

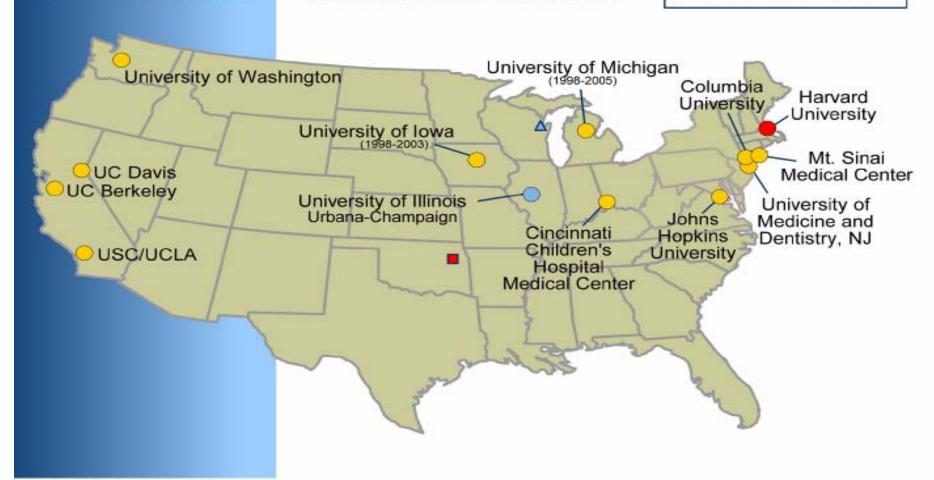
Children's Environmental Health: Research Complimentary to the NCS

Gwen W. Collman, Ph.D.

Chief, Susceptibility and Population Health Branch
Division of Extramural Research and Training
National Institute of Environmental Health Sciences
November 30, 2005

Research Complementary to the National Children's Study

- Long term health effects of lead, mercury, and air pollution
- Community Based Participatory Research
- Environmental Justice
- Centers for Children's Environmental Health and Disease Prevention Program


NIEHS/EPA Centers for Children's Environmental Health and Disease Prevention Research

Children's Environmental Health Center Locations

Study Sites Separate from Center Locations

Harvard Study Site: Tar Creek, Oklahoma

Illinois Study Site: Green Bay, Wisconsin

Purpose of the NIEHS/EPA Centers for Children's Environmental Health and Disease Prevention Program

- Laboratory + population health effects + exposure assessment research
- Development & test risk management strategies in order protect the health of children
- Promote multidisciplinary interactions among basic, clinical, & behavioral scientists & develop a future workforce

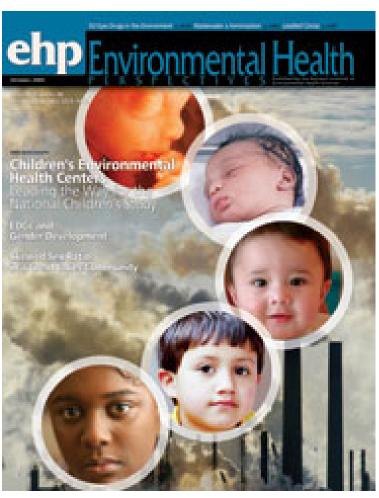
- Accelerate translation of basic research findings into clinical or intervention strategies to reduce exposures and health outcomes in young children
- Establishment of a national network of children's environmental health researchers

Questions being addressed in Children's Centers

- Respiratory Disease
- Does air pollution cause new cases of asthma, exacerbate existing disease, and affect lung growth and function?
- How do genetic polymorphisms play a role in response to air pollution and susceptibility to asthma?
- Can we reduce allergens exposures in homes to prevent recurrent episodes of asthma?

Questions being addressed in Children's Centers

- Growth and Development
- How does exposure to pesticides, metals and other endocrine disrupting chemicals affect growth, development, learning and behavior, in utero, in young children, and through adolescence?
- Are there susceptible sub-populations? Are the affects the same in urban and rural populations?
- How does the social environment modify these risks?
- Can we use interventions such as integrated pest management, & breaking the take home pathway to reduce exposures to children?


Questions being addresses in the Children's Centers

Autism

- What are the environmental and genetic risk factors for developing autism?
- How do they affect the various phenotypes of autism?
- How do chemicals/exposures in the environment affect the critical cells of the brain that are central to the development of autism?
- Using animal models that show characteristics of autism spectrum diseases, what can we learn about the impact of chemicals on behavior, language and learning?

Lessons learned from the NIEHS/EPA Children's Environmental Health Centers (EHP, October 2005)

- TIME to assess the full range of developmental consequences to environmental chemicals and other exposures
- OUTCOME ASSESSMENT in broad and narrow in scope
- EXPOSURE ASSESSMENTenvironmental and personal measures working in concert with observational and ecologic approaches
- QA/QC
- COMMUNITY PARTICIPATION is paramount to success
- ETHICS

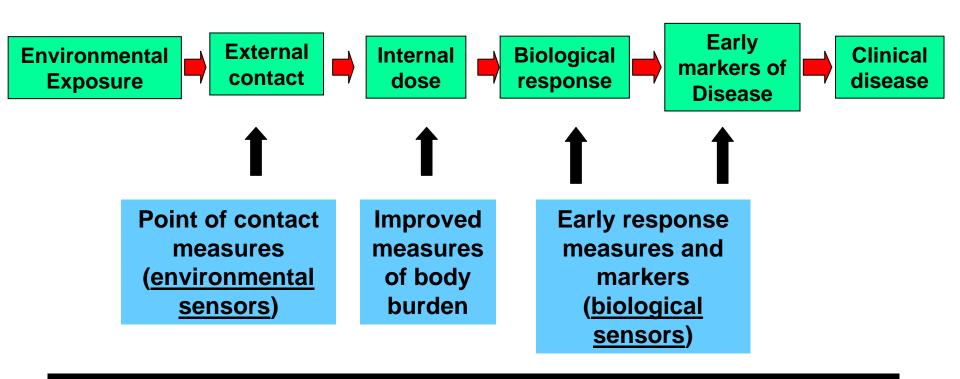
Focus on exposure assessment in the Children's Centers

- Environmental assessment
 - Home, School, Car, Neighborhood
- Geographic Information System
- Questionnaire assessment
- Biomonitoring
 - Biospecimens collected from mother and child

Biomarker research within the Children's Centers

- Maternal assessments-Personal air sampling, biomonitoring
- Assessment of children's body burden through measurements in biospecimens collected at critical windows of exposure and development
- New methods developed meconium, phthalates, urinary metabolites of organophosphate pesticides

- Mother child comparisons
 - Cord blood, other samples
- Integrated biomarkers
 - PAH- DNA adducts
- Comparison across a suite of biomarkers; across time; across geography



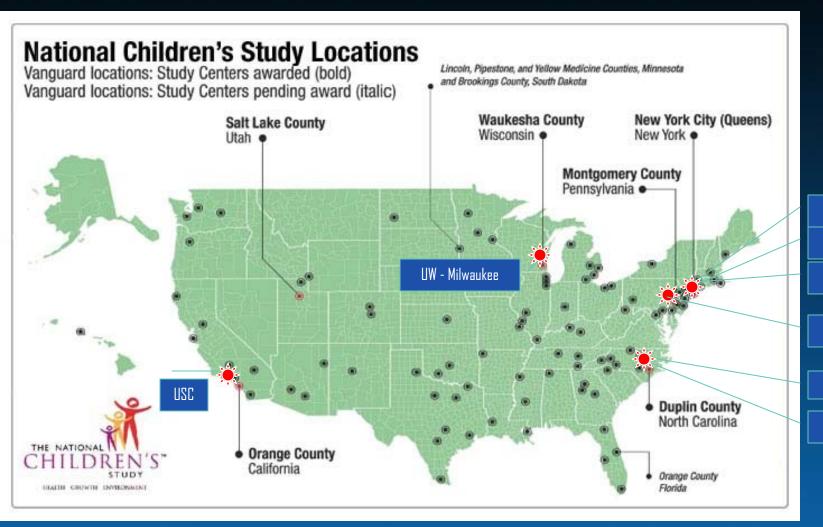
Possible strategies for improvements in exposure assessment

- Improve integration with biologic response
- Improved personal monitoring using real time monitoring
- Use of new technologies that define response on the cellular and molecular level
 - Genomic signatures
 - ID of proteomic responses
 - Metabolomic patterns of exposure by-products
- Better defined time course of exposure response
- Increased statistical precision

More Precise Markers of Exposure

Links personal exposures to body burden to biological response

NIEHS new initiative – Exposure Biology

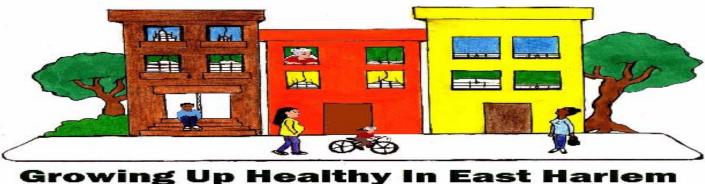

- New technology to develop biomarkers of cellular response to environmental exposures
 - toxicogenomics, proteomics, metabolomics
- Are there exposure specific signatures?
 - Aging, acute vs. chronic exposure scenarios, dose, route of exposure
 - Are they tissue specific? Can they be measured in peripheral blood or other available biospecimens?
 - Are they affected by disease pathology?

Exposure Biology Initiative

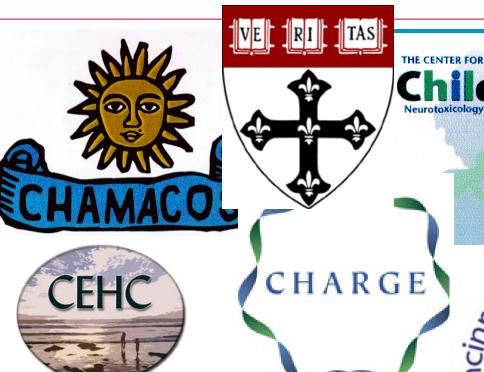
- Develop the biomarkers in animals and humans to compare and contrast response
- Focus on well characterized populations with stored biospecimens to develop and validate exposure -response markers
 - Compare with questionnaire assessment, body burden measures, and other currently used biomarkers

Columbia

Mt. Sinai


UMDNJ

U. Penn.


Duke

UNC - Chapel Hill

Center for Child Environmental Health Risks Resea

Department of Environmental & Occupational Health Sciences
University of Washington