

0887-2333(94)E0010-Q

Toxic. in Vitro Vol. 8, No. 3, pp. 381-392, 1994 Elsevier Science Ltd. Printed in Great Britain

INTERLABORATORY ASSESSMENT OF THE BOVINE CORNEAL OPACITY AND PERMEABILITY (BCOP) ASSAY*

P. GAUTHERON¹[†], J. GIROUX², M. COTTIN³, L. AUDEGOND⁴, A. MORILLA⁵, L. MAYORDOMO-BLANCO⁶, A. TORTAJADA⁶, G. HAYNES⁷, J. A. VERICAT⁷, R. PIROVANO⁸, E. GILLIO TOS⁸, C. HAGEMANN⁹, P. VANPARYS¹⁰, G. DEKNUDT¹⁰, G. JACOBS¹¹, M. PRINSEN¹², S. KALWEIT¹³ and H. SPIELMANN¹³

¹MSD-Chibret, Centre de Recherche, BP 134, 63203 Riom, ²Agence du Médicament, Unité Pharmacologie-Toxicologie, 34000 Montpellier, ³L'Oréal, Centre de Recherche Fondamentale, BP 22, 93601 Aulnay sous Bois, ⁴Roussel-Uciaf, Laboratorie de Toxicologie, 93230 Romainville, France, ⁵Laboratorios Cusi PO Box No. 2, 08320 El Masnou, Barcelona, ⁶Cida, Centro Industrial Santiga, Argenters 6, 08130 Sta. Perpetua de Mogoda, Barcelona, Spain, ⁷Research Toxicology Centre SpA, 00040 Pomezia (Roma), ⁸Istituto di Richerche Biomediche "A. Marxer" RBM SpA, C.P. 226, 10015 Ivrea (TO), Italy, ⁹Ciba-Geigy, Toxicology Services, CH-4332 Stein/AG, Switzerland, ¹⁰Janssen Pharmaceutica, Toxicology Department, 2340 Beerse, ¹¹Institute of Hygiene and Epidemiology, B-1050 Brussels, Belgium, ¹²TNO Nutrition and Food Research, PO Box 360, 3704 HE Zeist, The Netherlands, ¹³ZEBET, Robert von Ostertag Institut, Postfach 48 04 47, 1000 Berlin 48, Germany

This document contains the individual cornea data collected in laboratory

no. 09 (Janssen Pharmaceutica) => 52 compounds were tested.

Compounds tested

	Chemical		Supplier:
Code no.	Name	CAS no.*	catalogue no.
1	2-Ethoxyethanol	110-80-5	Aldrich: 25,637-4
2	Anthracene	120-12-7	Aldrich: 14,106-2
3	Allyl alcohol	107-18-6	Aldrich: 24,053-2
4	EDTA, di-potassium salt	25102-12-9	Aldrich: 22,600-9
5	Hexane	110-54-3	Aldrich: 13,936-6
6	2,4-Pentanedione	123-54-6	Aldrich: P 775-4
7	Phenylbutazone	50-33-9	Aldrich: 21,186-9
8	1-Nitropropane	108-03-2	Aldrich: N2,285-1
9	3-Glycidoxypropyltrimethoxysilane	2530-83-8	Aldrich: 23,578-4
10	Aluminium hydroxide	21645-51-2	Aldrich: 23,918-6
11	1,2,4-Trimethylbenzene	95-63-6	Aldrich: 24,027-3
12	2-Mercaptopyrimidine	1450-85-7	Aldrich: 12,962-3
13	Betaine monohydrate	590-47-6	Aldrich: 21,913-4
14	Sodium oxalate	62-76-0	Aldrich: 22,343-3
15	DL-Glutamic acid	19285-83-7	Aldrich: G 279-6
16	Petroleum ether	8032-32-4	Aldrich: 26,173-4
17	Butyrolactone	96-48-0	Aldrich: B10 360-8
18	2,4-Dichloro-5-sulfamoylbenzoic acid	2736-23-4	Aldrich: 14,739-7
19	Furan	110-00-9	Aldrich: 18,592-2
20	Imidazole	288-32-4	Aldrich: I 20-2
21	1-phenyl-3-pyrazolidone	92-43-3	Aldrich: 12,791-4
22	2-Aminophenol	95-55-6	Aldrich: A7 130-1
23	Gluconolactone	90-80-2	Aldrich: G200-1
24	2-Methoxyethanol	109-86-4	Aldrich: 27,048-2
25	Dimethyl sulfoxide	67-68-5	Aldrich: 27,043-1
26	Magnesium carbonate	56378-72-4	Aldrich: 22,766-8
27	Propyl-4-Hydroxybenzoate	94-13-3	Aldrich: P5 335-7
28	Iminodibenzyl	494-19-9	Aldrich: I 130-8
29	Octanol	111-87-5	Aldrich: 29,324-5
30	Methylisobutyl ketone	108-10-1	Aldrich: 29,326-1
31	Dibenzoyl-L-tartaric acid	2743-38-6	Aldrich: 34,584-9
32	Ethanol	64-17-5	local vendor
33	Methanol	67-56-1	local vendor
34	Ethyl acetoacetate	141-97-9	Aldrich: 24,070-2
35	Promethazine hydrochloride	58-33-3	Aldrich: 28,411-4
36	Deoxycholic acid, sodium salt	302-95-4	Sigma: D-6750
37	MYRJ-45		ICI: A-8563
38	BRIJ-35	9002-92-0	Sigma: P-1254
39	Tetraaminopyrimidine sulfate	5392-28-9	Aldrich: T 380-7
40	N-Lauroylsarcosine, sodium salt	7631-98-3	Sigma: L-5125
41	Quinacrine	69-05-6	Sigma: Q-3251
42	Hexadecyltrimethylammonium bromide	57-09-0	Sigma: H-5882
43	Thiourea	62-56-6	Aldrich: 24,025-7
44	Dimethylbiguanide	657-24-9	Sigma: D-5035
45	Benzethonium chloride	121-54-0	Sigma: B-8879
46	Triton X-155	9010-44-0	Sigma: X-155
47	1,2,3-Trichloropropane	96-18-4	Aldrich: 11,012-4
48	Cyclohexanone	108-94-1	Aldrich: C10 218-0
49	Diacetone alcohol	123-42-2	Aldrich: H4 154-4
50	Laurylsulfobetaine	14933-08-5	Sigma: D-4516
51	Pyridine	110-86-1	Aldrich: 27,040-7
	Triethanolamine	102-71-6	Aldrich: T5 830-0

Table 1. Test chemicals and suppliers

*Chemical Abstracts Service registry no.

EEC VALIDATION STUDY ON THE BOVINE CORNEA OPACITY-PERMEABILITY ASSAY

		-						UNVITRO		
BLIND CODE	CHEMICAL	Su		OPACITY		PERMEABILITY	È	SCORE	EXP. Nr.	Re- marks
		S	10 min	120 min	240 min	0.D.	lm/gµ			
1	2-ethoxyethanol	L	62.3 ± 2.3	61.7 ± 1.9		1.515 ± 0.134	19.3	84.4 ± 1.2	5	
2	anthracene	So			1.4 ± 1.2	0.003 ± 0.007	0.0	1.4 ± 1.3	\$ 42	υ
3	allyl alcohol	L	97.6 ± 18.9	94.1 ± 18.9		1.948 ± 0.455	24.7	123.3 ± 14.4	4 5	
4	ethylenediaminetetraacetate DiK	So			0.8 ± 0.5	0.010 ± 0.014	0.1	0.9 ± 0.6	42	υ
ß	hexane	Г	1.3 ± 0.8	1.3 ± 1.8		0.002 ± 0.002	0	1.4 ± 1.8	9	
9	2,4-pentadione	L	54.6 ± 4.7	49.1 ± 3.4		0.084 ± 0.036	1.1	50.3 ± 3.4	9	-
7	phenylbutazone	So			0.7 ± 0.4	-0.008 ± 0.008	0	0.5 ± 0.4	42	υ
8	1-nitropropane	L	1.5 ± 1.1	16.5 ± 1.7		0.008 ± 0.018	0.1	16.6 ± 1.9	2	_
6	3-glycidoxypropyltrimethoxysilane	L	16.1 ± 5.2	16.6 ± 4.5		0.065 ± 0.082	0.8	17.6 ± 4.7	7	
10	aluminium hydroxide	So			9.7 ± 2.3	0.012 ± 0.007	0.1	9.9 ± 2.3	43	υ
11	1,2,4,-trimethylbenzene	L	4.6 ± 0.9	12.5 ± 1.5		0.579 ± 0.369	7.3	21.2 ± 4.5	8	-
12	2-mercaptopyrimidine	So			-0.2 ± 0.4	-0.004 ± 0.002	0	-0.2 ⁻ ± 0.4	43	С
13	betaine monohydrate	So			3.1 ± 2.3	0.029 ± 0.014	0.1	3.5 ± 2.2	43	C
14	sodium oxalate	So			1.7 ± 0.9	0.103 ± 0.042	0.6	3.2 ± 1.3	22	С
15	DL-glutamic acid	So			-0.2 ± 0.5	-0.005 ± 0.005	0	-0.2 ± 0.5	22	υ
16	petroleum ether	L	0.7 ± 1.1	1.4 ± 1.9		0.015 ± 0.011	0.2	2.1 ± 1.9	8	-
17	butyrolactone	L	32.3 ± 3.9	34.2 ± 3.1		0.495 ± 0.199	6.3	41.6 ± 5.0	6	1
18	2,4-dichloro-5-sulfamoyl-benzoic acid	So			19.3 ± 4.8	-0.010 ± 0.004	0	19.2 ± 4 .7	25	С
19	furan	L	15.2 ± 2.1	20.6 ± 2.5		1.970 ± 0.197	24.9	50.2 ± 4.0	6	
20	imidazole	So			40.3 ± 9.9	1.598 ± 0.271	9.2	64.3 ± 11.2	2 25	υ

EEC VALIDATION STUDY ON THE BOVINE CORNEA OPACITY-PERMEABILITY ASSAY

DECHEMICALSuIo min120 minSi 1 10 min 120 min 11 So 1 10 min 120 min 11 2 -aminophenolSo So So So 11 2 -aminophenolSo So So 10 10 2 -aminophenolSo So So 10 10 2 -aminophenolSo So So 10 10 2 -aminophenol So So So 10 10 2 -amethoxyethanol L 46.6 ± 8.4 45.1 ± 7.1 10 2 -methoxyethanol L 8.7 ± 2.6 6.3 ± 1.7 $5.$ 0 0 0 0 0 0 0 0 0 0 0 1 8.7 ± 2.6 6.3 ± 1.7 0 0 0 1 8.7 ± 2.6 6.3 ± 1.7 0	10 min 10 min 46.6 ± 8.4 45 8.7 ± 2.6 6. 22.4 ± 2.2 27	240 min 240 min 11.1 ± 1.0 11.1 ± 1.0 10.9 ± 1.4 85.2 ± 5.6 85.2 ± 0.5 0.5 ± 0.5 0.2 ± 0.4 0.2 ± 0.4	PERMEABILITY O.D. µg 0.143 ± 0.052 0 0.144 ± 0.188 0 0.154 ± 0.041 0 0.154 ± 0.137 10 0.800 ± 0.137 10 0.204 ± 0.056 2 0.016 ± 0.004 0	лту µg/ml 0.8 0.8 0.8 0.8 10.1 10.1	SCORE 13.2 ± 1.6 13.0 ± 2.5 87.5 ± 5.3 57.1 ± 8.9 9.4 ± 1.4 0.7 ± 0.5	<u>ш н</u>	Re- marks
So 10 min 120 min 120 min 1-phenyl-3-pyrazolidone So 10 10 2-aminophenol So \sim 10 10 2-aminophenol So \sim 85 85 85 gluconolactone So \sim 45.1 ± 7.1 10 85 pubbyl DMSO L 8.7 ± 2.6 6.3 ± 1.7 85 9. propyl4-hydroxybenzoate So \sim So \sim 9. 0. propyl4-hydroxybenzoate So \sim	10 min 120 mi 46.6 ± 8.4 45.1 ± 8.7 ± 2.6 6.3 ± 22.4 ± 2.2 27.7 ±			µg/m1 0.8 0.8 0.8 0.8 10.1 2.6	+1 +1 +1 +1 +1 +1		
1-phenyl-3-pyrazolidone So 1 11.1 2-aminophenol So 2 10.9 2-aminophenol So 2 10.9 gluconolactone So 2 10.9 2-methoxyethanol L 46.6 ± 8.4 45.1 ± 7.1 85.2 2-methoxyethanol L 8.7 ± 2.6 6.3 ± 1.7 0.5 magnesium carbonate So 2 2.2 ± 2.6 6.3 ± 1.7 0.5 propyl4-hydroxybenzoate So 2 2.24 ± 2.2 2.77 ± 5.0 0.2 methyl isobutyl ketone L 10.6 ± 1.0 11.2 ± 2.7 5.2 methyl isobutyl ketone L 23.9 ± 4.0 2.37 ± 5.0 75.2 methyl isobutyl ketone L 23.9 ± 4.0 2.37 ± 6.0 75.2 methanol L 23.9 ± 4.0 2.37 ± 6.0 75.2 methanol L 23.9 ± 4.0 2.57 ± 2.0 75.2 methanol L 23.9 ± 4.0 2.57 ± 2.0 <t< th=""><th>46.6 ± 8.4 45.1 ± 8.7 ± 2.6 6.3 ± 22.4 ± 2.2 27.7 ±</th><th>+1 +1 +1 +1 +1</th><th>+1 +1 +1 +1 +1 +1 +</th><th>0.8 0.8 0.8 0.8 10.1 2.6</th><th>+1 +1 +1 +1 +1 +1</th><th></th><th></th></t<>	46.6 ± 8.4 45.1 ± 8.7 ± 2.6 6.3 ± 22.4 ± 2.2 27.7 ±	+1 +1 +1 +1 +1	+1 +1 +1 +1 +1 +1 +	0.8 0.8 0.8 0.8 10.1 2.6	+1 +1 +1 +1 +1 +1		
1 $2-aminophenol So 1 10.9 1 2-aminophenol So 1 85.2 1 2-methoxyethanol L 46.6 4 8.1 85.2 1 2-methoxyethanol L 46.6 4 8.1 7 85.2 1 2-methoxyethanol L 8.7 2 2.6 6.3 1.7 85.2 1 propyl-4-hydroxybenzoate So 2-r 2.7 2.7 5.2 1 propyl-4-hydroxybenzoate So 2-r 2.7 2.7 5.2 1 propyl-4-hydroxybenzoate So 2-r 2.7 5.2 5.2 1 propyl-4-hydroxybenzoate So 2-r 2.7 5.2 5.2 1 propyl-4-hydroxybenzoate 1 2.2.4 2.7 5.2 5.2 1 propyl-4-hydroxybenzoate 1 10.6 10.6 10.2 5.2 1 propyl-4-hydroxybenzoate 1 10.6 10.2 2.7 $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	+1 +1 +1 +1	+1 +1 +1 +1 +1 +	0.8 0.8 10.1 2.6	+1 +1 +1 +1 +1		υ
gluconolactone So $\cdot \cdot \cdot \cdot \cdot$ 85.2 2-methoxyethanol L 46.6 ± 8.4 45.1 ± 7.1 85.2 Popylathoxobenole L 8.7 ± 2.6 6.3 ± 1.7 0.5 propyl4thydroxybenzoate So $\cdot \cdot \cdot \cdot \cdot$ 1.7 0.5 propyl4thydroxybenzoate So $\cdot \cdot \cdot \cdot \cdot$ 2.2 0.5 propyl4thydroxybenzoate So $\cdot \cdot \cdot \cdot \cdot \cdot$ 0.5 0.5 magnesium carbonate So $\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot$ 0.5 0.5 magnesium carbonate So $\cdot \cdot $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	+1 +1 +1	+ + + + +	0.8 10.1 2.6	+ + + +		U
2-methoxyethanol L 46.6 ± 8.4 45.1 ± 7.1 2.1 Publicity L 8.7 ± 2.6 6.3 ± 1.7 0.5 propyl4-hydroxybenzoate So $2.2.6$ 6.3 ± 1.7 0.5 propyl4-hydroxybenzoate So $2.2.5$ 5.2 ± 2.0 0.5 propyl4-hydroxybenzoate So $2.2.4 \pm 2.2$ $2.7.7 \pm 5.0$ 0.2 methyl isobutyl ketone L $2.2.4 \pm 2.2$ $2.7.7 \pm 5.0$ 75.2 methyl isobutyl ketone L 10.6 ± 1.0 11.2 ± 2.7 75.2 dibenzoyl-Latratic acid So $2.3.9 \pm 4.0$ $2.3.7 \pm 6.0$ 75.2 dibenzoyl-Latratic acid L $2.3.9 \pm 4.0$ $2.3.7 \pm 6.0$ 75.2 methanol L 81.7 ± 5.6 73.7 ± 6.0 75.2 methanol L 81.7 ± 5.6 73.7 ± 6.0 75.2 distribution L 81.7 ± 5.6 73.7 ± 6.0 75.2 distribution L 81.7 ± 5.6 73.7 ± 6.0 75.2 distribution L 81.7 ± 5.6 73.7 ± 6.0 75.7	46.6 ± 8.4 45.1 ± 8.7 ± 2.6 6.3 ± 22.4 ± 2.2 27.7 ±	+1 +1 +1	+1 +1 +1 +	10.1 2.6	+1 +1 +1		υ
DMSO L 8.7 ± 2.6 6.3 ± 1.7 0.5 magnesium carbonate SO \sim 0.7 0.5 propyl-4-hydroxybenzoate SO \sim 0.7 0.5 propyl-4-hydroxybenzoate SO \sim 0.2 0.5 magnesium carbonate SO \sim 1 0.5 0.5 methyl sobutyl ketone L 22.4 ± 2.2 27.7 ± 5.0 0.2 methyl isobutyl ketone L 10.6 ± 1.0 11.2 ± 2.7 75.2 dibenzoyl-Latratic acid SO \sim 23.9 ± 4.0 75.2 dibenzoyl-Latratic acid L 23.9 ± 4.0 22.3 ± 4.1 75.2 methanol L 23.9 ± 4.0 22.3 ± 4.1 75.2 ethanol L 30.7 ± 2.8 24.0 ± 2.9 75.2 dethyl acetoacetate L 30.7 ± 2.8 24.0 ± 2.9 75.2	8.7 ± 2.6 6.3 ± 2.4 ± 2.2 27.7 ±	+1 +1 +1	+1 +1 +	2.6	+ +	10	_
magnesium carbonate So \sim \sim 0.5 propyl-4-hydroxybenzoate So \sim 5.2 minodibenzyl So \sim 5.2 minodibenzyl So \sim 5.2 methyl isobutyl ketone L 22.4 ± 2.2 27.7 ± 5.0 methyl isobutyl ketone L 10.6 ± 1.0 11.2 ± 2.7 75.2 dibenzoyl-Lartaric acid So \sim 23.9 ± 4.0 75.2 methyl isobutyl ketone L 23.9 ± 4.0 22.3 ± 4.1 75.2 methanol L 23.9 ± 4.0 22.3 ± 4.1 75.2 methanol L 81.7 ± 5.6 73.7 ± 6.0 75.7 methanol L 81.7 ± 5.6 73.7 ± 2.9 75.7 methanol L 81.7 ± 5.6 73.7 ± 2.9 75.7	22.4 ± 2.2 27.7 ±	+1 +1 +1	+1 +		+1	10	
propy14-hydroxybenzoateSo 5.2 iminodibenzylSo 2.4 ± 2.2 5.2 nethyl isobutyl ketoneL 22.4 ± 2.2 27.7 ± 5.0 methyl isobutyl ketoneL 10.6 ± 1.0 11.2 ± 2.7 dibenzoyl-Lartaric acidSo 23.9 ± 4.0 75.2 methanolL 23.9 ± 4.0 22.3 ± 4.1 methanolL 81.7 ± 5.6 73.7 ± 6.0 methanolL 30.7 ± 2.8 24.0 ± 2.9	22.4 ± 2.2 27.7 ±	+1 +1	+	0.1		26	υ
iminodiberzyl So So </th <th>22.4 ± 2.2 27.7 ±</th> <th>+1</th> <th>1</th> <th>0.4</th> <th>6.2 ± 1.5</th> <th>27</th> <th>υ</th>	22.4 ± 2.2 27.7 ±	+1	1	0.4	6.2 ± 1.5	27	υ
octanol L 22.4 ± 2.2 27.7 ± 5.0 50 methyl isobutyl ketone L 10.6 ± 1.0 11.2 ± 2.7 75.2 dibenzoyl-Lartaric acid So 23.9 ± 4.0 22.3 ± 4.1 75.2 methanol L 23.9 ± 4.0 22.3 ± 4.1 75.2 methanol L 81.7 ± 5.6 73.7 ± 6.0 75.2 methanol L 81.7 ± 5.6 73.7 ± 6.0 75.7 methanol L 30.7 ± 2.8 24.0 ± 2.9 75.0	± 2.2 27.7 ±		-0.001 ± 0.003	0	0.2 ± 0.4	27	υ
methyl isobutyl ketone L 10.6 ± 1.0 11.2 ± 2.7 75.2 dibenzoyl-L-tartaric acid So 75.2 75.2 methanol L 23.9 ± 4.0 22.3 ± 4.1 75.2 methanol L 81.7 ± 5.6 73.7 ± 6.0 75.2 methanol L 81.7 ± 5.6 73.7 ± 6.0 75.7			2.212 ± 0.377	28.0	60.9 ± 6.9	11	_
dibenzoyl-L-tartaric acidSo 75.2 ethanolL 23.9 ± 4.0 22.3 ± 4.1 methanolL 81.7 ± 5.6 73.7 ± 6.0 ethyl acetoacetateL 30.7 ± 2.8 24.0 ± 2.9	± 1.0 11.2 ±		0.546 ± 0.244	6.8	19.4 ± 3.1	11	-
ethanol L 23.9 ± 4.0 22.3 ± 4.1 methanol L 81.7 ± 5.6 73.7 ± 6.0 ethyl acetoacetate L 30.7 ± 2.8 24.0 ± 2.9		75.2 ± 14.2	0.416 ± 0.116	2.4	81.5 ± 13.7	7 27	υ
methanol L 81.7 ± 5.6 73.7 ± 6.0 methyl acetoacetate L 30.7 ± 2.8 24.0 ± 2.9	± 4.0 22.3 ±		1.560 ± 0.316	19.8	45. 7 ⁻ ± 6. 6	12	_
ethyl acetoacetateL 30.7 ± 2.8 24.0 ± 2.9 20.7 ± 2.82.4.0 ± 2.9	± 5.6 73.7 ±		1.698 ± 0.560	9.8	99.2 ± 12.8	8 13b	C
	± 2.8 24.0 ±		0.117 ± 0.007	0.6	25.7 ± 3.8	14	С
		134.9 ± 9.7	0.287 ± 0.216	1.6	139.2 \pm 10.2	2 38	c
36 deoxycholic acid sodium salt Su 10.8 \pm 1.5 13.9 \pm 2.6	10.8 ± 1.5 13.9 ±		5.718 ± 0.511	32.6	99.6 ± 8.0	17	c
37 MYRJ 45 Su $-0.3 \pm 0.4 \pm 1.4$	-0.3 ± 0.4 0.4 ±		0.005 ± 0.004	0	0.5 ± 1.4	17	С
38 polyoxyethylene 23 lauryl ether Su 0.7 ± 0.0 1.1 ± 0.6	0.7 ± 0.0 1.1 \pm		-0.002 ± 0.008	0	1.0 ± 0.7	18	С
39 tetraaminopyrimidine sulfate S0 2.6		2.6 ± 1.4	-0.003 ± 0.006	0	2.5 ± 1.4	38	ပ
40 N-lauroylsarcosine sodium salt \mathbf{Su} 3.4 ± 1.2 7.8 ± 0.9	3.4 ± 1.2 7.8 ±		3.653 ± 0.496	21.0	62.6 ± 7.3	18	ပ

EEC VALIDATION STUDY ON THE BOVINE CORNEA OPACITY-PERMEABILITY ASSAY

ID	BLIND CODE	CHEMICAL	-1 ¹²			U	OPACITY	KHI				I	TERM	PERMEABILITY	λĿ	SCC SCC	IN VITRO SCORE		EXP.	Re- marke
quinactineSo<			So	10	min		20 n	lin	7	40 m	E		0.D.		lm/gµ				·····	
hexadecyltimethylammonium bromide Su 11.3 1.8 18.3 3.438 t 0.562 19.8 69.9 t 6.9 18.6 18.6 thiourea So \sim 1.3 \sim	41	quinacrine	So						57.0		5.4	0.063	+1	0.040	0.4	57.9		5.8	38	υ
thiouteaSo $\cdot \cdot \cdot \cdot$ $S = 5 \cdot 5 \cdot 5$ $S = 5 \cdot 5 \cdot 5 \cdot 5$ $S = 5 \cdot 5 \cdot 5 \cdot 5$ $S = 5 \cdot 5 \cdot 5 \cdot 5$ $S = 5 \cdot 5 \cdot 5 \cdot 5 \cdot 5$ $S = 5 \cdot 5 \cdot 5 \cdot 5 \cdot 5 \cdot 5$ $S = 5 \cdot 5$	42	hexadecyltrimethylammonium bromide	Su	11.3	± 1.5			3.6				3.438	+1	0.562	19.8	6.69		5.9	18	υ
dimethyl biguanideSo \mathbf{S}	43	thiourea	So						85.8		9.2	4.373	+1	1.028	25.0	151.4		0.7	39	υ
benzethonium chloride Su 5.1 ± 3.8 84.6 ± 3.3 8.5 5.420 ± 0.049 30.9 165.9 ± 14.5 19 19 Triton X-155 Su 1.4 ± 1.3 3.0 ± 1.6 3.0 ± 1.6 0.014 0 3.1 ± 1.7 19 19 Triton X-155 Su 1.4 ± 1.3 3.0 ± 1.6 3.0 ± 1.6 0.014 0 3.1 ± 1.7 19 19 Triton X-155 L 4.1 ± 1.3 7.7 ± 1.9 3.0 ± 1.61 0 3.1 ± 20.0 14 Triton X-155 L 57.9 ± 3.4 76.6 ± 3.9 9.26 ± 1.39 31.7 ± 20.0 14 Meatome L 57.9 ± 3.4 76.6 ± 3.9 4.119 ± 1.341 2.49 141.7 ± 8.2 16 17 12 14 Meatome alcohol L 24.1 ± 3.6 16.2 ± 4.3 3.1 4.119 ± 1.341 23.6 24.2 24.8 11 Meatome State 5742 ± 1.462 23.7 102.4 ± 24.8 117 <th< th=""><th>44</th><th>dimethyl biguanide</th><th>So</th><th></th><th></th><th></th><th></th><th></th><th>0.7</th><th>+1</th><th>1.8</th><th>0.097</th><th>+1</th><th>0.176</th><th>0.6</th><th>2.1</th><th></th><th>5.6</th><th>39</th><th>υ</th></th<>	44	dimethyl biguanide	So						0.7	+1	1.8	0.097	+1	0.176	0.6	2.1		5.6	39	υ
Triton X-155 Su 1.4 1.3 3.0 1.6 1.6 3.1 1.7 1.7 1.9 1.6 1/2,3-trichloropropane L 4.1 1.2 7.7 1.9 5.561 1.388 31.7 91.1 $2.20.0$ 14 1.2 20.0 14 1.2 20.0 14 1.2 20.0 14 1.2 20.0 14 1.2 20.0 14 1.2	45	benzethonium chloride	Su	53.1	± 3.6			3.3				5.420	+1	0.949	30.9		+	4.5	19	υ
1,2,3-trichloropropane L 4.1 ± 1.3 7.7 ± 1.9 7.5 ± 1.9 5.561 ± 1.398 31.7 91.1 ± 20.0 14 141.7 ± 8.2 16 n vyclohexanone L 57.9 ± 3.4 76.6 ± 3.9 3.1 4.341 ± 0.551 24.9 141.7 ± 8.2 16 16 n diacetone alcohol L 24.1 ± 3.6 31.1 ± 3.2 31.1 ± 3.2 4.119 ± 1.341 23.6 92.2 ± 22.0 17 17 n lauryluhobetaine L 39.1 ± 2.6 16.2 ± 4.3 5.742 ± 1.462 32.7 102.4 ± 24.8 41 17 11	46	Triton X-155	Su	1.4	+ 1.0			1.6				0.008	+1	0.014	0	3.1		1.7	19	υ
cyclohexanone L 57.9 ± 3.4 76.6 ± 3.9 4.341 ± 0.551 24.9 141.7 ± 8.2 16 16 diacetone alcohol L 24.1 ± 3.6 31.1 ± 3.2 4.119 ± 1.341 23.6 92.2 ± 22.0 17 laurylsulfobetaine Su 11.8 ± 2.6 16.2 ± 4.3 5.742 ± 1.462 32.7 102.4 ± 24.8 41 laurylsulfobetaine L 39.3 ± 4.1 44.4 ± 3.3 4.015 ± 0.849 23.0 104.7 ± 15.7 16 reithanolamine L 0.8 ± 0.7 2.6 ± 0.9 2.6 ± 0.9 0.025 ± 0.011 1.4 $3.0 - \pm 1.0$ 16	47	1,2,3-trichloropropane	L		± 1.0			1.9				5.561		1.398	31.7	91.1		0.0	14	υ
diacetone alcohol L 24.1 ± 3.6 31.1 ± 3.2 4.119 ± 1.341 23.6 92.2 ± 22.0 17 diacetone alcohol Su 11.8 ± 2.6 10.2 ± 2.6 $10.2 \pm 2.4.8$ 41 4.119 ± 1.341 23.6 92.2 ± 24.8 41 puryleu/fobetaine Su 11.8 ± 2.6 16.2 ± 4.3 5.742 ± 1.462 32.7 102.4 ± 24.8 41 41 pyridine L 39.3 ± 4.1 44.4 ± 3.3 4.015 ± 0.849 23.0 104.7 ± 15.7 16 16 triethanolamine L 0.8 ± 0.7 2.6 ± 0.9 0.025 ± 0.011 1.4 $3.0 - \pm 1.0$ 16 16	48	cyclohexanone	L					3.9				4.341		0.551	24.9	141.7		3.2	16	υ
Iaurylsulfobetaine Su 11.8 2.6 16.2 4.3 5.742 1.462 32.7 102.4 24.8 41 pyridine L 39.3 4.1 44.4 4 3.3 4.015 1049 23.0 104.7 15.7 16	49	diacetone alcohol	L					3.2				4.119	+1	1.341	23.6	92.2			17	υ
pyridine L 39.3 ± 4.1 44.4 ± 3.3 4.015 ± 0.849 23.0 104.7 ± 15.7 16 triethanolamine L 0.8 ± 0.7 2.6 ± 0.9 0.025 ± 0.011 1.4 $3.0^{-} \pm 1.0$ 16	50	laurylsulfobetaine	Su	11.8	± 2.6			4.3				5.742	+1	1.462	32.7	102.4	1		41	υ
triethanolamine L 0.8 ± 0.7 2.6 ± 0.9 0.025 ± 0.011 1.4 $3.0 - \pm 1.0$ 16	51.	pyridine	Г	39.3	± 4.1			3.3				4.015	+1	0.849	23.0	104.7	+		16	υ
	52	triethanolamine	Ч	0.8	± 0.7			0.9				0.025		0.011	1.4	3.0 -			16	υ

L = Liquid (100%)

Su = Surfactant (10%)

So = Solid (20%)

I = Incomplete medium (MEM with only 1% FBS) ----> Exp. Nr. 5 to 13a

C = Complete medium

				EEC		ON OF	THE B	C0-P	ASSAY				
				[Data sh	eet				(Lab. no.	09
Date:	09 Mar 92		1								Name:	Ph. Vanpa	arys
Experin Compor	ent no. and of the same	5 pair no.		3						Signature:	Fri	12	
cor- nea	treatment	ot	oactity a	at 10 m	in		opacity	at 120	min	correc.	Permeabil	ty (OD) correc.	in-vitro score
1		C1	9	9	9.0	C1	13	13	13.0		0.003		13.0
2	, MEM	-9	C2	0	-4.5	-14	C2	0	-7.0		0.002		-7.0
3		-9	0	СЗ	-4.5	-14	0	Сз	-7.0		0.004		-6.9
mean					0.0				-0.3		0.003		-0.3
+ S.D.					7.8		•	r	11.5		0.001		11.5
4	compound no.	56	65	66	62.3	51	66	66	61.0	61.3	1.447	1.444	83.0
5	1	59	68	68	65.0	54	69	68	63.7	64.0	1.502	1.498	86.5
6		54	64	64	60.7	50	64	65	59.7	60.0	1.669	1.666	85.0
7	concentration	58	68	68	64.7	54	68	69	63.7	64.0	1.307	1.304	83.6
8	100%	56	65	65	62.0	51	66	66	61.0	61.3	1.537	1.534	84.3
9		53	62	62	59.0	50	64	64	59.3	59.7	1.649	1.646	84.3
mean					62.3				61.4	61.7	1.518	1.515	84.4
± S.D.					2.3				1.9	1.9	0.134	0.134	1.2

cor-	treatment	CA
nea		Filter
1		paper
2	МЕМ	-
3		1
mean		
± S.D.		2
		5
4	compound no.	3
5	1	
6		
7	concentration	
8	100%	-
9		
mean		
± S.D.		

CALIBRATIONFilterHolderOpacity--01B75A712B152A-3B223AA

Data sheet

09 Lab, no.

Date: 25 Jun 92 Experiment no. 42

treatment

MEM

compound no.

2

concentration

20%

cor-

nea 1 2

> 3 mean ± S.D.

> > 4

5 6 7

8

9 mean ± S.D.

Compound of the same pair no. 4 + 7

Name: Ph. Vanparys

Cianoturo	
Signature:	
COMPANY OF	

Janpas

T	
eability (OD)	in

.

.

	opacity	at 240	min	correc.	Permeabi	ity (OD) correc.	in-vitro score
C1	0	0	0.0		0.016		0.2
-1	C2	0	-0.5		0.023		-0.2
-1	0	C3	-0.5		0.018		-0.2
			-0.3		0.019		-0.1
			0.3		0.004		0.3
2	3	3	2.7	3.0	0.020	0.001	3.0
0	0	0	0.0	0.3	0.010	-0.009	0.2
1	1	2	1.3	1.7	0.024	0.005	1.7
0	0	0	0.0	0.3	0.023	0.004	0.4
2	2	3	2.3	2.7	0.026	0.007	2.8
0	0	0	0.0	0.3	0.029	0.010	0.5
			1.1	1.4	0.022	0.003	1.4
			1.2	1.2	0.007	0.007	1.3

cor-	treatment		,			CAL	IBRATION	
nea	*					Filter	Holder	Opacity
1						paper		
2	MEM							0
3						1	В	75
mean							A	.75
± S.D.						2	В	158
							A	-170
4	compound no.	pH: 8.12				3	В	248
5	2						А	-259
6								
7	concentration							
8	20%				-			
9								
mean								
± S.D.								

Data sheet

Lab. no. 09

Ph. Vanparys

Date: 09 Mar 92 Experiment no. 5

Compound of the same pair no. 1

65

74

74

71.0

97.6

18.9

Name: Signature:

2.807

1.951

0.455

2.804

1.948

0.455

109.4

123.3

14.4

1	
- 1	
- 1	1
_	any

treatment	0	pactity	at 10 m	iln.			opacity	at 120	min	correc.	Permeabi	ity (OD) correc.	in-vitro score
	C1	9	9	9.0		C1	13	13	13.0		0.003		13.0
МЕМ	-9	C2	0	-4.5		-14	C2	0	-7.0		0.002		-7.0
	-9	0	СЗ	-4.5		-14	0	C3	-7.0		0.004		-6.9
				0.0					-0.3		0.003]	-0.3
				7.8					11.5]	0.001]	11.5
compound no.	115	123	123	120.3		106	122	121	116.3	116.7	1.555	1.552	139.9
3	109	118	119	115.3		102	117	117	112.0	112.3	1.957	1.953	141.6
	88	97	97	94.0		80	95	95	90.0	90.3	1.859	1.856	118.2
concentration	96	105	105	102.0		88	102	102	97.3	97.7	1.581	1.578	121.3
100%	77	86	86	83.0		69	85	85	79.7	80.0	1.948	1.945	109.2
		1			1 1							+	

14 15 mean ± S.D.

cor-	treatment		CALI	BRATION	
nea	*		ilter	Holder	Opacity
1		pa	aper		
2	MEM		-		0
3			1	В	75
mean				A	- 7 1
± 5.0.			2	В	152
				A	
10	compound no.		3	, B	223
11	3			A	
12					
13	concentration				
14	100%	•			
15					
mean					
± S.D.					

57

72

72

67.0

93.7

18.9

67.3

94.1

18.9

mean ± S.D.

10

11 12 13

cornea 1 2 3

Data sheet

Lab. no. 09

Name: Ph. Vanparys

Date: 25 Jun 92 Experiment no. 42 Compound of the same pair no. 2 + 7

cor- nea	treatment
1	
2	MEM
3	
mean	
± S.D.	

10	compound no.
11	4
12	
13	concentration
14	20%
15	
mean	
± S.D.	

mean + S.D.

2 + 7					Signature:	Fe	mp	
		opacity	/ at 240	min	correc.	Permeabil	ity (OD) correc.	in-vitro score
	C1	0	0	0.0		0.016		0.2
	• -1	C2	0	-0.5		0.023		-0.2
	-1	0	СЗ	-0.5		0.018		-0.2
				-0.3		0.019		-0.1
				0.3		0.004		0.3
	0	0	0	0.0	0.3	0.043	0.024	0.7
	0	1	1	0.7	1.0	0.039	0.020	1.3
	0	0	0	0.0	0.3	0.014	-0.004	0.3
	0	0	0	0.0	0.3	0.015	-0.004	0.3
	0	1	1	0.7	1.0	0.043	0.024	1.4
	1	1	2	1.3	1.7	0.019	0.000	1.7
				0.4	0.8	0.029	0.010	0.9
				0.5	0.5	0.014	0.014	0.6
					· .		IDDATION	
						Filter	IBRATION Holder	Opacity

cor-	treatment				. 1	CAL	IBRATION	
nea						Filter	Holder	Opacity
1						paper		
2	MEM					-		0
3						1	В	75
mean							A	75
± S.D.				•		2	В	158
							A	-170
10	compound no.	pH: 5.2				3	В	248
11	4						A	-259
12								
13	concentration			,				
14	20%					•		
15								

.

Data sheet

C1

-2

-2

Lab. no. 09

Ph. Vanparys

-0.2

-03

1.4

1.4

1.8

Opacity

0 75 -68 158 -152 254 -235

Date: 19 Mar 92

cor-

nea 1

2

3

mean ±S.D.

4

5 6 7

8

9

mean

± S.D.

Experiment no. 6

treatment

MEM

Compound of the same pair no. 6

C1

-2

-2

opactity at 10 min

4

0

СЗ

4

C2

0

4.0

-1.0

-1.0

0.8

Signature 5

Name:

signature:	ton	Yos							
correc	Permeabil	Permeability (OD) correc.							
	0.003		4.0						
	0.003		-1.0						
	0.001		-1.0						
	0.002		0.7						
	0.001]	2.9						
0.7	0.004	0.002	0.7						
4.3	0.004	0.002	4.4						
2.3	0.002	0.000	2.3						
1									

					0.7 2.9				0.7 2.9		0.002	
_	compound no.	0	2	2	1.3	0	2	2	1.3	0.7	0.004	0.002
	5	0	2	2	1.3	3	6	6	5.0	4.3	0.004	0.002
	1883) 1914 - 1914 1914 - 19	1	3	3	2.3	1	4	4	3.0	2.3	0.002	0.000
	concentration	-1	1	1	0.3	-1	1	1	0.3	-0.3	0.009	0.007
	100%	-1	1	1	0.3	-1	1	1	0.3	-0.3	0.005	0.003
		0	3	3	2.0	0	3	3	2.0	1.3	0.004	0.002
1					1.3				2.0	1.3	0.005	0.002

opacity at 120 min

4

0

СЗ

4.0

-1.0

-1.0

1.8

1.8

0.002

0.002

4

C2

0

cor-	treatment	CA	LIBRATION	
nea		Filter	Holder	i.
1		paper		ŝ
2	MEM			-
3		1	В	-
mean			A	
±SD.		2	В	-
			A	
	compound no.	3	В	
5	5		A	
6				
7	concentration			
8	100%	-		
9				
mean				
1 S.D.				

Data sheet

09 Lab. no.

Ph. Vanparys

Opacity

Name:

Date: 19 Mar 92

Experiment no. 6

Compo	und of the same	e pair no).	5						Signature:	- Jan	Any	
cor- nea	treatment	0]	pactity	at 10 m	in		opacity	at 120	min	correc.	Permeabil	100	in-vitro score
1		C1	4	4	4.0	C1	4	4	4.0		0.003		4.0
2	MEM	-2	C2	0	-1.0	-2	C2	0	-1.0	7	0.003		-1.0
3	*	-2	0	С3	-1.0	-2	0	СЗ	-1.0	7	0.001		-1.0
mean					0.7				0.7		0.002		0.7
± S.D.					2.9				2.9]	0.001]	2.9
10	compound no.	47	50	49	48.7	43	46	46	45.0	44.3	0.077	0.075	45.5
11	6	51	54	54	53.0	46	49	49	48.0	47.3	0.048	0.046	48.0
12		52	55	55	54.0	50	52	52	51.3	50.7	0.135	0.133	52.7
13	concentration	50	53	53	52.0	47	50	50	49.0	48.3	0.125	0.123	50.2
14	100%	60	63	63	62 .0	53	56	56	55.0	54.3	0.057	0.055	55.2
15		56	59	58	57.7	48	51	51	50.0	49.3	0.076	0.074	50.4
mean					54.6				49.7	49.1	0.086	0.084	50.3
± S.D.					4.7				3.4	3.4	0.036	0.036	3.4
												•	.
cor-	treatment				~					1		IBRATION	
000	And Control of the second second									1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-166 L	

cor-	treatment	CAL	IBRATIO
nea 1		Filter	Holder
2	мем		
3		1	В
mean			A
± S.D.		2	В
			A
10	compound no.	3	В
11	6		A
12			
13	concentration		
14	100%	• *	
15			
mean			
1 S.D.			

Data sheet

Lab. no. 09

in-vitro

Name: Ph. Vanparys

M

As

Date:	25 Jun 92		
Experin	nent no.	42	
Compo	und of the sar	me pair no.	2 + 4

treatment

MEM

compound no.

7

concentration

20%

cor-

nea

1 2

3 mean ± S.D.

16

17

18 19

20

21 mean ± S.D.

				odokataka (2
	opacity	at 240	min	correc.	Permeabil	ity (OD) correc.
C1	0	0	0.0		0.016	
•-1	C2	0	-0.5		0.023	
-1	0	C3	-0.5		0.018	
			-0.3		0.019	
			0.3]	0.004	
0	0	0	0.0	0.3	0.014	-0.005
0	0	0	0.0	0.3	0.006	-0.012
0	0	0	0.0	0.3	0.003	-0.015
0	1	1	0.7	1.0	0.011	-0.007
0	0	1	0.3	0.7	0.024	0.005
1	1	1	1.0	1.3	0.006	-0.013
			0.3	0.7	0.011	-0.008
			0.4	0.4	0.008	0.008

Signature:

	correc.	score
0.016		0.2
0.023		-0.2
0.018		-0.2
0.019		-0.1
0.004		0.3
0.014	-0.005	0.3
0.006	-0.012	0.1
0.003	-0.015	0.1
0.011	-0.007	0.9
0.024	0.005	0.7
0.006	-0.013	1.1
0.011	-0.008	0.5
0.008	0.008	0.4

CAL	CALIBRATION								
Filter	Holder	Opacity							
paper									
-		0							
1	В	75							
	A	- 7 5							
2	В	158							
	A	.170							
3	В	248							
	А	-259							

cor-	treatment	
пеа	•	
1		
2	MEM	
3		
mean		
± S.D.		

16	compound no.
17	7
18	
19	concentration
20	20%
21	
mean	
±S.D.	

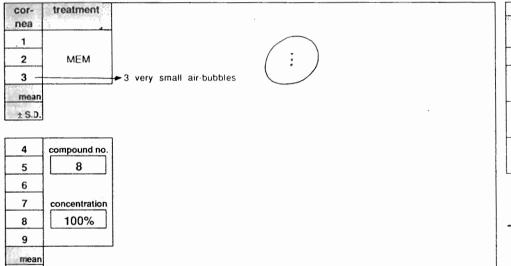
pH: not enough compound for a determination.

Compound no. 7 was washed away 4 times instead of 3 times.

Data sheet

Lab. no. 09

Name: Ph. Vanparys


Signature:

Date:20 Mar 92Experiment no.7

1 S.D.

Compound of the same pair no. 9

										Asher 1	8		
cor- nea	treatment	o	pactity	at 10 m	ìn		opacity	at 120	min	correc.	Permeabil	ity (OD) correc.	in-vitro score
1		C1	0	-4	-2.0	C1	-2	-4	-3.0		0.004		-2.9
2	МЕМ	0	C2	-4	-2.0	• 1	C2	-2	-0.5		0.002		-0.5
3	,	3	3	C3	3.0	3	1	СЗ	2.0		0.003		2.0
mean					-0.3				-0.5		0.003		-0.5
±S.D.					2.9				2.5]	0.001		2.5
4	compound no.	3	4	0	2.3	20	18	16	18.0	18.5	0.001	-0.002	18.5
5	8	3	3	0	2.0	16	14	12	14.0	14.5	0.005	0.002	14.5
6		3	4	0	2.3	18	16	15	16.3	16.8	0.002	-0.001	16.8
7	concentration	0	1	-2	-0.3	20	18	16	18.0	18.5	0.048	0.045	19.2
8	100%	3	3	0	2.0	17	15	13	15.0	15.5	0.007	0.004	15.6
9		1	2	-1	0.7	17	14	13	14.7	15.2	0.003	0.000	15.2
mean					1.5				16.0	16.5	0.011	0.008	16.6
± S.D.					1.1				1.7	1.7	0.018	0.018	1.9

	IBRATION					
Filter paper						
-	-	0				
1	В	75				
	Α	- 7 5				
2	В	158				
	A	-152				
3	В	254				
	A	- 235				

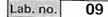
Data sheet

Lab. no. 09

Name: Ph. Vanparys

Date: 20 Mar 92 Experiment no. 7 Compound of the same pair no.

ompo	und of the same	e pair no),	8						Signature:			
cor- nea	treatment	ol	pactity	at 10 m	in		opacity	/ at 120	min	correc,	Permeabil	ty (OD) correc.	in-vitro score
1		C1	0	-4	-2.0	C1	-2	-4	-3.0		0.004		-2.9
2	ŅЕМ	0	C2	-4	-2.0	• 1	C2	-2	-0.5		0.002		-0.5
3		3	3	C3	3.0	3	1	СЗ	2.0		0.003		2.0
mean					-0.3				-0.5		0.003		-0.5
± S.D.					2.9				2.5		0.001		2.5
10	compound no.	21	21	18	20.0	21	19	17	19.0	19.5	0.216	0.213	22.7
11	9	20	20	17	19.0	23	20	19	20.7	21.2	0.018	0.015	21.4
12		21	22	18	20.3	22	20	18	20.0	20.5	0.008	0.005	20.6
13 -	concentration	16	16	12	14.7	14	12	10	12.0	12.5	0.114	0.111	14.2
14	100%	8	8	4	6.7	12	10	8	10.0	10.5	0.026	0.023	10.8
15		17	17	13	15.7	17	15	13	15.0	15.5	0.028	0.025	15.9
mean					16.1				16.1	16.6	0.068	0.065	17.6
± S.D.					5.2				4.5	4.5	0.082	0.082	4.7


cor-	treatment			CAL	
nea			•	Filter	
1			\frown	paper	L
2	MEM				
3 -		ery small air-bubbles		1	Γ
mean			\bigcirc		
± S.D.				2	
		· ·			

CAL	CALIBRATION								
Filter paper	Holder	Opacity							
-	-	0							
1	В	75							
	A	. 75							
2	В	158							
	A	152							
3	В	254							
	A	-235							

	10	compound no.						
	11	9						
	12							
	13	concentration						
	14	100%	+small	area	which	١S	not	opace
	15							
ંં	nean							
	\$.D.							

Data sheet

in-vitro

score

0.2

Name: Ph. Vanparys

22

Permeability (OD) correc.

0.012

 Date:
 26 Jun 92

 Experiment no.
 43

treatment

MEM

Compound of the same pair no. 12 + 13

				1.7.1.3. 200 Mar. 1.5. 1 +
			min	a da an
1. Sec.		<u>1</u>	in deside the	correc.
C1	0	0	0.0	
• 0	C2	0	0.0	
0	0	C3	0.0	
			0.0	
			0.0	
9	9	8	8.7	8.7
10	10	q	97	9.7

Signature:

	3	0	0.7	0.7
10	10	9	9.7	9.7
10	10	10	10.0	10.0
13	13	13	13.0	13.0
6	6	6	6.0	6.0
11	11	11	11.0	11.0
			9.7	9.7
			2.3	2.3

0.010]	0.2
0.022		0.3
0.015		0.2
0.006		0.1
0.027	0.012	8.9
0.019	0.004	9.7
0.030	0.015	10.2
0.026	0.011	13.2
0.037	0.022	6.3
0.020	0.006	11.1
0.026	0.012	9.9
0.007	Q.007	2.3

CALIBRATION				
Filter paper	Holder	Opacity		
-		0		
1	В	75		
	A	- 7 5		
2	В	159		
	A	-170		
3	В	250		
	A	-262		

4	compound no
5	10
6	
7	concentration
8	20%
9	PHERE P
mean	
± S.D.	

cor-

nea

1

2

3 mean

cor-	treatment
nea	
1	
2	MEM
3	
mean	
± S.D.	

. 4	compound no.
	compound no.
5	10
6	
7	concentration
8	20%
9	
mean	
±S.D.	

pH: not enough compound for a pH determination.

Data sheet

C1

2

1

14

15

14

14

11

15

-3

C2

-1

10

12

11

11

8

12

-2

0

СЗ

11

13

11

12

9

13

1.8

11.7

13.3

12.0

12.3

9.3

13.3

12.0

1.5

12.2

13.8

12.5

12.8

9.8

13.8

12.5

1.5

09 Lab. no.

-2.5

0.9

0.0

-0.6

Name: Ph. Vanparys

Experiment no. 8

treatment

MEM

compound no.

11

concentration

100%

cornea

1

2

3

mean ± S.D.

4

5

6

7

8

9

mean

± S.D.

mean ± S.D.

C1

0

0

6

5

4

5

4

5

opactity at 10 min

0

0

C3

6

5

4

5

4

5

-0.5

0.0

-0.5

-0.3

0.3

6.0

4.7

3.7

4.7

3.7

4.7

4.6

0.9

~1

C2

-1

6

4

3

4

3

4

Signature: m Fo opacity at 120 min Permeability (OD) in-vitro correc. correc. score -2.5 -0.003 -0.005 1.0 0.0 -0.002 -0.5 -0.003

0.002		1.8
0.337	0.340	17.3
0.529	0.532	21.8
0.380	0.383	18.3
0.783	0.786	24.6
1.213	1.216	28.1
0.209	0.212	17.0
0.575	0.579	21.2
0.369	0.369	4.5

cor-	treatment .		CAL	IBRATION	
nea	and the second second		Filter	Holder	Opacity
1			paper		-
2	MEM		-		0
3			1	В	75
mean				A	- 7 5
± S.D.	J		2	В	158
	· · · · · · · · · · · · · · · · · · ·			A	-168-
4	compound no.		3	В	253
5	11			A	-260
6		rinsed 4 times instead off 3 times			
7	concentration				
8	100%		-		
9					

Date: 23 Mar 92

Compound of the same pair no. 16

Data sheet

.

0

-1

0

-1

0

-1

0.0

-1.0

-0.2

0.4

0.0

-1.0

-0.2

0.4

Lab. no. 09

Name: Ph. Vanparys

Date: 26 Jun 92 Experiment no. 43

treatment

МЕМ

compound no.

concentration

20%

cor-

nea 1

2

3 mean ± S.D.

10

11 12 13

14

15

mean

± S.D.

t S.D

Compound of the same pair no. 10 + 13

				Signature
at Xi Ar te	opacity	at 240	min	correc.
C1	0	0	0.0	
0	C2	0	0.0	
0	0	C3	0.0	
			0.0	
			0.0	
0	0	0	0.0	0.0
0	0	0	0.0	0.0
0	0	0	0.0	0.0
0	0	0	0.0	0.0

Permeabi	lity (OD) correc.	in-vitro score
0.012		0.2
0.010		0.2
0.022		0.3
0.015		0.2
0.007		0.1
0.010	-0.005	-0.1
0.011	-0.004	-0.1
0.008	-0.006	-0.1
0.016	0.001	0.0
0.010	-0.005	-0.1
0.011	-0.004	-1.1
0.011	-0.004	-0.2
0.002	0.002	0.4

cor-	treatment	-	· · · · · · · · · · · · · · · · · · ·
nea	1880/1792 7 L		Filte
1			pape
2	MEM		-
3			1
mean			
± S.D.		· · ·	2
10	compound no.	pH: 6.84	3
11	12		
12	C. C. C.		
13	concentration	Compound No.12 was washed away 4 times instead of 3 times.	
14	20%		
15			
mean			

CALIBRATION				
Filter	Holder	Opacity		
paper	nasigan di . Nga pangang			
-	-	0		
1	В	75		
	А	- 7 5		
2	В	159		
	Α	-170		
3	В	250		
	Α	-262		

ure: D

Burn

Data sheet

Lab. no. 09

in-vitro

score

Name: Ph. Vanparys

My

Date: 26 Jun 92 Experiment no. 43

treatment

МЕМ

compound no. 13

concentration

20%

cor-

nea

1 2

3 mean ± S.D.

16

17 18 19

20

21 mean ± S.D.

Compound of the same pair no. 10 + 12

					Jan	1 de la compañía de l
opacity at 240 min			correc.	Permeabil	ity (OD) correc.	
C1	0	0	0.0		0.012	
• 0	C2	0	0.0		0.010	
0	0	СЗ	0.0		0.022	
			0.0		0.015	
			0.0		0.006	
7.,	7	6	6.7	6.7	0.030	0.015
1	1	1	1.0	1.0	0.041	0.026
1	1	1	1.0	• 1.0	0.041	0.027
5	5	5	5.0	5.0	0.034	0.020
2	2	1	1.7	1.7	0.070	0.055
3	3	3	3.0	3.0	0.043	0.029
			3.1	3.1	0.043	0.029
			2.3	2.3	0.014	0.014

0.012		0.2
0.010		0.2
0.022		0.3
0.015		0.2
0.006		0.1
0.030	0.015	6.9
0.041	0.026	1.4
0.041	0.027	1.4
0.034	0.020	5.3
0.070	0.055	2.5
0.043	0.029	3.4
0.043	0.029	3.5
0.014	0.014	2.2

cor- treatment		CAL	IBRATION	
nea		Filter paper	Holder	Opacity
2 MEM		-		0
3		1	В	75
mean			А	. 7 5
± S.D.		2	В	159
			А	-170
16 compound no.	рН: 8.24	3	В	250
17 13			А	-262
18 19 concentration 20 20% 21 mean ± S.D.		•	-	

Signature:

Data sheet

09 Lab. no.

Name: Ph. Vanparys

Date: 27 Apr 92 Experiment no. 22

Compound of the same pair no. 15

cor- nea	treatment
1	
2	MEM
3	
mean	
± S.D.	

4 compound no. 5 14 6 7 concentration 8 20% 9 mean ± S.D.

treatment

MEM

4.

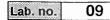
cor-

nea

1 2

3 mean ± S.D.

				Signature:	for	anger	
	opacity	at 240	min	correc.	Permeabil	ity (OD) correc.	in-vitro score
C1	0	2	1.0		0.016		1.2
0	C2	1	0.5		0.014		0.7
-3	-2	C3	-2.5		0.015		-2.3
			-0.3		0.015		-0.1
			1.9		0.001		1.9
-1	0	1	0.0	0.3	0.106	0.092	1.7
0	0	2	0.7	1.0	0.042	0.028	1.4
1	1	4	2.0	2.3	0.122	0.108	3.9
0	1	3	1.3	1.7	0.143	0.128	3.6
1	1	3	1.7	2.0	0.164	0.150	4.2
1	2	4	2.3	2.7	0.129	0.115	4.4
			1.3	1.7	0.118	0.103	3.2
			0. 9	0.9	0.042	0.042	1.3


 CAL	IBRATION	
Filter	Holder	Opacity
paper		
-		0
1	В	75
	А	· 7 5
2	В	158
	А	-168
3	В	248
	А	-257

4	compound no.	
5	14	
6		Co
7	concentration	
8	20%	
9		
mean		
± S.D.		

ompound 14 was warmed up to 32°C and stirred on a magnetic stirrer.

• --

Data sheet

Ph. Vanparys

Name:

Date:	27 Apr 92		
Experir	nent no.	22	
Compo	und of the sar	ne pair no.	14

cor- nea	treatment
1	
2	MEM
3	
mean	
+ S.D.	

10	compound no.
11	15
12	
13	concentration
14	20%
15	
mean	
± S.D.	

				Signature:	-Ĵ-	hip	
	opacity	at 240	min	correc.	Permeabil		in-vitro score
C1	0	2	1.0		0.016		1.2
0	C2	1	0.5		0.014		0.7
-3	-2	C3	-2.5		0.015		-2.3
			-0.3	1	0.015		-0.1
			1.9]	0.001		1.9
-1	0	1	0.0	0.3	0.011	-0.004	0.3
-2	-1	0	-1.0	-0.7	0.018	0.003	-0.6
-1	0	1	0.0	0.3	0.003	-0.012	0.2
-2	-1	0	-1.0	-0.7	0.010	-0.005	-0.7
-1	0	1	0.0	0.3	0.008	-0.006	0.2
-2	-1	0	-1.0	-0.7	0.006	-0.008	-0.8
			-0.5	-0.2	0.009	-0.005	-0.2
			0.5	0.5	0.005	0.005	0.5

CALI	BRATION	
Filter paper	Holder	Opacity
-	-	0
1	В	75
	А	- 75
2	В	158
	А	-168
3	В	248
[А	-257

.

cor- nea	treatment
1	
2	MEM
3	
mean	
± S.D.	

10	compound no.
11	15
12	
13	concentration
14	20%
15	
mean	
t SD.	

Compound 15 was warmed up to 32°C and stirred on a magnetic stirrer.

-

Data sheet

Lab. no. 09

Name; Ph. Vanparys

Date: 23 Mar 92 Experiment no. 8

cor-

nea 1 2 3 mean ± S.D.

10

11 12 13

14 15 mean ± S.D.

Compound

treatment opactity at 10 min correc. Permeability (OD) correc. MEM C1 -1 0 -0.5 -2 -2.5 -0.003 -0.005 -0.003 -0.005 -0.002 -0.002 -0.003 -0.002 -0.003 -0.002 -0.003 -0.002 -0.003 -0.002 -0.003 -0.002 -0.003 -0.002 -0.003 -0.002 -0.003 -0.002 -0.003 -0.002 -0.003 -0.002 -0.003 -0.002 -0.003 -0.002 -0.003 0.002 -0.003 -0.002 -0.003 <		12	Fan	Signature:						11	5	pair no	ound of the same
MEM 0 C2 0 0.0 2 C2 0 1.0 -0.005 0 -1 C3 -0.5 1 -1 C3 0.0 -0.002 -0.003 -0.3 -0.3 -0.3 -0.5 1.8 -0.5 -0.003 -0.002 compound no. 1 0 0 0.3 5 1 2 2.7 3.2 0.003 0.006 16 0 0 0.0 0.0 1 -1 0 0.0 0.5 0.017 0.020 3 2 3 2.7 5 2 3 3.3 3.8 0.032 0.035 concentration 2 1 1 1.3 4 1 2 2.3 2.8 0.003 0.006	in-vitro score	and the second	Permeabili	correc.			1.00	63	İn	at 10 mi	pactity a	ot	treatment
0 -1 C3 -0.5 1 -1 C3 0.0 -0.02 -0.002 -0.003 0.002 -0.003 0.002 -0.003 0.002 -0.003 0.002 -0.003 0.002 -0.003 0.002 -0.003 0.002 -0.003 0.002 -0.003 0.002 -0.003 0.002 -0.003 0.002 -0.003 0.002 -0.003 0.002 -0.003 0.002 -0.003 0.002 -0.003 0.002 -0.003 0.002 -0.002 -0.003 0.002 -0.003 0.002 -0.003 0.002 -0.003 0.002 -0.003 0.002 -0.003 0.002 -0.003 0.002 -0.003 0.002 -0.003 0.002 -0.003 0.002 -0.003 0.002 -0.003 0.002 -0.003 0.002 -0.003 0.002 -0.003 0.002 -0.003 0.002 -0.003 0.002 -0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 <th>-2.5</th> <th></th> <th>-0.003</th> <th></th> <th>-2.5</th> <th>-2</th> <th>-3</th> <th>C1</th> <th>-0.5</th> <th>0</th> <th>-1</th> <th>C1</th> <th></th>	-2.5		-0.003		-2.5	-2	-3	C1	-0.5	0	-1	C1	
-0.3 -0.5 -0.003 0.3 1.8 0.002 compound no. 1 0 0.3 5 1 2 2.7 3.2 0.003 0.006 16 0 0 0.0 1 -1 0 0.0 0.5 0.017 0.020 3 2 3 2.7 5 2 3 3.3 3.8 0.032 0.035 concentration 0 0 0.00 4 0 1 1.7 2.2 0.005 0.008 100% 2 1 1 1.3 4 1 2 2.3 2.8 0.003 0.006	0.9		-0.005		1.0	0	C2	2	0.0	0	C2	0	,MEM
Compound no. 1 0 0.3 5 1 2 2.7 3.2 0.002 16 0 0 0.0 1 -1 0 0.0 0.006 16 0 0 0.00 1 -1 0 0.00 0.5 0.017 0.020 3 2 3 2.7 5 2 3 3.3 3.8 0.032 0.035 concentration 0 0 0.00 4 0 1 1.7 2.2 0.005 0.008 100% 2 1 1 1.3 4 1 2 2.3 2.8 0.003 0.006	0.0		-0.002		0.0	C3	-1	1	-0.5	C3	-1	0	
compound no. 1 0 0 0.3 5 1 2 2.7 3.2 0.003 0.006 16 0 0 0.0 0.0 1 -1 0 0.0 0.5 0.017 0.020 0.032 0.032 0.035 0.032 0.035 0.005 0.005 0.006 0.005 0.006 0.005 0.008 0.005 0.008 0.003 0.006 0.006 0.003 0.006 0.005 0.008 0.003 0.006 0.006 0.006 0.003 0.006 0.003 0.006 0.006 0.003 0.006 0.003 0.006 0.003 0.006 0.003 0.006 0.003 0.006 0.003 0.006 0.003 0.006 0.003 0.006 0.003 0.006 0.003 0.006 0.003 0.006 0.003 0.006 0.003 0.006 0.003 0.006 0.003 0.006 0.003 0.006 0.003 0.006 0.003 0.006	-0.6		-0.003		-0.5				-0.3				
16 0 0 0 0.0 1 -1 0 0.0 0.5 0.017 0.020 3 2 3 2.7 5 2 3 3.3 3.8 0.032 0.035 concentration 0 0 0.00 4 0 1 1.7 2.2 0.005 0.008 100% 2 1 1 1.3 4 1 2 2.3 2.8 0.003 0.006	1.8		0.002		1.8	L			0.3				
3 2 3 2.7 5 2 3 3.3 3.8 0.032 0.035 concentration 0 0 0.00 4 0 1 1.7 2.2 0.005 0.008 100% 2 1 1 1.3 4 1 2 2.3 2.8 0.003 0.006	3.3	0.006	0.003	3.2	2.7	2	1	5	0.3	0	0	1	compound no.
3 2 3 2.7 5 2 3 3.3 3.8 0.032 0.035 concentration 0 0 0.00 4 0 1 1.7 2.2 0.005 0.008 100% 2 1 1 1.3 4 1 2 2.3 2.8 0.003 0.006	0.8	0.020	0.017	0.5	0.0	0	-1	1	0.0	0	0	0	
100% 2 1 1.3 4 1 2 2.3 2.8 0.003 0.006	4.4	0.035	0.032	3.8	3.3	3	2	5	2.7	3	2	3	
	2.3	0.008	0.005	2.2	1.7	1	0	4	0.0	0	0	0	concentration
0 -1 0 -0.3 0 -3 -2 -1.7 -1.2 0.009 0.012	2.9	0.006	0.003	2.8	2.3	2	1	4	1.3	1	1	2	100%
	-1.0	0.012	0.009	-1.2	-1.7	-2	-3	0	-0.3	0	-1	0	
0.7 1.4 1.9 0.012 0.015	2.1	0.015	0.012	1.9	1.4				0.7				
1.1 1.9 1.9 0.011 0.011	1.9	0.011	0.011	1.9	1.9	[1.1				

cor-	treatment
nea	en eannenn E
1	
2	MEM
3	
mean	
±S.D.	
± 3.0.	
. 1	
10	compound no.
11	16
12	
13	concentration
	[]
14	100%
15	
mean	
11 I M 2 1	
± S.D.	

CALIBRATION									
Filter	Holder	Opacity							
paper	24.283 41.214 12.214								
-		0							
1	В	75							
	A	- 7 5							
2	В	158							
	A	-168							
3	В	253							
	A	-260							

Data sheet

Lab. no. 09

Name: Ph. Vanparys

fango

Signature:

 Date:
 26 Mar 92

 Experiment no.
 9

 Compound of the same pair no.

19

cor- nea	treatment	o	pactity	at 10 m	in		opacity	at 120	min	correc.	Permeabil	ity (OD) correc.	in-vitro score
1		_C1	0	0	0.0	C1	-1	0	-0.5		0.000		-0.5
2	,МЕМ	0	C2	1	0.5	• 1	C2	2	1.5		0.005		1.6
3		0	-1	С3	-0.5	0	-2	СЗ	-1.0		0.038		-0.4
mean					0.0				0.0		0.014		0.2
± S.D.					0.5				1.3		0.021		1.2
4	compound no.	31	31	32	31.3	35	34	36	35.0	35.0	0.394	0.380	40.7
5	17	32	31	32	31.7	34	32	34	33.3	33.3	0.520	0.506	40.9
6		27	26	28	27.0	31	30	32	31.0	31.0	0.305	0.291	35.4
7	concentration	32	31	32	31.7	32	30	33	31.7	31.7	0.761	0.747	42.9
8	100%	39	38	40	39.0	40	38	41	39.7	39.7	0.735	0.721	50.5
9		33	32	34	33.0	35	33	36	34.7	34.7	0.340	0.326	39.6
mean					32.3				34.2	34.2	0.509	0.495	41.6
± S.D.					3.9				3.1	3.1	0.199	0.199	5.0

cor-	treatment	CA	IBRATION	
nea	i i i i i i i i i i i i i i i i i i i	Filter	Holder	Opacity
1		paper		
2	MEM	-		0
3		1	В	75
mean			A	- 7 5
± S.D.		2	В	158
			A	-166
4	compound no.	3	В	244
5	17		A	-254
6				
7	concentration			
8	100%	■ 44		
9				
mean				
± S.D.				

Data sheet

Name: Ph. Vanparys

Date: 07 May 92 Experiment no. 25

Compound of the same pair rio. 20 + 21

cor- nea	treatment			
1				
2	MEM			
3				
'mean				
± S.D.				

4	compound no.
5	18
6	4.1888
7	concentration
8	20%
9	
mean	
± S.D	

treatment

MEM

cor-

nea 1 2

3 mean ± S.D.

				Signature:	Fan	12	
	opacity	at 240	min	correc.	Permeabil	lity (OD) correc.	in-vitro score
C1	0	0	0.0		0.021		0.3
0 .	C2	0	0.0		0.012		0.2
0	0	СЗ	0.0		0.010		0.1
			0.0		0.014		0.2
			0.0		0.006		0.1
24	24	24	24.0	24.0	0.004	-0.011	23.8
21	21	21	21.0	21.0	0.000	-0.014	20.8
15	16	15	15.3	15.3	0.003	-0.011	15.2
12	12	11	11.7	11.7	0.011	-0.003	11.6
22	22	22	22.0	22.0	0.002	-0.012	21.8
22	22	22	22.0	22.0	0.006	-0.008	21.9
			19.3	19.3	0.004	-0.010	19.2
			4.8	4.8	0.004	0.004	4.7

Signature:

CALIBRATION Filter Holder Opacity paper				
	Holder	Opacity		
-	-	0		
1	В	75		
	А	.75		
2	В	159		
	Α	.170		
3	В	250		
	Α	-260		

4	compound no.
5	18
6	
7	concentration
8	20%
9	
mean	
+50	

Compound 18 was warmed up to 32 °C and stirred on a magnetic stirrer.

• --

EEC VALIDATION OF THE BC0-P ASSAY Lab. no. 09 Data sheet Date: 26 Mar 92 Name: Ph. Vanparys Experiment no. 9 Compound of the same pair no. 17 Signature: 172 opactity at 10 min cortreatment opacity at 120 min Permeability (OD) in-vitro nea correc. correc score C1 0 0 0.0 C1 -0.5 0.000 1 0 -1 -0.5 MEM 2 0 C2 C2 2 1 0.5 1 1.5 0.005 1.6 3 0 -1 СЗ -0.5 0 -2 СЗ -1.0 0.038 -0.4 mean 0.0 0.0 0.014 0.2 0.5 ± S.D. 1.3 0.021 1.2 17 10 18 19 24 23 25 24.0 1.900 1.886 compound no. 18.0 24.0 52.3 11 19 17 16 18 17.0 23 21 24 22.7 22.7 2.288 2.274 56.8 12 15 14 15 14.7 20 18 21 19.7 19.7 1.829 1.815 46.9 13 13 13 20 1.785 1.771 45.9 concentration 14 13.3 20 18 19.3 19.3 100% 14 16 15 16 15.7 21 20 22 21.0 21.0 1.944 1.930 49.9 15 13 12 13 17.0 12.7 17 16 18 17.0 2.157 2.143 49.1 15.2 20.6 1.970 mean 20.6 1.984 50.**2** ± S.D. 2.1 2.5 2.5 0.197 0.197 4.0

cor-	treatment	СА	LIBRATION	
nea		Filter	Holder	Opacity
1		paper		
2	MEM	-	-	0
3		1	В	75
mean			А	- 7 5
± S.D.		2	В	158
			A	-166
10	compound no.	. 3	В	244
11	19		А	-254
12				
13	concentration			
14	100%	•		
15				
mean				
± S.D.				

Data sheet

09 Lab. no.

in-vitro

score

Name: Ph. Vanparys

correc.

Ja

Date: 07 May 92 Experiment no. 25

treatment

ŅЕМ

compound no. 20

concentration

20%

treatment.

MEM

cor-

nea

1 2

3 mean ± S.D.

10

11 12 13

14

15 mean ± S.D.

cor-

nea 1 2

3 mean ± S.D.

Compound of the same pair no. 18 + 21

	opacity	/ at 240	min	correc.	Permeabil	ity (OD) correc
C1	0	0	0.0		0.021	
• 0	C2	0	0.0		0.012	
0	0	C3	0.0		0.010	
			0.0		0.014	
			0.0		0.006	
43	41	41	41.7	41.7	2.110	2.096
33	33	32	32.7	32.7	1 430	1 416

Signature:

32.7	32.7	32	33	33
27.7	27.7	27	28	28
52.0	52.0	51	53	52
36.7	36.7	36	37	37
51.3	51.3	51	52	51
40.3	40.3			
9.9	9.9			

0.021		0.3
0.012		0.2
0.010		0.1
0.014		0.2
0.006		0.1
2.110	2.096	73.1
1.430	1.416	53.9
1.427	1.412	48.9
1.400	1.386	72.8
1.694	1.680	61.9
1.612	1.597	75.3
1.612	1.598	64.3
0.271	0.271	11.2

CALIBRATION			
Filter paper	Holder	Opacity	
-	-	0	
1	В	75	
	A	- 7 5	
2	B	159	
	A	-170	
3	В	250	
	A	-260	

10	compound no.	1
11	20	
12		С
13	concentration	
14	20%	
15		
mean		
+50		

Compound 20 was warmed up to 32 °C en stirred on a magnetic stirrer.

Data sheet

Lab. no. 09

Name: Ph. Vanparys

Date:	18 Jun 92		
Experin	nent no.	40	
Compo	und of the sa	me pair no.	14 + 22

cor- nea	treatment
1	
2	MEM
3	`
mean	
± S.D.	

10	compound no.
11	21
12	a an
13	concentration
14	20%
15	
mean	
± S.D.	

				Signature:	t	supp	
	opacity	at 240	min	correc.	Permeabil	ity (OD) correc.	in-vitro score
C1	0	0	0.0		0.025		0.4
- 1	C2	0	-0.5		0.019		-0.2
0	0	C3	0.0	_	0.018		0.3
			-0.2		0.020		0.1
			0.3		0.004		0.3
10	12	12	11.3	11.5	0.176	0.156	13.8
10	12	12	11.3	11.5	0.113	0.093	12.9
9	10	10	9.7	9.8	0.131	0.110	11.5
10	12	11	11.0	11.2	0.134	0.114	12.9
9	10	10	9.7	9.8	0.165	0.145	12.0
12	13	12	12.3	12.5	0.258	0.237	16.1
			10.9	11.1	0.163	0.143	13.2
			1.0	1.0	0.052	0.052	1.6

cor-	treatment		CAL	IBRATION	
nea			Filter	Holder	Opacity
1			paper		
2	MEM		-		0
3			1	В	75
mean				А	- 75
± S.D.			2	В	158
				A	-170
10	compound no.	ρH: 7.41	3	В	249
11	21			A	-260
12					
13	concentration	Compound No. 21 was washed away 4 times instead of 3 times.			
14	20%		- - •		
15					
mean					
± S.D.	·	· · · · · · · · · · · · · · · · · · ·			

Data sheet

C1

-1

0

opacity at 240 min

0

0

СЗ

0.0

-0.5

0.0 -0.2 0.3

0

C2

0

Lab. no. 09

Name: Ph. Vanparys

Date: 18 Jun 92 Experiment no. 40

treatment

,MEM

Compound of the same pair no. 14 + 21

Signatur	e: I
	1.11
A. P. S. Station of the second	i järj

correc.

 \leq

a

ny

Permeabil	ity (OD) correc.	in-vitro score
0.025		0.4
0.019		-0.2
0.018		0.3
0.020		0.1
0.004		0.3

8	10	9	9.0	9.2	0.113	0.093	10.6
10	11	11	10.7	10.8	0.076	0.056	11.7
12	12	12	12.0	12.2	0.086	0.065	13.1
10	11	11	10.7	10.8	0.059	0.039	11.4
12	13	13	12.7	12.8	0.104	0.083	14.1
9	9	10	9.3	9.5	0.546	0.526	17.4
			10.7	10.9	0.164	0.144	13.0
			1.4	1.4	0.188	0.188	2.5

mean	
± S.D.	
16	compound no.
17	22
18	
19	concentration
20	20%
21	
mean	
± S.D.	

cor-

nea

1

2

3

cor-	treatment		CAL	IBRATION	
nea	*		Filter	Holder	Opacity
1			paper		
2	MEM		-		0
3			1	В	75
mean				A	· 75
± S.D.			2	В	158
r				A	-170
16	compound no.	pH: 7.88	3	В	249
17	22			А	-260
18					
19	concentration				
20	20%	-	•		
21					
mean					
± S.O.					

Data sheet

Lab. no. 09

Name: Ph. Vanparys

m

For

Signature:

 Date:
 08 May 92

 Experiment no.
 26

treatment

MEM

compound no.

concentration.

2:0%

cor-

nea

1

3 mean ±S.D.

10

11 12 13

14

15 mean ± S.D.

Compound of the same pair no. 22 + 26

	opacity	at 240	min	E-MARE DE
24.1				correc.
C1	0	0	0.0	
0	C2	0	0.0	
0	0	C3	0.0	
			0.0	
			0.0	

87	89	90	88.7	88.7
85	87	88	86.7	86.7
76	78	80	78.0	78.0
77	79	80	78.7	78.7
85	87	92	88.0	88.0
89	91	94	91.3	91.3
			85.2	85.2
			5.6	5.6

Permeabil	ity (OD) correc.	in-vitro score
0.017		0.3
0.031		0.5
0.012		0.2
0.020		0.3
0.010		0.1
0.192	0.171	91.2
0.201	0.181	89.4
0.163	0.143	80.1
0.230	0.210	81.8
0.120	0.100	89.5
0.138	0.118	93.1
0.174	0.154	87.5
0.041	0.041	5.3

cor-	treatment			CAL	IBRATION	
nea				Filter	Holder	Opacity
1				paper		
2	MEM	Fluorescein leakage into the waterbath		-		0
3				1	В	75
mean			O.D. verşus C1		A	- 7 5
± S.D.			measured 8 min. after	2	В	159
			first measurement.		А	-171
10	compound no.		106	3	В	251
11	23		101		А	-260
12		Compound No. 23 was warmed up to 32°C	92			
13	concentration	and stirred on a magnetic stirrer.	91			
14	20%		107	et 10		
15			104			
mean						
±S.D.						

Data sheet

09 Lab. no.

Name: Ph. Vanparys

Date: 27 Mar 92 Experiment no. 10

treatment

MEM

compound no.

24

cor-

nea 1

2

3 mean ± S.D.

4

5

Compound of the same pair no.

C1

-1 -2

49

ir n	0.	25							Signature:	- for	7.90	_
0	pactity	at 10 m	in			opacity	/ at 120	min	correc.	Permeabil	ity (OD) correc.	in-vitro score
1	1	2	1.5		C1	1	1	1.0		0.005		1.1
1	C2	1	0.0		-2	C2	0	-1.0		0.001		-1.0
2	0	C3	-1.0		-2	0	Сз	-1.0		0.004		-0.9
			0.2					-0.3		0.003		-0.3
			1.3					1.2		0.002		1.2
9	51	52	50.7		47	49	49	48.3	48.7	0.882	0.879	61.8
0	42	43	41.7		38	40	40	39.3	39.7	0.688	0.685	49.9
2	53	55	53.3		51	53	53	52.3	52.7	0.754	0.751	63.9
6	38	39	37.7		36	38	38	37.3	37.7	0.735	0.732	48.6
				ΙE								

6 7 concentration 100% 8 9 mean ± S.D.

40	42	43	41.7	38	40	40	39.3	39.7	0.688	0.685
52	53	55	53.3	51	53	53	52.3	52.7	0.754	0.751
36	38	39	37.7	36	38	38	37.3	37.7	0.735	0.732
56	58	59	57.7	51	53	53	52.3	52.7	1.047	1.044
37	39	40	38.7	37	40	39 ·	38.7	39.0	0.716	0.713
			46.6				44.7	45.1	0.804	0.800
			8.4				7.1	7.1	0.137	0.137

cor-	treatment	CAL	IBRATION
nea	· · · · · · · · · · · · · · · · · · ·	Filter	Holder
1		paper	
2	MEM	-	
3		1	В
mean			A
± \$.D.		2	В
r			A
4	compound no.	3	В
5			A
6			•
7	concentration		
8	100%	-	
9			
mean			
±SD.			

N Opacity 0 75 -75 159 -166 249

68.3

49.7

57.**1**

8.6

·255

Data sheet

Lab. no. 09

Name: Ph. Vanparys

Date: 27 Mar 92 Experiment no. 10

treatment

ӍЕМ

compound no. 25

concentration

100%

cor-

nea

1

2

3

10

11 12

13

14

15

mean

± S.D.

mean ± S.D.

Compound of the same pair

10			_									
pair no).	24]						Signature:	- Ja	170	
0	pactity	1000	in			opacity	r at 120	min	correc.	Permeabil	ity (OD) correc.	in-vitro score
C1	1	2	1.5	С	21	1	1	1.0		0.005		1.1
-1	C2	1	0.0	• -	2	C2	0	-1.0		0.001		-1.0
-2	0	СЗ	-1.0	-	2	0	СЗ	-1.0]	0.004		-0.9
			0.2					-0.3		0.003		-0.3
			1.3					1.2		0.002		1.2
10	11	12	11.0		5	7	7	6.3	6.7	0.221	0.218	9.9
5	7	7	6.3		4	6	5	5.0	5.3	0.162	0.159	7.7
10	12	12	11.3		7	9	9	8.3	8.7	0.199	0.196	116
4	5	6	5.0	2	2	5	4	3.7	4.0	0.294	0.291	8.4
8	10	11	9.7		4	6	6	5.3	5.7	0.233	0.230	91
8	9	10	9.0	6	6	8	8	7.3	7.7	0.137	0.134	9.7
			1	_								

6.0

1.7

6.3

1.7

0.208

0.056

0.204

0.056

9.4

1.4

cor-	treatment	С	LIBRATION	
леа		Filter	Holder	Opacity
1		paper		
2	MEM	-		0
3		1	В	75
mean			А	.75
S.D.		2	В	159
			А	-166
10	compound no.	3	В	249
11	25		A	·255
12				
13	concentration			
14	100%	■ 141		
15				
mean				
±SD.				

8.7

2.6

Data sheet

Lab. no. 09

Name: Ph. Vanparys

Date: 08 May 92 Experiment no. 26 Compound of the same pair no. 22 + 23

cor-	treatment
nea	
1	
2	MEM
3	
mean	
± S.D.	

	nan menana an ine man di sita si
16	compound no.
17	26
18	and the second
19	concentration
20	20%
21	
mean	
± S.D.	

18

19

20

21 mean t S.D

concentration

20%

				Signature.	News -	FE	mp	,
	opacity	at 240	min	correc.	F	Permeabili	ty (OD) correc.	in-vitro score
C1	0	0	0.0			0.017		0.3
• 0	C2	0	0.0			0.031		0.5
0	0	C3	0.0			0.012		0.2
			0.0			0.020		0.3
			0.0			0.010		0.1
1	1	1	1.0	1.0		0.040	0.020	1.3
0	0	0	0.0	0.0		0.035	0.015	0.2
0	0	0	0.0	0.0		0.044	0.023	0.4
1	1	1	1.0	1.0		0.032	0.012	1.2
0	0	0	0.0	0.0		0.035	0.015	0.2
1	1	1	1.0	1.0		0.035	0.014	1.2
			0.5	0.5		0.037	0.016	0.7
			0.5	0.5		0.004	0.004	0.5

Signature:

cor-	treatment		CAL	IBRATION	
nea			Filter	Holder	Opacity
1			paper		
2	MEM	Fluorescein leakage into the waterbath.	-	-	0
3			1	В	75
mean				А	- 7 5
± S.D.			2	В	159
				A	-171
16	compound no.	Compound No. 26 was warmed up to 32°C and stirred on a magnetic stirrer.	3	В	251
17	26			А	-260

Anterior chambers were opened for treatment and washing.

Glass of the anterior chamber No. 17 was found to be cracked at the end of the fluorescein incubation period.

	А	
2	В	
	А	
3	В	
	А	

Data sheet

in-vitro score 0.2 0.3 0.2

Name: Ph. Vanparys

Date:	11 May 92		
Experin	nent no.	27	
202	und of the sar	ne pair no.	28 + 31

cor- nea	treatment
1	
2	,MEM
3	
mean	
± S.D.	

4	compound no.
5	27
6	
7	concentration
8	20%
9	
mean	
± S.D.	

				Signature:	-Ja	my -
	opacity	at 240	min	correc.	Permeabi	lity (OD) correc.
C1	0	0	0.0		0.013	
0	C2	0	0.0		0.020	
0	0	СЗ	0.0		0.010	
			0.0		0.014	
			0.0		0.005	
8	8	8	8.0	8.0	0.023	0.008
4	4	4	4.0	4.0	0.183	0.169
6	6	7	6.3	6.3	0.077	0.063
4	4	4	4.0	4.0	0.028	0.014
4	5	5	4.7	4.7	0.103	0.089
4	4	4	4.0	4.0	0.067	0.053
			5.2	5.2	0.080	0.066

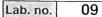
1.7

1.7

Signature:

	0.014		0.2
	0.005		0.1
_			-
	0.023	0.008	8.1
	0.183	0.169	6.5
	0.077	0.063	7.3
	0.028	0.014	4.2
	0.103	0.089	6.0
	0.067	0.053	4.8
	0.080	0.066	6.2
	0.059	0.059	1.5
7			

А


-260

. _.

cor-	treatment		CAL	IBRATION	
nea	~		Filter	Holder	Opacity
1			paper		
2	МЕМ		-	-	0
3		Glass of the anterior chamber No. 3 was found to be cracked	1	В	75
mean		at the end of the fluorescein incubation period.		A	- 7 5
± S .D.			2	В	159
				A	-171
4	compound no.		3	В	249

4	compound no.			3
5	27	Fluorescein leakage from chamber No. 5.		
6		Compound No. 27 was warmed up to 32°C and stirred on a magnetic stirrer.		
7	concentration			
8	:20%		-	
9	n an			
mean				
± S.D.				
		a in the second s		

Data sheet

Name: Ph. Vanparys

Date:	11 May 92]	
Experin	nent no.	27	
Compo	und of the sa	me pair no.	27 + 31

treatment

, MEM

				Signature:	J	ang	>
	opacity	/ at 240	min	correc.	Permeabil	ity (OD) correc.	in-vitro score
C1	0	0	0.0		0.013		0.2
0	C2	0	0.0		0.020		0.3
0	0	C3	0.0		0.010		0.2
			0.0	1	0.014		0.2
			0.0]	0.005		0.1
0	0	0	0.0	0.0	0.016	0.002	0.0
0	0	0	0.0	0.0	0.017	0.002	0.0
0	0	0	0.0	0.0	0.012	-0.002	0.0
0	0	0	0.0	0.0	0.012	-0.003	0.0
1	1	1	1.0	1.0	0.015	0.001	1.0
0	0	0	0.0	0.0	0.010	-0.004	-0.1
			0.2	0.2	0.014	-0.001	0.2
			0.4	0.4	0.003	0.003	0.4

• --

10	compound n	ю.
11	28	
12		
13	concentratio	n
14	20%	
15	N-1	

cor-

nea 1 2

3

cor-	treatment	-	CAL	IBRATION	
nea	~		Filter	Holder	Opacity
1	1		paper		
2	MEM		-		0
3		Glass of the anterior chamber No. 3 was found to be cracked	1	В	75
mean		at the end of the fluorescein incubation period.		A	- 7 5
± S.D.			2	В	159
				A	-171

10	compound no.
11	28
12	
13	concentration
14	20%
15	
mean	
± S.D.	

Compound No. 28 was warmed up to 32°C and stirred on a magnetic stirrer

Fluorescein leakage from chamber No.13.

Compound No. 28 was washed away 6 times instead of 3 times

CAL	IBRATION	
Filter	Holder	Opacity
paper		
-	-	0
1	В	75
· · · · · · · · · · · · · · · · · · ·	A	.75
2	В	159
	А	-171
3	В	249
	A	-260

Data sheet

09 Lab. no.

Name: Ph. Vanparys

Date: 30 Mar 92

8 9 mean t S.D

Experiment no. 11 Compound of the same pair no. 30

											- Jan	120	
cor- nea	treatment	ol	oactity :	at 10 m	n			at 120	min	correc.	Permeabil	ity (OD) correc.	in-vitro score
1		C1	-2	-3	-2.5	C1	-2	-4	-3.0		0.003		-3.0
2	МЕМ	2	C2	0	1.0	• 1	C2	-2	-0.5	Į	0.002		-0.5
3		3	0	C3	1.5	3	1	C3	2.0		0.003		2.0
mean					0.0				-0.5		0.003		-0.5
± S.D.					2.2				2.5		0.001		2.5
4	compound no.	26	24	23	24.3	20	19	17	18.7	19.2	2.585	2.582	57.9
5	29	28	25	24	25.7	34	32	30	32.0	32.5	1 949	1.946	61.7
6		24	22	21	22.3	29	28	26	27.7	28.2	2.268	2.265	62.1
7	concentration	23	21	20	21.3	32	31	29	30.7	31.2	2.688	2.685	71.4
8	100%	22	20	19	20.3	32	30	28	30.0	30.5	2.094	2.091	61.9
9		22	20	19	20.3	26	24	23	24.3	24.8	1.703	1.700	50.3
mean					22.4				27.2	27.7	2.215	2.212	60.9
± S.D.					2.2				5.0	5.0	0.377	0.377	6.9

cor-	treatment	-	CAL	IBRATION	
nea	*		Filter	Holder	Opacity
1			paper		
2	MEM		-		0
3			1	В	75
mean				A	· 75
± S.D.			2	В	157
	*			A	-166
4	compound no.		3	В	247
5	29			А	-256
6		the anterior compartment was rinsed 5-times instead of 3-times			
7	concentration				
8	100%		•		

Signature:

 \square

In

Data sheet

Lab. no. 09

Ph. Vanparys Name:

Date: 30 Mar 92 Experiment no. 11

Compound of the same pair no. 29

100 million 1	
Signature:	
S. 1999	

	anno
J	

cor- nea	treatment	0	pactity	at 10 m	in		ора	acity	at 120	min	correc.	Permeabi	lity (OD) correc.	In-vitro score
1		C1	-2	-3	-2.5	C		-2	-4	-3.0		0.003		-3.0
2	,MEM	2	C2	0	1.0	• 1	0	C2	-2	-0.5		0.002] .	-0.5
3		3	0	C3	1.5	3		1	C3	2.0		0.003		2.0
mean					0.0					-0.5		0.003		-0.5
± S.D.					2.2					2.5		0.001]	2.5
10	compound no.	13	11	10	11.3	13	1	11	9	11.0	11.5	0.507	0.504	19.1
11	30	13	11	10	11.3	16	1	14	12	14.0	14.5	0.398	0.395	20.4
12		11	9	8	9.3	10		8	6	8.0	8.5	0.362	0.359	13.9
13	concentration	11	9	8	9.3	9		7	5	7.0	7.5	0.943	0.940	21.6
14	100%	13	10	10	11.0	15	1	13	11	13.0	13.5	0.338	0.335	18.5
15		13	10	10	11.0	13	1	11	9	11.0	11.5	0.743	0.740	22.6
mean					10.6					10.7	11.2	0.549	0.546	19.4
± S.D.					1.0					2.7	2.7	0.244	0.244	3.1

cor-	treatment
nea	
1	
2	MEM
3	
mean	
± S.D.	
10	compound no.
11	30
12	
13	concentration
14	100%
15	
mean	
± S.D.	

CALIBRATION			
Filter paper	Holder	Opacity	
-		0	
1	В	75	
	A	- 7 5	
2	В	157	
	A	-166	
3	В	247	
	A	-256	

Data sheet

Lab. no. 09

in-vitro

score

Name: Ph. Vanparys

Ja

Permeability (OD)

m

correc.

Signature:

Date: 11 May 92 Experiment no, 27

Compound of the same pair no. 27 +28

cor-	treatment
nea	1. Stevens and
1	
2	ŅЕМ
3	
mean	
± S.D.	

16	compound no.
17	31
18	
19	concentration
20	20%
21	
mean	
± S.D.	

	opacity	at 240	min	
, il han a	T	1	1	correc.
C1	0	0	0.0	
• 0	C2	0	0.0	
0	0	СЗ	0.0	
			0.0	
			0.0]
		07	00.0	00.0

	93	90	87	90.0	90.0
	84	81	78	81.0	81.0
	57	53	51	53.7	53.7
	67	63	61	63.7	63.7
	87	88	88	87.7	87.7
ĺ	78	75	73	75.3	75.3
				75.2	75.2
				14.2	14.2

			and the second se
	0.013		0.2
	0.020		0.3
	0.010		0.2
	0.014		0.2
	0.005		0.1
_			
	0.538	0.523	97.9
	0.439	0.425	87.4
	0.467	0.453	60.5
	0:499	0.485	70.9
	0.209	0.194	90.6
	0.430	0.416	81.6
	0.430	0.416	81.5
	0.116	0.116	13.7

cor-	treatment	19		CAL	IBRATION	
nea				Filter	Holder	Τ
1		Glass of the anterior chamber No. 3 was found to be	cracked	paper		
2	MEM	at the end of the fluorescein incubation period.		-		
3				1	В	
mean			O.D. versus C1		A	
±S.D.			measured 4 min. after	2	В	
			first measurement.		A	
16	compound no.	Compound No. 31 was warmed up to 32°C	82	3	В	
17	31	and stirred on a magnetic stirrer.	73		A	
18			45			
19	concentration		57			
20	20%	Compound No. 31 was washed away 6 times	87	-		
21		instead of 3 times.	69			
mean						
±S.D.						

-		0
1	В	75
	А	.75
2	В	159
	Α	-171
3	В	249
	A	-260

Opacity

Data sheet

Lab. no. 09

Date: 02 Apr 92 Experiment no. 12

Compound of the same pair no.

Name: Ph. Vanparys

Signature:

1

1	\
an	
r ,	65

1)	_
tont	3
prof l	/

cor- nea	treatment	0	pactity	at 10 m	in		13	opacity	at 120	min	correc.	Permeabil	Permeability (OD) correc.			
1		C1	-2	0	-1.0		Ci	-2	0	-1.0		0.001		-1.0		
2	MEM	1	C2	2	1.5	•	1	C2	2	1.5		0.000		1.5		
3		-1	-3	С3	-2.0		-2	-4	C3	-3.0		0.001		-3.0		
mean					-0.5					-0.8		0.001		-0.8		
± S.D.					1.8					2.3		0.001	J	2.2		
10	compound no.	32	30	33	31.7		29	27	31	29.0	29.8	1.628	1.627	54.2		
11	32	23	21	24	22.7		20	19	22	20.3	21.2	1.908	1.907	49.8		
12		23	22	24	23.0		21	19	22	20.7	21.5	1.687	1.686	46.8		
13	concentration	24	23	26	24.3		23	21	25	23.0	23.8	1.395	1.394	44.7		
14	100%	21	20	22	21.0		19	17	20	18.7	19.5	1.012	1.011	34.7		
15		21	19	22	20.7		17	16	19	173	18.2	1.731	1.730	44.1		
mean					23.9					21.5	22.3	1.560	1.560	45.7		
±S.D.					4.0					4.1	4.1	0.316	0.316	6.6		

cor-	treatment	CAL	IBRATION	
nea		Filter	Holder	Opacity
1		paper		
2	MEM			0
3		1	В	75
nean			A	- 75
S.D.		2	В	158
		· · · · · · · · · · · · · · · · · · ·	A	-167
	compound no.	3	В	248
	32		A	-256
2			·	
	concentration			
	100%	•		
пеап				
S.D.				

EEC VALIDATION OF THE BC0-P ASSAY Lab. no. 09 Data sheet Name: Date: 03 Apr 92 Ph. Vanparys Experiment no. 13 b Compound of the same pair no. -Signature: Ja 172 opactity at 10 min cortreatment opacity at 120 min Permeability (OD) in-vitro nea correc. correc. score MEM with C1 -3 -2 -2.5 C1 -2 -2 -2.0 0.002 -2.0 1 2 2 C2 1.0 0 C2 0 0.003 I-Glutamine 0 0.0 0.0 3 Bicarbonate 1 -1 C3 0.0 1 0 СЗ 0.5 0.000 0.5 mean pH 7.4 -0.5 -0.5 0.002 -0.5 0.002 ± S.D. 1.8 1.3 1.3 77 76 1.552 87 83 84 84.7 76 76.3 76.8 1.554 100.1 10 compound no. 33 (2) 0.917 11 74 71 72 72.3 65 63 64 64.0 64.5 0.919 78.3 12 71 71 2.088 83 80 80 81.0 70 70.7 71.2 2.090 102.5 13 81 77 78 78.7 71 70 70 70.3 70.8 1.797 1.795 97.8 concentration 100% 14 87 84 85 85.3 79 77 77 77.7 78.2 1.335 1.333 98.2 15 90 87 87 80.8 2.502 2.500 88.0 81 80 80 80.3 118.3 81.7 73.2 73.7 1.700 1.698 99.2 mean ± S.D. 5.6 6.0 6.0 0.560 0.560 12.8

Opacity

cor-	treatment	CA	LIBRATION	
nea	· · · · ·	Filter	Holder	
1	MEM with	paper		-
2	I-Glutamine	-		
3	Bicarbonate	1	В	
mean	pH 7.4		A	
±S.D.		2	В	
			A	
10	compound no.	3	В	
11	33 (2)		A	
12				
13	concentration			
14	100%	•		
15				
mean				
± 5.0.				

Data sheet

09 Lab. no.

Opacity

Û 75

75

158

167

248

255

Name: Ph. Vanparys

Signature:

Date: 06 Apr 92 Experiment no. 14

Compound of the same pair no. 47

Compo	und of the same	e pair n	0.	47	1					Signature:	ta	May	
cor- nea	treatment	oj	pactity	at 10 m	in		opacity	/ at 120	min	correc.	Permeabil	ity (OD) correc.	in-vitro score
. 1		C1	-1	-1	-1.0	C1	0	0	0.0		0.014		0.2
2	MEM	0	C2	0	0.0	• 0	C2	0	0.0		0.007		0.1
3		0	0	СЗ	0.0	Ö	0	C3	0.0		0.005		0.1
mean					-0.3				0.0		0.009		0.1
± S.D.					0.6				0.0		0.005		0.1
4	compound no.	34	34	35	34.3	28	29	28	28.3	28.3	0.224	0.215	31.6
5	34	33	33	33	33.0	25	26	25	25.3	25.3	0.052	0.043	26.0
6		30	30	30	30.0	20	21	21	20.7	20.7	0.069	0.060	21.6
7	concentration	28	29	29	28.7	23	24	23	23.3	23.3	0.316	0.307	27.9
8	100%	31	32	31	31.3	25	26	25	25.3	25.3	0.032	0.023	25 7
9		26	27	27	26.7	21	21	21	21.0	21.0	0.058	0.049	21.7
mean					30.7				24.0	24.0	0.125	0.117	25.7
± S.D.					2.8				2.9	2.9	0.117	0.117	3.8

cor-	treatment	CA	LIBRATION
nea 1	**************************************	Filter paper	Holder
2	MEM		
3		1	В
mean			A
± S.D.		2	В
	1		A
4	compound no.	3	В
5	34		A
6	a contraction of the second		
7	concentration		
8	100%	ang at	
9			
mean			
± S.D.			

Data sheet

Lab. no. 09

Name:

Date: 12 Jun 92 Experiment no. 38

Compound of the same pair no. 39 + 41

				Signature:	Far	m	 -
	opacity	at 240	min	correc.	Permeabil	ity (OD) correc.	in-vitro score
	0	0	0.0		0.009		0.1
• 0	C2	0	0.0		0.019		0.3
0	0	C3	0.0		0.005		0.1
			0.0		0.011		0.2
			0.0		0.007		0.1
118	119	120	119.0	119.0	0.272	0.261	122.9
132	134	137	134.3	134.3	0.575	0.564	142.8
142	145	145	144.0	144.0	0.062	0.051	144.8
139	140	143	140.7	140.7	0.550	0.539	148.8
141	144	144	143.0	143.0	0.190	0.179	145.7

128.7

134.9

9.7

0.139

0.298

0.216

0.128

0.287

0.216

130.6

139.2

10.2

Opacity

0

75

- 75

159 -170

250

-260

cor- nea	treatment
1	
2	MEM
3	
mean	
± S.D.	

4	compound no.
5	35
6	
7	concentration
8	20%
9	
mean	
± S.D.	

cor-

nea

1 2

3

mean

± S.D.

4

5

6 7

8 9 mean ± S.D.

treatment		CAL	IBRATION
é		Filter paper	Holder
MEM		-	
		1	В
			A
		2	в
······			A
compound no.		3	В
35 concentration 20%	pH: 5.80	-	A
<u> </u>]	1		

128 128 130

128.7

134.9

9.7

Ph. Vanparys

				EEC	VALIDATI	ON OF	THE B	C0-P /	ASSAY				
						Data sh	neet					Lab. no.	09
Date: Experir	16 Apr 92 nent no.	17	1								Name:	Ph. Vanp	arys
the second se	und of the sam	-	0.	37 +	49					Signature:	For	m	
cor- nea	treatment	o	pactity	at 10 m	in		opacity	/ at 120	min	correc.	Permeabil	ity (OD) correc.	in-vitro score
1		C1	1	0	0.5	C1	2	1	1.5		0.006		1.6
2	МЕМ	-2	C2	-1	-1.5	• -3	C2	-2	-2.5		0.010		-2.4
3		0	0	СЗ	0.0	-2	1	C3	-0.5		0.015		-0.3
mean					-0.3				-0.5		0.010		-0.3
± S.D.					1.0				2.0		0.005		2.0
4	compound no.	9	11	9	9.7	10	13	12	11.7	12.2	5.191	5.181	89.9
5	36	10	12	11	11.0	13	16	14	14.3	14.8	5.500	5.490	97.2
6	1915 A 191	9	11	10	10.0	10	13	11	11.3	11.8	6.107	6.097	103.3
7	concentration	12	14	13	13.0	15	18	16	16.3	16.8	5.214	5.204	94.9
8	10%	11	13	12	12.0	14	18	16	16.0	16.5	6.454	6.444	113.2
9		8	10	9	9.0	9	12	10	10.3	10.8	5.905	5.895	99.3
mean					10.8				13.3	13.8	5.729	5.718	99.6
± S.D.					1.5				2.6	2.6	0.511	0.511	8.0

cor-	treatment	С	CALIBRATION			
nea	construction of the second	Filter	Holder	Opacity		
_1		paper	1. 2. 3.	8.22		
2	МЕМ	-	-	0		
3		1	В	75		
mean			А	- 7 5		
± S.D.		2	В	159		
			А	-170		
4	compound no.	3	В	250		
5	36		A	-263		
6						
7	concentration					
8	10%	• •				
9						
mean						
±S.D.						

Data sheet

Lab. no. 09

Name: Ph. Vanparys

Opacity

0

75

·75

159

.170

250

-263

Signature:

Date: 16 Apr 92 Experiment no. 17

Compound of the same pair no. 36 + 49

Compo	und of the same	e pair no).	36 +	- 49						Signature;	Jan	ym	
cor- nea	treatment	0	pactity	at 10 m	in	opacity at 120 min				min	correc.	Permeabil	in-vitro score	
1		C1	1	0	0.5		C1	2	1	1.5		0.006		1.6
2	MEM	-2	C2	-1	-1.5		-3	C2	-2	-2.5		0.010		-2.4
3		0	0	C3	0.0		-2	1	СЗ	0.5		0.015		-0.3
mean					-0.3					-0.5		0.010		-0.3
± S.D.					1.0					2.0		0.005		2.0
10	compound no.	0	1	0	0.3] [1	4	2	2.3	2.8	0.022	0.012	3.0
11	37	-2	0	-1	-1.0		-3	0	-2	-1.7	-1.2	0.012	0.001	-1.1
12	11. A.	-1	0	0	-0.3		-2	1	0	-0.3	0.2	0.016	0.005	0.2
13	concentration	-1	0	0	-0.3		-2	0	-1	-1.0	-0.5	0.013	0.002	-0.5
14	10%	-1	0	0	-0.3		-1	1	0	0.0	0.5	0.011	0.001	0.5
15		-1	0	0	-0.3		-1	1	0	0.0	0.5	0.019	0.009	0.6
mean					-0.3					-0.1	0.4	0.015	0.005	0.5
± S.D.					0.4					1.4	1.4	0.004	0.004	1.4

cor-	treatment	CA	LIBRATION	
nea		Filter	Holder	1
1		paper		
2	MEM	-		
3		1	В	
mean			A	
± S.D.		2	В	
			A	
10	compound no.	3	В	
11	37		A	
12				
13	concentration			
14	10%	-		
15				
mean				
± S.D.				

Data sheet

09 Lab. no.

Name: Ph. Vanparys

Date: 17 Apr 92 Experiment no. 18

cor-

nea

1

2

3

mean

± S.D.

4

5

6

7

8

9

mean

± S.D.

Compound of the same pair no.

40 + 42 Signature: Jan opactity at 10 min opacity at 120 min Permeability (OD) treatment in-vitro correc. correc. score C1 C1 0 0 0.0 0 0 0.0 0.013 0.2 MEM 0 C2 0 0.0 0 C2 0 0.0 0.011 0.2 СЗ 1.0 0 C3 0.0 0.008 1 1 0 0.1 0.011 0.3 0.0 0.2 0.0 0.003 0.6 0.0 0 2 0.012 compound no. 1 1 0.7 2 1 1.7 1.7 0.022 1.8 38 1 0 0.7 0.7 0.001 1 1 1 0 0.7 0.012 0.7 1 0 0.7 0 0.7 0.7 0.011 0.000 0.7 1 1 1 concentration 1 1 0 0.7 2 2 2 2.0 2.0 0.005 -0.006 1.9 10% 1 1 0 0.7 1 0 0.7 0.7 0.003 -0.008 0.6 1 1 1 0 0.7 1 1 0 0.7 0.7 0.002 -0.009 0.5 0.7 0.009 -0.002 1.0 1.1 1.1 0.0 0.008 **0**.7 0.6 0.6 0.008

-100	treatment	CA	LIBRATION	
nea	*	Filter	Holder	Opacity
1		paper		2.83
2	МЕМ		-	0
3		1	В	75
mean			A	- 7 5
± S.D.		2	В	158
	F - 1 - 5 - manufacture		A	.169
4	compound no.	3	в	249

4	compound no.
5	38
6	124.00
7	concentration
8	10%
9	
mean	
± S.D.	

Compound No. 38 was warmed up to 32°C and stirred on a magnetic stirrer

Data sheet

Name: Ph. Vanparys

Date: 12 Jun 92 Experiment no. 38 Compound of the same pair no. 35 + 41

COL-	treatment
nea	and Fall Free
1	
2	MEM
3	
mean	
+ S.D.	

10	compound no.
11	39
12	
13	concentration
14	20%
15	
mean	
±S.D.	

				Signature.	-73	12	
	opacity	at 240	min	correc.	Permeabil	ity (OD) correc.	in-vitro score
C1	0	0	0.0		0.009		0.1
•0	C2	0	0.0		0.019		0.3
0	0	C3	0.0		0.005		0.1
			0.0		0.011		0.2
			0.0		0.007		0.1
3	3	2	2.7	2.7	0.002	-0.009	2.5
3	3	3	3.0	3.0	0.013	0.002	3.0
3	3	3	3.0	3.0	0.002	-0.009	2.9
1	1	1	1.0	1.0	0.018	0.007	1.1
1	1	1	1.0	1.0	0.004	-0.007	0.9
5	5	4	4.7	4.7	0.007	-0.004	4.6
			2.6	2.6	0.008	-0.003	2.5
			1.4	1.4	0.006	0.006	1.4

Signature:

CAL	CALIBRATION										
Filter paper	Holder	Opacity									
-		0									
1	В	75									
	A	- 75									
2	В	159									
	A	-170									
3	В	250									
	А	-260									

cor- nea	treatment
1	
2	МЕМ
3	
mean	
1 S.D.	

10	compound no.	F
11	39	
12		
13	concentration	
14	20%	
15		
mean		
± S.D.		

pH: 2.97

The anterior chamber was opened for washing.

Data sheet

Lab. no. 09

Name: Ph. Vanparys

Date: 17 Apr 92 Experiment no. 18

Compound of the same pair no. 38 + 42

Signature:

Janpy

А

-

-258

cor- nea	treatment	0	pactity	at 10 m	in		opacity at 120 min				correc.	Permeability (OD) correc.		in-vitro score
1		C1	0	0	0.0		C1	0	0	0.0		0.013		0.2
2	МЕМ	0	C2	0	0.0	•	0	C2	0	0.0		0.011		0.2
3		1	1	СЗ	1.0		0	0	C3	0.0		0.008		0.1
mean					0.3					0.0		0.011		0.2
± S.D.					0.6	J				0.0		0.003		0.0
10	compound no.	3	4	3	3.3] [9	9	8	8.7	8.7	3.128	3.117	55.4
11	40	3	3	2	2.7		9	9	8	8.7	8.7	3.775	3.764	65.1
12		5	5	4	4.7		8	9	8	8.3	8.3	3.992	3.981	68.1
13	concentration	2	2	1	1.7		7	7	6	6.7	6.7	4.426	4.415	72.9
14	10%	5	5	4	4.7		7	7	6	6.7	6.7	3.238	3.227	55.1
15		4	4	3	3.7		8	8	7	7.7	7.7	3.422	3.411	58.8
mean					3.4					7.8	7.8	3.664	3.653	62.6
± S.D.					1.2					0.9	0.9	0.496	0.496	7.3

cor-	treatment	· ·	CAL	IBRATION	
nea	-		Filter	Holder	Opacity
1			paper		
2	МЕМ		-	-	0
3			1	В	75
mean				A	- 7 5
± S.D.			2	В	158
				A	-169
10	compound no.	Compound No. 40 was warmed up to 32°C and stirred on a magnetic stirrer.	3	в	249

10	compound no.
11	40
12	21
13	concentration
14	10%
15	
mean	
± S.D.	

Compound No. 40 was warmed up to 32°C and stirred on a magnetic stirrer.

Membranes released from the corneas;

very small air-bubbles behind the corneas.

Data sheet

Lab. no. 09

Name: Ph. Vanparys

Date: 12 Jun 92 Experiment no. 38 Compound of the same pair no.

treatment

МЕМ

cornea 1

> 2 3 mean

35 + 39

				Signature:	- Jan	12	
	opacity	at 240	min	correc.	Permeabil	ity (OD) correc	in-vitro score
C1	0	0	0.0	_	0.009		0.1
• 0	C2	0	0.0		0.019		0.3
0	0	C3	0.0	_	0.005		0.1
			0.0		0.011		0.2
			0.0		0.007]	0.1
53	52	52	52.3	52.3	0.035	0.024	52.7
58	58	58	58.0	58.0	0.052	0.041	58.6
64	64	64	64.0	64.0	0.108	0.097	65.4
54	53	53	53.3	53.3	0.029	0.018	53.6
52	52	51	51.7	51.7	0.096	0.085	52.9
63	63	62	62.7	62.7	0.123	0.112	64.3
			57.0	57.0	0.074	0.063	57.9
			5.4	5.4	0.040	0.040	5.8

Signature:

cor-	treatment		CAL	IBRATION	· .
nea			Filter	Holder	Opacity
1			paper		
2	MEM		-		0
3			1	В	75
mean				A	- 75
± S.D.			2	В	159
				A	-170
16	compound no.	рн : 7.26	3	В	250
17	41			А	-260
18		Compound no. 41 was washed away 4 times.			
19	concentration				
20	20%		•		
21					
mean					
± S.D.		· · ·			

± S.D.	
16	compound no.
17	41
18	
19	concentration
20	20%
21	
-::	

mean ± S.D.

Data sheet

Lab. no. 09

Name: Ph. Vanparys

Date: 17 Apr 92 Experiment no. 18

± S.D.

Compound of the same pair no. 38 + 40

Signature:

0.562

.

tan

0

my

cor- nea	treatment	ot	oactity	at 10 m	in			opacity	at 120	min	correc.	Perm		hy (OD) correc.	in-vitro score
1		C1	0	0	0.0		C1	0	0	0.0		0.0	13		0.2
2	, MEM	0	C2	0	0.0	•	0	C2	0	0.0		0.0	11		0.2
3		1	1	C3	1.0		0	0	C3	0.0		0.0	08		0.1
mean					0.3					0.0		0.0	11		0.2
± S.D.					0.6					0.0	J	0.0	03]	0.0
16	compound no.	12	12	11	11.7] [18	18	17	17.7	17.7	3.1	70	3.159	65.1
17	42	13	13	12	12.7] [19	19	18	18.7	18.7	3.9	68	3.957	78.0
18		11	12	11	11.3] [25	25	24	24.7	24.7	2.6	38	2.627	64.1
19	concentration	8	8	7	7.7		14	14	13	13.7	13.7	3.4	49	3.438	65.2
20	10%	12	12	12	12.0] [19	19	18	18.7	18.7	3.2	82	3.271	67.7
21		12	13	12	12.3		17	17	16	16.7	16.7	4.1	87	4.176	79.3
mean					11.3] `				18.3	18.3	3.4	49	3.438	69.9

3.6

3.6

cor-	treatment		IBRATION
nea		Filter	Holder
1		paper	1.022.55
2	МЕМ	-	-
3		1	В
mean			A
± S.D.		2	В
			A

1.8

16	compound no.
17	42
18	
19	concentration
20	10%
21	
mean	
± S.D.	

Compound No. 42 was warmed up to 32°C and stirred on a magnetic stirrer.

Opacity 0 75 - 75 158 -169 В 248 3 Α -258

0.562

Data sheet

Lab. no. 09

in-vitro

score

Name: Ph. Vanparys

n

correc.

2

Permeability (OD)

Signature:

Date: 15 Jun 92 Experiment no. 39

Compound of the same pair no. 44

	opacity	r at 240	min	14-25
			1	correc.
C1	0	0	0.0	
• 0	C2	0	0.0	
0	0	СЗ	0.0	
			0.0	
			0.0	

86_	86	86	86.0	86.0
71	71	71	71.0	71.0
79	79	79	79.0	79.0
94	94	94	94.0	94.0
91	91	91	91.0	91.0
95	93	93	93.7	93.7
			85.8	85.8
			9.2	9.2

0.036		0.5
0.022		0.3
0.028		0.4
0.029		0.4
0.007		0.1
4.402	4.373	151.6
3.408	3.379	121.7
4.386	4.357	144.4
4.370	4.342	159.1
6.292	6.263	184.9
3.553	3.524	146.5
4.402	4.373	151.4
1.028	1.028	20.7

CALI	BRATION	
Filter paper	Holder	Opacity
-	-	0
1	В	75
	A	.75
2	В	159
	Α	-170
3	В	249
	А	-260

cor-	treatment
nea	
1	
2	ŅЕМ
3	
mean	
± S.D.	
4	compound no.
5	13

-	compound no.
5	43
6	
7	concentration
8	20%
9	
mean	
± \$.0.	

cor-	treatment	CALIBR
nea	·	Filter H
1		paper
2	MEM	-
3		1
mean		
± S.D.		. 2
4	compound no. pH: 8.66	3
5	43	
6		
7	concentration	
8	20%	

9 mean ± S.D.

Data sheet

09 Lab. no.

in-vitro score 0.5 0.3 0.4 0.4 0.1

> 0.2 2.2 1.5

-1.2 6.2 3.7 **2.1 2.6**

Name: Ph. Vanparys

 Date:
 15 Jun 92

 Experiment no,
 39

 Compound of the same pair no.
 43

cor-	treatment
nea	
1	
2	ŅЕМ
3	
mean	
± S.D.	

10	compound no.
11	44
12	
13	concentration
14	20%
15	
mean	
± S.D.	

mean ± S.D.

i.				Signature:	to	m
	opacity	at 240	min	correc.	Permeabil	ity (OD) correc.
C1	0	0	0.0		0.036	
• 0	C2	0	0.0		0.022	
0	0	C3	0.0		0.028	
			0.0		0.029	
			0.0		0.007	
0	0	0	0.0	0.0	0.045	0.016
2	2	2	2.0	2.0	0.043	0.014
1	1	1	1.0	1.0	0.064	0.036
-1	-2	-2	-1 .7	-1.7	0.062	0.034
0	-1	-1	-0.7	-0.7	0.485	0.457
4	3	3	3.3	3.3	0.055	0.026
			0.7	0.7	0.126	0.097
			1.8	1.8	0.176	0.176

CAL	CALIBRATION						
Filter paper	Holder	Opacity					
-	-	0					
1	В	75					
	А	- 7 5					
2	В	159					
	A	-170					
3	В	249					
	A	-260					

cor- nea	treatment	
1		
2	MEM	
3		
mean t S.D.	1	
I J .U.]	
10	compound no.	
11	44	
12		
13	concentration	
14	20%	
15		

Data sheet

Lab. no. 09

Name: Ph. Vanparys

Date: 21 Apr 92 Experiment no. 19

treatment

cor-

nea

Compound of the same pair no. 46

opactity at 10 min

Signature: in

correc.

ang	
Permeability (OD)	in-vitro
correc.	score

1		C1	0	0	0.0	C1	-1	0	-0.5		0.012		-0.3
2	МЕМ	0	C2	0	0.0	• 1	C2	1	1.0		0.009		1.1
3		0	0	C3	0.0	0	-1	C3	-0.5		0.015		-0.3
méan					0.0				0.0		0.012		0.2
±S.D.					0.0				0.9		0.003		0.8
4	compound no.	52	52	54	52.7	84	83	84	83.7	83.7	6.949	6.937	187.7
5	45	57	58	59	58.0	88	87	8 8	87.7	87.7	4.728	4.716	158.4
6		54	55	56	55.0	86	85	8 6	85.7	85.7	4.464	4.452	152.5
7	concentration	50	50	51	50.3	84	83	84	83.7	83.7	5.923	5.911	172.3
8	10%	47	47	48	47.3	79	78	80	79.0	79.0	4.781	4.769	150.5
9		54	55	56	55.0	89	87	88	88.0	88.0	5.748	5.736	174.0
mean					53.1				84.6	84.6	5.432	5.420	165.9
± S.D.					3.8				3.3	3.3	0.949	0.949	14.5

opacity at 120 min

cor-	treatment	CAL	BRATION	
nea		Filter	Holder	Opacity
1		paper		
2	MEM	-		0
3		1	В	75
mean			Ą	- 7 5
± S.D.		2	В	158
			А	-171
4	compound no.	 3	В	252
5	45		А	-263
6	1.1.1.1.1.1			
7	concentration			
8	10%	-		
9	2012年1月1日			
mean				
±S.D				

EEC VALIDATION OF THE BC0-P ASSAY 09 Lab. no. Data sheet Name: Ph. Vanparys Date: 21 Apr 92 Experiment no. 19 Signature: Compound of the same pair no. 45 amp Ì opacity at 120 min Permeability (OD) in-vitro cortreatment opactity at 10 min correc. score correc. nea C1 -0.5 0.012 -0.3 C1 0 0 0.0 -1 0 1 0.009 0 C2 0 0.0 1 C2 1 1.0 1.1 2 MEM СЗ 0 0 СЗ 0.0 0 -1 -0.5 0.015 -0.3 3 0.012 0.2 0.0 0.0 mean 0.9 0.003 0.8 0.0 ± S.D. 3. 2 3 2.7 2.7 0.014 0.003 2.7 1 1 1 1.0 10 compound no. 4 3.7 3.7 0.005 -0.006 3.6 2 1 1.3 4 3 46 1 11 0.000 5 5 4.7 4.7 0.011 4.7 3 3 3 3.0 4 12 0 0 0 0.0 1 0 1 0.7 0.7 0.016 0.004 0.7 13 concentration 2 1.7 0.020 2.0 10% 2 1.7 0.031 0 0 0.3 1 14 1 0.043 0.032 5.1 3 3.0 5 4 5 4.7 4.7 15 3 3 3.0 3.0 0.020 0.008 3.1 1.4 mean 1.6 1.6 0.014 0.014 1.7 1.3 ± S.D.

cor-	treatment		CAL	IBRATION	
nea	a transfer and t		Filter	Holder	Opacity
1		- All and a second s	paper		
2	мем		-		0
3			1	В	75
mean				A	- 7 5
± S.D.			2	В	158
				А	-171
10	compound no.		3	В	252
11	46			A	-263
12					
13	concentration				
14	10%	-			
15					
mean					
tS.D.					

Data sheet

Lab. no. 09

Opacity

0 75 •75 158 -167

248 255

А

.

Name: Ph. Vanparys

Signature:

Date: 06 Apr 92 Experiment no, 14

Compound of the same pair no. 34

cor- nea	treatment	ol	pactity	at 10 m	in		opacity	at 120	min	correc.	Permeabil	ity (OD) correc.	in-vitro score
1		C1	-1	-1	-1.0	C1	0	0	0.0		0.014		0.2
2	MEM	0	C2	0	0.0	• 0	C2	0	0.0		0.007		0.1
3	-	0	0	СЗ	0.0	0	0	C3	0.0		0.005		0.1
mean	-				-0.3				0.0		0.009		0.1
+ S.D.					0.6				0.0	J	0.005		0.1
10	compound no.	4	4	4	4.0	6	6	6	6.0	6.0	6.160	6.151	98.3
11	47	5	6	6	5.7	11	12	11	11.3	11.3	4.200	4.191	74.2
12		3	4	3	3.3	6	7	6	6.3	6.3	4.500	4.491	73.7
13	concentration	4	5	5	4.7	7	7	7	7.0	7.0	7.760	7.751	123.3
14	100%	2	2	2	2.0	8	9	8	8.3	8.3	4.520	4.511	76.0
15		4	5	5	4.7	7	8	7	7.3	7.3	6.280	6.271	101.4
mean					4.1				7.7	7.7	5.570	5.561	91.1
± S.D.					1.3				1.9	1.9	1.398	1.398	20.0

cor-	treatment	CA	LIBRATION	
nea 1		Filter paper	Holder	
2	MEM			
3		1	В	
mean			A	
± S.D.		2	В	
			A	
10	compound no.	3	В	

10	compound no.
11	47
12	
13	concentration
14	100%
15	
mean	
± S.D.	

Na-fluorescein concentration in posterior compartment diluted with a factor 4. The OD values were multiplied with 4 to obtain the final OD value indicated in the table.


				EEC	VALIDAT	ON OF	THE B	C0-P /	ASSAY				
				1		Data sh	eet					Lab. no,	09
Date: Experir	13 Apr 92 ment no.	16				REPO Exf	FAT	oF			Name:	Ph. Vanpa	rys
Сотро	und of the same	51 +	- 52	Exf	. NR.	15		Signature:	Fo	my			
cor- nea	treatment	ol	pactity	at 10 m	ìn		opacity	at 120	min	correc.	Permeabil	ity (OD) correc.	in-vitro score
1		C1	-1	0	-0.5	C1	-1	0	-0.5		0.009		-0.4
2	МЕМ	0	C2	1	0.5	• 0	C2	1	0.5		0.009		0.6
3	;	0	-1	Сз	-0.5	-1	-2	СЗ	-1.5		0.010		-1.4
mean					-0.2				-0.5		0.009		-0.4
± S.D.					0.6				1.0		0.001		1.0
16	compound no.	63	62	63	62.7	80	80	81	80.3	80.8	3.963	3.954	140.1
17	48 (2)	57	57	58	57.3	76	75	76	75.7	76.2	5.402	5.393	157.1
18		52	52	53	52.3	70	69	70	69.7	70.2	4.382	4.373	135.8
19	concentration	57	57	59	57.7	75	74	76	75.0	75.5	3.912	3.903	134.0
20	100%	59	59	60	59.3	80	79	81	80.0	80.5	4.090	4.081	141.7
21		58	57	59	58.0	76	75	77	76.0	76.5	4.350	4.341	141.6
mean					57.9				76.1	76.6	4.350	4.341	141.7
± S.D.					3.4]			3.9	3.9	0.551	0.551	8.2

-100	treatment	CA	IBRATION	
nea		Filter	Holder	Opacity
1		paper		
2	MEM	-	-	0
3		1	В	75
mean			A	- 7 5
± S.D.		2	В	158
			A	-168
16	compound no.	3	В	249
17	48 (2)		Α	-259
.18				
19	concentration			
20	100%	-		
21				
mean				
± S.D.			-	

•

.

				EEC	VALIDAT	ION OF	THE B	CO-P	ASSAY				
						Data sl	neet]			Lab. no.	09
	16 Apr 92 ment no. und of the same	17 pair no] o.	36 -	- 37	Ru Ex	PER P. N	-T 0 R. 1	5 5	Signature:	Name:	Ph. Vanpa	arys
cor- nea	treatment	o	pactity	at 10 m	in		opacity	y at 120	min	correc.	Permeabil	ity (OD) correc.	in-vitro score
1		C1	1	0	0.5	C1	2	1	1.5	<u> </u>	0.006		1.6
2	МЕМ	-2	C2	-1	-1.5	• -3	C2	-2	-2.5		0.010]	-2.4
3		0	0	Сз	0.0	-2	1	C3	-0.5]	0.015]	-0.3
mean					-0.3				-0.5		0.010		-0.3
± S.D.					1.0				2.0		0.005	J	2.0
16	compound no.	21	24	23	22.7	30.	34	32	32.0	32.5	4.517	4.507	100.1
17	49 (2)	23	25	24	24.0	29	33	30	30.7	31.2	4.129	4.119	92.9
18		29	31	30	30.0	33	36	34	34.3	34.8	6.519	6.509	132.5
19	concentration	18	20	19	19.0	23	27	25	25.0	25.5	3.785	3.775	82.1
20	100%	24	27	26	25.7	31	35	31	32.3	32.8	3.074	3.064	78.8
21		22	24	23	23.0	28	31	29	29.3	29.8	2.750	2.740	70.9
mean					24.1				30.6	31.1	4.129	4.119	92.9
± S.D.				i	3.6				3.2	3.2	1.341	1.341	22.0

EEC VALIDATION OF THE BC0-P ASSAY 09 Lab. no. Data sheet Date: 22 Jun 92 Name: Ph. Vanparys Experiment no. 41 Compound of the same pair no. Signature: Jung) coropactity at 10 min opacity at 120 min treatment Permeability (OD) in-vitro correc. nea correc. score C1 0 0.0 C1 0 0 1 0 0.0 0.005 0.1 2 MEM 0 C2 C2 0 0.0 0 0 0.0 0.009 0.1 3 0 1 СЗ 0.5 0 0 C3 0.0 0.012 0.2 mean 0.2 0.0 0.009 0.1 0.3 ± S.D. 0.0 0.004 0.1 9 11 10 4 compound no. 10.0 15 14 14 14.3 6.268 6.259 14.3 108.2 5 50 12 14 14 13.3 19.3 4.404 20 19 19 19.3 4.413 85.4 6 13 14 13 19.0 13.3 19 19 19 19.0 7.409 7.400 130.0 9 9.3 10.0 7 concentration 10 9 10 10 10 10.0 3.752 3.743 66.2 8 10% 9 10 9 9.3 14 13 13 13.3 13.3 5.552 5.543 96.5 15 9 16 16 15.7 22 21 21 21.3 21.3 7.111 7.102 127.9 mean 11.8 16.2 16.2 5.751 5.742 102.4 ± S.D. 2.6 4.3 4.3 1.462 1.462 24.8

cor-	treatment			CAL	IBRATION	
nea	-			Filter	Holder	Opacity
1				paper	12012 (.e. 10)	
2	MEM					
3				1	В	
mean					A	
± S.D.				2	В	
					A	
4	compound no.	pH: 9.06		3	В	
5	50				A	
6			(
7	concentration	Cornea no. 7 with transparant area in the middle.				
8	10%			- ·		
9						

9 mean ±S.D.

Data sheet

C1

- 1

47.

43

40

42

42

49

. 0 opacity at 120 min

0

1

C3

48

44

41

42

43

50

-1

C2

-2

46

43

40

41

42

48

09 Lab. no.

Name: Ph. Vanparys

Date: 13 Apr 92 Experiment no. 16

treatment

MEM

compound no.

51

concentration

100%

cor-

nea

1

2

3

4

5

6

7

8

9

mean

± S.D.

mean ± S.D.

Compound of the same pair no. 48 + 52

C1

0

0

41

37

36

36

38

47

opactity at 10 min

0

1

C3

42

38

37

37

39

47

-1

C2

-1

41

37

35

36

38

46

-0.5

0.5

-0.5

-0.2

0.6

41.3

37.3

36.0

36.3

38.3

46.7

39.3

4.1

Signature:

ſ

correc.

47.5

43.8

40.8

42.2

42.8

49.5

44.4

3.3

-0.5

0.5

-1.5

-0.5

1.0

47.0

43.3

40.3

41.7

42.3

49.0

43.9

3.3

Janpy

Permeabil	ity (OD) correc.	in-vitro score
0.009		-0.4
0.009		0.6
0.010		-1.4
0.009		-0.4
0.001]	1.0
5 15 4	5 145	1047

5.154	5.145	124.7
3.662	3.653	98.6
3.053	3.044	86.5
3.216	3.207	90.3
4.318	4.309	107.5
4.742	4.733	120.5
4.024	4.015	104.7
0.849	0.849	15.7

cor-	treatment	CA	LIBRATION	
nea	×	Filter	Holder	Opacity
1		paper		
2	MEM			0
3		1	В	75
mean			A	- 7 5
± S.D.			В	158
			A	-168
4	compound no.	3	В	249
5	51		A	- 259
6				
7	concentration			
8	100%	-		
9				
mean				
+ S.D.				

EEC VALIDATION OF THE BC0-P ASSAY Lab. no. 09 Data sheet Date: Name: Ph. Vanparys 13 Apr 92 Experiment no. 16 Fa Compound of the same pair no. 48 + 51 Signature: 17 cortreatment opactity at 10 min opacity at 120 min Permeability (OD) in-vitro correc. nea correc. SCORE 1 C1 -1 0 -0.5 C1 0 -0.5 0.009 -0.4 -1 MEM 2 0 C2 0.5 0 C2 1 0.5 0.009 0.6 1 3 0 - 1 СЗ -0.5 -1 -2 C3 -1.5 0.010 -1.4 mean -0.2 -0.5 0.009 -0.4 ± S.D. 0.001 1.0 0.6 1.0 2 3.6 10 0 1.0 3 2 3 2.7 3.2 0.038 0.029 compound no. 1 52 2 3 2.0 3 2 3 3.2 0.039 0.030 11 1 2.7 3.6 12 0 0 0.3 1 2 1.3 1.8 0.025 0.016 2.1 1 1 13 concentration 1 0 1 0.7 3 2 4 3.0 3.5 0.052 0.043 4.1 100% 14 1 0 1 0.7 2 2 3 2.3 2.8 0.027 0.018 3.1 15 0 0 0 1 1.2 0.0 0 1 0.7 0.025 0.016 1.4 0.8 2.1 2.6 0.034 0.025 mean 3.0 0.7 ± S.D. 0.9 0.9 0.011 0.011 1.0

cor-	treatment	CAL	IBRATION	
nea		Filter	Holder	Opacity
1		paper	117.50	
2	MEM			0
3		1	В	75
mean			A	- 7 5
± S.D.		2	В	158
			A	-168
10	compound no.	3	В	249
11	52		A	-259
12				
13	concentration			
14	100%	•		
15				
mean				
±S.D.				