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An important component of brain mapping is an understanding of the
relationships between neuroanatomic structures, as well as the nature
of shared causal factors. Prior twin studies have demonstrated that
much of individual differences in human anatomy are caused by
genetic differences, but information is limited on whether different
structures share common genetic factors. We performed a multivariate
statistical genetic analysis on volumetric MRI measures (cerebrum,
cerebellum, lateral ventricles, corpus callosum, thalamus, and basal
ganglia) from a pediatric sample of 326 twins and 158 singletons. Our
results suggest that the great majority of variability in cerebrum,
cerebellum, thalamus and basal ganglia is determined by a single
genetic factor. Though most (75%) of the variability in corpus
callosum was explained by additive genetic effects these were largely
independent of other structures. We also observed relatively small but
significant environmental effects common to multiple neuroanatomic
regions, particularly between thalamus, basal ganglia, and lateral
ventricles. These findings are concordant with prior volumetric twin
studies and support radial models of brain evolution.
© 2006 Published by Elsevier Inc.

Introduction

The inception of neuroembryology might be considered to be
when von Baer, over 175 years ago, first observed the neural tube
in a vertebrate species and described its primordial subdivisions
(von Baer, 1828). In the later half of the nineteenth century, Orr
continued this work and detailed the initial segmentation of the
nervous system into structural subunits, coined neuromeres, during
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embryogenesis in reptiles (Orr, 1887). Since these initial
discoveries, neuroembryologists have chronicled the remarkable
anatomical and cellular changes of the brain in great detail.
Somehow, from the relative disorganization of the embryo evolves
structure of extraordinary complexity. Despite its well-documented
developmental sequence and our ever-expanding understanding of
functional neuroanatomy, relatively little is known about the
underlying forces responsible for the creation of the human brain.
Presumably, our brain development is largely preordained by the
genetic program given to us by our parents. Though heroic efforts
in molecular genetics have identified thousands of genes with
expression within the central nervous system (CNS) (Kandel and
Jessl, 2000), attempts to explain normal human variation via
genetic polymorphisms responsible for normal human variation in
CNS structure have thus far had limited success.

The use of twin designs, wed with magnetic resonance imaging
(MRI), provides a powerful non-invasive method to directly estimate
the overall effects of genes and environment on human brain structure
and function. Several previous studies have presented converging
evidence that the predominant sources of variance in brain volumes
are genetic in origin. Most studies performed to date have used small
sample sizes (Bartley et al., 1997; Biondi et al., 1998; Steinmetz et al.,
1995; Tramo et al., 1998), but a few more recent studies on larger
samples have generally confirmed previous results (Baaré et al., 2001;
Pennington et al., 2000). More recent twin designs also have included
dizygotic twins, which enable the parsing of familial similarities into
genetic and shared environmental sources. Though image processing
methodologies differ substantially, univariate studies generally
estimate that genes account for well over half of the variance in most
volumetric regions of interest, particularly of the cerebral cortex. For
example, Barré et al. reported that genes accounted for of 0.90, 0.82,
and 0.88 of the total variance in total brain, gray, and white matter
volumes, respectively, in 112 adult twin pairs (Baaré et al., 2001).
Similarly, measures of the corpus callosum areas reveal heritabilities
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of 0.80 or larger (Pfefferbaum et al., 2000, 2004; Scamvougeras et al.,
2003). In contrast, there is virtually no evidence that environmental
factors shared between twins influence cortical brain volumes
(Pennington et al., 2000; Posthuma et al., 2000), although this may
be obscured by non-additive effects of genes.

The sources of variability of noncortical structures are less well
established, partially due to increased errors in measurement and
partly because they are measured less often and usually in studies
with quite small sample sizes. For example, the most comprehen-
sive parcellation of the brain published in twins thus far was a
study of 10 monozygotic (MZ) and 10 dizygotic (DZ) twin pairs
(Wright et al., 2002). This study estimated heritabilities of 0.60 for
corpus striatum, 0.79 for putamen, and 0.67 for the cerebellum, and
0.00 for the thalamus. These estimates, however, were not
statistically different from zero owed to low statistical power. A
study by White et al. found high interclass correlations in caudate,
putamen, and thalamic volumes in a sample of 12 MZ twins
compared to 12 control subjects (White et al., 2002). The role of
genes in measures of ventricular volumes also has been uncertain.
While the first examination of lateral ventricular volume in twins
suggested high heritability (Reveley et al., 1984), subsequent
investigations have found a more modest role of genes, if any
(Baaré et al., 2001).

Though understanding the genetic epidemiology of individual
brain regions is important in elucidating the biological substrates of
neuroanatomic structure, determining how structures share common
origins is equally vital. As yet, few imaging studies that have
examined structural data in from a multivariate perspective, and with
the exception of a handful of twin studies (Baaré et al., 2001;
Pennington et al., 2000; Posthuma et al., 2000; SAS Institute, 2000;
Wright et al., 2002), those have focused more on psychopathological
disorders with putative disruptions in neural connectivity than on
control populations (Faraone et al., 2003; Herbert et al., 2003; Tien et
al., 1996; Wright et al., 1999). Such a dearth of information from in
vivo structural studies is surprising given the great interest in
functional connectivity and multivariate approaches in functional and
diffusion tensor imaging (Ramnani et al., 2004). Determining typical
patterns of anatomic relatedness, particularly in comparison to
functional models, could be informative in disentangling the relative
contributions of ontogenetic origin, subcranial environment, and
functional connectivity in the development of neuroanatomic regions.

In this article, we attempt to fuse two lines of research, that of
twin studies describing the genetic and environmental substrates of
neuroanatomic endophenotypes with the rather limited literature
examining the relationships between MRI volumetric measure-
ments. Specifically, we employ factor analysis of several large
brain structures (cerebrum, thalamus, lateral ventricles, telence-
phalic subcortical nuclei, corpus callosum, and cerebellum), of
differing ontogenetic origins and diverse functions. Given our
genetically informative sample, we also were able to investigate
whether global factors exert their influence via genetic or non-
genetic mechanisms.

Methods

Sample selection

127 pairs of monozygotic twins (mean age=11.6, SD=3.3; age
range=5.6–18.7; 74 [58%] male, 53 female) and 36 pairs of same-
sex dizygotic twins (mean age=11.0, SD=3.7; age range=5.5–18.2;
18 [60%] male, 12 female) were recruited by means of local and
national advertisements for participation in an ongoing longitudinal
pediatric brain MRI project at the Child Psychiatry Branch of the
National Institute of Mental Health. The sample also included a
group of 158 similarly recruited singletons (mean age=11.3,
SD=3.5; age range=5.2–18.7; 94 [59%] male, 64 female). Though
singletons provide no genetic information, their addition substan-
tially increased the precision of within-individual, cross-region
correlations as well as total variance estimates for the phenotypes
described below.

All subjects were screened via an initial telephone interview,
parent and teacher rating versions of the Child Behavior Checklist
(Achenbach and Ruffle, 2000), and physical and neurological
assessment. Exclusion criteria included psychiatric diagnosis in the
subject or a first-degree relative, and head injury or other
conditions that might have affected gross brain development.

For twin recruitment, advertisements specified that the MRI
study sought twins between the ages of 5 and 18, with no learning
disabilities, neurological problems or behavioral disorders. The
screening process involved phone interviews, behavioral question-
naires mailed to parents and teachers, an in-person clinical interview,
family history assessment, as well as a physical and neurological
exam. Exclusion criteria included having a lifetime history of
physical, neurological, or psychiatric abnormalities, learning
disabilities, or psychiatric illness oneself, or in either one first-
degree relative or more than 20% of second-degree relatives.
Approximately one in four families responding to the ads met
inclusion criteria. Twins were included in the analysis only if
quantifiable MRI scans free from motion or other artifact were
obtained on both twins at the same age.Written assent from the child
and written consent from a parent were obtained for each participant.
The study protocol was approved by the institutional review board of
the National Institute of Mental Health. Zygosity was determined by
DNA analysis of buccal cheek swabs using 9–21 unlinked short
tandem repeat loci for a minimum certainty of 99%, by BRT
Laboratories, Inc. (Baltimore, MD).

Image acquisition

All subjects were scanned on the same GE 1.5 T Signa scanner
using the same three-dimensional spoiled gradient recalled echo in
the steady-state (3D SPGR) imaging protocol (axial slice
thickness=1.5 mm, time to echo=5 ms, repetition time=24 ms,
flip angle=45°, acquisition matrix=192×256, number of excita-
tions=1, and field of view=24 cm). A clinical neuroradiologist
evaluated all scans and no gross abnormalities were reported.

Image processing

Images were analyzed using a previously described voxel-
intensity-based classification of brain tissue into gray matter, white
matter, or cerebrospinal fluid combined with a probabilistic atlas
technique which informs which structure or region the voxel
belongs to, based upon the voxel’s location in standardized
stereotactic space. Briefly, the raw MRI scans were first registered
into standardized stereotaxic space using a linear transformation
(Collins et al., 1994) and corrected for non-uniformity artifacts
(Sled et al., 1998). The registered and corrected volumes were
segmented into gray matter, white matter, cerebrospinal fluid, and
background using a neural net classifier (Zijdenbos et al., 2002).
The tissue classification information was combined with a
probabilistic atlas to provide region of interest measures (Collins
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et al., 1995). The output measures of this process that have shown
high agreement with conventional hand tracing measures, and were
included in this analysis, are the midsagittal area of the corpus
callosum, the gray and white matter volumes of the total cerebrum,
the caudate nucleus, the cerebellum, and the lateral ventricles.

The resultant regions of interest obtained from image
segmentation were gray and white lobar volumes, cerebellum,
thalamus, lateral ventricles, globus pallidus, putamen, caudate
nucleus, and corpus callosum. To make the experiment more
computationally manageable, we chose 6 gross regions of interest
that represent different ontogenetic origins and neurological
functions. Namely, we measured total cerebral volume (sum of
gray plus white lobar volumes), the midsagittal area of the corpus
callosum (CC), lateral ventricles (LV), thalamic nuclei, basal
ganglia (sum of caudate nucleus, globus pallidus, and putamen;
BG), and the total cerebellar volume.

Statistical analyses

Since our structural models assume normally distributed
variables, prior to analyses the distributions of all variables were
inspected for normality. All volumes appeared to be normally
distributed, with the exception of lateral ventricles which had a
leftward skew, caused by several outliers above the bulk of the
distribution. Using SAS, we calculated descriptive statistics for all
regions of interest (SAS Institute, 2000). We also calculated
correlations between all volumes for visual inspection prior to
modeling. Since preliminary simple linear regressions demon-
strated a significant effect of age, race, and sex, we used residuals
from multiple regressions including age sex and race as
explanatory variables. Thus, the resultant partial correlation matrix
represents inter-anatomic relationships after removing the effects of
age, sex, and race.

Raw data were imported into Mx (Neale et al., 1999) for
multivariate genetic analyses. Multivariate approaches enable the
detection of common factors that influence multiple regions
similarly, or alternatively can demonstrate independence of one
structure relative to another. The multivariate approach also
substantially increases power, as the use of inter-structure
correlations provides additional information which improves
statistical precision (Schmitz et al., 1998). The presence of
genetically informative data additionally allows the parsing of
total variance of each structure into contributions from additive
genetic (A), shared environmental (C) and unique environmental
components (E) based on the differences in genetic correlations
between MZ and DZ twins (Neale and Cardon, 1992).

We attempted to model the relationships between structures via
two alternative techniques. In addition to traditional factor analytic
approaches (described below), we also constructed Cholesky
decompositions to calculate descriptive statistics of broad sense
heritability and genetic correlations. In all models, we employed
maximum likelihood (Edwards, 1972) in order to generate the most
probable parameter estimates (i.e., maximum likelihood estimates)
for any given model. All models also included a means component
that regressed out the contributions of sex, age, and race to the
variance in each neuroanatomic region of interest (ROI).

Cholesky decompositions

We used Cholesky factorization to calculate genetic and
environmental correlation matrices, as well as estimates of the
proportion of variance due to genetic (a2), shared environment (c2),
and unique environment (e2). This procedure deconstructs any
n×n-positive definite variance–covariance matrix into an n×n
triangular matrix postmultiplied by its transpose (Neale and
Cardon, 1992), and places few a priori constraints on the fitting
of the data. Since the parameters of a Cholesky decomposition
imply directionality of the latent factors, their direct interpretation
is probably inappropriate for the present data (Loehlin, 1996).
However, the approach permits unbiased estimation of inter-
structure correlations, parceled into relationships of either genetic
or environmental origin (Crawford and DeFries, 1978). The
genetic correlation, which measures the degree of overlap between
the genetic forces on two phenotypes, can be written mathema-
tically as:

rx;y ¼ AxyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðAx*AyÞ
p

where Axy is the genetic covariance between structures x and y, and
Ax and Ay represent the proportion of the variance due to genetic
factors for x and y, respectively (Falconer and Mackay, 1996).
Similar calculations can be used to measure the role of shared and
unique environment. We also determined the proportion of genetic,
shared environmental, and unique environmental covariance
relative to the total phenotypic variance. Finally, we calculated
eigenvalues from standardized covariance matrices (i.e., correlation
matrixes) for these analyses for A, C, and E separately, to estimate
the best number of latent factors to employ in subsequent analyses.

Factor analyses

A common goal of multivariate analysis is to extract latent
constructs that explain the covariance between observed measures.
Ideally, the relationship between a large set of variables can be
accounted for by a relatively small number of factors. In our
analyses, we tested two families of models; that of the independent
pathway (i.e., biometric) and the common pathway (i.e., psycho-
metric) models (Kendler et al., 1987; Mcardle and Goldsmith,
1990; Neale and Cardon, 1992). Independent pathways models
(IPM) allow genetic, shared environmental, and unique environ-
mental common factors to affect observed variables directly, while
in common pathways models (CPM) these factors exert their
influence through a shared, latent phenotype (Fig. 1). In both
models, each observed variable is permitted a residual variance
term, which can also be parsed into A, C, and E (Evans et al.,
2002). Though IPMs are conceptually simpler, CPMs require fewer
parameters and are thus favored by the rules of parsimony, all
things being equal. However, in the case of neuroanatomic data, a
biometric structure would seem the superior hypothesis, as genetic
and environmental factors would be expected to impact brain
volumes directly via independent channels.

In addition to models with a single common factor for each of
the three etiological sources (A, C, and E), we also constructed
more complex models which allowed for 2 common factors for
each variance component (Fig. 2); two-factor solutions were
suggested by a scree plot of eigenvalues from the Cholesky
decomposition. The models are near the upper limit of mathema-
tical feasibility (i.e., they are close to being underidentified) for a
six-variable multivariate analysis. We designated the most complex
of these the 2-2-2 IPM and 2-2-2 CPM models since they each
contain 2 additive genetic, 2 shared environmental, and 2 unique
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environmental common factors. For models with 2 common factors
of identical etiology (i.e., genetic), we arbitrarily removed one path
from the second factor to an observed variable (cerebrum) in order
to fix the rotational indeterminacy inherent in models with two or
more factors.

Under certain regularity conditions, the difference in −2 times
the log likelihood (−2LL) of any model and a nested submodel
follows a χ2 distribution with degrees of freedom equal to the
difference in the number of parameters. Therefore, we could
directly test whether simpler models fit the data significantly
worse than more complex versions. In particular, we were
interested in determining whether shared environmental factors
are important in explaining covariance, since prior univariate
analyses would suggest that the shared environment has little to no
impact on the variability of most brain regions. For all
comparisons, we also calculated Akaike’s information criteria
(AIC), as χ2−2*df, which rewards parsimony in addition to
goodness of fit (Akaike, 1987); negative values imply that the
nested submodel is a more parsimonious fit than the full compari-
son model.

From the best-fit model (2-0-2 IPM), we standardized
parameter estimates to facilitate interpretation and performed
orthogonal rotation via the VARIMAX procedure in SAS (SAS
Institute, 2000). In order to generate likelihood-based confidence
intervals on the rotated parameter estimates (Neale and Miller,
1997), we reran the best-fit model in Mx, but freed the two paths
Fig. 1. Two putative factor models for explaining covariance in neuroanatomic da
directly influence the observed variables, the common pathways model (B) their effe
means of zero and variances of one. For both models, residual variance can be parti
univariate analyses run in parallel.
previously fixed to zero and instead fixed the rotated factor
loadings of the 2nd A and E common factors that were closest to
zero. As an alternative and perhaps more familiar metric of the
statistical significance of individual parameters, we also attempted
to drop each parameter from the model and test whether the fit to
the data deteriorated significantly. This approach is therefore
completely analogous to tests of significance of individual beta
weights in a multiple regression model.

Gray/white cerebral comparisons

Our primary analyses combined cerebral gray and white matter
volumes into a single variable, since we had no tissue-specific
information for non-cerebral structures. However, since other
studies have analyzed gray/white differences (Baaré et al., 2001),
we calculated genetic and environmental correlations from a
Cholesky decomposition that split total cerebral volume into gray
and white matter in order to facilitate comparisons between
studies.

Covarying for total brain volume

To investigate relative differences in inter-structure covariance
rather than absolute differences, we repeated the factor analysis
procedure described above, but included total brain volume (TBV)
as a regressor and repeated the analyses. With the exception of
ta. While the independent pathways model (A) allow genes A, C, and E to
cts are mediated via a shared latent variable. A, C, and E are modeled to have
tioned as well; thus if common factors are removed, both models collapse to



Fig. 2. Examples of expanded models allowing for multiple factors for each variance component. The 2-2-2 IPM (A) represented the most complex model that
was fit to the data; all other models were nested submodels of the 2-2-2 IPM. Dotted lines represent parameters that were fixed to zero in order to make factors
orthogonal. The 2-0-2 IPM (B) represents the best-fit model, both by χ2 tests and AIC.

Table 1
Descriptive statistics for all anatomic structures analyzed in the present
study, split by zygosity status

MZ (N=180) DZ (N=72) Singletons
(N=158)

Mean SD Mean SD Mean SD

Total cerebrum 1104.59 107.03 1111.63 100.62 1106.06 111.72
Lateral ventricles 11.71 6.13 10.80 5.21 10.90 6.01
Corpus callosum 529.99 69.48 527.50 62.32 530.83 81.53
Thalamus 17.22 1.35 17.21 1.38 17.50 1.55
Basal ganglia 25.04 2.17 25.47 2.17 25.67 2.41
Cerebellum 131.43 11.79 129.84 12.06 129.83 12.26
Cerebral gray

matter
725.07 68.09 730.88 60.66 726.05 75.14

Cerebral white
matter

379.52 49.79 380.75 48.09 380.01 51.18

Mid-sagittal corpus callosum is measured in square millimeters, while the
volumetric measures are in cubic centimeters.
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adjusting for TBV, our mathematical modeling approach was
identical to that described previously.

Results

Descriptive statistics

Means and standard deviations for all measures are given in
Table 1. Singletons, MZs, and DZs had comparable means and
variances for all structures measured. A cross-twin correlation
matrix for both MZ and DZ groups is provided in Table 2. In
general, within-structure, cross-twin correlations were substantially
higher in the MZ than in the DZ twins, suggesting a strong role of
genetic factors on the variance in brain volumes. The role of genetic
factors in the cerebellum appeared to be more modest, and even less
prominent for the lateral ventricles. When examining within-
individual, cross-structure correlations the cerebrum, thalamus, and
basal ganglia were highly intercorrelated. Correlations with the
lateral ventricles were low; indeed a small negative correlation was
observed between the basal ganglia and lateral ventricular volumes.
The corpus callosum also was not correlated with other structures.
The cross-twin, cross-structure correlations are much greater in MZ
than DZ twins, suggesting that much of the observed correlations
between structures are genetically mediated.

Variance components estimates from the Cholesky decomposi-
tion are given in Fig. 3. As expected, neural tissue demonstrated high
heritability, with the cerebellum slightly lower than other structures.
The variance in lateral ventricular volume was equally divided
between genetic, shared environmental and unique environmental
sources. Table 3 reports genetic and environmental correlations and
reveals the extent to which different structures share genetic and
environmental sources of variance. The genetic substrates of
cerebrum, thalamus, basal ganglia, and cerebellum are highly
intercorrelated. There was a small but statistically significant genetic
correlation between corpus callosum and cerebrum, thalamus, and
basal ganglia. Cross-structure correlations attributable to the unique
(i.e., individual-specific) environment were generally lower, but
were still substantial between thalamus and basal ganglia and
between cerebrum and cerebellum. Interestingly, there was a small
but statistically significant negative environmental correlation
between the lateral ventricles and both thalamus and basal ganglia.



Table 2
Cross twin correlation matrix of six neuroanatomic regions

Cer1 LV1 CC1 Thal1 BG1 Cb1 Cer2 LV2 CC2 Thal2 BG2 Cb2

Cer1 1.00 0.22 0.29 0.75 0.77 0.68 0.34 0.08 −0.37 0.37 0.42 0.38
LV1 0.34 1.00 −0.09 0.06 −0.05 0.27 0.19 0.39 −0.08 0.11 0.15 0.10
CC1 0.15 0.02 1.00 0.31 0.15 0.22 0.18 −0.08 0.26 0.18 0.14 0.22
Thal1 0.80 −0.06 0.15 1.00 0.90 0.50 0.20 0.04 −0.41 0.32 0.34 0.42
BG1 0.76 −0.11 0.27 0.91 1.00 0.53 0.26 0.07 −0.46 0.27 0.33 0.41
Cb1 0.58 0.26 0.23 0.48 0.43 1.00 0.13 0.09 −0.10 0.13 0.22 0.54
Cer2 0.88 0.10 0.17 0.66 0.69 0.57 1.00 0.12 0.28 0.77 0.85 0.67
LV2 0.14 0.65 −0.01 −0.05 −0.15 0.15 0.28 1.00 −0.16 −0.03 −0.05 0.15
CC2 0.29 0.09 0.83 0.24 0.17 0.23 0.09 0.04 1.00 0.30 0.19 0.23
Thal2 0.75 0.03 0.19 0.80 0.79 0.51 0.86 −0.09 0.22 1.00 0.96 0.56
BG2 0.76 0.00 0.21 0.75 0.83 0.52 0.78 −0.16 0.27 0.94 1.00 0.56
Cb2 0.59 0.09 0.18 0.52 0.53 0.79 0.69 0.30 −0.01 0.63 0.63 1.00

MZ correlations are shown below the diagonal, while DZ twins are above. Within-structure, cross-twin correlations are shown in bold. Abbreviations are as
follows: Cer—cerebrum, LV—lateral ventricles, CC—corpus callosum, Thal—thalamus, BG—basal ganglia, Cb—cerebellum.
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The role of the environment, however, was quite minor relative to
the impact of genetic structures on neuroanatomic covariance. Since
the environmental correlation represents the proportion of unique
environmental variance shared between two structures, it excludes
variance attributable to other sources. In other words, these values
are standardized relative to the unique environmental variance
components, which can be quite small. Table 4 reports how genetic
and environmental covariance relates to the total phenotypic
variance in each structure. The highest shared environmental
correlation was 0.17, and the highest unique environmental
correlation was 0.12, with most values near zero. In contrast, the
majority of the genetic correlations were greater than 0.20, with the
highest (basal ganglia versus thalamus) estimated at 0.70.

Factor analyses

Our most parameterized model, the 2-2-2 IPM, did not fit the
data significantly worse than the fully saturated Cholesky, despite
its comparative simplicity (χ12

2 =10.2, p=0.5980, AIC=−13.8).
The 2-2-2 CPM also did not differ significantly from the full
Cholesky (χ27

2 =35.08, p=0.1369, AIC=−18.92) but was more
parsimonious. The relative equivalence between the IPM and CPM
models was driven by the eleven shared environmental common
parameters in the IPM that were largely uninformative. Removing
these parameters (producing the 2-0-2 IPM) did not significantly
affect the fit of the model (versus full Cholesky: χ23

2 =17.0,
p=0.8093, AIC=−29.0; versus 2-2-2 IPM: χ11

2 =6.8, p=0.8147,
AIC=−15.2) and produced superior explanation of the data
compared to the 2-2-2 CPM. Further attempts at reduction of the
Fig. 3. Variance components estimates obtained from Cholesky decomposition. a2

shared environment, and the unique environment, respectively. Bars denote likelih
2-0-2 IPM were unsuccessful (versus 1-0-2 IPM: χ5
2 =20.4,

p=0.0011, AIC=10.4; versus 2-0-1 IPM: χ5
2=61.8; p<0.0001;

AIC=51.8), as were other factorial combinations of IPM and CPM
submodels.

The varimax-rotated parameter estimates for the 2-0-2 IPM
are given in Table 5. Of the two common genetic factors
identified, one strongly influenced variance of cerebrum,
thalamus, and basal ganglia, with factor loadings (analogous to
standardized partial regression coefficients) of about 0.85. This
factor also accounted for a substantial proportion of the genetic
variance of the cerebellum, and had a low but statistically
significant effect on corpus callosum, but no impact on lateral
ventricular volumes. The second genetic factor predominantly
comprised the modest genetic effects on ventricular volume, with
a statistically significant negative factor loading on the basal
ganglia compartment.

Similarly, two unique environmental common factors were
identified, though the pattern of effects was quite different than that
of the genetic factors. One environmental factor primarily
contributed to variance in all deep structures (thalamus, BG, LV,
and corpus callosum), with antagonism between the ventricles and
the other variables. The second represented relationships between
the cerebrum, lateral ventricles, and cerebellum.

Structure-specific factors contributed far less variance than the
common factors with the exception of the corpus callosum where
genetic factors specific to that structure accounted for 69% of the
variance. Less than 10% of the variance in corpus callosum size
could be explained by genetic sources that also affected other
structures in the analysis.
, c2, and e2 represent the proportion of variance due to additive genetic, the
ood-based 95% confidence intervals.



Table 3
Sources of correlation between neuroanatomic regions

Cerebrum LV CC Thalamus BG Cerebellum

Cerebrum 1 0.26
(0.06 0.43)

0.37
(0.17 0.54)

0.35
(0.16 0.51)

0.23
(0.03 0.42)

0.58
(0.43 0.70)

LV 0.18
(−0.33 0.69)

1 −0.05
(−0.25 0.15)

−0.22
(−0.40 −0.03)

−0.23
(−0.41 −0.03)

0.29
(0.10 0.46)

CC 0.30
(0.05 0.52)

0.22
(−0.54 0.74)

1 0.49
(32 0.63)

0.39
(0.19 0.55)

0.10
(−0.11 0.30)

Thalamus 0.97
(0.83 1.0)

0.00
(−0.49 0.65)

0.42
(0.11 0.66)

1 0.65
(0.52 0.75)

0.07
(−0.13 0.27)

BG 0.82
(0.71 0.92)

−0.37
(−0.80 0.24)

0.35
(0.07 0.64)

0.91
(0.81 0.98)

1 0.13
(−0.07 0.33)

Cerebellum 0.82
(0.59 1.0)

0.20
(−0.59 0.71)

0.12
(−0.38 0.57)

0.79
(0.44 1.0)

0.63
(0.29 0.93)

1

Genetic correlations are given below the diagonal; unique environmental correlations are above it. 95% confidence intervals are given in parenthesis. Estimates
of shared environmental correlations all had extremely wide confidence intervals and were uninformative; therefore they are not reported.
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Gray/white correlations

Genetic correlations between cerebral tissue compartments and
other structures are given in Table 6. The genetic effects
influencing gray and white were highly correlated (0.84; 95% CI
[0.65 0.99]), while there was virtually no environmental correlation
(−0.04; 95% CI [−0.24 0.17]). In general, correlations did not
differ when comparing either cerebral gray or white to other
structures. The primary exception was corpus callosum, which had
higher genetic (0.49 versus 0.09) and environmental (0.43 versus
0.16) correlations with cerebral white matter volumes relative to
gray. Additionally, the environmental correlation between cerebel-
lum and cerebral gray (0.57) was significantly higher than
cerebellum with cerebral white (0.22).

Total brain volume as a covariate

As expected from the previous finding that a single genetic factor
dominated inter-structure covariance, the genetic correlations be-
Table 4
Variance components relative to the total phenotypic variance, with 95% confiden

Cerebrum LV CC

Cerebrum 0.12 (0.09 0.17) 0.06 (0.01 0.11) 0.05 (0.02 0.09)
0.05 (0.00 0.29) 0.08 (−0.12 0.27) 0.01 (−0.13 0.20)
0.82 (0.59 91)

LV 0.40 (0.29 0.53) −0.01(−0.07 0.04)
0.30 (0.00 0.57) −0.08 (−0.27 0.19)

0.09 (−0.12. 23) 0.31 (0.03 0.64)
CC 0.16 (0.11 0.23)

0.13 (0.00 0.46)
0.23 (0.03 0.39) 0.10 (−0.18 0.31) 0.71 (0.38 0.87)

Thalamus

0.70 (0.50 0.80) 0.00 (−0.20 0.22) 0.29 (0.06 0.45)
BG

0.62 (0.40 0.74) −0.17 (−0.33 0.08) 0.26 (0.04 0.42)
Cerebellum

0.46 (0.22 0.66) 0.07 (−0.18 0.35) 0.07 (−0.17 0.32)

Additive genetic effects are given below the diagonal, and environmental effects abo
below the calculations for the unique environment. The values on the diagonal (in
tween structures dropped substantially when adjusting for total brain
volume (Table 7). We still detected a high, statistically significant
genetic correlation between thalamus and basal ganglia (rG=0.72),
and a negative genetic correlation between basal ganglia and the
lateral ventricles (rG=−0.88). The non-genetic inter-structure correla-
tions, however, differed substantially when the analyseswere adjusted
for global effects. Rather than a general pattern of positive correlations
between structures detected previously (with the exception of
negative correlations involving lateral ventricles), the environmental
correlations had a more complex pattern. Both the thalamus and basal
ganglia structures were negatively correlated with cerebral volumes,
but positively correlated with each other. The lateral ventricles
retained their mostly negative environmental correlations with other
structures. There was a small but statistically significant negative
environmental correlation between the cerebellum and the thalamus,
and all telencephalic tissues showed negative correlations with the
cerebellum, though none approached statistical significance.

When performing factor analyses after covarying for TBV, the
2-2-2 IPM (χ12

2 =8.1; p=0.7807; AIC=−15.94) did not fit the data
ce intervals provided

Thalamus BG Cerebellum

0.05 (0.02 0.09) 0.03 (0.00 0.07) 0.09 (0.06 0.14)
0.02 (−0.06 0.23) 0.07 (−0.03 0.28) 0.13 (−0.05 0.37)

−0.06 (−0.12 −0.01) −0.06 (−0.13 −0.01) 0.08 (0.03 0.15)
0.04 (−0.17 0.23) 0.12 (−0.11 0.27) 0.07 (−0.20 0.33)

0.08 (0.05 0.13) 0.07 (0.03 0.12) 0.02 (−0.02 0.06)
−0.01 (−0.16 0.21) −0.03 (−0.18 0.17) 0.10 (−0.15 0.33)

0.18 (0.13 0.25) 0.12 (0.08 0.18) 0.01 (−0.02 0.06)
0.18 (0.00 0.38) 0.11 (−0.03 0.34) 0.15 (−0.06 0.38)
0.64 (0.39 0.83)

0.19 (0.14 0.27) 0.02 (−0.02 0.07)
0.12 (0.00 0.38) 0.17 (−0.05 0.40)

0.61 (0.37 0.76) 0.69 (0.42 0.84)
0.21 (0.15 0.29)
0.40 (0.04 0.67)

0.40 (0.17 0.62) 0.33 (0.10 0.56) 0.39 (0.11 0.76)

ve the diagonal. The correlations for shared environment are given in italics,
boldface) represent parameter estimates for e2, c2, and a2.



Table 5
Parameter estimates for the best-fit factor model (2-0-2 IPM)

Common factors Structure-specific factors Heritability estimates

A1 A2 E1 E2 As Cs Es a2 c2 e2

Cerebrum 0.85*
(0.76 0.95)

0.22‡

(0.07 0.35)
0.13*
(0.06 0.21)

0.29*
(0.21 0.37)

0.33‡

(0.23 0.42)
0.02
(−0.48 0.52)

0.14
(0.01 0.30)

0.88
(0.77 0.91)

0.00
(0.00 0.13)

0.12
(0.09 0.17)

LV 0.05
(−0.09 0.19)

0.57*
(0.29 0.84)

−0.17‡

(−0.31 −0.03)
0.27*
(0.14 0.41)

0.00
(−0.93 0.93)

0.53
(0.29 0.78)

0.54
(0.46 0.62)

0.32
(0.09 0.68)

0.28
(0.00 0.48)

0.39
(0.29 0.53)

CC 0.28*
(0.16 0.40)

0.06
(−0.11 0.24)

0.24*
(0.15 0.33)

0.06
(−0.02 0.14)

0.83*
(0.57 0.95)

0.26
(−0.61 1)

0.33
(0.28 0.38)

0.75
(0.40 0.88)

0.06
(0.00 0.14)

0.17
(0.12 0.24)

Thalamus 0.85*
(0.76 0.95)

0.01§ 0.40*
(0.32 0.49)

0.00§ 0.00
(−91 0.92)

0.30
(0.22 0.37)

0.17
(0.07 0.28)

0.72
(0.64 0.85)

0.09
(0.00 0.14)

0.19
(0.14 0.26)

BG 0.84*
(0.74 0.94)

−0.17‡

(−0.36 −0.05)
0.31*
(0.22 0.40)

−0.01
(−0.09 0.07)

0.28
(0.13 0.43)

0.00
(−0.37 0.36)

0.31
(0.01 0.25)

0.81
(0.70 0.86)

0.00
(0.00 0.08)

0.19
(0.14 0.26)

Cerebellum 0.64*
(0.53 0.75)

0.14‡

(0.004 0.34)
0.02
(−0.08 0.12)

0.31*
(0.20 0.42)

0.33
(−0.01 0.66)

0.49
(0.27 0.70)

0.34
(0.01 0.26)

0.55
(0.36 0.81)

0.24
(0.00 0.40)

0.21
(0.16 0.29)

A1 and A2 represent common genetic factors, while E1 and E2 are environmental sources unique to individuals, but shared between brain regions. Shared environmental common factors were not statistically
significant. Values represent factor loadings, with 95% confidence intervals given in brackets. Factor loadings for structure-specific factors also are given, as are proportional variance components estimates under this
model, for each structure in the analysis.
*p<0.001; ‡p<0.05; §fixed to make factors orthogonal.
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Table 6
Genetic and environmental correlations between the cerebrum and other neuroanatomic structures, after segmenting cerebral tissue into gray and white matter

Additive genetic Unique environment

Gray White Gray White

Cerebral gray 1.00 0.84 (0.65 0.99) 1.00 −0.04 (−0.24 0.17)
Cerebral white 0.84 (0.65 0.99) 1.00 −0.04 (−0.24 0.17) 1.00
LV 0.11 (−0.42 0.65) 0.18 (−0.32 0.72) 0.19 (−0.01 0.37) 0.14 (−0.05 0.33)
CC 0.09 (−0.21 0.39) 0.49 (0.25 0.69) 0.16 (−0.06 0.36) 0.43 (0.25 0.59)
Thalamus 0.88 (0.69 0.99) 0.96 (0.82 1) 0.25 (0.05 0.44) 0.38 (0.20 0.54)
BG 0.77 (0.60 0.91) 0.80 (0.67 0.94) 0.24 (0.03 0.43) 0.16 (−0.05 0.36)
Cerebellum 0.73 (0.44 0.99) 0.88 (0.56 1) 0.57 (0.41 0.69) 0.22 (0.03 0.41)

95% confidence intervals are given in parentheses.
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significantly worse than a Cholesky decomposition. However, the
2-2-2 CPM was rejected relative to either the full Cholesky
(χ30

2 =175.26; p<0.0001; AIC=115.26) or the 2-2-2 IPM
(χ18

2 =167.21; p<0.0001; AIC=131.21). A stepwise removal of
latent factors indicated that the 2-0-2 IPM was once again the best
fit model (versus Cholesky: χ24

2 =19.3; p=0.6814; AIC=−26.66,
versus 2-2-2 IPM: χ18

2 =11.2; p 0.4199; AIC=−10.72). However,
the patterns of genetic and environmental associations differed
substantially when examining residual variance after adjusting for
TBV (Table 8). In general, the structures shared less variance with
each other, though one common factor indicated that the thalamus
and the basal ganglia shared a substantial proportion of their genetic
variance, and a second genetic factor influenced both the cerebral
compartment and the corpus callosum. Two common individual-
specific environmental factors also emerged; one influencing
thalamus and the subcortical compartment in an opposite direction
to cerebrum and lateral ventricles, and one whose effects influenced
cerebrum and cerebellum in opposite directions.
Discussion

One of the fundamental questions in neurogenetics is how our
relatively simple genetic programming combines with environmental
exposure to produce variation in human brain volumes. Our data
suggest that not only do genes play the predominant role in generating
the observed volumetric diversity, but that most of the genetic
variance is determined by genes that are shared between the major
gross neural subdivisions. Concordant with previous univariate
Table 7
Genetic and environmental correlations derived after regressing on total brain vol

Cerebrum LV CC

Cerebrum 1 0.17
(−0.02 0.36)

0.15
(−0.06 0.34)

LV 0.13
(−0.87 0.59)

1 −0.09
(−0.28 0.12)

CC 0.34
(0.01 0.82)

0.12
(−0.61 0.68)

1

Thalamus 0.34
(−0.16 1)

−0.59
(−0.99 0.32)

0.64
(0.00 0.99)

BG 0.02
(−0.19 0.80)

−0.88
(−1 −0.34)

0.26
(−0.10 0.64)

Cerebellum −0.09
(−0.96 1)

0.12
(−1 0.85)

−0.23
(−1 0.39)

Genetic correlations are given below the diagonal, and unique environmental corr
studies, the contribution of the shared environment to variance was
negligible, while the individual-specific environment had smaller but
statistically significant factors common to multiple regions; an
environmental factor influencing ROIs beneath the cortical surface
(corpus callosum, thalamus, and basal ganglia), and a non-subcortical
factor (cerebrum, lateral ventricles, and cerebellum) were identified.
Though both genetic and non-genetic effects are critical for explaining
neuroanatomic covariance, these data additionally suggest that, at this
level of spatial resolution, genes and environment exert their
influences on brain variation largely independently of one another.

Such a strong role of genes on the correlations between brain
volumes was not unexpected given prior multivariate twin studies.
One study methodologically similar to the present one, performed
by Barré et al., examined relationships between height, intracranial
volume (ICV), total gray matter, total white matter, and lateral
ventricular volumes in 54 MZ and 58 DZ adult twin pairs and 34
sibs of DZ pairs via variance component analyses (Baaré et al.,
2001). They found remarkably similar estimates of genetic (0.68)
and unique environmental (0.04) correlations between gray and
white matter, and no statistically significant evidence of genetic
correlations between the lateral ventricles and other regions of
interest. Nevertheless, the two studies do differ in several aspects,
most notably in that the present study includes several neuroana-
tomic regions of interest while the study by Barré et al. focused on
a few global cerebral measures and correlations between these
measures and height and ICV. A similar approach was taken in an
earlier study by Posthuma et al. which used a trivariate Cholesky
decomposition of height, intracranial space, and cerebellar volume
in an extended twin design (Posthuma et al., 2000) of 111 twin
ume

Thalamus BG Cerebellum

−0.41
(−0.56 −0.22)

−0.41
(–0.57 −0.21)

−0.16
(−0.35 0.05)

−0.36
(−0.52 −0.19)

−0.33
(−0.49 −0.15)

0.20
(0.00 0.38)

0.33
(0.14 0.50)

0.22
(0.01 0.41)

−0.12
(−0.32 0.09)

1 0.59
(0.44 0.71)

−0.27
(−0.44 −0.07)

0.72
(0.21 1)

1 −0.10
(−0.29 0.11)

−0.25
(−0.99 0.82)

−0.03
(−0.90 1)

1

elations above the diagonal.



Table 8
Parameter estimates for the best fit model (2-0-2 IPM) after adjusting for total brain volume

Common factors Structure-specific factors Heritability estimates

A1 A2 E1 E2 As Cs Es a2 c2 e2

Cerebrum 0.00 0.48 −0.39* 0.40* 0.68‡ 0.00 0.01 0.68 (0.35 0.77) 0.00 (0.00 0.30) 0.32 (0.22 0.44)
LV 0.37 0.10 −0.23* −0.14‡ 0.13 0.66 0.57 0.17 (0.06 0.66) 0.43 (0.00 0.55) 0.40 (0.30 0.52)
CC 0.17 0.50 0.08 0.18* 0.60 0.44 0.35 0.65 (0.34 0.88) 0.19 (0.00 0.49) 0.16 (0.11 0.22)
Thalamus 0.52 0.28 0.50* 0.16‡ 0.27 0.47 0.30 0.42 (0.23 0.71) 0.22 (0.00 0.38) 0.36 (0.27 0.48)
BG 0.79 −0.03 0.41* 0.06§ 0.00 0.00 0.44 0.64 (0.49 0.74) 0.00 (0.00 0.09) 0.36 (0.26 0.50)
Cerebellum 0.05 0.04§ −0.06 −0.23* 0.50 0.69‡ 0.46 0.24 (0.00 0.70) 0.49 (0.05 0.74) 0.27 (0.20 0.37)

*p<0.001; ‡p<0.05; §fixed to make factors orthogonal.
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pairs and 34 sibs. They estimate cerebellar heritability of 0.88 with
significant sex effects on mean cerebellar volume, with a relatively
high genetic correlation to the ICV (0.57) and a low genetic
correlation to height (0.25). Though this study represents an
important contribution to methodological design and advancement
of the use of volumetric data as a novel endophenotype, its focus is
not on relationships between brain regions but rather on relation-
ships between brain volumes and non-neural phenotypes.

To date, only two other studies, to our knowledge, have
employed genetically informative data to describe multivariate
neuroanatomic relationships. A principle components analysis by
Pennington et al. on a modest sample of 34 MZ and 32 DZ late
teen or young adult twin pairs parcellated the brain into 7 cortical
gray compartments and 6 noncortical structures (white matter,
basal ganglia, brain stem, hippocampus, cerebellum, and the
central gray nuclei including the thalamus) found that two factors
could account for 64% of the total phenotypic variance. While
cerebral structures loaded primarily on the first factor, all other
structures loaded on the second (except central gray, which loaded
equally on both). Both factors were significantly more correlated in
MZ than in DZ pairs, suggesting a strong genetic component to
each. This approach differs substantially from the present study,
not only in its use of principal components analyses rather than
factor analyses, but also because it generated factors prior to
decomposing variance. By contrast, we determined factor structure
and variance components simultaneously using maximum like-
lihood. The study by Pennington et al. also has been criticized
since greater than 70% of both MZ and DZ samples had dyslexia,
though it is unclear how large of an effect this difference would
have on a global multivariate analysis.

Despite the differences in study design, the findings between
the two studies are largely complementary. Both find two strong
genetic factors influencing inter-structural covariance. The factor
loading pattern of the Pennington study does differ in that
noncortical structures are not particularly correlated with cortical
structures. This discrepancy may be owed in part to the use of ICV
as a covariate in the Pennington study. After regressing out the
effects of total brain volume, we did observe a genetic factor that
was primarily cerebral (total cerebral volume and corpus
callosum), with a second genetic factor that loaded on non-cerebral
structures (with thalamus loading on both). However, the cerebellar
measure in the present study had no genetic covariance with other
structures after adjusting for brain volume, while in the Pennington
study the cerebellum had a factor loading of 0.71 on the
“noncortical” factor. Though the exact cause for the discrepancy
is unclear, it could be due to differences in statistical methodology,
as principle components analyses include structure-specific
variance within its factors, while the factor analytic approach
explicitly defines this variance as independent of common factors.
Differences in cerebellar quantification also may play a role.

The final extant multivariate twin study by Wright et al. (2002)
parcellated the brain into regions with extremely high spatial
resolution. Ninety-two (primarily cerebral) gray matter ROIs were
automatically defined, roughly according to Brodmann’s areas.
Global effects were accounted for by adjusting for total gray
volumes. Genetic correlations for each ROI pair were first calculated
via a series of bivariate factor analyses, and then principle
components analyses were applied to the resultant correlation
matrix. This study identified two putative supra-regional principle
components under genetic control. Specifically, a frontoparietal
limbic/paralimbic factor and a factor related to audition (lateral
temporal cortex, insula, occipitofrontal, and other frontal regions)
were found; factor loadings, however, were quite low (<|0.25|).
These findings would suggest that genes are involved in generating
functional relationships between distant brain regions. Though
extremely provocative, Wright et al.’s study is limited by low power,
due to small sample size (10 MZ and 10 same sex DZ pairs) and
issues of multiple testing.

The process of neurogenesis is extraordinarily complex.
Though neurovolumetric changes are observed throughout child-
hood (Giedd et al., 1996; Gogtay et al., 2004; Sowell et al., 1999a,
b, 2004), the majority of brain formation occurs in utero and most
of the genes involved in neurodevelopment are also expressed at
this time (Rakic and Lombroso, 1998; Rubenstein et al., 1999;
Rubenstein and Rakic, 1999). In animal models, a multitude of
genes responsible for brain patterning have now been identified,
whose products include transcription factors, morphogens, and
apoptotic factors (Rubenstein and Rakic, 1999). The initial
discovery of the Hox family of transcription factors and their
segmental patterns of expression in the hindbrain have argued
strongly for the neuromeric models of brain organization (Lumsden
and Krumlauf, 1996; Mcginnis and Krumlauf, 1992; Puelles,
2001); more recent studies on the forebrain have suggested that
although its development is more plastic and cell lineages appear
less restricted, the prosencephalon also follows segmental (i.e.,
prosomeric) patterning based on expression of homeotic and
related genes (Anderson et al., 1999; Puelles, 2001; Rubenstein
and Rakic, 1999). Though mutations in neurodevelopmental genes
have been shown to produce severe pathological states in humans
(Clark, 2004), the genetic and environmental agents responsible for
typical human variation are still unknown.

Theoretically, genetic associations between neuroanatomic
structures could arise via numerous putative mechanisms; several
general models can be considered while interpreting the present
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data. First, brain volumes may be related genetically via ubiquitous
gene products involved in basic cellular metabolism, cell growth,
differentiation, or other global processes expressed throughout
neuroectodermal derivatives (Rakic, 1995). For example, func-
tional variation in housekeeping genes or cell cycle regulators
might be expected to produce genetic correlations between all brain
regions that express them (and perhaps other tissues), if they
produce downstream effects on volumetric measures via changes in
cell proliferation or survival. Second, correlations in brain volumes
may represent vestigial relationships generated prenatally between
structures with shared ontogenetic origins. Region-specific expres-
sion of transcription factors during neuroembryonic patterning
would be one example of gene products producing regional
correlations during embryogenesis. In this case, one would expect
stronger genetic relationships among structures whose develop-
ment diverged more recently (e.g., thalamic and hypothalamic
volumes to be correlated via their shared diencephalic origin).
Third, functional interrelationships between structures may gen-
erate volumetric correlations via morphological changes associated
with increased connectivity. This hypothesis is essentially a
generalization of the Protocortex model, which states that
neocortical development is determined by extrinsic influences,
such as effects of thalamic innervation (O’Leary, 1989; Schlaggar
and O’Leary, 1991). Thus, one might expect structures in the visual
processing network, such as V1 and the lateral geniculate nucleus,
to be structurally correlated despite being potentially unrelated
spatially or ontogenetically. Finally, genetic correlations may result
from shared supra-regional gene expression triggered postnatally,
in the present data from birth to the age of scan acquisition,
approximately mid-childhood.

The present data indicate that much of the variability in brain
volumes is caused by genes shared between all tissue compart-
ments. This finding is concordant with evolutionary genetic models
of brain development which hypothesize global, genetically
mediated differences in cell division as the driving force behind
interspecies differences in total brain volume (Finlay and
Darlington, 1995) as well as with the radial unit hypothesis of
neocortical expansion proposed by Rakic (1995). Comparative
neuroanatomic analyses of multiple mammalian species have
shown that total brain volume is highly correlated with regional
volumes, irrespective of region (including neocortex, striatum,
thalamus, and cerebellum), and accounts for the vast majority
(>96%) of the observed volumetric variance in all regions
measured except for the olfactory bulb (Darlington et al., 1999;
Finlay and Darlington, 1995). Such strong correlations are thought
to reflect a generalized adaption to specific selective pressures;
although it is more expensive, in terms of energy, to expand the
computational resources of the entire brain when only specific
functions are needed, the molecular adjustments required are far
fewer than those required to completely repattern gross neural
architecture.

In contrast, we found little evidence of genetic factors
mediating region-specific neurodevelopment. The most notable
ontogenetic “oddball” in the present study was the cerebellum.
Developmentally, the cerebellum diverges from the other regions
soon after neural tube formation; while cerebrum, corpus callosum,
and subcortical structures all are derived from the embryonic
prosencephalon, cerebellar tissue is primarily derived from the
rombencephalon (Kandel and Jessl, 2000). However, differences in
genetic correlations between the cerebellum and other structures
were not particularly striking, either before or after removing the
effects of TBV. Similarly, we did not detect weaker genetic
associations between the thalamus when compared to the
telencephalic cerebral volumes or the predominantly telencephalic
basal ganglia (Fishell, 1997; Kandel and Jessl, 2000; Puelles,
2001). Though genetically mediated regional brain patterning
certainly plays a major and undisputed role in mammalian
neurodevelopment, our data would suggest that it plays a
surprisingly minor role, at least at our level of volumetric
measurement, in the generation of structure-specific variation
within the typical human population. Functional relationships, for
example, may be more important for defining volumetric
correlations between the structures measured as basal ganglia,
thalamus, and neocortex all are tightly linked functionally.

Though the unique environment had a relatively minor effect on
the volumes of the structures measured, our relatively large sample
allowed us to describe its role on the correlations between
structures with high precision. We found that structures in spatial
proximity were significantly and positively correlated via indivi-
dual-specific environmental factors shared between multiple
anatomic regions. In other words, the environment tends to
influence nearby structures similarly. The principle exception was
that correlations between subcortical nuclei and the lateral
ventricles were significantly negatively correlated. Given that
atrophy of either the basal ganglia or the thalamus can be
associated with increased lateral ventricular volume in several
diseases (Gaser et al., 2004; Harris et al., 1999), an antagonistic
effect between ventricles and subcortical nuclei was not un-
expected. However, as our calculations represent environmental
effects in typically developing children, these findings suggest that
the correlation is not always pathological. Structural modeling
identified two statistically significant putative environmental
factors mediating the environmental correlations, one representing
subcortical structures and one representing the cerebrum and
cerebellum. It is possible that common environmental effects
reflect stochastic processes of major effect occurring early in
development, or smaller, more continuous processes whose effects
are additive.

Despite the wealth of information obtained from this study,
certain limitations must be considered. Fundamental to its complex
design involving intricate multistep techniques, this study inherits
all of the limitations and assumptions of its component pieces,
namely studies of twins, volumetric MRI, and structural equation
modeling. The twin design is often criticized for its reliance on the
equal environment assumption (EEA), which states that, on
average, MZ and DZ twin pairs do not differ relative to the
phenotypes of interest. It is now widely believed that much of the
concerns regarding the EEA are overstated at best (Evans et al.,
2002); regardless, it is unlikely that general violations of the EEA
would substantially impact regional brain volumes (Hulshoff Pol
et al., 2002). Secondly, the nature of our predominantly Caucasian,
pediatric sample may limit generalizations to other populations.
Aging, in particular, could reduce the strength of genetic factors on
explaining neurovolumetric variance. Twin studies on geriatric
populations, however, have shown that heritability for brain
volumes remains high even into the seventh decade of life
(Carmelli et al., 2002a,b; Pfefferbaum et al., 2000, 2004), and it is
thus unlikely that patterns of neuroanatomic covariance change
dramatically over the human lifespan. Thirdly, it is possible that a
proportion of the large genetic covariance observed between
structures is owed to genes responsible for general body size, rather
than brain-specific genetic factors. Though the present study could
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not examine the contribution of body size on brain volume, Barré
et al. have shown that the genetic correlations between height and
total gray or white matter are low (0.19 and 0.16, respectively),
suggesting that most of the observed genetic correlations between
neuroanatomic structures cannot be explained by body size alone
(Baaré et al., 2001).

Finally, the limitations of our phenotypic measurements and
image processing methodology may influence the results. For
example, our volumetric measures may be disproportionately
sensitive to the proliferative and apoptotic components of
neurodevelopment. The use of morphometrics, such as deforma-
tion-based morphometry (Ashburner et al., 1998) rather than
volumetric approaches might be more able to detect regionalized
topological similarities that reflect common embryologic origins.
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