as follows:

eInputError ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1 ðMBrACðtiÞ �Mestðti; u

jÞÞ2PN
i¼1ðMBrACðtiÞ2Þ

vuut � 100

and

eAlcoholError ¼
PN

i¼1 0:8Dt � jMBrACðtiÞ �Mestðti; u
jÞjPN

i¼1ðMBrACðtiÞ � DtÞ
� 100

As the mean of the squared output error signal was the

minimization criterion, a normalization of this statistic was an

additional validation metric, denoted as Output Error, and is

calculated as follows:

eOutputError ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1 ðCBrACðtiÞ � CModelðti;V

jÞÞ2PN
i¼1ðCBrACðtiÞ2Þ

vuut � 100;

where the model was driven by the actual infusion profile,

MBrAC(t), and with Vj, j 2 {1, 2} designating the version of the

morphometric transform which was utilized (e.g. Fm1 or Fm2).

Finally, the mean parameter distance from the ideal, or

Parameter Error, was examined and determined with the

relationship.

eParameterError ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

6

X6

k¼1

�
ðu	k � u

j
kÞ

u	k

�2
vuut � 100

where k designates the current element of the parameter vector

u. Obvious improvements were observed, and are discussed in

Section 5.3. Table 3 provides error statistics comparing Fm1 and

Fm2.

5.3. Analysis

If successful, one result of this work would be to reduce the

amount of technician feedback required to produce an

acceptable ‘‘clamp’’. Reduced feedback would require a more

accurate pre-clinical trial estimate of the input infusion profile.

From Fm1 to Fm2, the results depicted within Table 3

demonstrate that this statistic, eInputError, went from 55% error

to 34% error. Further, across the entire sample population, the
Fm2 transformation

Men Women All

(17.8) 35.4 (15.4) 32.3 (9.7) 33.4 (11.8)

(14.9) 17.4 (13.0) 20.8 (15.4) 19.6 (14.6)

(12.1) 30.9 (17.1) 27.1 (6.2) 28.4 (11.4)

(63.1) 39.1 (23.5) 37.0 (26.4) 37.7 (25.3)
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standard deviation of this error was reduced from 18 to 12%.

Dramatic improvements were found in all investigated error

statistics for Fm2 compared to Fm1 (See Table 3).

An estimate of the percent of alcohol delivered in error,

eAlcoholError, also demonstrated a substantial reduction in mean

error, dropping from 46.4 to 28.4%. However, a substantial

reduction in the standard deviation of this metric was not

observed.

Investigators must consider what type of controls were in

place if somewhere between 30 and 50% of delivered alcohol was

given in error? In practice, good experimental control still may

have been achieved. Since all deviances from the predicted input

profile contribute equally in the calculation of eInputError and

eAlcoholError, mean values are artificially high from an experi-

mental and clinical perspective. For example, a technician may

over adjust (positive deviance) during one time interval and then

later compensate by reducing the rate below the predicted value

(negative deviance). Therefore, the manual control method may

still provide the same net alcohol with respect to the prediction,

yielding in an inflation of the input error statistics. Consequently,

the absolute values are likely exaggerated by the technician

feedback, but the net mean reduction is still indicative of a

significantly improved morphometric transformation.

Table 3 also contains the output error, eOutputError, in which

the model response to u1 and u2 are compared to the measured

response CBrAC(t). In other words, this metric is an indicator of

how well the model response, with morphometrically

determined parameters, duplicated the actual responses, given

the actual experimental input. Once again, overall improvement

was apparent: an error of 27% associated with Fm1 dropped to

20% with Fm2, with similar standard deviation values.

Finally, the most dramatic performance improvement was in

the proximity of the parameter estimates from Fm2 to optimal

versus the parameter estimates from Fm1 to optimal. To make

this calculation, an optimal parameter set, u	k ; k ¼ 1; . . . ; 117,

was determined in an identical manner as the test set, which is

explained in Section 4.1. Comparing Fm2 to Fm1, an overall

mean reduction of 109–38% and a standard deviation reduction

of 63–25% was observed.

6. Conclusions

The foregoing analysis leads to two immediate conclusions:

(1) the procedure for constructing the new morphometric

transform, Fm2 was well-posed and valid, and (2) model

responses based on morphometrically determined parameters

from Fm2 are reasonable.

This paper reports an algorithm for a priori PBPK parameter

estimation for computation of an input signal designed to

produce a specific response. For this particular application, the

input signal of interest was an alcohol infusion rate profile to

produce a desired BrAC response in newly recruited individual

subjects for the purpose of performing clinical trials to

determine the effect of the time course of brain alcohol

exposure on brain function. The estimation algorithm is based

on a statistically determined morphometric transformation that

maps the individual’s age, height, weight, and TBW into
parameters of a differential equation model that simulates the

individual’s distribution and elimination of alcohol.

Our approach in achieving a pre-determined brain exposure

to alcohol based on a BrAC for arterial measurement surrogate

through modeling is directly analogous to the use of target-

controlled infusions in anesthesia. In this approach, closed-loop

systems are used to process information coming from the

patient and the anesthesia delivery system, and compare it to

pre-determined set point. The difference is then used to adjust

the output so that the desired set point is reached and

maintained [62]. The algorithms used in these systems are

based on integration of pharmacokinetic and pharmacodynamic

models of the anesthetic agent to continuously predict and

customize target organ concentration and expected effects

(level of anesthesia, mean arterial pressure, etc.). Similar

approaches have been used for other anesthetics (see [63–66]

for examples), as well as for vasoactive and chronotropic drugs

such as nitroglycerin and nitroprusside [67,68]. The method

outlined herein may thus be readily applied to systems such as

those described above to improve pharmacokinetic parameter

prediction. This would lead to better prediction of effects and

more effective control of outcomes. These improvements have

significant potential for cross-disciplinary impact as inpatient

surgery was performed 45 million times in 2004 in the United

States alone [69].

Limitations of this study are found in several domains: model-

architecture, morphometric dimensionality and assumed linear-

ity, and input-signal selection. As noted previously, a subset of

PBPK parameters was defined with respect to previous published

values or relationships. This does not allow for the expected inter-

subject variability, but does minimize the dimensionality of the

model, increasing the likelihood of convergence to a unique

minimum. Methodology that would allow for their direct

measurement or calculation should be investigated. Further, as

currently defined, five morphometrics (including gender

separation) are mapped to five PBPK parameters. It would be

worthwhile to determine the effects of additional independent

morphometric measures (e.g. body impedance analysis data) on

this, and similar, transformations. Continuing, it might be

beneficial to investigate the distribution of these parameters in

more depth, potentially providing evidence for a non-linear

transformation matrix. To the knowledge of the authors, no

analytical relationship exists between the PBPK model para-

meters of interest and the morphometric measurements. In fact,

one would expect that any analytical relationship would be

nonlinear. Nevertheless, it would also be expected that the

average values of morphometrics of a group of individuals would

map to a set of average PBPK model parameters. These values

can be thought of as a set of operating points in the space of

morphometrics and an equivalent set of operating points in the

PBPK model parameter space. A linear mapping would then be

approximate in a neighborhood around these operating points.

Thus, when an individual’s morphometrics are close to the

average values, the PBPK model parameters would likely be

good approximations. Conversely, if the individual’s morpho-

metrics are far from the average values, the PBPK estimates

would likely be correspondingly skewed.
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Finally, the effect of higher-bandwidth input and output

experiments should be determined. The input signal and

resultant ‘‘clamp’’ are far from the ideal impulse- or step-

response used in classic system identification procedures. The

use of more dynamic input–output signals may excite more

modes of the system, allowing for better parameter identifica-

tion. The design of such signals, however, is beyond the scope

of this manuscript and is an avenue for potential research.

For this particular model, a significantly improved

morphometric transformation, Fm2, over a previously empiri-

cally determined Fm1, was demonstrated. These advancements

reduced the amount of technician adjustment in the clinical

experiment to achieve the required alcohol clamp.

The application of a morphometric transformation is found

in the experimental setting where a newly recruited subject is to

be exposed to a compound, alcohol in this context, without an

expensive extra experimental session from which an individu-

ally-optimized set of PBPK parameters could be derived. These

results suggest that for a reasonable model of a physiological

process, an algorithm that produces a Fm2 transformation is this

manner provided more accurate a priori PBPK model

parameter estimates for individual subjects. This enabled

calculation of infusion profiles with improved performance

with respect to prior methods of intravenous ethanol, the

experimental method in the laboratory.
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Appendix A. The clinical experiment

A.1. Set up

Subjects are admitted to the General Clinical Research Center

at Indiana University Hospital between 7:00 and 7:30 AM having

been previously instructed to abstain from alcohol for at least

24 h and food for at least 8 h. Abstinence from alcohol is verified

through examination of a recent drinking history log or diary and

BrAC determination. Each individual’s morphometrics, or age

(years), height (cm), and weight (kg) is directly measured and

total body water estimated (L) [36]. Furthermore, a negative

urine b-HCG pregnancy test is required of female participants.

An indwelling catheter is inserted into the antecubital fossa of

each arm, one for the infusion and the other for the acquisition of

blood samples for later off-line analysis. At approximately 8:00

am, subjects are provided standardized 350 calorie breakfasts

consisting of cereal, milk, toast, and juice. Once breakfast is

consumed, the subject is prepared for testing through explanation

for the proper use of the breath alcohol meter, an Alcosensor IV

BrAC meter (Intoximeters, Inc., St. Louis, MO) for the original

subject group and a Drager Alcotest 7410 Plus (Drager Safety

Inc., Durango, CO) for subsequent groups, and an explanation of

the method used to obtain blood samples. Finally, the subjects are

given a sample battery of dependent measures to acquaint them to

both the equipment and tasks.
Then, using the morphometrics determined at check-in, the

morphometric transformation is used to convert these measures

into PBPK model parameters, u = Fm(1,2)x. The parameters, V,

in conjunction with the desired experimental or reference BrAC

response, denoted CRef(t), are then utilized to pre-compute the

infusion profile, MInfused(t) by a controlled computer simulation

(See Section 3.1). To accomplish this, the point-wise difference

(or error), e(tn), between the reference response and the

simulation value drives a proportional feedback controller with

saturation to increase or decrease the simulated alcohol

infusion pump rate. This closed loop feedback simulation

produces an input profile which forces the PBPK model to track

the reference BrAC response. It should be noted that the

infusate consists of a 6% by volume mixture of alcohol in

Ringer’s lactate. The process is illustrated in Fig. 2 [28].

A.2. The physiological experiment

Subjects were required to participate in both a placebo and

test session for use with the subjective measures and

physiologic tests. Before each session, the subjects are provided

a drink with �0.2 mL of 95% ethanol floated on top of the

beverage to blind them to the session type. For the test session,

the reference input profile is used to govern the actual alcohol

infusion provided to the patient under the auspices of trained

technicians who monitor the resultant BrAC response. The

technicians were trained to adjust the amount of alcohol,

delivered as necessary to minimize the error of the response as

compared to the reference. The process is illustrated in Fig. 5.

Thus, throughout the experiment, a record of the BrAC

measurements, denoted by CBrAC(tk), k = 1, . . ., K, and the

actual delivered infusion profile, denoted by MEtOH(tk), is

maintained for future analysis. As all infusion rate changes

were accomplished manually and coupled to a BrAC

determination, the minimum interval between samples was

limited to approximately one minute and was accomplished

during the ascending limb of the clamp. A faster rate of change

was not feasible during any other phase of that type of

experiment to minimize the potential for hyperventilation, as

each BrAC measurement requires a deep breath and full

exhalation. Furthermore, even the ascending limb infusion rate

of change was not achievable during the steady state as these

measurements would have interrupted or prevented the

completion of the serial administered batteries of dependent

measures and physiologic tests.

Manual adjustments to the pre-computed infusion profile

remain necessary because the morphometric transformation is

not tuned to the individual but rather to the averages across an

ensemble of people. In the laboratory setting, manual

compensation is also required for unexpected events such as

the subject’s need to stop the infusion for a brief bathroom

break, infusion catheters that clog or infiltrate, etc. It is possible

that the parameter identification methods employed here could

be used to improve the clamping performance on individual

subjects who, in some experimental paradigms, returns to the

laboratory for a second or third infusion. The methodology

presented here also seems like a reasonable first step towards



Fig. 5. Original experiment. The subject BrAC response control algorithm, as implemented within the laboratory, is illustrated.
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the development of identification procedures and optimal

waveform design such that reasonable open-loop (technician

free) control is obtained. The main purpose of this paper,

though, was to describe a method for analyzing experimental

records to identify individual sets of PBPK model parameters

that are then aggregated to recalibrate the morphometric

transformation, thus reducing the required technician feedback

on the very first infusion. Even with the feedback requirement,

these techniques are useful in developing drug infusion profiles

to establish blood concentration levels for other drugs whose

effect on human behaviors is of importance and also in the

development of pharmaceuticals to counteract the effects of

drugs at these levels.
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