
NIH Enterprise Architecture

Application Integration — Technology Architecture
Version 1.0
26 July 2004

NIH Enterprise Architecture
enterprisearchitecture@mail.nih.gov

 Application Integration Technology
Architecture Report_v1.0

Table of Contents
1.0 Executive Summary... 1
2.0 Introduction.. 1

2.1 Application Integration Domain Team ... 3
2.2 Scope.. 3
2.3 Application Integration Domain in the NIH EA Framework.................................. 4
2.4 Principles .. 5
2.5 Related Topics .. 7
2.6 Benefits of the Application Integration Architecture... 8
2.7 Summary of Key Findings ... 9

3.0 Current State of Application Integration 10
3.1 Extension Systems ... 10
3.2 Integration of Enterprise Systems ... 12
3.3 Grants Management ... 13
3.4 Grants and Financial Applications... 14
3.5 Personnel and Related Applications ... 16
3.6 Clinical Center (Broker)... 18
3.7 Integration Mechanisms.. 19
3.8 Import/Export Matrix.. 19
3.9 Integration Issues.. 21

4.0 Current Initiatives .. 23
4.1 Summary of Initiatives... 23
4.2 Clinical Center (CRIS Project)... 24
4.3 GSA Integrated Acquisition Environment .. 26

5.0 Enterprise API Design Patterns (Future State) 27
5.1 Pattern: Service-Oriented Architecture (SOA)... 28
5.2 Pattern: Web Services Architecture (WSA)... 30
5.3 Pattern: Application Program Interface (API) .. 31
5.4 General Guidelines for Integration/API Design ... 33

6.0 Integration Design Patterns (Future State) 34
6.1 Pattern: Basic Communication.. 34
6.2 Basic Integration Patterns (Introduction) ... 37
6.3 Pattern: Data Consistency .. 39
6.4 Pattern: Multi-Step Process .. 40
6.5 Pattern: Composite Applications ... 41

- i -

NIH Enterprise Architecture
enterprisearchitecture@mail.nih.gov

 Application Integration Technology
Architecture Report_v1.0

6.6 Pattern: Large-Scale Integration ... 43
6.7 Pattern: Broker/Operational Data Store/Warehouse ... 44

7.0 Application Integration Bricks.. 46
7.1 Definitions and Taxonomy... 47
7.2 Brick: Data Management Middleware ... 49
7.3 Brick: Communication Middleware.. 51
7.4 Brick: File Transfer Middleware... 53
7.5 Brick: Integration Broker Suites (IBS).. 54
7.6 Brick: Integration Adapters.. 57
7.7 Brick: Business Process Managers (BPM Tools) .. 59
7.8 Brick: Integration Middleware — Gateways .. 61
7.9 Brick: Web Services .. 62

8.0 Gap Analysis .. 66
8.1 Enterprise API Design and Implementation .. 66
8.2 Integration Patterns and Related Middleware ... 66

9.0 Next Actions... 67
10.0 Change History/Document Revisions.. 68
11.0 Appendix A — Glossary of Terms/Acronym Key 69
12.0 Appendix B — Current State Survey Results 77
13.0 Appendix C — Introduction to Web Services 86

What is a Web Service? .. 87
What is SOAP?.. 87
What is WSDL? ... 88
What is UDDI?... 88

14.0 Appendix D — Introduction to Service-Oriented Architecture ..90
Services and SOA ... 91
Service Implementation ... 92
Service Invocation ... 93
SOA and Web Services ... 94
When To Use SOA .. 95
Benefits of SOA: Reality vs. Hype ... 96

- ii -

NIH Enterprise Architecture
enterprisearchitecture@mail.nih.gov

 Application Integration Technology
Architecture Report_v1.0

Table of Contents
(Continued)

List of Figures
Figure 1. NIH Enterprise Architecture Framework ... 4
Figure 2. Extension Systems ... 10
Figure 3. IMPAC II Interface Design .. 11
Figure 4. Flows Between Enterprise Applications.. 12
Figure 5. Grants Cluster Applications .. 13
Figure 6. Flow Diagram: Grant, Financial and Related Data 15
Figure 7. Flow Diagram: Personnel and Related Data... 17
Figure 8. Current Clinical Care Infrastructure .. 18
Figure 9. Planned CRIS Clinical Care Infrastructure.. 25
Figure 10. GSA Integrated Acquisition Environment.. 26
Figure 11. Layered Service Architecture.. 27
Figure 12. Logical Design Pattern: SOA.. 28
Figure 13. Logical Pattern: Web Services Architecture (WSA) 30
Figure 14. Logical Design Pattern: Application Program Interface (API) 31
Figure 15. Web Services and XML Provide Loose Coupling (Example) 32
Figure 16. Logical Design Pattern: Basic Communication Models 35
Figure 17. Three Integration Problems .. 37
Figure 18. Integration Solution Characteristics .. 38
Figure 19. Logical Design Pattern: Data Consistency.. 39
Figure 20. Logical Design Pattern: Straight-Through Processing (STP)...................... 40
Figure 21. Logical Design Pattern: Composite Application .. 41
Figure 22. Logical Design Pattern: Large Scale Integration Hub-and-Spoke

Solution... 43
Figure 23. Logical Design Pattern: Broker/Operational Data Store/Warehouse 44
Figure 24. Technology Planning “Brick”... 46
Figure 25. Middleware Taxonomy.. 47
Figure 26. Data Management Middleware... 49
Figure 27. Communication Middleware ... 51
Figure 28. Integration Brokers ... 54
Figure 29. Integration Broker Suite .. 55
Figure 30. Integration Adapters ... 57
Figure 31. Business Process Managers .. 59
Figure 32. Gateways.. 61
Figure 33. Components of Web Services .. 62
Figure 34. Emerging Web Services Standards.. 65
Figure 35. SOAP.. 87
Figure 36. WSDL ... 88
Figure 37. UDDI... 89
Figure 38. Service Scope vs. Granularity .. 91
Figure 39. SOA — The Architecture of Interfaces ... 92
Figure 40. SOA — What Happens Behind the Interface.. 93
Figure 41. SOA — What Happens On the Wire... 94

- iii -

NIH Enterprise Architecture
enterprisearchitecture@mail.nih.gov

 Application Integration Technology
Architecture Report_v1.0

List of Tables
Table 1. NIH Enterprise Architecture Matrix ... 5
Table 2. Application Integration Alignment With the NIH Enterprise Architecture

Matrix.. 5
Table 3. Application Integration Principles.. 6
Table 4. Endorsed Principles.. 7
Table 5. Import/Export Matrix (Partial).. 20
Table 6. Guidelines for SOA Design... 29
Table 7. Data Management Middleware Brick.. 50
Table 8. Communication Middleware Brick .. 52
Table 9. File Transfer Middleware Brick ... 53
Table 10. Integration Brokers Brick .. 56
Table 11. Adapters Brick .. 58
Table 12. Pure-Play vs. Integrated BPM .. 60
Table 13. Business Process Managers Brick ... 60
Table 14. Gateways Brick... 61
Table 15. Web Services Brick .. 64
Table 16. When To Use SOA ... 95

- iv -

NIH Enterprise Architecture
enterprisearchitecture@mail.nih.gov

 Application Integration Technology
Architecture Report_v1.0

1.0 Executive Summary
National Institutes of Health (NIH) has established an enterprise architecture program to
develop a coordinated direction for designing and implementing infrastructure and
technology solutions at NIH. The business architecture addresses processes and is the
driving context for the information architecture, which addresses the application systems
and information at NIH. The technology architecture focuses on the supporting technical
components, both hardware and software. Application integration technology is a
domain in the technology architecture that addresses the technical infrastructure for
enabling applications to communicate with each other. The information architecture also
contains an integration architecture that will specify how those interfaces need to be
implemented from a business functionality standpoint.

This report specifies the technical architecture for integration of and with enterprise
applications at the NIH. It lists principles that should be applied to future application
integration initiatives, and highlights the endorsement of existing principles from other
domain teams. It continues to note the business and technical benefits that application
integration can provide, and the summary of key findings from the domain team
workshops.

The primary function of the domain team workshops was to discuss the application
integration design patterns, which are listed in this report, as well as to define the
technical standards, which are presented as bricks. Implicit in these principles, patterns,
and bricks is a more comprehensive and flexible approach to supporting integration at
NIH. Analysis of the current state found primitive levels of integration implemented in an
ad hoc manner that increased costs and reduced efficiency. Integration should be more
intentional, with interfaces accommodating other applications and the needs of other
organizations. The technologies underlying integration should be more sophisticated
and more broadly leveraged so that all NIH applications can more easily interoperate
with the enterprise applications.

Throughout the ten-week effort, technologists representing many ICs also developed
some recommendations and next steps that NIH should complete to move the current
state of application integration to the future state.

2.0 Introduction
Application integration is a major effort at NIH and other large enterprises.
Gartner Research estimates that integration typically accounts for about 25 to 35
percent of the total cost of application design, development and maintenance1. While
there is currently no way to break out this cost for NIH, all indications indicate that it is
typical — or even higher, given the large number of “extension systems.”

The IT industry has been in a period of trial and error, trying to find the best designs and
technologies to meet the challenge of integration. There is a consensus that integration
is vital to most modern business strategies, but there has been confusion about how to

1 This is usually a hidden cost, not separately broken out.

- 1 -

NIH Enterprise Architecture
enterprisearchitecture@mail.nih.gov

 Application Integration Technology
Architecture Report_v1.0

do it. At NIH, integration up to now has been accomplished via a wide variety of ad-hoc
methods and mechanisms.

But now many of the core design principles and technologies for improving integration
are better understood. At many enterprises, large-scale application integration is
accomplished by using specialized integration tools and middleware. Standards such as
Extensible Markup Language (XML), Java,.Net, and Web services are helping reduce
the cost and time required to integrate applications with each other.

Section 3.0 discusses the current state of application integration at NIH. The main focus
of this report is to set the future state direction for integration technology. However, the
diagrams in this chapter provide additional information about the existing information
flows between NIH applications.

Section 4.0 provides target state design patterns for the application program interfaces
(APIs) that enterprise applications will provide to extension systems.

Section 5.0 provides target state design patterns for large-scale integration. Both
application-to-application (A2A) and business-to-business1 (B2B) integration can benefit
from these patterns.

Section 6.0 includes the “bricks” which describe individual technology elements. Current
(baseline) state information and target state plans are provided.

Several appendices are also included in this report, which provides some technical
context and background for many of the concepts addressed, by the patterns and
bricks.

1 This is a common industry term. In this document, “business-to-business” also encompasses
“government-to-business” and “government-to-government.”

- 2 -

NIH Enterprise Architecture
enterprisearchitecture@mail.nih.gov

 Application Integration Technology
Architecture Report_v1.0

2.1 Application Integration Domain Team
This report comprises the compilation of findings and recommendations derived from
the joint NIH-Gartner enterprise architecture project team. A team of nine subject matter
experts from various institutes and centers (ICs) and Center for Information Technology
(CIT) worked together for 12 weeks to develop the application integration architecture
patterns and bricks that are presented in this report. The following ICs and their
representatives contributed to this effort:

 Jean Babb, NCRR
 Steve Bergstrom, CC
 Belinda Seach, NHLBI
 Toni Calzone, NIAAA
 Ken Molenda, NIAID

 Debbie Bucci, CIT
 Vivek Kamath, NINDS
 Shanthi Himachalapathy, OD
 Tracy Soto, OD
 Steve Hughes, OD.

2.2 Scope

2.2.1 Definition: Application Integration
The definition1 of application integration is “making independently designed application
systems work together”. This report focuses on setting the direction for the technology
that supports application integration, not the listing of all the required interfaces or their
specifications.

2.2.2 Subject Areas
There are three basic subjects/topics that are in scope:

1. Integration of Extension Systems with NIH enterprise applications
2. Integration between two or more NIH enterprise applications
3. Integration of NIH applications with applications outside NIH.

Extension System is an NIH term that is used to describe any application add-ons that
extend the capabilities of a core application.

Enterprise Applications are major computer applications that have “enterprise scope” as
defined in the Application Architecture report2.

2.2.3 Overlap with Application Development Technology
Application development (AppDev) technology is not in scope. However, there is some
overlap between AppDev and the Enterprise API design patterns: application integration
uses certain technologies and techniques to connect independent application systems,
and AppDev uses those same mechanisms to connect components and services within
an application system.

1 Source: Gartner Research
2 Separately published and available on the EA Portal, September 2003.

- 3 -

NIH Enterprise Architecture
enterprisearchitecture@mail.nih.gov

 Application Integration Technology
Architecture Report_v1.0

2.3 Application Integration Domain in the NIH EA Framework
The NIH Enterprise Architecture Framework and NIH Enterprise Architecture Matrix are
based on the Federal Enterprise Architecture Framework (FEAF) and the FEAF Matrix1.

The NIH EA Framework recognizes three distinct component architectures: the
business architecture, information architecture and technical architecture. The NIH EA
Framework is illustrated in Figure 1.

The NIH Enterprise Architecture Matrix provides five potential perspectives or views of
the architecture, at increasing levels of detail. The NIH EA Matrix is shown in Table 1.
Figure 1. NIH Enterprise Architecture Framework

Data

Applications

Information
Architecture

Integration

Business Architecture

IT World

Technology Architecture

Security

System
s

 M
anagem

ent..

Applications
Technology

Data
Technology

Infrastructure

Integration
Technology

.

The application integration domain is part of the technology architecture within the NIH
EA framework. There is a related domain within the information architecture that deals
with how the various application systems and data assets are integrated; while that is a
separate matter, this report does shed some light on the current state.

1 Level IV of the FEAF, derived from the Zachman Framework

- 4 -

NIH Enterprise Architecture
enterprisearchitecture@mail.nih.gov

 Application Integration Technology
Architecture Report_v1.0

Table 1. NIH Enterprise Architecture Matrix

 Data Architecture Application Architecture Technology Architecture
Planner
Perspective

List of enterprise business
objects

List of business processes
and multi-enterprise
processes.

List of business locations
and business partners

Owner
Perspective

Semantic Model Business process models
(including multi-enterprise)

Business logistics system
and multi-enterprise
logistics

Designer
Perspective

Logical design patterns;
use enterprise business
objects

Logical design patterns, by
style

Integration technology for
enterprise systems

Builder
Perspective

Physical design patterns;
use shared database if
applicable

Logical design patterns, by
style

Subcontractor
Perspective

Project scope Use common services or
APIs, if defined

Physical design patterns;
use bricks from TRM or
request a waiver. TRM
includes security, NIH
network and other
infrastructure

This architecture report focuses on the Technology Architecture column and the
Planner, Owner, Designer and Builder perspectives.

Table 2. Application Integration Alignment With the NIH Enterprise Architecture Matrix

 Data Applications Technology
Planner View N/A N/A Entire report. Chapter 3, Current State, should be

especially useful to planners.
Owner View N/A N/A Multi-enterprise logistics are covered to a limited

extent in Chapter 4, Current Initiatives, and
Section 6.6, Large Scale Integration.

Designer View N/A N/A See the target state design patterns in Chapters
5 and 6.

Builder View N/A N/A Chapter 7 specifies the integration technology
“bricks.”

2.4 Principles
The principles defined below are high-level statements of the fundamental values that
guide application integration at NIH. The team used a consensus approach in
developing the principles.

When the integration domain team found that a candidate principle was similar to an
existing one (from another domain) the usual response was to “endorse” that principle
rather than restating it here. These endorsed principles are reiterated here because the
impact of not following them is particularly detrimental to effective application
integration.

- 5 -

NIH Enterprise Architecture
enterprisearchitecture@mail.nih.gov

 Application Integration Technology
Architecture Report_v1.0

2.4.1 Application Integration Principles

Table 3. Application Integration Principles

Principle Rationale
1. Plan for Integration — Application integration is
required in the early project planning process for
enterprise applications. It must be included in the
project plan and key deliverables such as
requirements, analysis and design.

In the past, application integration has often been
an afterthought, resulting in missing or inferior
interfaces built quickly on a tight budget.

2. Loosely Coupled Interfaces — Interfaces will be
loosely coupled1, backward compatible,
self-describing, and offer a low impact to the
enterprise if changed.
(An interface service is tightly coupled to the
application of which it is a part.)

Loosely coupled interfaces are preferred,
because when interfaces between independently
designed applications are tightly coupled, they
are (1) less general and (2) are more likely to
result in undesired side effects when changed.

3. Publish Integration Points — “Public” inputs and
outputs of an application must be known, published
and understood to promote open data exchange and
interfaces for enterprise application integration.
Diagrams of connections and data syntax and
semantics should be published to promote re-use.

Lack of understanding results in ad-hoc
integration that is inconsistent and inefficient.
"Private" interfaces should not be published or
used, as their stability is not guaranteed.

4. Platform Independent, Open Standards — Open
standards and industry standards are preferred for
enterprise application integration solutions
(mandatory for integration outside NIH); mechanisms
should be language- and platform-independent.

This principle will allow for easier integration with
the heterogeneous platforms and programming
languages that are the norm at NIH today.

5. Reusable, Shared Services based on a
service-oriented architecture (SOA), and other forms
of APIs, are preferred to direct data access.

This approach will minimize direct access to
data; thus lowering the risk of bypassing the
business logic or compromising data integrity.

6. Integration Change Management — Software
Configuration and Change Management (SCCM) is
mandatory for application integration interfaces.

SCCM for interfaces is especially important,
because multiple applications may be impacted.

7. Minimize Application Impact — Enterprise
application integration mechanisms used should be
non-invasive to the applications as much as possible.
For instance, data transformation should be done
externally from the applications involved.

Adding application integration code to existing
applications (1) delays integration projects and
(2) increases the application maintenance
burden.

1 Loose coupling means that services (e.g., enterprise APIs) are designed with no affinity to any particular
service consumer. Inside the service, nothing is assumed as to the nature of the consumer. Thus, a
service is fully de-coupled from a service consumer. However, the service consumer is dependent on the
service (that is, it embeds literal references to service interfaces). The service is also responsible for
exception handling. The result is a semi-coupled (or loosely coupled) architecture.

- 6 -

NIH Enterprise Architecture
enterprisearchitecture@mail.nih.gov

 Application Integration Technology
Architecture Report_v1.0

2.4.2 Endorsed Principles

Table 4. Endorsed Principles

Endorsed
Domain, # Endorsed Principle Comment or Endorsement Rationale

Application
Principle #7

Meet Broad Needs — Enterprise
Applications must meet broad needs. The
requirements and design must be published
prior to development, and all IC’s must have
the opportunity to comment.

Integration Principles #1, Plan for
Integration and #6, Integration Change
Management, reference this related
principle.

Application
Principle #8

SCCM Processes Are Required — The
Software Configuration and Change
Management (SCCM) process must be
documented, and all parties must adhere to
it.

Integration Principle #6, Integration
Change Management, references this
related principle.
SCCM for interfaces is especially
important because multiple applications
may be impacted.

Data
Principle #2

Data Creation — All enterprise data should
be captured once at the point of its creation.

Application integration attempts to
reduce the amount of duplicate data
entry.

Data
Principle #9

Primary Data Source — All enterprise data
will have an authoritative, official, primary
data source that is the location for all Create,
Update and Delete actions.

Application integration should
recognize the primary data source.

Data
Principle #5

Data Ownership — All enterprise data will
have an identified business owner and a
technical owner.

Having accurate and consistent data
points will make application integration
easier.

Data
Principle #6

Standardization of Shared Data —
Enterprise data standards should be
identified when the value of interoperability
with other information systems exceeds the
value of uniqueness.

Shared data is often used in application
integration — having this standardized
will aid in application integration efforts.

Data
Principle #7

Standardization of Common Data
Enterprise data standards should be
identified when the value of commonality
across NIH exceeds the value of uniqueness.

Standardization of common data may
reduce the duplication of effort and
provide improved application
integration.

Enterprise
Principle #2

Business Priority — Information systems
exist to support the needs of the business.
Therefore, the NIH Enterprise Architecture
must support the enterprise vision, business
strategies and plans.

Requirements for application
integration should be based on
business needs, and may vary from
application to application.

2.5 Related Topics

2.5.1 Application Architecture
The Application Architecture report1 (a part of the information architecture) and the data
gathered by that domain team’s surveys were used extensively by this team to

1 Version 1, September 2003

- 7 -

NIH Enterprise Architecture
enterprisearchitecture@mail.nih.gov

 Application Integration Technology
Architecture Report_v1.0

understand the current state. As this document includes updates to that original data,
this document supersedes some portions of the Application Architecture document.

2.5.2 Identity Management
Identity management and application access/permissions are important to application
integration for multiple reasons, including:

 If a service provided by one application is shared by another application, the user
of the “composite” application needs to be logged into two applications at once,
transparently.

 When two applications are integrated behind the scenes, using messages or a
similar mechanism, no “user” in the normal sense is involved.

Identity management is beyond the scope of this document. However, when future
integration solutions are implemented, the implementation teams should work with CIT’s
NIH Login experts to provide a seamless solution.

2.6 Benefits of the Application Integration Architecture
In addition to the general benefits of enterprise architecture, this application integration
technical architecture, when implemented, provides the following specific benefits.

2.6.1 Business Benefits

 Reduce latency for data
 Provide real-time data capture and analysis
 Improve business efficiencies
 Improve responsiveness, delivery, or service (effectiveness)
 Reduce costs of integration efforts (integration typically consumes 40 percent of

the cost of application development and maintenance)
 Ensure quality, currency and source of data
 Provide process streamlining and accountability
 Obtain agreement from multiple systems or business units on the facts (modern

enterprises generally have redundant versions of data regarding customers,
products, employees and other entities used by various application systems)

 Focus on zero-latency application integration.

2.6.2 Technical Benefits

 Reduction in the need for duplicate data entry
 Reduction in data inconsistencies
 As driven by application requirements, data will be current, not several days out

of date, due to near real-time updates

- 8 -

NIH Enterprise Architecture
enterprisearchitecture@mail.nih.gov

 Application Integration Technology
Architecture Report_v1.0

 Reduction of integration development and maintenance costs due to
hub-and-spoke (rather than point-to-point) interfaces, a consistent architecture
and specialized tools for building interfaces

 Reduction in the cost of developing extension systems due to consistent,
superior interfaces

 Technical benefits of zero-latency integration.

2.7 Summary of Key Findings
The following are the key decisions regarding technology for Application Integration

 Web services are the preferred approach to the deployment of APIs for services
 These provide a standard approach for the implementation of SOA.
 Application development technologies selected for use should support the

generation of Web services interfaces to application components.
 Standards for Web Services including Extensible Markup Language (XML),

Simple Object Access Protocol (SOAP), Universal Description, Discover and
Integration (UDDI), and Web Services Description Language (WSDL) are
considered strategic to the NIH architecture.

 An integration broker suite (IBS) will be selected to facilitate the development of a
hub-and-spoke topology of application integrations where appropriate.

 This will decrease the number of point-to-point integrations between
applications and reduce the overall complexity of the application
infrastructure.

 Selection of a strategic business process manager toolset will be influenced by
the IBS selected. Most IBS technologies include integrated business process
management (BPM) capabilities.

 Handysoft Bizflow will continue to be used as a pure-play BPM tool in the
near-term.

 Direct integration between databases will be accomplished through the use of
database gateways over the near-term.

 These include Oracle Transparent Gateway and Linked-Server Database
Gateway for SQL Server databases.

 A variety of file transfer tools will continue to be used for the point-to-point batch
integrations.

 Supported tools will include Sterling Commerce Connect:Direct, Digital Imaging
and Communications in Medicine (DICOM) transfer, and the File Transfer
Protocol (FTP) clients and servers provided by standard operating systems.

- 9 -

NIH Enterprise Architecture
enterprisearchitecture@mail.nih.gov

 Application Integration Technology
Architecture Report_v1.0

3.0 Current State of Application Integration

3.1 Extension Systems
The distinction between extension systems and integrated applications is not always
clear.

Conceptually, extension systems can be
pictured as shown in the diagram on the right.
There is an enterprise application in the middle
(large bubble), used by all or most ICs. But
many of the ICs add on functionality that reflects
their own special needs (the smaller bubbles).

Some of the extension systems may be large or
important in their own right. In the Application
Domain Team survey1, ten of the extension
systems were rated as “enterprise class”
applications themselves! Over thirty percent of
the applications surveyed were categorized as
extension systems.

Figure 2. Extension Systems

Enterprise
Application

Extension

Physically, the methods used to “extend” the central application vary greatly.
Extensions might be accomplished via bi-directional transfer of data, direct access to a
database, a designated application programming interface (API), etc. The NIH will
benefit from standardization of methods in this area.

Extension systems are application add-ons that extend the capabilities of a core
application. This might be done for two reasons: (1) because the core application is
missing generally needed functionality or (2) to meet needs that are unique to an IC.

Observations from the Application Domain report2:

 Eighty-nine of the applications surveyed — over one third — were extension
systems. Extension systems such as VSOF and QVR were counted only once,
even though they are used by multiple ICs.

 Over half (53) of the 89 extension systems reported extended IMPAC II (eRA)
directly, or extend TABS, which is itself an extension of IMPAC II.

 Some extension systems interface with multiple NIH applications. For instance,
NCI’s TFS extends HRDB, DW, FPS II (ADB), ISB and Commissioned Corps.

 Some extensions systems augment DHHS applications.

1 See the Application Architecture Report, September 2003
2 As of September 2003. By May 2004, over 270 extension systems were identified.

- 10 -

NIH Enterprise Architecture
enterprisearchitecture@mail.nih.gov

 Application Integration Technology
Architecture Report_v1.0

Each enterprise application (which can be extended) provides some sort of mechanism
for this, formal or informal, documented or otherwise. Custom-developed NIH enterprise
applications rarely provide stable, well-engineered application programming interfaces
(APIs)1. The problem is not as severe with COTS applications because the market has
demanded good APIs.

IMPAC II, the most-extended enterprise application at NIH, provides controlled access
to its database through database views. Updates are handled through an application
programming interface (API) written in Oracle’s proprietary Programming Language for
SQL (PL/SQL), stored in the database as stored procedures. The two mechanisms are
depicted in the figure below.
Figure 3. IMPAC II Interface Design

Enterprise
Application

Stored
Procedure

Database

View
Read Only

Write

Extension
System or

Integrating App.

Notes:
1. The database is read through

database views.
2. The database is updated by

invoking a proprietary stored
procedure.

3. Most operations/actions are
performed one record at a time.

4. Transaction control
(commit/rollback) is handled by the
extension system.

Source: Gartner

1 This is a common problem at most large enterprises.

- 11 -

NIH Enterprise Architecture
enterprisearchitecture@mail.nih.gov

 Application Integration Technology
Architecture Report_v1.0

3.2 Integration of Enterprise Systems
NIH applications often exchange data with other NIH, DHHS and “outside world”
applications.

3.2.1 Internal to NIH
NIH applications frequently exchange data with each other. Major applications are
currently integrated through a series of point-to-point interfaces; a variety of
mechanisms and protocols are used. The next figure is a flow diagram for enterprise
applications, prepared by D. Bucci, the CIT team member, and updated and endorsed
by the rest of the domain team.
Figure 4. Flows Between Enterprise Applications1

Itas

Data Warehouse

NIDB

NED HHS Payroll

Treasury

ConnectDirect
(controlled point to point)

Push/Pull

Push/Pull

Pull

Pull

HRDB

Pull

Neon
Gateway

Neon
Gateway

Push

NBS

PubMed

HHS
EHRP

niehS

nlm

niaid

Email txt

Ftp text

Email text

ADB

CAS

OCI/
JDBC

NCI

XML document

ERA

VALTRAN

Pull

Mod
VALTRAN

Push

Portal

AD

Card and
Badge

Contium

PH
Directory

FPS2
hrfellow.needfe

ed

CC Library
Patron

NHLBI
edirectory

Telephone
Directory

COM

CSR

NED DB2
Tables

JEFIC

COPP
S

PARTS

Source: CIT; April 2004

3.2.2 With the Outside World
NIH applications exchange data with DHHS, other agencies (e.g., EPA), contractors,
research laboratories, universities, journal publishers, foreign government institutions
(e.g., Swedish Riskline), commercial database repositories, public libraries and the

1 As provided during current state workshop (05/04)

- 12 -

N
enterprisearchite

IH Enterprise Architecture
cture@mail.nih.gov

 Application Integration Technolog
Architecture Rep

- 13 -

Grants Cluster Applications

E-Log
(NHLBI)

e-RA
IMPAC II

FAC

CASCRISP

e-RA
Commons

NIDB

Additional IC
Extension
Systems

ER
(NIAID)

QVR

ECB

1 As provided during current state workshop (05/04)

Figure 5. Grants Cluster Applications1

The figure below shows the Grants Management core application along with closely
related applications.

3.3 Grants Management

public at large. The number of direct and indirect outside users of NIH applications and
data is huge.

External
Entities

Grants Management Core
Applications

iEdison

Used by more
than one IC

----- Extension Systems -----

Source: NIH

y
ort_v1.0

NIH Enterprise Architecture
enterprisearchitecture@mail.nih.gov

 Application Integration Technology
Architecture Report_v1

3.4 Grants and Financial Applications
The next figure shows the flows between grants and related financial applications, including some outside parties.

- 14 -

NIH Enterprise Architecture
enterprisearchitecture@mail.nih.gov

 Application Integration Technology
Architecture Report_v1

Figure 6. Flow Diagram: Grant, Financial and Related Data1

Billing and Inventory Data

ADB

Grant Number Matching Data

Purchase Card Activity Data

Billing Data

Accounting data Pricing data

Object Class Codes, Blanket Purchase Agreement Codes

Orders

 CAS
Payment Info

Self
Service
Stores

 PRB

USA
Bank

GPO
Invoice Data

Market requisition data

Self
Service
Stores

 FAC

eRA CM Payment info

Grant Award Dollars

FMS

E-Log

Grant Data

Specialist/Specialist Assignment

DHHS

 AMBIS

1

1

1

1

1

1

1

1

1
1

2

4

4

5

10

3

Surveyed
Application
Not Surveyed
Application

External agency

Key 1: Application

Database (not
surveyed)

1

2

3

4

5

6

7

8

9

10

Unknown

File Transfer/
Batch Update

API

ODBC/Database
Gatway

FTP

Data Load Directly
from NED

Perl Connector
/DB2 Connect

CSV files,
shared folders

AFS

Direct Database
Access

Key 2: Integration Mechanism

OPM
(Procurement Mgmt)

F&A Rates

CSR

1 As provided during current state workshop (05/04)

- 15 -

NIH Enterprise Architecture
enterprisearchitecture@mail.nih.gov

 Application Integration Technology
Architecture Report_v1

3.5 Personnel and Related Applications
The personnel data environment is complicated by the fact that there is a complex mix of government employees,
contract staff and outside scientists. The figure below depicts the current situation.

- 16 -

rise Architecture
cture@mail.nih.gov

 Application Integration Technology
Architecture Report_v1

- 17 -

 IMPAC II Specialist/Specialist AssignmentE-Log

FAES

Data Warehouse

NIHITS II

Employee and Organizational Data

Employee Phone and Address Data

 Phone Book

MVS Customer
Registry

VEDS

HRDB EMIS

HR Data

HR Data

Employee Identity/Locator Data

ADB

JEFIC Employee Identity/Locator Data

 PH

Continuum

Active Directory Employee NIH Login Domain

Employee ID Photo/Badge No.

Employee Locator Data

 NEDEmployee Identity Data

Payroll
Employee Data?

Employee Data?

ID Badge ops.,
NIH ID No.,
locator data

NIH ID No., identity, and
locator data

ITAS NIH ID No.
and locator data

 Emp. time and
attendance data

EHRP

Employee Data PARTS

Staff Data NIDB

Conveyant

Innopac

NIH ID No., identity, and
locator data

NIH ID No., identity, and locator data

DB2

Employee Identity Data

Social
Security
Agency

IRS
Treasury

Dept.
NIH vendor/employee payment data

1099 data
W2 data

Course Data

1
1

1

3

1

1

6

7

8

7

7

7 8

97

7

7 8
NIH ID No.

and locator data 7 5

7

10

7

1

1

1

1

5

5

7

1

Surveye
dApplication
Not
S dApplication

External

Key 1: Application

Database
(tsurveyed
)

1

2

3

4

5

Unknown

File Transfer/
Batch
U d t
API

SDF File
to Mainframe

FTP

Key 2: Int. Mechanism

6 Data Load Directly
from NED

7

8

9

10

Perl
C t/DB2
C tCSV files,

shared
f ld
AFS

Direct
D t bAccess

Figure 7. Flow Diagram: Personnel and Related Data1

1 As provided during current state workshop (05/04)

NIH Enterp
enterprisearchite

NIH Enterprise Architecture
enterprisearchitecture@mail.nih.gov

 Application Integration Technology
Architecture Report_v1.0

3.6 Clinical Center (Broker)
The Clinical Center is the only known place that an integration broker (QDX) is in use at
NIH.
Figure 8. Current Clinical Care Infrastructure

Source: NIH/CC; 4/25/03, emphasis added.

Clinical Patient Care is supported through MIS, MAC/MIS and Web/MIS, multiple
ancillary systems (radiology information system, laboratory information system,
transcription system, EKG system), an interface engine and a Clinical Data Warehouse.
MAC/MIS and WEB/MIS are used by Clinical Staff to place orders, view reports, enter
results and enter documentation into MIS. Ancillary systems are used to track the order
and the result of the order and to transfer the result back to MIS. The interface engine is
used to transfer orders, result status and results between MIS and the ancillary
systems. The Clinical Data Warehouse is used to store all historical clinical data for the
purpose of providing data for clinical research.

- 18 -

N
enterprisearchite

IH Enterprise Architecture
cture@mail.nih.gov

 Application Integration Technolog
Architecture Rep

- 19 -

3.7 Integration Mechanisms
Known integration mechanisms include:

 Direct database access Batch update
 XML formatted files Excel spreadsheet
 Weekly/daily FTP SDF file to mainframe
 Batch database read using stored procedure CD-ROM/Tape
 Put to public FTP server for licensed access OCI calls
 PERL connector (DB2 connect) ODBC/JDBC
 CSV files/shared folders/Andrew File System (AFS) Cold Fusion API

 QDX Integrator
 Kermit SQL View API
 Transfer through SCP (secure copy) SSH tunnel
 Secure FTP
 MS DTS
 Oracle Advanced Queuing

 Internet transfer
 BizFlow.

Diversity of integration mechanisms leads to greater complexity accompanied by lower
reliability, lapses in data integrity and higher operational costs.

Recent advances in application integration technology, along with a systematic
approach to the integration problem, can provide substantial relief. Chapters 5-7 provide
an advanced integration architecture/approach.

3.8 Import/Export Matrix
The Application Architecture domain team constructed an import/export matrix (based
on questionnaire answers) that shows mechanisms used for imports and exports; it
should be regarded as preliminary until an analyst does further clarification and
verification.

A portion of the matrix is shown below to illustrate the structure of the matrix and the
diversity of integration mechanisms in place; the full matrix is available from the Office
of the Chief Architect. Note that some of the applications named in the matrix did not
appear in the survey; not much is known about them1.

1 Additional data collection is expected in next refresh of the application architecture. Complete
import/export matrix can be found in the Application Architecture report.

y
ort_v1.0

rise Architecture
cture@mail.nih.gov

 Application Integration Technology
Architecture Report_v1.0

- 20 -

 Application Entity or Entity Type Comment IM
P

EX
P From Appl / Source Import Mechanism To Appl / Destination Export Mechanism

ADB 1099 data

1099 reporting for:
. Non-employee compensation
. Participation in Clinical Center trial
. Professional Services contract
. Scientific Review & Evaluation Awards
. Loan Repayment and Scholarship Program
participants
Data is collected from the ADB and
CAS to report payments.

x Internal Revenue
Service

Statements to individuals
annually in January.
Information to SSA
annually in February.

ADB Accounting data Accounting transactions generated by
ADB actions are processed in the CAS x CAS Daily

ADB Billing and inventory
data

Self Service Stores transmit a file of
purchase and return activity to the ADB.
The ADB uses this information to bill
stores’ customers and adjust inventory
balances to reflect the day’s activity.

x Self Service Stores Daily

ADB Billing data
PRB transmits print counts from the
Copitrack Copy Center, Production
Shop, and manual entries to the ADB for
purposes of billing PRB customers.

x PRB Daily

ADB Data for reporting
purposes Data for reporting purposes. x DW Daily

ADB Grant number
Matching data

Center for Scientific Review (CSR)
creates a crosswalk file that allows the
ADB to match Grant tracking numbers
from the PRB (Printing and
Reproduction Branch) Copy Center with
Grant numbers.

x CSR (Center for Scientific
Review) Daily

ADB Inventory data

ADB creates three files of activity for
i tinto RIMS. These files contain daily
customer orders from the NIH
inventories, items added to the NIH
inventories and replenishment
purchase orders pending delivery to NIH
inventories.

x
RIMS (Robocom
Inventory Management
System)

Daily

ADB Invoice data

GPO transmits a file of invoices to cover
printing jobs performed in the previous
month. These invoices are loaded in
the ADB and matched against Service
and Supply Fund Work Requests for
billing to the ICs.

x Government Printing
Offices (GPO) Monthly

Table 5. Import/Export Matrix (Partial)

NIH Enterp
enterprisearchite

NIH Enterprise Architecture
enterprisearchitecture@mail.nih.gov

 Application Integration Technology
Architecture Report_v1.0

3.9 Integration Issues
The following table shows how different integration issues1 have been manifested at
NIH. The NIH Related Details column captures the negative impact of NIH’s current
integration approach and, thereby, the drivers for the architecture recommendations in
this document.

Issue Type Issue Details NIH Related Details

Duplicate data entry NHLBI currently has to enter contracts data twice in
DCIS and the NHLBI contract tracking system —
duplicate data entry has been mentioned as an issue
in other cases as well.

Lack of
synchronization/maintenance
Issues

ICs incur extra effort to synchronize with eRA:
 eRA schema changes cause downloads to

malfunction
 ICs manipulate local copy of data and if

corrections to enterprise data aren’t made, there
is an impact on enterprise reporting (since
“good” data is not accessible outside of IC).

HRDB updates NED only every two weeks. The
general rule is that the authoritative source for a
person's legal name and home information is HRDB,
which is updated by the AOs or the person in
Employee Express. Business information, such as
office phone and address, can be updated in NED
with the self-service.

Duplicate data NIAID faces potential problems of faulty data
replication (redundancy) in its central database server
when using Oracle_Download.

Data Integrity

Inability to move data NIAAA faces problems with exporting CAPS data into
their in-house database — currently no way to export
the data directly or for dual entry into both systems.

Resource/budget issues Teams should consider funding and resource
planning (development and maintenance schedules)
when planning application integration within NIH and
DHSS systems.

Integration
Planning Lack of documentation of

changes to interfaces
As there continues to be evolution of interfaces to
other applications such as POPTRACK, the pain
experienced to date is related to undefined or late
changes to standard interfaces with timely
documentation.

1 Additional details around NIH integration issues can be found in the Appendix B — Current State
Results

- 21 -

NIH Enterprise Architecture
enterprisearchitecture@mail.nih.gov

 Application Integration Technology
Architecture Report_v1.0

Issue Type Issue Details NIH Related Details

Manual transfer of data Common problem. Examples include:
 Until CRIS is implemented, CC is faced with

some paper and pencil transfer of data amongst
ancillary systems.

 NHLBI currently has a manual interface with the
Fogarty tracking system that includes printing,
manual lookup, and manual delivery.

Data
Processing

Real-time status of transactions Integration with Central Accounting System (CAS)
doesn’t meet business needs. Real-time obligation is
preferable to assuming transaction will complete
within a day. Feedback loop for errors is not reliable.

Multiple formats within IC NIAAA users have applications that use different file
formats — utility programs for converting file format or
direct ODBC to the other application is required for
data sharing.
There may be some value in working on standard
formats (for date, for example) to alleviate data
conversion efforts.

Formats

Usage of standards

The lack of internal standards creates reliability
issues and causes unnecessary work.

 The use of a message-based interchange could
de-couple the information exchange from schema
changes, up to a point. The notion of a stable API
or stable message XML schema that changes
only when the payload of the message changes
but not when the eRA schema changes may be
implemented.

 A desired area of growth related to integration
points would be to increase the usage of XML at
the points where we currently rely on flat file
exchanges. This, of course, is constrained by the
capability of our users (cooperative groups, et al.)
and funding resources/competing priorities.

Web browser dependency NCRR has integration pain points with supporting
various Web browsers — no specifics provided.

Platform
Related

Platform dependency

NCRR has mentioned legacy data as an integration
pain point.
Integration with CAS is difficult due to residing on the
mainframe.

- 22 -

NIH Enterprise Architecture
enterprisearchitecture@mail.nih.gov

 Application Integration Technology
Architecture Report_v1.0

4.0 Current Initiatives
The domain team also asked ICs about existing plans, for the near future.

4.1 Summary of Initiatives
The initiatives mentioned during the current-state discussions are listed below. In some
cases, multiple ICs had similar initiatives.

Some of the initiatives listed below have also been listed as part of the future-state
application integration architecture at NIH, and can be found at the design-pattern/bricks
level.

 Make secure file transfer mechanisms a standard, and phase out insecure file
transfer.

 Investigate using Connect:Direct, a managed file transfer tool, as the transfer
mechanism of choice.

 Use a hub-and-spoke architecture to integrate applications (i.e., CRIS, eRA), and
evaluate tools accordingly.

 Automate and standardize the use of APIs.
 Automate and standardize how data is published between applications.
 Promote standards-based exchange, which may include expanded use of XML

and ebXML.
 Phase out client server technologies and convert to Web-based (Web services)

when possible.
 Phase out Microsoft Data Transformation Services (DTS) when used as an

integration mechanism, and replace with C# technology.
 Investigate using enterprise-level (application-to-application) workflow tools for

application integration.
 Use government off-the-shelf (GOTS) products like the IAE portal for application

integration (see section 4.3).
 Roll out NIH Login, the single sign on functionality, to assist application

integration.
 Merge LDAP structures (directory information) and standardize the definitions of

roles to centralize user creation. This will help the NIH login effort.

- 23 -

NIH Enterprise Architecture
enterprisearchitecture@mail.nih.gov

 Application Integration Technology
Architecture Report_v1.0

4.2 Clinical Center (CRIS Project)
The NIH Clinical Center provided information about CRIS, which is currently under
development and expected to achieve production status in 2004.

To address limitations of the present system and to fully automate clinical care, the NIH has
embarked on the Clinical Research Information System (CRIS) project. Specific areas in which
the current system fails to perform to the needs of the Clinical Center and Institutes include:

 Compliance with the Health Insurance Portability And Accountability Act of 1996 (HIPAA)
and the Privacy Act regulations

 Interfacing to ancillary systems to provide integrated data. This will eliminate paper and
pencil transfer of data between systems

 Reduction of potential medical errors through the implementation of a Pharmacy and
Surgical Scheduling, Management and Documentation system

 Management and display of radiologic, anatomic, pathologic, ultrasound images and
other image-based data

 Interfacing to Institute research databases
 Support for standardized medical vocabularies
 Support for analyzable electronic documentation (i.e. physician notes)
 Support for protocol-based provision of care
 Provision of management information for resource allocation and cost attribution
 Provision of longitudinal patient data
 Provision of historical patient data for research analysis
 Comprehensive support for patient appointing
 Support for bed management
 Support for nurse acuity assessments.

The next figure shows the planned CRIS Clinical Care Infrastructure.

- 24 -

NIH Enterprise Architecture
enterprisearchitecture@mail.nih.gov

 Application Integration Technology
Architecture Report_v1.0

Figure 9. Planned CRIS Clinical Care Infrastructure

Source: NIH/CC; 4/25/03,

emphasis added

- 25 -

NIH Enterprise Architecture
enterprisearchitecture@mail.nih.gov

 Application Integration Technology
Architecture Report_v1.0

4.3 GSA Integrated Acquisition Environment
Beyond NIH’s own agenda, governmentwide integration initiatives are currently being
planned or are under construction. The figure below shows one such e-government
effort, sponsored by OMB and led by GSA.

The black rectangle in the center of the GSA diagram is of particular interest. GSA is
reportedly planning to procure integration middleware, including an integration broker.

Figure 10. GSA Integrated Acquisition Environment

Source: NIH

- 26 -

NIH Enterprise Architecture
enterprisearchitecture@mail.nih.gov

 Application Integration Technology
Architecture Report_v1.0

5.0 Enterprise API Design Patterns (Future State)
Design patterns may be logical or physical. Logical design patterns do not specify
specific technology platforms, products or brand names. A logical design pattern may
be implemented by one or more related physical design patterns. Patterns provide
design guidance to implementation teams and can occur in one domain or span multiple
domains.

The future-state architecture addresses two related problem areas. This chapter
provides an API solution to improve integration of extension systems with enterprise
applications. The next chapter addresses integration of enterprise applications with
each other.

The API solution builds on three related logical patterns for use by enterprise solution
architects designing interfaces:

 Service-Oriented Architecture (SOA): Fundamental encapsulation of interface
services.1

 Web Services Architecture (WSA): A service that is constructed and accessed
according to Web services standards.

 Application Program Interface (API): The characteristics of the interface itself.

An SOA is useful for building reusable services, in general. But SOA and WSA also go
beyond application development into the realm of integration.
Figure 11. Layered Service Architecture

Object
Program

Component
Homogeneous Application

Service-Oriented Architecture
Small Enterprise, Complex Applications

Web Services
B2B, Enterprise Integration

ORB

MOM

Typical Access Via:

SOAP + XML

OOD

CBD

SOA

G
ra

nu
la

rit
y WSA

Source: Gartner

1 See Appendix D, Introduction to Service-Oriented Architecture, for more on both SOA and WSA.

- 27 -

NIH Enterprise Architecture
enterprisearchitecture@mail.nih.gov

 Application Integration Technology
Architecture Report_v1.0

5.1 Pattern: Service-Oriented Architecture (SOA)

5.1.1 Description
A fundamental characteristic of a service is the way it is partitioned. The user
interface — if any — is completely separated from the application logic and data logic.

5.1.2 SOA Solution
The figure shows six common ways of partitioning program logic. Interfaces should be
constructed using one of the three SOA patterns (bottom row).
Figure 12. Logical Design Pattern: SOA

1. Legacy/Terminal 2. Client-Server (a) 3. Client-Server (b)

Terminal

Presentation

Appl. Logic

Data Logic

DB

Presentation

Appl. Logic

Data Logic

DB

Presentation

Appl. Logic

Data Logic
 in DB

All of the code runs on a single
machine. Multiple terminals
connect to the application.

“Fat client.” All of the code
runs on a PC. The database is
on a separate server.

“Plump Client.” Same as
client-server (a) except the
data logic, and perhaps some
application logic, is coded in
stored procedures.

4. SOA (1) 5. SOA (2) 6. SOA (3)

Presentation

Appl. Logic
Data Logic

DB

Presentation

Appl. Logic

DB

Data Logic

Presentation

JSP/ASP, etc.

Appl. Logic

DB

Data Logic

Service-oriented architecture.
All app. and data logic is on a
server.

Same as SOA (1), but with
partitioning so multiple servers
can be used.

Ultra-thin, partitioned SOA.
Most of the presentation logic
is really on a server.

Note that the resulting service may be usable both for external access (as an integration
interface) and internal purposes (by adding presentation logic).

- 28 -

NIH Enterprise Architecture
enterprisearchitecture@mail.nih.gov

 Application Integration Technology
Architecture Report_v1.0

5.1.3 Guidelines for SOA Design
Today, NIH applications are heterogeneous; they are written in a variety of languages
and execute on different computing platforms. While the internal construction is not in
scope for this domain, many NIH applications are based on object-oriented design
(OOD) or component-based design (CBD) principles, and many are already SOA as
well1; thus the transition to SOA for APIs should not be inordinately difficult. The
following table shows Gartner’s guidelines for effective SOA design.
Table 6. Guidelines for SOA Design

Guideline Rationale
1. Generated service wrappers

typically make poor services.
2. Services must be designed in their

own right; objects and components
are not services.

3. Beware of too many small services.
4. Beware of services that are too

large.
5. Beware of Web services extremism:

 Not all software should be
service-oriented.

 Not all services should be Web
services.

 Not all messages should be in
XML.

Source: Gartner Research

The typical early approach to SOA was to simply wrap
pre-existing components as services. Vendors offer tools
that wrap C++ classes, Java classes, Enterprise
JavaBeans, CORBA IDL and other transaction programs
as Web services. Although this approach is natural and
the quickest way into SOA, it can also lead to disasters.
The problem is the mismatch of granularity. Properly
designed services are relatively large, allowing for
significant processing on behalf of a single request. These
services incorporate dozens of components and hundreds
of object classes. But if each component or object class is
a service, communication traffic can overwhelm the
network and render the entire application unusable.
Unfortunately, this problem becomes apparent only after
much work has been completed.
The right granularity of services is an important design
decision. Too small services can clog the network; too big
services may deny the project most of the benefits of
SOA.

5.1.4 Benefits

 This pattern is a building block for the next two patterns, which is where the
benefits for integration occur.

 An important secondary benefit, from an application technology architecture
perspective, is the construction of reusable services.

5.1.5 Limitations

 A service developed in one programming language may be difficult to call from
an application written in a different language. However, the use of interoperable
Web services (next pattern) solves this limitation.

When the application development architecture is developed, SOA should be
considered there as well.

1 The Application Architecture survey indicated that SOA is already common at NIH (75 percent of the
responses were SOA) and that Web services were often on the agenda.

- 29 -

NIH Enterprise Architecture
enterprisearchitecture@mail.nih.gov

 Application Integration Technology
Architecture Report_v1.0

5.2 Pattern: Web Services Architecture (WSA)

5.2.1 Description
When a service program is invoked as a Web service, it is usable by other programs
even if they are written in a different language and run on a different computing
platform.

Web services may also be invoked or supplied by an integration broker.

5.2.2 Web Services Architecture
The definitions shown below build on the definition of application integration given in
Chapter 2.
Figure 13. Logical Pattern: Web Services Architecture (WSA)

Definition Conceptual Graphic
Integration Service — A software program that is
a business-complete logical unit of work,
accessible programmatically from independently
designed contexts via a direct, openly
documented interface. Interface

Service

SOA for Integration — An application software
topology consisting of services and service
consumers (clients) in loosely coupled,
one-to-many-consumers-of-each-service
relationship.
Web Service for Integration — The service
interface is encoded using WSDL.

Interface
proxy Interface

Service
Consumer

(Client)

Source: Gartner

5.2.3 Benefits

 Based on modern, widely accepted standards.
 Clients and services can be written in a wide variety of programming languages.

5.2.4 Limitations

 There may be performance limitations in extremely high-volume situations.
 Standards compliance/interoperability should be tested.
 Standards for transaction management across multiple Web services are still

evolving.

- 30 -

NIH Enterprise Architecture
enterprisearchitecture@mail.nih.gov

 Application Integration Technology
Architecture Report_v1.0

5.3 Pattern: Application Program Interface (API)

5.3.1 Description
Interfaces to enterprise systems should be built according to this API design pattern. It
builds on the two previous patterns.

5.3.2 API Solution
The logical architecture for enterprise APIs is shown below. The cloud in the diagram
represents both middleware and the network.

Notes about the pattern:

1. Data is exchanged via services (procedural code).
2. The services shown are Web services.
3. The application database is private (hidden) for this purpose.
4. Most operations involve complete business objects, which may be complex.
5. XML is used to encode the data in most cases.
6. Commit/rollback is typically controlled by the service-providing application.
7. Error and exception handling is handled by the enterprise application service,

with the appropriate return code being passed back to the client.
Figure 14. Logical Design Pattern: Application Program Interface (API)

Database

Get <object>

Put <object>

Enterprise
Application

Service

Service

Extension
System or

Integrating App.

Source: Gartner

5.3.3 Benefits

 An important secondary benefit, from an application technology architecture
perspective, is the construction of reusable services.

 Based on modern, widely accepted standards.
 Clients and services can be written in a wide variety of programming languages.
 Having a standard approach for APIs will be of great benefit to extension system

developers.

- 31 -

NIH Enterprise Architecture
enterprisearchitecture@mail.nih.gov

 Application Integration Technology
Architecture Report_v1.0

 Transport of whole “business objects” (e.g., entire purchase orders or invoices),
rather than line items, will optimize network usage.

 This approach complies with the “loose coupling” integration principle, as
illustrated in the next figure. This is an illustration only.

Figure 15. Web Services and XML Provide Loose Coupling (Example)

Extension
System

NIH Composite
Applications

Enterprise
Apps via
Broker

Research
Institutions

Service
Functionality:

Objects
Components
Data
Processes

Loosely Coupled
Service Invocation

XML/SOAP

Tightly
Integrated

Service
Functionality

Source: Gartner

5.3.4 Limitations
Limitations are few if the SOA design guidelines are followed.

 For extremely high-volume cases, benchmarking in advance is desirable.
 Early developers of enterprise APIs should verify interoperability (develop several

test drivers written in other languages, etc.).

- 32 -

NIH Enterprise Architecture
enterprisearchitecture@mail.nih.gov

 Application Integration Technology
Architecture Report_v1.0

5.4 General Guidelines for Integration/API Design
The following guidance is provided to enterprise application architects and designers
who are planning for integration.

Guidelines for API Design:

 Use XML for loose coupling.
 Use a Web services architecture.
 Consider broad needs; try to make the API general enough to be used by many.
 The API/enterprise application is responsible for data integrity and transaction

control.
 The API should provide informative status codes and error messages.
 APIs are documented, and source code is available for review (not modification).

Inputs and outputs are clearly defined, including data syntax and semantics.

Additional Integration Guidance:

 Edits, including complex edits (business rules), should always be enforced by the
enterprise application.

 The enterprise application should provide valid field values to other point-of-entry
applications.

 Complex edits (business rules) may be redundantly enforced by other,
point-of-entry applications. Designers may consider a variety of mechanisms to
allow this, including provision of a shared validation service.

 Security should be in place — know who is allowed to invoke an enterprise API.

- 33 -

NIH Enterprise Architecture
enterprisearchitecture@mail.nih.gov

 Application Integration Technology
Architecture Report_v1.0

6.0 Integration Design Patterns (Future State)
Design patterns may be logical or physical. Logical design patterns do not specify
specific technology platforms, products or brand names. A logical design pattern may
be implemented by one or more related physical design patterns. Patterns provide
design guidance to implementation teams and can occur in one domain or span multiple
domains.

This chapter is organized as follows:

 The chapter starts by providing patterns for basic program-to-program
communications. These are fundamental building blocks used for many
solutions, including integration.

 Next the focus turns to integration. The three basic integration problems are
discussed, and three patterns to solve them are presented.

 Finally, patterns for large-scale integration are presented.

6.1 Pattern: Basic Communication

6.1.1 Description
The five basic communication models below occur frequently in industry; they are used
for application integration and other purposes. The first four are supported by MOM
(Message Oriented Middleware1). The last model, file transfer, is frequently used today
at NIH; it is included here for completeness and because it will continue to be useful in
the future.

The new MOM models can be used to:

1. Understand how message-oriented middleware can be used for point-to-point
integration on a (near) real-time basis, reliably.

2. Better understand how MOM works when it is used with a broker that supports
hub-and-spoke integration.

6.1.2 Five Communication Models
A communication model basically describes the relationship between the sending and
receiving program in terms of relevant communication flow characteristics (e.g.,
one-way vs. two-way, one-to-one vs. one-to-many, synchronous vs. asynchronous,
etc.). If the business issues are well understood, and the application design phase is
carefully tackled, it should be simple to determine the most appropriate communication
model. Non-trivial applications may need to use more than one communication model.

The five logical models shown in the next figure, while similar, have somewhat different
characteristics.

1 Message Oriented Middleware will be referred to as MOM, which is different than MoM (Monitor of
monitors) which is used in the Enterprise Storage Management report

- 34 -

NIH Enterprise Architecture
enterprisearchitecture@mail.nih.gov

 Application Integration Technology
Architecture Report_v1.0

Figure 16. Logical Design Pattern: Basic Communication Models

Request/Reply

Message Passing

Call

Return

ReceiveSend

Message Queuing

Queue
Enqueue Dequeue

Program B
Program A

Publish and Subscribe

Program C

Publisher Subscriber

Program A

Program A

Program A

Program B

Program B

Program B

File Transfer
Write Read

Program A Program
B

Copy

(A)

(B)

(C)

(D)

(E)

Source: Gartner Research, 2004

A. Request/Reply (synchronous) — Here MOM is being used to provide a synchronous
interaction between two applications. This is similar to a normal subroutine call.

B. Message Passing (synchronous) — This is a “fire and forget” operation. All that

Program A knows is that Program B received the message. (Program B could, of
course, send a confirmation message as a separate step.)

C. Message Queuing (asynchronous) — This message passing also has an added

queuing mechanism. Messages go into the queue for delivery later — perhaps
milliseconds later or even days later. Queuing adds resiliency because the receiving
program or the network can be down when the message is sent, but it still works out
in the end.

D. Publish and Subscribe (asynchronous) — Program A publishes a message to the

middleware engine1, represented by a cloud in the diagram. The message is then
routed to multiple subscribers. Program A does not itself know who the subscribers
are. (The pattern is named “publish and subscribe” because the logical model is
similar to magazine distribution.)

1 The middleware may also provide queuing, like sub-pattern D.

- 35 -

NIH Enterprise Architecture
enterprisearchitecture@mail.nih.gov

 Application Integration Technology
Architecture Report_v1.0

E. File Transfer (asynchronous) — Program A puts messages in a file. Sometime later
the file is copied to the machine on which Program B runs, and Program B reads
them. This is essentially message passing on a delayed batch basis.

Managed file transfer — when it meets the needs of the business and point-to-point
integration is acceptable — will continue to be an important integration mechanism.

6.1.3 Benefits
The use of MOM, rather than file transfer, provides the following benefits, assuming that
the choice of the model (A, B, C or D) is appropriate:

 Information can be exchanged on a real-time or near real-time basis.
 Queuing provides resiliency.
 The publish-and-subscribe model is easy to program using MOM.
 Publish and subscribe provides loose coupling because the middleware knows

who the subscribers are, not the sending program.
 MOM often improves network performance because small messages are sent

continuously rather than all at once, in a batch file.

6.1.4 Limitations
There aren’t many inherent limitations.

 File transfer — common today — has limitations in (a) timeliness and (b) ability to
confirm receipt/acceptance of transactions. The MOM patterns eliminate these
limitations.

 While MOM is commonly used to handle very large transaction volumes for major
enterprises there could still be limitations. It is sometimes wise to benchmark the
messages/second rate before committing to a design.

 Additional limitations cannot be determined until the NIH chooses a product.

Once a product has been chosen, further limitations should be documented. Areas to
examine include: performance, transaction control, message routing details, hardware
platforms supported, etc.

- 36 -

NIH Enterprise Architecture
enterprisearchitecture@mail.nih.gov

 Application Integration Technology
Architecture Report_v1.0

6.2 Basic Integration Patterns (Introduction)
Research has shown that there are three basic integration “problems” that consistently
turn up at all large enterprises. The problems can be solved in a variety of ways, as
demonstrated today at NIH. This section introduces the problems. The next three
sections provide design patterns for solving them.
Figure 17. Three Integration Problems

Data Consistency Multistep Process

• Batch or immediate
“latency”
t f• Multiple

• Multiple
t• One-way,

hinteraction
• Systems are
h i llindependen
t• Systems are

l i llindependen
t

• Batch or immediate,
i di id ltransfer

• One business
• Multiple
t• One-way,

hinteraction
• Systems are
h i llindependen
t• Systems are logically

d d t

• Immediate, “zero-
l t ”interaction
• One business
• One
t• Two-way, synchronous

i t ti• Systems are physically
d d t• Systems are logically
d d t

Composite Application

Source: Gartner, 2004

The goal of data consistency is to get multiple systems or departments to agree on the
facts. The most common method of achieving data consistency is to create a batch file
in the application that first captures the new information and then transfers those
updates to the next application system in a nightly batch process.

A multi-step process involves a sequence of steps, each conducted by an application
system or person. Each instance of a business process, such as each purchase order
or insurance claim, has a life cycle that may span seconds, minutes, hours or days.

A composite application may service a human client, perhaps using a new Web
application, to transparently invoke business logic in other applications, such as one or
more mainframe transactions or calls to packaged Unix or Windows NT applications. To
the user, this looks like a new application that provides the functionality previously
available in multiple applications. Interactive, composite applications represent the most
closely knit and hardest-to-implement integration pattern.

- 37 -

NIH Enterprise Architecture
enterprisearchitecture@mail.nih.gov

 Application Integration Technology
Architecture Report_v1.0

Each problem has its own characteristics, as shown in the next figure.
Figure 18. Integration Solution Characteristics

Basic Integration Patterns

Solution
Requirement

Data Consistency

Multi-step (STP)

Composite

Prevailing
Interaction

One-Way
Asynchronous

One-Way
Asynchronous

Two-Way
Synchronous

Communication File transfer/MOM File transfer/MOM Platform Middleware1,
MOM, Gateways

Transformation Advanced Advanced Basic (Mapping)
Flow Control Intelligent Routing BPM/Workflow Application Code

Unit of Work Message Process Composite
Transaction

Performance Messages/Sec. Elapsed Time,
Transactions/Sec. Transactions/Sec.

Source: Gartner

Large-scale integration problems are typically solved by developers who are familiar
with all three basic integration patterns and use a mix of one or more of them,
depending on the nature of the applications.

Most integration infrastructures in operation have been designed to support data
consistency and multi-step process integration scenarios. Data consistency is the
fundamental integration requirement for most enterprises. Multi-step process integration
can be supported by adding to the infrastructure supporting data consistency a BPM
layer. Both patterns are essentially asynchronous, fire-and-forget oriented and require a
MOM-based communication layer.

Composite applications need to be supported by an infrastructure with completely
different characteristics. Composite applications require synchronous, request/reply
interactions between applications, typically provided through remote procedure call
(RPC) or object request broker (ORB) protocols. Messages flowing between the
elements of the composite application are typically simple; hence, advanced message
transformation is not required. Service composition can be implemented through
application code or “light” forms of BPM technology. The “unit of work,” in which some
degree of all-or-nothing atomicity must be supported, is a composite, logical transaction
spanning multiple “physical” components. In terms of performance, users express their
requirements in traditional metrics, such as transactions per second, and not in terms of
messages per second or concurrent processes.

1 RPC, ORB, TPM etc. Platform middleware is out of scope for this document.

- 38 -

NIH Enterprise Architecture
enterprisearchitecture@mail.nih.gov

 Application Integration Technology
Architecture Report_v1.0

6.3 Pattern: Data Consistency

6.3.1 Description
Modern enterprises generally have redundant versions of data regarding customers,
products, orders, employees and other entities; NIH is no exception. The most common
method of reconciling data at NIH is to create a batch file in one application and then
transfer it to other interested applications in a nightly, point-to-point batch process.

In an advanced, zero-latency enterprise (ZLE) strategy, by contrast, each update is
transferred as an individual transaction as soon as data is updated.

6.3.2 Data Consistency Solution
Instead of file transfers, ZLE data consistency solutions may use a
publish-and-subscribe, MOM product, and extraction, transformation and loading (ETL)
layer, or an integration broker to transform the files, documents or messages to
reconcile syntactic and semantic differences among the sender and one or more
receivers. Modern data consistency solutions often encode the data in XML to partially
standardize the communication and transformation processes.
Figure 19. Logical Design Pattern: Data Consistency

Middleware

Source: Gartner

6.3.3 Benefits

 Provides consistent data faster and better than file transfer.

6.3.4 Limitations

 File transfer should still be used where it meets business needs, because it is
easier to implement due to its simplicity and less expensive.

 Should avoid usage when dealing with applications outside of NIH; but may be
possible in a few cases (e.g., DHHS, GSA).

- 39 -

NIH Enterprise Architecture
enterprisearchitecture@mail.nih.gov

 Application Integration Technology
Architecture Report_v1.0

6.4 Pattern: Multi-Step Process

6.4.1 Description
A multi-step process involves a sequence of related steps, each conducted by an
application system or person. Process instances — for example, each order or each
insurance claim — progress through their life cycles step by step. The applications may
be independently designed or purchased at different times by different business units,
or they may be application subsystems that are part of the same suite of applications.

When a step is complete, the system or person involved will generate one or more
messages, documents, files or database entries to pass data to a subsequent step.
Traditional multi-step processes rely on manual data reentry between each step.

6.4.2 Straight-Through Processing (STP) Solution
Straight-through processes (STPs) are fully automated from end to end, reducing not
only elapsed time and data entry costs, but also data entry errors. In principle, STP can
use file transfer, but immediate transfer of individual transactions will provide NIH with
greater benefits. The most advanced forms of multi-step processes use BPM or
workflow software to track and, in some cases, control the flow of execution.
Applications in a multi-step process are logically dependent on the previous steps in the
process, because the output of one step is the input to the next step, but each step
executes serially.
Figure 20. Logical Design Pattern: Straight-Through Processing (STP)

Middleware Middleware

Source: Gartner

6.4.3 Benefits

 Elimination of manual steps lowers labor effort.
 The elapsed time for the business process is reduced.
 Fewer errors are made.

6.4.4 Limitations
There are few, if any, limitations, assuming a good fit with the problem.

- 40 -

NIH Enterprise Architecture
enterprisearchitecture@mail.nih.gov

 Application Integration Technology
Architecture Report_v1.0

6.5 Pattern: Composite Applications

6.5.1 Description
A composite application seems to the user like a new application. It has some new
functionality itself, plus functionality from multiple existing applications.

6.5.2 Composite Application Solution
A composite (or “virtual”) application needs to be near zero in latency (usually under a
minute, often within a couple of seconds). It may be implemented with any of a wide
range of middleware technologies. Plain, direct gateways are the most popular choice
for opportunistic, tactical, request/reply applications, especially when extending only one
or two back-end applications with a Web front end. Gateways may operate with a
remote procedure call (RPC) model (e.g., COM-CICS or COM-CORBA gateways), a
screen scraping model or a database gateway model (e.g., JDBC, ODBC or OLE DB).

For systematic composite applications with multiple participating systems that may
change over time, integration brokers, MOM and/or BPM may be used. These introduce
an incremental layer of communication semantics and administration, so they are
overkill for tactical projects. However, because they enable the asynchronous forms of
integration (data consistency and multi-step patterns), in addition to demanding
composite applications, they are a good fit for developers who seek to have one
comprehensive solution toolset.
Figure 21. Logical Design Pattern: Composite Application

Midtier Logic
and Data

Desktop
Browser

ERP on
Unix

ISV Windows
App.

Mainframe
Legacy App.

New
Development

Integration infrastructure

Source: Gartner, 2004

- 41 -

NIH Enterprise Architecture
enterprisearchitecture@mail.nih.gov

 Application Integration Technology
Architecture Report_v1.0

6.5.3 Benefits

 NIH can use the composite application
pattern to “glue together” some of its
partially redundant applications and
give users a much more convenient
interface.

 Extension systems can use this pattern
to construct an interface that uses and
updates both enterprise and IC-specific
data at the same time. (Note the new
logic and data inside the shaded
hexagon).

An NIH example is shown in the diagram to
the right. This is an illustration only.

Midtier Logic
and Data

Desktop
Browser

HR at
DHHS NED

Active
Directory

New NIH
Application

Integration infrastructure

Source: Gartner Research

6.5.4 Limitations

 Will be difficult to apply to monolithic applications, especially those that currently
use no form of middleware. (The application architecture survey indicated that
these types of applications are rare at the NIH.)

 Coordinated and reliable transaction control (commit/rollback) can be a
challenge.

- 42 -

NIH Enterprise Architecture
enterprisearchitecture@mail.nih.gov

 Application Integration Technology
Architecture Report_v1.0

6.6 Pattern: Large-Scale Integration

6.6.1 Definition
This pattern looks at integration from a high-level perspective. It could be decomposed
into hundreds or thousands of the basic integration problems previously described.

6.6.2 Hub-and-Spoke Solution
This is the recommended alternative to point-to-point integration. At the center of the
diagram there is a “hub” — an IBS. Applications are at the end of the “spokes”; they
connect to the hub via adapters and MOM. The central hub may also connect to other
hubs owned by other enterprises.
Figure 22. Logical Design Pattern: Large Scale Integration Hub-and-Spoke Solution

Integration
Broker (IBS)

DHHS, other
Federal

Agencies

Research
Institutions

NIHNIHNIH

A2A

B2B

B2B

Federal
Hubs (e.g., GSA) B2B

Integration
Infrastructure

Suppliers

A2A
B2B

Source: Gartner Consulting

Source: Gartner, 2004

6.6.3 Benefits

 The hub-and-spoke topology lowers the number of connections that must be built
from N*(N-1) to N*2.

 Specialized IBS tools are more efficient for building and maintaining interfaces
and transformations.

- 43 -

NIH Enterprise Architecture
enterprisearchitecture@mail.nih.gov

 Application Integration Technology
Architecture Report_v1.0

6.6.4 Limitations

 The NIH has not yet purchased a general-purpose IBS, and the cost is
substantial.

After an IBS product has been purchased, a physical design pattern should be
developed.

6.7 Pattern: Broker/Operational Data Store/Warehouse

6.7.1 Description
This pattern shows how an IBS can be used to maintain an operational data store
(ODS). The ODS can then be used as a source for queries and reports. It can also be
used to populate a data warehouse or data marts.

6.7.2 Operational Data Store (ODS) Solution
Data warehouse construction has typically been hampered by the need to extract
information from a large variety of existing applications. But once a broker is in place —
and most transactions are flowing through it anyway — it is relatively easy to have the
broker populate an ODS.
Figure 23. Logical Design Pattern: Broker/Operational Data Store/Warehouse

Integration
Broker (IBS)

ODS

To Data
Warehouse

Source for
Query/Report

Programs

Source: Gartner Research

Source: Gartner, 2004

- 44 -

NIH Enterprise Architecture
enterprisearchitecture@mail.nih.gov

 Application Integration Technology
Architecture Report_v1.0

6.7.3 Benefits

 Lowers data warehouse implementation and maintenance costs.
 Provides a combined source of data in a standardized format for query and

reporting use.
 Lessens the need for direct access to important transactional systems that may

be overloaded.

6.7.4 Limitations

 Some attributes of the source data may be lost when it is transformed and sent to
the ODS.

 Historical data may be lost unless special steps are taken to preserve the view of
data over time.

- 45 -

NIH Enterprise Architecture
enterprisearchitecture@mail.nih.gov

 Application Integration Technology
Architecture Report_v1.0

7.0 Application Integration Bricks
In the Technical Reference Model (TRM), baseline and planned technology choices for
elements meet in a chart called a “brick.” Bricks represent the physical building blocks
of the enterprise IT systems — they identify specific technologies used to implement
solutions. Bricks document both NIH’s current (“as is”) environment and future (“to be”
or target) states. The planning horizon is five years.

Each brick captures:

 A description of the technology and its role
 Specific implications, dependencies, and deployment and management

strategies
 Technology elements, categorized.

A brick template is shown below.
Figure 24. Technology Planning “Brick”

Tactical
Deployment

Strategic
Direction

Current Two Years Five Years

Comments

Baseline

Technologies
exit the

environment

Technologies
introduced to

the environmentContainment
Targets

Retirement
Targets

Emerging
Standards

Source: Gartner

The technology categories for architectural elements are:
 Baseline technologies include current technology and/or process element(s) in

use.
 Tactical technologies are recommended for use in the near or tactical time

frames (next two years). Currently available products needed to meet existing
needs are identified here.

 Strategic technologies provide strategic advantage and might be used in the
future. Usually, marketplace leaders are identified here, as they are likely to
provide better benefits and meet the anticipated needs of the business.

 Retirement technology and/or process elements targeted for de-investment
during the architecture planning horizon (five years).

 Containment includes technology and/or process elements targeted for limited
(maintenance or current commitment) investment.

- 46 -

NIH Enterprise Architecture
enterprisearchitecture@mail.nih.gov

 Application Integration Technology
Architecture Report_v1.0

 Emerging technology and/or process elements are to be evaluated for future use
based on technology availability and business need. These technologies may not
be new to the marketplace, but are simply not yet in use at NIH. In this case, the
products may be a fit for emerging needs at NIH.

7.1 Definitions and Taxonomy
Middleware is defined as runtime system software that directly enables application-level
interactions among programs in a distributed computing environment. System software
means software that is positioned between an application program and lower-level
operating system, data management and networking services. A computing
environment is physically distributed when its programs or databases are spread across
two or more computers. Middleware is also useful when logically distributed
components run on the same computer. Enterprises will note that a database
management system (DBMS) is a set of programs, so distributed data and distributed
application code are covered by this definition. Application-level interactions are those
that transfer business data or information about its semantics or context (not just
technical “housekeeping” data) to or from an application program. The next figure
shows the middleware taxonomy.
Figure 25. Middleware Taxonomy

Taxonomy of Middleware Functions

Gateways: Data management and communication
middleware

Superservices: Super-APIs, common directories, and
security and transaction management

Business Process Managers: Workflow, workflow
brokers, businessware and process automators

Integration Brokers: Message broker, interface
engine, integration hub and Web integration serverIntegration

Middleware

Data Mgmt.
Middleware:
Remote file and

remote data access

Communication
Middleware:

MOM, RPCs
and others

Platform
Middleware:
App. servers,

ORBs, OTMs and
TPMs

Basic
Middleware

Se
cu

rit
y

an
d

D
ire

ct
or

y
M

et
ad

at
a

M
an

ag
em

en
t

D
ev

el
op

m
en

t T
oo

ls
M

an
ag

em
en

t T
oo

ls

In
tr

a-
ap

pl
ic

at
io

n
In

te
r-

ap
pl

ic
at

io
n

Source: Gartner Research

To be covered in Application
Development Domain

Source: Gartner, 2004

- 47 -

NIH Enterprise Architecture
enterprisearchitecture@mail.nih.gov

 Application Integration Technology
Architecture Report_v1.0

The application integration middleware architecture is comprised of the following bricks,
grouped according to the taxonomy shown below.

 Data management middleware
 Communication middleware
 File transfer middleware
 Integration middleware — Integration brokers
 Integration middleware — Adapters
 Integration middleware — Business process managers
 Integration middleware — Gateways.

Web services are not middleware; they are represented in a "protocols and standards"
brick (not part of the middleware taxonomy).

 Web services.

- 48 -

NIH Enterprise Architecture
enterprisearchitecture@mail.nih.gov

 Application Integration Technology
Architecture Report_v1.0

7.2 Brick: Data Management Middleware
Data management middleware functionality helps programs, including application
programs and database management systems (DBMS) read from and write to remote
databases or files. The most widespread forms of middleware today are the remote
database access and remote file access middleware bundled into a DBMS or a network
operating system, respectively. These support traditional two-tier client/server
architectures and can also be used for more sophisticated multi-tier applications.

All modern relational DBMSs include a networking capability so that the DBMS engine
can (optionally) be called from a client application located elsewhere.
Figure 26. Data Management Middleware

Data Management Middleware

ApplicationApplication
OSOS

Network
Software
Network
Software

DBMSDBMS

Network
Software
Network
Software

OSOS

DBMS
Middleware

DBMS
Middleware

(SQL API)(SQL API)

Source: Gartner Research

Source: Gartner, 2004

- 49 -

NIH Enterprise Architecture
enterprisearchitecture@mail.nih.gov

 Application Integration Technology
Architecture Report_v1.0

Table 7. Data Management Middleware Brick

Baseline Environment
(Today)

Tactical Deployment
(0-2 years)

Strategic
(2-5 years)

 Neon Shadow Direct 32-bit
ODBC driver

 IBM DB2 Connect
 Oracle Net Services
 MS Data Transformation

Services (DTS)
 AFS — Andrew File System

(CIT)
 ODBC
 JDBC
 OLEDB — Microsoft Object

Linking and Embedding
Database

 IBM DB2 Connect
 Oracle Net Services
 MS Data Transformation

Services (DTS)
 ODBC
 JDBC
 OLEDB

 Oracle Net Services
 OLEDB
 Additional, TBD

Retirement
(Technology to eliminate)

Containment
(No new deployments)

Emerging
(Technology to track)

 AFS

 Neon Shadow Direct 32-bit
ODBC driver

 XDBMS — XML database
management systems

Comments
 ODBC/JDBC drivers are supplied by multiple vendors.
 IBM DB2 Connect, Oracle Net Services, MS DTS, ODBC/JDBC, OLEDB were listed as Tactical

and Strategic to leverage NIH's investment in products that are a proven fit for NIH's known future
needs. Leveraging baseline products in the future will minimize the operations, maintenance,
support and training costs of new products.

 Neon Shadow Direct 32-Bit ODBC Driver and AFS have been designated Retirement and
Containment. These products are either not as widely or successfully deployed at NIH, or they do
not provide as much functionality, value or total cost of ownership as the selected Tactical and
Strategic products.

XDBMS products support the storage of XML documents in their native format. This is
usually achieved via a proprietary database structure in which XML documents or
fragments form the foundation of the database. Knowledge of the complete physical
structure of the XML document is maintained in the database, enabling the document to
be retrieved in its original state. In addition, no predefined knowledge of the document
structure is required to store it — the self-describing nature of XML allows creation of
the database "schema" on the fly. This enables the database to store XML documents
of varying and dynamic formats, and can potentially reduce the administration and
support effort. Access to XML data in the database (storage and retrieval) is achieved
via XML-standard interfaces (for example, XPath, the Document Object Model [DOM] or
other XML-based APIs).

- 50 -

NIH Enterprise Architecture
enterprisearchitecture@mail.nih.gov

 Application Integration Technology
Architecture Report_v1.0

7.3 Brick: Communication Middleware
Communication middleware helps programs talk to other programs. It is software that
supports a protocol for transmitting messages or data between two points as well as a
system-programming interface to invoke the communication service. MOM also
provides for the safe and reliable delivery of messages.

Today's communication middleware generally runs on Internet-based protocols, but also
may implement higher-level protocols, including industry standards (e.g., XML) and
proprietary protocols, and it may run over the Internet or private networks.

Although simple forms of communication middleware do not inherently provide them, a
variety of services are provided by more sophisticated products. Such features include
reliable delivery, transactional support/integrity, message queuing, offline message
handling, once-and-only-once delivery as well as first-in, first-out and other
message-ordering variations.

Although communication middleware is an essential requirement for application
integration projects, no single solution or industry standard can address requirements
for every integration problem or scenario.

Figure 27. Communication Middleware

Communication Middleware

DatabaseDatabase

ApplicationApplication

OSOS

Network
Software
Network
Software

DBMSDBMS

ApplicationApplication

Network
Software
Network
Software

OSOS

Comm.
Middleware

Comm.
Middleware

Source: Gartner Research

Source: Gartner, 2004

- 51 -

NIH Enterprise Architecture
enterprisearchitecture@mail.nih.gov

 Application Integration Technology
Architecture Report_v1.0

Table 8. Communication Middleware Brick

Baseline Environment
(Today)

Tactical Deployment
(0-2 years)

Strategic
(2-5 years)

 Oracle Advanced Queuing
 Communication middleware

for QDX (Unknown) — CC
 COM/DCOM

 PeopleSoft Enterprise
Integration Points

 Oracle Advanced Queuing
 Communication middleware

for QDX

 TBD

Retirement
(Technology to eliminate)

Containment
(No new deployments)

Emerging
(Technology to track)

 TBD COM/DCOM MOM
Comments

 Oracle AQ and the QDX communication middleware were listed as Tactical, because they are a
proven fit for NIH's known future needs. Leveraging baseline products in the future will minimize
the operations, maintenance, support and training costs of new products.

 Microsoft COM/DCOM has been designated for Containment. Microsoft’s “.NET” architecture will
provide a replacement, product name as yet unknown. These products are either not as widely or
successfully deployed at NIH, or they do not provide as much security or reliability as the selected
Tactical and Strategic products.

 PeopleSoft Enterprise Integration Points (PeopleSoft Messaging) may be used in the future.
 QDX uses the HL7 protocol, the industry standard for hospitals and clinics.
 MOM is not a new technology, but is still considered an emerging one for NIH as it may provide

alternatives in integration with certain platforms, and can offer transactional integrity if needed.

- 52 -

NIH Enterprise Architecture
enterprisearchitecture@mail.nih.gov

 Application Integration Technology
Architecture Report_v1.0

7.4 Brick: File Transfer Middleware
File Transfer Middleware is a class of communication middleware specifically focusing
on the transfer of files from application to application. The transfer may be secure,
insecure or managed.
Table 9. File Transfer Middleware Brick

Baseline Environment
(Today)

Tactical Deployment
(0-2 years)

Strategic
(2-5 years)

File Transfer
 Native OS Tools*
 WS FTP*
 Physical Transfer

(CD/Tape)
 DICOM

Secure File Transfer
 Native OS Tools*
 E-mail for integration

Managed Secure File Transfer
 Sterling Commerce

Connect:Direct*

File Transfer
 DICOM

Secure File Transfer
 Native OS Tools*

Managed Secure File Transfer
 Sterling Commerce

Connect:Direct*

File Transfer
 DICOM

Secure File Transfer
 Native OS Tools*

Managed Secure File Transfer
 Sterling Commerce

Connect:Direct*

Retirement
(Technology to eliminate)

Containment
(No new deployments)

Emerging
(Technology to track)

 File Transfer
 Physical Transfer (CD/Tape)
 WS FTP*

Secure File Transfer
 E-mail for integration

Comments
 Decrease unsecured file transfer for integration purposes as per NIH policy. Increase use of

secure FTP server and managed secure file transfer (file transfer with scheduling, admin,
management, etc.) such as Connect:Direct.

 DICOM is used for transfer of medical images
 Tactical and Strategic products (DICOM, Native OS Tools, and Sterling Commerce

Connect:Direct) were selected to leverage NIH's investment in products that are a proven fit for
NIH's known future needs. Leveraging baseline products in the future will minimize the operations,
maintenance, support and training costs of new products.

 Physical transfer, WS FTP, and e-mail for integration have been designated as Containment.
These products are either not as widely or successfully deployed at NIH, or they do not provide as
much security or reliability as the selected Tactical and Strategic products.

 “ssh <cmd>” (secure shell plus a transfer command) is classified as a Native OS Tool.
 ftp/sftp <cmd> is classified as a Native OS Tool.

*Items with an * support standard FTP protocol

- 53 -

NIH Enterprise Architecture
enterprisearchitecture@mail.nih.gov

 Application Integration Technology
Architecture Report_v1.0

7.5 Brick: Integration Broker Suites (IBS)
An integration broker is a third-party intermediary that facilitates interactions among
application systems. By definition, the broker itself provides two primary value-added
application-layer functions:

1. Transformation — translates message or file contents, including both syntactic

"conversion" and some degree of (greater or lesser) semantic "transformation."
2. Routing (flow control) — some form of smart addressing, such as content-based

routing and/or publish-and-subscribe. Note that intelligent routing is stateless.

To enable these services, a broker has some form of repository that holds metadata
descriptions of the input and output message formats (i.e., a message dictionary), and
the transformation and routing rules. It will also have some administration and
monitoring facilities to manage the broker configuration, and may also offer
application-specific or technical adapters, along with some related development tools,
gateways and templates for connecting to packaged applications. An integration broker
may optionally also support a message warehouse (a mechanism to store and retrieve
copies of messages).

Figure 28. Integration Brokers

Integration Brokers

Integration
Broker

D
at

a
Tr

an
sf

or
m

In
te

l.
R

ou
tin

g

M
sg

. D
ic

tio
na

ry
/W

ar
eh

ou
se

A
da

pt
er

 T
oo

lk
it

A
dm

in
is

tra
tio

n

OSOS

DBMSDBMS

ApplicationApplication

Network
Software
Network
Software

OSOS

ApplicationApplication

Network
Software
Network
Software

DBMSDBMS

Comm. MiddlewareComm. Middleware

Network
Software
Network
Software

Comm. MiddlewareComm. Middleware Comm. MiddlewareComm. MiddlewareComm. MiddlewareComm. Middleware

AdapterAdapter AdapterAdapter

Source: Gartner Research

Source: Gartner, 2004

Integration broker suites (IBSs) are broker products with added features such as BPM,
adapters, adapter development toolkits, Web services, communication tools, and better
metadata and management facilities.

- 54 -

NIH Enterprise Architecture
enterprisearchitecture@mail.nih.gov

 Application Integration Technology
Architecture Report_v1.0

IBSs reduce the time to implement systematic application development projects that
have demanding integration requirements. They improve business processes by making
a broader and deeper range of integration practical across heterogeneous application
systems. More than 75 percent of large enterprises use a broker somewhere, but only
10 percent of integration projects in 2002 used a broker.
Figure 29. Integration Broker Suite

Integration Broker Suite

Gateways: Data management, communication
and platform middleware

Superservices: Super-APIs, common directories,
and security and transaction management

Business Process Managers: Workflow, workflow
brokers, businessware and process automators

Integration Brokers: Message broker, interface
engine, integration hub and Web integration
server

Integration
Middleware

Data Mgmt.
Middleware:

Remote file and
remote data

access

Communication
Middleware:

MOM, RPCs
and others

Platform
Middleware:Basic

Middleware

S
ec

ur
ity

 a
nd

 D
ire

ct
or

y

M
et

ad
at

a
M

an
ag

em
en

t

D
ev

el
op

m
en

t T
oo

ls

M
an

ag
em

en
t T

oo
ls

Integration Broker Suite

Source: Gartner Research

 Source: Gartner, 2004

- 55 -

NIH Enterprise Architecture
enterprisearchitecture@mail.nih.gov

 Application Integration Technology
Architecture Report_v1.0

Table 10. Integration Brokers Brick

Baseline Environment
(Today)

Tactical Deployment
(0-2 years)

Strategic
(2-5 years)

 QDX Integrator
 Caredata Engine

 QDX Integrator

 TBD

Retirement
(Technology to eliminate)

Containment
(No new deployments)

Emerging
(Technology to track)

 Caredata Engine

 TBD TBD

Comments
 Tactical and Strategic products were selected to leverage NIH's investment in products that are a

proven fit for NIH's known future needs. Leveraging baseline products in the future will minimize
the operations, maintenance, support and training costs of new products.

 Caredata Engine has been designated Retirement. This product does not provide as much
functionality, value or total cost of ownership as the selected Tactical and Strategic products.
Caredata Engine is also considered retirement due to the new CRIS architecture.

 QDX Integrator is specialized for HL7.
 The eRA project may be selecting a “B2B Exchange” broker in the near future.

Future product selection should be based on a variety of factors, including:

1. Ability to meet a wide variety of needs at NIH (both A2A and B2B)
2. Other federal agency usage (e.g., DHHS, GSA)
3. Ability to meet eRA project needs
4. Availability of adapters for Oracle Financials, the base software for NBS
5. Availability of adapters for PeopleSoft human resources software at DHHS
6. Additional requirements, to be determined.

- 56 -

NIH Enterprise Architecture
enterprisearchitecture@mail.nih.gov

 Application Integration Technology
Architecture Report_v1.0

7.6 Brick: Integration Adapters
Adapters are some combination of design tools and runtime software that act as glue to
link applications, which are considered "sources" or "targets" (or both), to other
applications or other integration middleware. When interfacing with a source or target
application, an adapter generally deals with a group of "touchpoints," that is, one or
more entry/exit points, collectively called an "interface." Adapters can be deceptively
complex, with "thick" adapters performing a variety of functions that include recognizing
events, collecting and transforming data, and exchanging data with platform, integration
suite or other middleware. On the other hand, "thin" adapters may only "wrap" a native
application interface, exposing another, more standard interface for application access.
Adapters can also handle exception conditions, and can often dynamically (or with
minor reconfiguration changes) accommodate new revisions of source or target
applications.

Figure 30. Integration Adapters

Integration Adapters

OSOS

DBMSDBMS

ApplicationApplication

Network
Software
Network
Software

OSOS

ApplicationApplication

Network
Software
Network
Software

DBMSDBMS

Comm. MiddlewareComm. Middleware

Network
Software
Network
Software

Comm. MiddlewareComm. Middleware Comm. MiddlewareComm. MiddlewareComm. MiddlewareComm. Middleware

Integration AdapterIntegration Adapter Integration AdapterIntegration Adapter

Source: Gartner Research

Integration ToolIntegration Tool

Source: Gartner, 2004

Two common types of adapters are:
 Technical Adapters — Technical adapters may connect into DBMSs,

communication middleware or other software environments. By definition,
technical adapters are not inherently configured to be business process-aware.

 Application Adapters — Application adapters interface to packaged application
modules or vertical-industry protocols (like HL7 or HIPAA). By definition,
application adapters are inherently configured to interact with a source or target
interface and read or write specific business documents or messages. Many
application adapters include technical adapters within them. For example, an

- 57 -

NIH Enterprise Architecture
enterprisearchitecture@mail.nih.gov

 Application Integration Technology
Architecture Report_v1.0

application adapter that is used to import or export purchase orders from a
procurement application can leverage a technical adapter, which accesses the
application at the database or low-level API level. While the technical adapter
could be licensed and used by itself, the value of the application adapter is that it
eliminates the need for complex logic that is often necessary to navigate what
are often complex database or low-level interfaces.

Adapters are generally bundled with integration middleware products such as Enterprise
Service Buses (ESBs), integration suites, or portal servers; or offered as a stand-alone
product such as an adapter suite. Ideally, every adapter, like most application
integration tools, should be noninvasive, such that it can interact with the source or
target without requiring any customization in the source or target. Such independence
helps insulate the adapter from its source or target's upgrades — for example, for new
versions of software.

Table 11. Adapters Brick

Baseline Environment
(Today)

Tactical Deployment
(0-2 years)

Strategic
(2-5 years)

Retirement
(Technology to eliminate)

Containment
(No new deployments)

Emerging
(Technology to track)

 Selection of adapters will be
determined when an IBS is
purchased (may be
bundled).

Comments

- 58 -

NIH Enterprise Architecture
enterprisearchitecture@mail.nih.gov

 Application Integration Technology
Architecture Report_v1.0

7.7 Brick: Business Process Managers (BPM Tools)
Business process manager (BPM tool) is a general term describing a set of services
and tools that provide for explicit BPM (for example, process analysis, definition,
execution, monitoring and administration), including support for human and
application-level interaction. BPM tools have emerged from many sources: workflow,
applications, collaborative tools, integration suites, Web integration servers, application
servers, development tools, rule engines and commerce offerings.
Figure 31. Business Process Managers

Business Process Managers

ApplicationApplication

Comm.
Middleware

Comm.
Middleware

DBMSDBMS

OSOSAdapterAdapter

Comm. MiddlewareComm. Middleware

Intelligent RoutingIntelligent Routing

Runtime EngineRuntime Engine

ApplicationApplication

Comm.
Middleware

Comm.
Middleware

DBMSDBMS

OSOS
AdapterAdapter

ApplicationApplication

Comm.
Middleware

Comm.
Middleware

DBMSDBMS

OSOSAdapterAdapter

Source: Gartner Research

Source: Gartner, 2004

BPM tools track and direct each instance of a business process, such as each individual
order or medical insurance claim, through a life cycle that may consume seconds,
minutes, hours, days or weeks. Unlike simpler forms of flow automation, a BPM tool
"remembers" (maintains in memory or a persistent file or database) context information
for the duration of a process that potentially spans many individual activities. BPM tools
are called by many names, including "workflow systems," "businessware," "enterprise
work management systems" and "business process automation managers." BPM may
be a feature in a larger product, or may be the primary role of a particular product.

BPM is a composite market, and can be categorized as either Pure Play
(application-independent) or Integrated BPM (part of an IBS). Business-driven BPM
decisions usually go in the direction of the pure-play vendors; however, where
architects are involved, integration-centric solutions should not be underplayed.
Architects and integrators should be patient. Eventually the success of BPM will drive

- 59 -

NIH Enterprise Architecture
enterprisearchitecture@mail.nih.gov

 Application Integration Technology
Architecture Report_v1.0

more technical integration purchases, to augment the pure-play systems, which are
justified for business reasons now.

Below are some of the advantages/disadvantages of Pure-Play and Integrated BPM.

Table 12. Pure-Play vs. Integrated BPM

 Advantages Disadvantages
Integrated
BPM

 Strong routing and transformation
 A rich set of adapters
 High-performance behavior
 Deep system-to-system process

control
 Rich programming environments
 Natural composite applications
 Rich technical auditing facilities

 Reluctance to sell BPM separately
 Lagging human supports (some the

exceptions)
 Difficulties experienced by business users
 Expensive implementation
 Absence of rule engines (in some cases)
 Support aimed at technicians and

architects
 Sales force aimed at a technical sale

Pure-Play
BPM

 Rich human-to-human support
 Highly visual software
 Ease of development for power

users, as well as developers
 Web-service-friendly software
 Easy play with many vendors
 Lower cost for BPM (but brokers

are additional)
 Built-in business audit trail
 Vertical and horizontal business

process templates

 Weak system-to-system support
 Need for an integration partner (multiple

vendors)
 Less financially strong vendors (some

exceptions)
 Reliance on integration partners for

technical performance
 Overly simplistic software (for some

solutions)
 Misleading expectations (seems simpler

than it is)
Source: Gartner Research, 2003

Table 13. Business Process Managers Brick

Baseline Environment
(Today)

Tactical Deployment
(0-2 years)

Strategic
(2-5 years)

 Handysoft Bizflow (Pure
Play)

 Handysoft Bizflow (Pure
Play)

 TBD

Retirement
(Technology to eliminate)

Containment
(No new deployments)

Emerging
(Technology to track)

 TBD TBD TBD

Comments
 No current IBS tools in place at NIH, therefore no Integrated BPM tools in place.
 Tactical and Strategic products were selected to leverage NIH's investment in products that are a

proven fit for NIH's known future needs. Leveraging baseline products in the future will minimize
the operations, maintenance, support and training costs of new products.

- 60 -

NIH Enterprise Architecture
enterprisearchitecture@mail.nih.gov

 Application Integration Technology
Architecture Report_v1.0

7.8 Brick: Integration Middleware — Gateways
There are two types of gateways:

1. Database gateways enable access to heterogeneous DBMSs, usually through a
common SQL interface.

2. Communications middleware gateways connect MOM products on the market.

Database gateways enable connectivity to heterogeneous DBMS engines, sometimes
including non-relational databases, using a common API (usually SQL) and protocol.
Figure 32. Gateways

Gateways

Platform
Gateways

Communications
Gateways

Database
Gateways

Platform
Middleware

Communications
Middleware

Data Management
Middleware

DBMS

Programs

DBMS

Programs

Source: Gartner Research

System A System B

Table 14. Gateways Brick

Baseline Environment
(Today)

Tactical Deployment
(0-2 years)

Strategic
(2-5 years)

Database Gateways
 Oracle Transparent

Gateway (Oracle to DB2)
 Linked-Server Database

Gateway (SQLServer to
Oracle or SQLServer to
DB2)

Communication Gateways
 None

Database Gateways
 Oracle Transparent

Gateway (Oracle to DB2)
 Linked-Server Database

Gateway (SQLServer to
Oracle or SQLServer to
DB2)

Communication Gateways

 TBD (see “emerging,”
below)

 TBD

- 61 -

NIH Enterprise Architecture
enterprisearchitecture@mail.nih.gov

 Application Integration Technology
Architecture Report_v1.0

Retirement

(Technology to eliminate)
Containment

(No new deployments)
Emerging

(Technology to track)
 TBD

 TBD Communication gateway for

PeopleSoft Enterprise
Integration

Comments
 Tactical and Strategic products were selected to leverage NIH's investment in products that are a

proven fit for NIH's known future needs. Leveraging baseline products in the future will minimize
the operations, maintenance, support and training costs of new products.

7.9 Brick: Web Services
Web services are not really a technology; they represent software components and a
common set of standards supported by multiple, different technologies and vendors.
Web services are Web-based services that use any one or more of three related
XML-based standards1 including:

 SOAP — A simple wire protocol for interprogram communication)
 WSDL — Web Services Description Language, an interface-definition syntax
 UDDI — Universal Description, Discovery and Integration, defines how a

directory is used to register Web services.
Figure 33. Components of Web Services

Service
and

WSDL

Service
Publication and

UDDI

Network and Transport
TCP/IP HTTP S-HTTP FTP SMTP

Lingua
XML

Wire and Messaging
Service

SOAP

New Stuff

Copyright © 2003

Web services can operate over Internet protocols. These include TCP/IP, the standard
Internet transport; secure sockets; FTP for uploading and downloading files to and from

1 See Appendix D, Introduction to Service-Oriented Architecture, for more on both SOA and WSA.

- 62 -

NIH Enterprise Architecture
enterprisearchitecture@mail.nih.gov

 Application Integration Technology
Architecture Report_v1.0

the Internet; HTTP and secure HTTP (S-HTTP) for sending information over the Web;
and SMTP (and POP3) for e-mail messaging; and even MOM and Java Messaging
Service (JMS). The second fundamental technology is XML, which is the language used
to create the messages, files, metadata and documents that define and describe Web
services. In addition to HTML, Web services make use of one or more of these
technologies:

 SOAP lets one application invoke a remote procedure call (RPC) on another
application, or pass structured data to a remote location using XML messages
and the Web.

 WSDL is a formal XML vocabulary for describing Web services, their interfaces
and basic implementation information for use in Web services registries and
repositories.

 UDDI is a platform-neutral registry for publishing, querying, finding and invoking
Web services via metadata and interfaces.

Taken together, SOAP, WSDL and UDDI form the Web services technology canon that
fits atop the XML and Internet infrastructure.

Here are some of the many sources for Web services:

 Applications written in Java J2EE
 Applications written in Microsoft.NET (all Common Language Runtime1

languages)
 Applications developed with ColdFusion MX
 “Wrapped” service programs from legacy applications
 IBSs
 Commercial off-the-shelf applications
 Commercial service providers (Internet).

1 The Common Language Runtime (CLR) provides a solid foundation for developers to build various
types of applications. It provides benefits such as vastly simplified development, and seamless integration
of code written in various languages.

- 63 -

NIH Enterprise Architecture
enterprisearchitecture@mail.nih.gov

 Application Integration Technology
Architecture Report_v1.0

Table 15. Web Services Brick

Baseline Environment
(Today)

Tactical Deployment
(0-2 years)

Strategic
(2-5 years)

 XML (in other contexts)
 Some experimental use of

Web services

 XML
 SOAP
 WSDL
 UDDI

 XML
 SOAP
 WSDL
 UDDI
 Plus additional standards as

they mature

Retirement
(Technology to eliminate)

Containment
(No new deployments)

Emerging
(Technology to track)

 Web Services standards
(see figure in report)

Comments
 Tactical and Strategic products were selected to leverage NIH's investment in products that are a

proven fit for NIH's known future needs. Leveraging baseline products in the future will minimize
the operations, maintenance, support and training costs of new products.

The beauty of Web services today is in their simplicity. Eventually, however, complexity
will creep in. Vendors (and enterprises) are developing additional layers to the existing
Web services stack to address perceived (and real) issues, such as security,
transaction management, user interface development, collaborative and peer-to-peer
environments, business-to-business (B2B) interactions and more. The emerging stack
comes in multiple flavors, depending on the vendor, industry association or standards
organization that is authoring the additions.

There will be recurring attempts to build an entire stack of Web services standards that
might satisfy every requirement that an enterprise might foresee, and without exception,
these attempts will fail due to the vastness of their scope. Electronic business XML
(ebXML) might be one such example. More importantly, Web services standards need
to fit within a larger framework that can support comprehensive enterprise requirements.
One such framework is depicted in the next figure.

- 64 -

NIH Enterprise Architecture
enterprisearchitecture@mail.nih.gov

 Application Integration Technology
Architecture Report_v1.0

Figure 34. Emerging Web Services Standards

The Emerging Web Services Standards Stack

In placeKey:

SOAP
WSDL

Messaging
Description

StandardNeed
Business
Semantics

UDDI

BPEL4WS, BPML, WSCI

WS-Security, SAML, XRML

Search & find

Workflow/BPM

Reliability

Building trust

Identifying Liberty, Passport

Emerging

Extensible Markup Language (XML)Format
Common Internet Protocols
(e.g., TCP/IP, HTTP)

Transport

WS-Reliable Messaging
User interface WSRP, WSIA

Established

Eventually

Entrenched

*

* Standards mature enough to adopt now.

Source: Gartner Research

ebXML, UBL,
RosettaNet

Source: Gartner, 2004

The Web Services brick should be updated from time to time as the emerging standards
mature and become established standards.

- 65 -

NIH Enterprise Architecture
enterprisearchitecture@mail.nih.gov

 Application Integration Technology
Architecture Report_v1.0

8.0 Gap Analysis

8.1 Enterprise API Design and Implementation

 Architecture education and technical training are required to equip developers
and project staff to plan for and implement the recommendations of this
architecture.

8.2 Integration Patterns and Related Middleware

 Requisite enterprise middleware tools must be purchased and made available to
NIH.

 Architecture education and technical training are required to equip developers
and project staff to plan for and implement the recommendations of this
architecture.

- 66 -

NIH Enterprise Architecture
enterprisearchitecture@mail.nih.gov

 Application Integration Technology
Architecture Report_v1.0

9.0 Next Actions
The integration domain team makes the following recommendations:

1. Web services architecture and standards should be mandatory for integration
APIs. If the established standards cannot meet business or technical needs (e.g.,
for workflow or distributed transaction control) an emerging standard may be
used or a waiver should be sought.

2. NIH should establish an integration competency center.
3. NIH should purchase specialized integration middleware for use by all enterprise

systems and all ICs who have this type of need. This should be for common use,
and should be supported by the competency center. So far, integration
middleware is rare at NIH, so there is an opportunity to standardize it now —
before individual point decisions are made.

4. NIH data standards should be defined for enterprise data classes. These may
include encoding standards, business rules (edits), lists of valid values, defined
syntax and semantics for NIH-specific data fields, etc.

5. In addition to improved integration methods, the need for extension systems
should be reduced. (This would reduce the scope of the integration problem.) If
both are done, the extension system problem will be greatly reduced.

6. Training is needed around application integration decisions, and tools selected.
7. NIH should perform a pilot application integration project.

- 67 -

NIH Enterprise Architecture
enterprisearchitecture@mail.nih.gov

 Application Integration Technology
Architecture Report_v1.0

10.0 Change History/Document Revisions

Date Change
Author

Change
Authority

Change Event Resulting
Version

26 July 2004 Jay Shah,
Gary Long

Jack Jones Original Production 1.0

- 68 -

NIH Enterprise Architecture
enterprisearchitecture@mail.nih.gov

 Application Integration Technology
Architecture Report_v1.0

11.0 Appendix A — Glossary of
Terms/Acronym Key

- 69 -

NIH Enterprise Architecture
enterprisearchitecture@mail.nih.gov

 Application Integration Technology
Architecture Report_v1.0

Appendix A — Glossary of Terms

Term Definition
A2A Application-to-application
ADB Administrative Data Base (ADB) — An IMS application that

provides computer support for a broad range of NIH business
functions including the purchase, receipt, and payment of
goods and services; the tracking and supplying of nine
inventories; sixteen service and supply fund activities;
foreign, domestic, and local travel; and property
management.

AdEERS Adverse Event Expedited Reporting System
ADK Adapter development kit
AFS Andrew File System
AIR Acquisition information reporting
AMBIS Administrative Data Base Information System — an

information system that provides timely and accurate
information from the Administrative Data Base and Central
Accounting System (CAS) to the NIH user community.

AO Administrative Official
API Application programming interface
APS Application platform suite
ASC Accredited Standards Committee
ASP Application service provider
B2B Business -to- Business
BAM Business activity monitoring
BI Business intelligence
BOD Business Object Document (OAG)
BPE L4 WS Business Process Execution Language for Web Services
BPM Business process management
BPML Business Process Modeling Language
BPN Business process network
BPN Business partner network (in Figure 10)
BRE Business rule engine
CAPS Childhood Asthma Prevention Study
CAS Central Accounting System
CBD Component-based design
CC Warren Grant Magnuson Clinical Center (CC) — Established

in 1953
CDR Clinical data repository
CDUS Clinical Data Update System
CDW Clinical data warehouse
CGI Common Gateway Interface
CI Content integration

- 70 -

NIH Enterprise Architecture
enterprisearchitecture@mail.nih.gov

 Application Integration Technology
Architecture Report_v1.0

Term Definition
CIT Center for Information Technology (CIT formerly DCRT,

OIRM, TCB) — Established in 1964
CM Change Management
COM Component Object Model
CICS Customer Information Control System
CORBA Common Object Request Broker Architecture
CRIS Clinical Research Information System
CRISP (Computer Retrieval of Information on Scientific Projects) is a

searchable database of federally funded biomedical research
projects conducted at universities, hospitals, and other
research institutions.

CSR - Center for Scientific Review (CSR) - Est. 1946
CSV Comma Separated Values
CTEP-ESYS Cancer Therapy Evaluation Program Enterprise System
CTSU Cancer Trials Support Unit
DB Database
DBMS Database management system
DCE Distributed computing environment
DCIS Department Contracts Information System
DCOM Distributed Component Object Model
DFM Desktop File Manager
DHHS Department of Health and Human Services
DICOM Digital Imaging and Computing in Medicine
DML Data manipulation language
DNS Domain name service
DOM Document Object Model
DTP Developmental therapeutics program
DW Data Warehouse
EAD Enterprise application development
ebXML Electronic Business XML
ECB The Electronic Council Book is a web-based utility that

provides on-line Summary Statements, using World Wide
Web and Internet capabilities for database search and
retrieval.

EDA Event Drive Architecture
EDI Electronic data interchange
EHRP Enterprise Human Resources and Payroll
EII Enterprise information integration
EJB Enterprise Java Beans
e-Log The fundamental focus of e-Log is to help Grants and

Program staff with their daily operations. The interface is very
easy and requires little to no training to use. E-Log works
with IMPAC II data, which is downloaded nightly

EMIS Ethics Management Information System
ENS An enterprise nervous system (ENS) implements a new layer

- 71 -

NIH Enterprise Architecture
enterprisearchitecture@mail.nih.gov

 Application Integration Technology
Architecture Report_v1.0

Term Definition
of application-level data and logic, extending the enterprise
network and making it as smart as application systems.

Enterprise applications Enterprise Applications are major computer applications that
have “enterprise scope” as defined in the Application
Architecture report1.

eRA The electronic research administration (eRA) is NIH's
infrastructure for conducting interactive electronic
transactions for the receipt, review, monitoring, and
administration of NIH grant awards to biomedical
investigators worldwide.

ERP Enterprise Resource Planning
ESB Enterprise service bus
ESP External service provider
ETL Extraction, transformation and load
Extension System Extension System is an NIH term that is used to describe any

application add-ons that extend the capabilities of a core
application.

F&A Rates Facilities & Administrative Rates
FAC Functional Advisory Committee (FAC) membership consists

of leaders in the scientific and business communities who
represent the management and policy level end user.

FAES Foundation for Advanced Education in the
Sciences

FIC John E. Fogarty International Center (FIC) — Established in
1968

FMS Financial Management Services
FPS II Fellowship Payment System II
FTP File Transfer Protocol
GOB Grants Operations Branch
GPO U.S. Government Printing Office
GSA General Services Administration
HHS Department of Health and Human Services
HIPAA Health Insurance Portability and Accountability Act
HL7 Health Level 7
HRDB Human Resources Database
HTTP Hypertext Transfer Protocol
IAE Integrated acquisition environment
IBS Integration broker suite
IDMS Pharmacy Investigational Drug Management System
iEDISON U.S. Government's Internet center for reporting inventions

developed with government funding. Website: https://s-
edison.info.nih.gov/iEdison/

IGT intra-governmental transactions

1 Separately published and available on the EA Portal, September 2003.

- 72 -

NIH Enterprise Architecture
enterprisearchitecture@mail.nih.gov

 Application Integration Technology
Architecture Report_v1.0

Term Definition
ILS Integrated Library System
IMPAC II NIH's extensive internal information management system for

application and award data.
Innopac UNIX-based system for public access to catalogues and

modules to support cataloging, circulation, serials and
acquisitions.

ISB Institute for Systems Biology
ITAS Integrated Time and Attendance System
JDBC Java Database Connectivity
JEFIC JE Fogarty Database of Foreign Visiting Scientists
JMS Java Messaging Service
LDAP Lightweight Directory Access Protocol
LIS Laboratory Information System
MeSH Medical Subjects Heading
MIS Medical Information System
MOM Message-oriented middleware
MS DTS Microsoft Data Transformation Service
NARA National Archives and Records Administration
NBRSS The NIH Business and Research Support System (NBRSS)

is the combination of the NIH Business System (NBS) and
the Enterprise Human Resources and Payroll System (EHRP

NBS NIH Business System
NCCAM National Center for Complementary and Alternative Medicine

(NCCAM) — Established in 1992
NCI National Cancer Institute
NCMHD National Center on Minority Health and Health Disparities

(NCMHD) — Established in 1993
NCRR National Center for Research Resources (NCRR) —

Established in 1962
NED The NIH Enterprise Directory (NED) is a centrally-

coordinated, electronic directory that CIT is developing to
maintain accurate, current information for all individuals using
NIH services or facilities.

NEI National Eye Institute (NEI) — Established in 1968
NFS Network File System
NHGRI National Human Genome Research Institute (NHGRI) —

Established in 1989
NHLBI National Heart, Lung, and Blood Institute (NHLBI) —

Established in 1948
NIA National Institute on Aging (NIA) — Established in 1974
NIAAA National Institute on Alcohol Abuse and Alcoholism (NIAAA)

— Established in 1970
NIAID National Institute of Allergy and Infectious Diseases (NIAID)

— Established in 1948
NIAMS National Institute of Arthritis and Musculoskeletal and Skin

- 73 -

NIH Enterprise Architecture
enterprisearchitecture@mail.nih.gov

 Application Integration Technology
Architecture Report_v1.0

Term Definition
Diseases (NIAMS) — Established in 1986

NIBIB National Institute of Biomedical Imaging and Bioengineering
(NIBIB) — Established in 2000

NICHD National Institute of Child Health and Human Development
(NICHD) — Established in 1962

NIDA National Institute on Drug Abuse (NIDA) — Established in
1973

NIDB The NIH Intramural Data Base (NIDB) is a tool that makes
intramural research information available online to the NIH
community, to extramural collaborators, and to the public

NIDCD National Institute on Deafness and Other Communication
Disorders (NIDCD) — Established in 1988

NIDCR National Institute of Dental and Craniofacial Research
(NIDCR) — Established in 1948

NIDDK National Institute of Diabetes and Digestive and Kidney
Diseases (NIDDK) — Established in 1948

NIEHS National Institute of Environmental Health Sciences (NIEHS)
— Established in 1969

NIGMS National Institute of General Medical Sciences (NIGMS) —
Established in 1962

NIHITS NIH Online Training Nomination System
NIMH National Institute of Mental Health (NIMH) — Established in

1949
NINDS National Institute of Neurological Disorders and Stroke

(NINDS) — Established in 1950
NINR National Institute of Nursing Research (NINR) — Established

in 1986
NLM National Library of Medicine (NLM) — Established in 1956
NSM Network and systems management
OAG Open Application Group
OCI Oracle Call Interface
OD Office of the Director
ODBC Open Database Connectivity
ODS Operational Data Store
OLE DB Object Linking and Embedding Database
OLTP Online transaction processing
OMB Office of Management and Budget
ONC Open Network Computing
OOD Object-oriented design
OPM Office of Personal Management
ORB Object request broker
OS Operating System
OTM Object transaction monitor
PCA Packaged composite application
PH E-mail Directory and Forwarding Service (PH)

- 74 -

NIH Enterprise Architecture
enterprisearchitecture@mail.nih.gov

 Application Integration Technology
Architecture Report_v1.0

Term Definition
PIP Packaged integrating process
PL/SQL Procedural Language/SQL
POM People Organization Module Database
POPTRACK Population tracking system
QOS Quality of service
RIMS Robocom Inventory Management Daily System
RIS Radiology Information System
RPC Remote procedure call
SAML Security Assertion Markup Language
SCCM Software Configuration and Change Management
SCP Secure Copy
SDF Standard File - These are text files containing data arranged

in a standard format
SES Smart enterprise suites
SOA Service-oriented architecture
SOAP Simple Object Access Protocol
SPI System programming interface
SQL Standard Query Language
SSA Social Security Administration
SSH Secure Shell
STP Straight-through transaction processing
TCP/IP Transmission Control Packet/Internet Protocol
TDN Transaction delivery network
TFS This Fine System
TI Transport independent
TOXNET Toxicology Data Network
TP Transaction processing
TPM Transaction processing monitor
TRM Technical reference model
UDDI Universal Description, Discovery, and Integration
UN/EDIFACT United Nations Electronic Data Interchange for

Administration, Commerce and Transport
URI Uniform resource identifier
VAN Value-added network
VEDS Visual Employee Data System
VSOF Visual Status of Funds
WAS Web Application Server (SAP)
WSA Web services architecture
WSAM Web services application management
WSB Web services broker
WSC Web services controllers
WSCI Web Service Choreography Interface
WSDL Web Services Description Language
WSIA Web Services Interactive Applications

- 75 -

NIH Enterprise Architecture
enterprisearchitecture@mail.nih.gov

 Application Integration Technology
Architecture Report_v1.0

Term Definition
WSM Web services middleware
WSN Web services network
WSRP Web Services for Remote Portlets
XDBMS XML database management system
XML Extensible Markup Language
XRML Extensible rights Markup Language
ZLE zero-latency enterprise

- 76 -

NIH Enterprise Architecture
enterprisearchitecture@mail.nih.gov

 Application Integration Technology
Architecture Report_v1.0

12.0 Appendix B — Current State
Survey Results

- 77 -

NIH Enterprise Architecture
enterprisearchitecture@mail.nih.gov

 Application Integration Technology
Architecture Report_v1.0

Appendix B — Current State Survey Results

Presentation Layer

 NINDS uses presentation layer integration for the FinEX system.
 OD is using Handysoft’s Bizflow workflow tool in one application.
 NIAID integrates applications through the use of dashboard applications and

workflow products at the presentation layer, using BizFlow that touches other
Windows applications and databases — this may be an example of BPM.

Process Layer

 OD has listed Crystal Reports and Lotus Notes as Middleware — APIs are being
used for integration; ActivePDF converter is also used.

 Note that OD and NIAID both use.NET to call the Crystal API as a formatting
utility.

 OD’s NIHITS II application uses Java/Perl components for import/export with
other applications/sources.

 NIAID uses direct executable calls for application layer integration for
archive/retrieve capability to gather resources that are presented to users.

 Web services are being used by the following ICs for integration:
 NIAID is developing Web services in.NET to expose data resources — no

specifics provided.
 NHLBI is using Web services in a limited fashion such as allowing

applications to share look up lists.
 CIT also using Web services for Parts Logic (application owned by OD). Used for

internal authentication.
 NIAID uses COM APIs for Crystal Reports, Office, Acrobat, custom components,

WinZip, and other applications. BizFlow is being used for automated workflow
and event-driven actions.

 Office of Science Education (OD) using Lotus Notes for Web server integration
 Many ICs are using IMPAC II APIs (stored procedures) for data transfer

bi-directionally, for inputting and retrieving data.
 NHLBI uses IMPAC II APIs to export data from the e-Log application to

IMPAC II.
 NCRR has listed numerous applications for retrieving information — Convera

Retrievalware (search engine), ASP, Cold Fusion, etc. — these tools provide a
means for scientists to login and submit their progress reports.

 NHLBI is using DICOM (industry standard for medical images) for transferring,
retrieving and parsing medical images.

- 78 -

NIH Enterprise Architecture
enterprisearchitecture@mail.nih.gov

 Application Integration Technology
Architecture Report_v1.0

 NHLBI is using SQL View and APIs for export of data from IASP to the AMIS and
Sirius applications.

 CC uses a QDX Integrator (HL7 messaging) as an interface engine for
transferring data between IDMS, LIS, MIS, EKG System, Transcription System,
Clinical Data Warehouse and RIS (this is before Phase 1 implementation of
CRIS, which replaces MIS for certain functions).

 CC uses the CareData Interface Engine for data transfers between MIS,
Wristband System, PYXIS, and Clinical Data Warehouse (this is before Phase 1
implementation of CRIS which replaces MIS for certain functions).

Data Integration Layer

 FTP is a popular integration mechanism in all ICs:
 OD currently has three to four ways that Archives accepts information.
 NHLBI uses FTP to download CAPS data and load into SQL Server.
 NHLBI downloads indirect cost rates and rate agreements from the DHHS

FTP site.
 NCRR is using FTP.
 CA uses FTP and database dump/load, and XML for import/export of CTEP

data to/from AdEERS and CDUS systems — no specifics on the role each
mechanism plays.

 NLM uses FTP to import data into TOXNET from government/private
providers and the Swedish Riskline organization and to export data from
TOXNET to commercial DB repositories, labs and universities.

 NIAMS uses FTP of DB2 files from HRDB and Payroll to VEDS.
 Several ICs are using XML files to transfer data:

 OD uses XML (file based) to integrate three applications with GemCRIS.
 NHLBI uses ASP to retrieve IMPAC II data and XML to transfer that data to

GOB spreadsheets.
 CIT uses XML file transfer to export data to PPIRS.
 CIT uses XML to import data from NCI and PubMed.
 NIDB gets xml from PubMed.

 Tape/CD imports are also used for data transfer:
 For NARA (National Archives) transfers, etc. Also, CDs are created and sent

(CPS).
 E-mail is used as input/output tool in several cases.
 ODBC/ODBC tools are common for data access within ICs:

 NINDS uses ODBC tools and database drivers for data access/sharing — no
specific tools or systems listed.

- 79 -

NIH Enterprise Architecture
enterprisearchitecture@mail.nih.gov

 Application Integration Technology
Architecture Report_v1.0

 Linked/Server is a DB gateway used by SQL/Server and Oracle (used by
many ICs).

 NIAID has identified ODBC as a means for retrieving data from sources such
as IMPAC II and the Central Accounting System going to stored procedures
or to raw data.

 CIT uses ODBC tools.
 NIAAA uses ODBC as an integration mechanism — no specifics provided.
 NLM uses ODBC and SSH tunnel to import data into TOXNET from Sseus.

 Many ICs have identified common data sharing across multiple applications:
 NINDS uses data sharing (via views, links, etc.) for several systems and

databases — FinEX, People Organization Module Database, iWin, Coding
System.

− POM is updated by a daily script that applies updates from Exchange.
 NIAID’s VED database provides source data for several administrative

applications.
 NHLBI uses data sharing (via views, links, etc.) from a common database

server for interfacing internal applications.
 NHLBI is using OLEDB and JDBC for retrieving some run-time IMPAC II data

and OLEDB for nightly batches downloaded from Data Warehouse.
 NHLBI is using scripting languages to load and/or update batch data in IMPAC II

and Perl Script for loading indirect cost rate files into the database and Web
server.

 NHLBI is using a Linked/Server (gateway) on its MS SQL Server to IMPAC II
IRDB and OLTP servers and for nightly batch downloads from Data Warehouse.

 NHLBI is using Microsoft Data Transformation Services (DTS, a component of
SQL/Server that can schedule transactions as packets, and can also do rollback)
for data loads from IMPAC II and the Data Warehouse.

 CC’s MIS system sends clinical data extracts to the CDW file repository — no
specifics provided.

 CC’s MIS system sends ADT data/diet orders to Nutrition (DFM) system — no
specifics provided.

 CIT’s ADB system imports files from Self Service Stores, PRB, CSR, GPO, CAS,
USA Bank, RSB and the NIH Training Center. The Self Service Stores send the
file to the mainframe via FTP; the ADB then picks up the file.

 CIT’s ADB system exports files to IRS (files are placed on a magnetic device via
tape), CAS, Data Warehouse (files are created on the mainframe), RIMS, DES,
OPM, Treasury, Self Service Stores, RSB, NCRR, and SSA.

 CIT’s ADB/nVision/FMS integrates with IMPAC II (via FTP to the mainframe to be
processed by the CAS).

- 80 -

NIH Enterprise Architecture
enterprisearchitecture@mail.nih.gov

 Application Integration Technology
Architecture Report_v1.0

 CIT’s ITAS application uses a data load directly from NED to import and exports
data to ePayroll with a yet-to-be-determined mechanism.

 According to project lead, data movement is using FTP.
 According to technical guide, Kermit (file transfer program) is currently used

to move data in a flat file to Treasury.
 In the future, this data transfer may go to DFAS, which would then feed

Treasury.
 CIT uses MS DTS tool to check for the existence of a file, move it and then load

data.
 CIT does have some instances of data pushing:

 CAS -> NBS ->Data Warehouse
 Push and pull from Treasury
 Push from CAN maintenance.

 CIT’s NED application imports data from JEFIC/DB2, HRDB/DB2, and FPS2/DB2
using a custom Perl connector/DB2 connect; Continuum using a custom Perl
connector and shared folders; PH using a custom Perl connector and the Andrew
File System (AFS); and Active Directory using custom Perl scripts and LDAP.

 CIT’s NED application exports data to Continuum and Conveyant using a custom
Perl connector, shared folders, and CSV files; Innopac using a custom Perl
connector and FTP; and MVS Customer Registry, NBRSS and ITAS using a
custom Perl connector/DB2 connect.

 CIT’s NIDB application imports data from NHGRI and exports to intramural ICs
via excel spreadsheets (manual export).

 CIT’s NIDB application exports data to NIEHS, NINDS and NCI via database
views.

 CIT’s NIDB imports NED data through direct database queries.
 NLM uses a batch database read using stored procedure to import data to

Medlars from SEF, Contractors and NIH Lister Hill Center, MeSH database,
Journal publishers, and ILS.

 NLM uses an ad hoc database read to import data to Medlars from SEF.
 NLM uses a put-to-a-public-FTP server for licensed access for export of data

from Medlars to the public.
 NLM uses a put-to-internal-FTP server to export data from Medlars to NCBI,

Medline Plus, and Voyager.
 NLM imports data from Chem-ID and government/private providers to TOXNET

using transfer through secure copy (secure FTP).
 NLM uses a CD-ROM to import data from EPA into TOXNET.
 NLM uses Internet transfer to import data from the Internet into TOXNET.

- 81 -

NIH Enterprise Architecture
enterprisearchitecture@mail.nih.gov

 Application Integration Technology
Architecture Report_v1.0

 HR Data:
 A Peoplesoft feed is available from HHS, but it is not allowed.
 NIDB would like to use a local HR system.

 Neon DB2 drivers and DB2 direct drivers are in use for extracting data from DB2.
NIAID is using batch updates from flat file to import data from ADB into AMBIS.

 At NIAID, a lot of scientists download a lot of data and massage it using standard
MS-Office tools.

 NIAID imports data into a secondary data repository using Oracle_Download for
transformed IMPAC II data to be accessed by various applications
(Oracle_Download is the name of a shared database implemented in SQL Server
that holds data downloaded from IMPACII that is of interest to NIAID).

 NCRR’s Scientific Information System downloads data from IMPAC II.
 NCRR passes data from grantees in files to other systems — no specifics

provided.
 NCRR’s budget office uses a software package, VSOF, which uses data from the

Data Warehouse (uses Neon Shadow Direct ODBC driver).
 OD is using SDF file to mainframe for integration of eRA to FMS (not FTP —

follow up on mechanism).
 OD imports HR data from HRDB to Ethics Management Information System

(EMIS) via stored procedures and ODBC drivers.
 Flat ASCII file transfer is being used for data sharing at OD (TechTracs exports

to Data Warehouse) and NIAID for systems such as ITAS.
 There is a lot of manual integration where users pull data from reporting tools,

download data into Microsoft Office, or use one-off applications to get data from
multiple sources.

 Office 2003, just released by CIT, allows a user to establish a live link to
source data through an Excel spreadsheet — updates to the data in Excel will
be replicated in the source database.

eRA Current State
eRA currently integrates with CAS (central accounting system), integration is not
efficient. eRA submits a transaction set, which is then processed. Sometimes an error
log is returned, but there is no real-time data transaction.

eRA as the enterprise system integrates with many extension systems used by
individual ICs (or groups of ICs).

Ways ICs integrate with eRA:

 Use data directly by SQL queries, ODBC calls, JDBC.
 Link eRA data to their own data via interface.

- 82 -

N
enterprisearchite

IH Enterprise Architecture
cture@mail.nih.gov

 Application Integration Technolog
Architecture Rep

- 83 -

CTEP-ESYS supports the needs of over 10,000 physicians providing care to over
500,000 patients in relation to over 2,000 protocols related to 300 drug agents at 6,000
treatment sites.

Mechanisms include:

 Download eRA data to a local server, supplement with local IC data.

Other than sensitive data, eRA allows read-only access to all data. Updates to eRA data
must be performed within an eRA application or via an API developed by eRA. APIs are
designed for specific data fields and have business rules and other integrity logic
incorporated.

Mechanisms used by eRA today:

 XML, SOAP with attachments for communicating with external partners
 OCI (Oracle Call Interface)
 ODBC
 Custom build processes for bridges with legacy systems.

CTEP-ESYS
CTEP-ESYS (an NCI system) has been built as a single enterprise solution
incorporating multiple, branch-specific applications on a single database with
appropriate sharing of data and status information resulting in inter-departmental
accumulation of information and an integrated workflow (e.g., PATS, Address Module).

Although the CTEP-ESYS does not integrate with eRA, this enterprise solution includes
a number of well defined interfaces:

 File transfer products.
 Oracle Advanced Queuing
 XML
 Published APIs

 Common data elements — static snapshots.

 Upload of accrual data for Population Tracking System (POPTRACK), an eRA
application) using published interfaces and APIs

 Real-time access to Medline and Developmental Therapeutics Program (DTP)
using standard published APIs from the respective organizations

 Registration data (two-way) with CTSU systems — Oracle advanced queuing
 AdEERS data — XML data sets (generated at run time) for authorized users
 Blinded Orders — FTP transmissions using flat files
 CDUS — FTP transmission using flat files

y
ort_v1.0

NIH Enterp
enterprisearchite

rise Architecture
cture@mail.nih.gov

 Application Integration Technology
Architecture Report_v1.0

- 85 -

IC Short
Name

FTP Secure
FTP

Kermit XML ODBC/J
DBC

DB2
Connect

Data
Sharing

Direct DB
Queries

OCI Database
Gateway

API's Custom
Interfaces

Cold
Fusion

QDX CareData
Engine

CC

CIT

CSR
FIC
NCCAM
NCI (or CA)

NCMHD
NCRR

NEI
NHGRI
NHLBI

NIA
NIAAA

NIAID

NIAMS

NIBIB
NICHD
NIDA
NIDCD
NIDCR
NIDDK
NIEHS
NIGMS
NIMH
NINDS

NINR
NLM

OD

ERA

CTEP-
ESYS

NIH Enterprise Architecture
enterprisearchitecture@mail.nih.gov

 Application Integration Technology
Architecture Report_v1.0

13.0 Appendix C — Introduction to
Web Services

- 86 -

NIH Enterprise Architecture
enterprisearchitecture@mail.nih.gov

 Application Integration Technology
Architecture Report_v1.0

Appendix C: Introduction to Web Services

What is a Web Service?
Web services are software components that employ one or more of the following
technologies: SOAP, WSDL and UDDI to perform distributed computing. Use of any of
the basic technologies — SOAP, WSDL or UDDI — constitutes a Web service. Use of
all of them is not required.

What is SOAP?
SOAP is designed to enable enterprises to easily publish data and services via the
Web. It lets one application invoke an RPC on another application, or pass an object or
other information to a remote location using an XML message and the Internet. SOAP
satisfies the growing need for business partners to exchange structured data via the
Web independently of each other’s underlying application platform and operating
environment. As such, it functions as a wire protocol to connect multiple sites which
each might use as an information server, object broker or other facilities to integrate and
process the information.

SOAP’s implementation requirements are simple: a set of mutually acceptable XML
message formats; basic XML processing (that is, an XML parser and an engine to
translate information to and from XML) at both the requestor and the responder; and a
Web connection in the middle. XML namespaces and schemas are optional, but they
can ease processing by providing references for XML elements and attributes.

Figure 35. SOAP

Copyright © 2003

SOAP: A Communication Solution

Simple Object Access Protocol
Enables enterprises to publish data, expose services,
and invoke RPCs via XML and the Web.
Supports multiple platforms and operating systems.
SOAP has three key parts:

• Envelope: Identifies message content, recipients,
processing information and governing schemas

• Encoding Rules: Procedures for serializing and
deserializing data and methods

• Request and Response Conventions: Enables
bidirectional and unidirectional communication
using RPCs and messages

- 87 -

NIH Enterprise Architecture
enterprisearchitecture@mail.nih.gov

 Application Integration Technology
Architecture Report_v1.0

What is WSDL?
Having a standard set of service-oriented messaging facilities and a standardized
mechanism for discovering services are of no use if there’s no way to describe what a
service is and how its facilities can be accessed. As communication protocols and
message formats are standardized in the Web community, it becomes increasingly
possible and important to be able to describe the communications in some structured
way. Enter WSDL, which is maintained by the W3C Web Services Activity. WSDL takes
SOAP one step further. It originated because of the need to tighten up SOAP semantics
and provide a standard set of interfaces to Web services. WSDL addresses these
needs by defining an XML grammar for describing network services as collections of
communication endpoints that are capable of exchanging messages. WSDL also
provides a way to publish data to XML registries and repositories.

Figure 36. WSDL

Copyright © 2003

WSDL: Describe Your Stuff

Web Services Description Language
A formal XML vocabulary and grammar that lets
organizations describe, discover and use Web services in a
UDDI registry or other location.
WSDL’s key concepts are:
• Describes Web services as pairs of endpoints, which

exchange messages about each other’s capabilities
• Messages may contain document- or procedure-oriented

information
• Documents include abstract (implementation-

independent) and concrete (instance-specific) elements
• Supports various core technologies, including SOAP

XML schemas, HTTP GET/POST and MIME e-mail

What is UDDI?
UDDI is a technology for publishing, querying, finding and invoking Web services using
a registry that provides data and metadata about the services and pointers to where the
services are located. The technology consists of the registry itself — which may be
privately operated, publicly available (that is, the Universal Business Registry hosted by
IBM, SAP, Microsoft and NTT Communications), or semiprivate — instructions for
operating the registries, and APIs for managing the registry information and performing
queries. The registry is modeled on the Domain Name Service (DNS), a commonly
available and familiar registry technology. In July 2002, UDDI was handed over to
OASIS by the UDDI Committee. UDDI 3.0 — now under the auspices of OASIS — is
the latest version of the standard; it provides much stronger querying and categorization
facilities, a much richer API set, and new information for operating private and
semiprivate registries. The trend in UDDI seems to be toward private or semiprivate

- 88 -

NIH Enterprise Architecture
enterprisearchitecture@mail.nih.gov

 Application Integration Technology
Architecture Report_v1.0

registries, which have more control over the type and format of registry data, as well as
those who use it.

Figure 37. UDDI

UDDI: Discovering Web Services

Copyright © 2003

Universal Description, Discovery and
Integration
UDDI gives enterprises a uniform way to describe their
services, discover other companies’ services and
understand the methods required to conduct business
with a specific entity.
UDDI key concepts are:
• It is a registry, not a repository
• Provides detailed instructions for operating private,

public and semiprivate registries
• Registries offer data, metadata, bindings, pointers

and documents for finding and invoking Web
services

• Includes client and server APIs for publishing,
editing and querying registry entries

UDDI is:

 A registry, not a repository
 Documents, interfaces and metadata about Web services
 Models that reuse WSDL documents
 A set of APIs for finding and invoking these services.

UDDI is not:

 Software and hardware on a node
 Fail-safe validation of publishers and their Web services
 How publishers and subscribers conduct business
 Web services implementations
 Messaging or wire protocols.

- 89 -

NIH Enterprise Architecture
enterprisearchitecture@mail.nih.gov

 Application Integration Technology
Architecture Report_v1.0

14.0 Appendix D — Introduction to
Service-Oriented Architecture

- 90 -

NIH Enterprise Architecture
enterprisearchitecture@mail.nih.gov

 Application Integration Technology
Architecture Report_v1.0

Appendix D — Introduction to Service-Oriented Architecture

Services and SOA
The modern business application topology is multilayered services and Web services
are composed of components, themselves built of objects. In each layer, encapsulation
is at different granularity. Object methods (C#, Java) are fine-grained and accessed in
the same program context via shared memory. Components (EJB,.NET Remoting) may
consist of hundreds of objects and are accessed via distributed computing middleware
(RPC, ORB) by other components of the same application. Service interfaces are
designed to be accessible by other applications. The usage patterns determine the
different granularity and scope of object methods, components and services.

Figure 38. Service Scope vs. Granularity

EnterpriseEnterprise

ApplicationApplication

ProgramProgram

ServicesServices

ComponentsComponents

GranularityGranularity

ScopeScope

Methods,Methods,
SubroutinesSubroutines

CoarseCoarse

Services: Business-driven Software
Modularity

Affinity with
Business
Modeling

FineFine

Source: Gartner Research

Technically, services are software modules that use a separable platform-independent
and well-defined public programmatic interface. Because services may be advertised to
other applications or other enterprises as the business service of the application or the
enterprise — semantically, services have business identity and completeness. Services
can be entities in business analysis, while subroutines and components are technically
inclined, intended to improve the technical architecture of software.

A service is a software component that is suitable for cross-application access. A
service represents a business function, though it is implemented as a technical
component. A service is the point of linkage between business and technical design of
business applications.

- 91 -

NIH Enterprise Architecture
enterprisearchitecture@mail.nih.gov

 Application Integration Technology
Architecture Report_v1.0

Figure 39. SOA — The Architecture of Interfaces

Service-Oriented Architecture : The
architecture of interfaces

Service
Interface

Service
Implementation

Service
Software component that is a business-
complete logical unit of work, accessible
programmatically from independently
designed contexts via a direct openly
documented interface

SOA
Application software topology
consisting of services and service
consumers (clients) in loosely
coupled 1-to-1 relationships InterfaceInterface

proxy

Service Consumer (Client)

Source: Gartner Research

A service is never a complete application or a complete transaction. It is always a
building block. SOA is the architecture of an application that utilizes services. While
services define potentially-reusable business functions, SOA binds services into
applications. SOA applications consist of services and service consumers. Services are
defined by their interfaces, which wrap their implementations (sometimes complex
integrated flows, other times a simple single program). Logical design of SOA is focused
on the definition of service interfaces and design of interactions between service
interfaces. Technically, the design of SOA also includes design of service
implementations.
SOA is a loosely coupled (but not decoupled) architecture. Loose coupling of SOA
manifests itself in flexible association of services and service consumers. A new service
consumer can access a pre-existing service entirely un-intrusively (a poorly designed
service may lock a service into a particular service consumer, denying the key benefit of
SOA).

Service Implementation
A logical definition of a service simply indicates the business function that a service
performs. In reality, the service implementation may translate to a relatively complex
process and depend on many sources of information to fulfill the functional requirement
designed for the service. What makes it more complicated is that the technical design of
the service implementation cannot make any assumptions about the context in which
the service would be invoked. The service may be used stand-alone, as part of a
sequence of calls on behalf of a real-time transaction or as a subordinate component in

- 92 -

NIH Enterprise Architecture
enterprisearchitecture@mail.nih.gov

 Application Integration Technology
Architecture Report_v1.0

an asynchronous EDA. Due to this inherent complexity, most service implementations
likely will be relatively simple, self-contained and stateless. (All three principles —
simplicity, isolation and statelessness — are the best practices of design for all
distributed systems.)

Figure 40. SOA — What Happens Behind the Interface

All-New Service

Wrapped Service

Composite Service

Service
interface

Service
implementation

Non-SOA
applications

Service
Consumer

Service
Consumer

Service Implementation:
What Happens Behind The Interface

Source: Gartner Research

Some service implementations will be developed as new components. This is the
simplest case and also the least frequent through 2006, given that the composite
application style will likely be the leading driver for adoption of SOA. Some early Web
services implementations have been automatically generated (wrapped, pre-existing
JavaBeans, CORBA objects, CICS DPL transaction programs, C++ classes). These
wrapped services are the easiest to implement but are often the least effective, because
the design objective of an object class or a component is different from that of a
service — the resulting service may be too fine-grained, may spur massive network
traffic and may flood the services repository).

Service Invocation
Design of SOA starts with the design of interfaces. At run-time, interfaces are
represented by a pair of interface programs — the client proxy, used by the caller and
the server stub, front-ending the service implementation. The two principals of a service
call, the service consumer program and the service implementation program, never talk
directly, but rather via the pair of the proxy and the stub. These two programs
implement the communication between the service consumer and the service: marshal
and encode the message, use a communication method and a transport protocol.
Although ideally the proxy and the stub may be created independently, in reality they

- 93 -

NIH Enterprise Architecture
enterprisearchitecture@mail.nih.gov

 Application Integration Technology
Architecture Report_v1.0

are typically generated by the same generator, using the interface definition (WSDL) as
the source. What happens on the wire between the client and the service is entirely
confined to the pair of the proxy-stub programs and is thus typically determined by a
single stub/proxy generator. This offers an opportunity to optimize service
communications by deviating from the common lowest denominator standards. As the
intra-enterprise use of Web services increases, default use of XML, SOAP and HTTP
becomes problematic.

Figure 41. SOA — What Happens On the Wire

Service
Consumer

Service
Consumer

Service Invocation: What Happens On The
Wire?

Service
Implementation

Service
Implementation

XML/HTTP

SOAP/XML/JMS
SOAP/XML/SMTP

Shared Memory
RMI

JMS/MOM
Apache/IBM Web Service
Invocation Framework (WSIF);
Cysive Symbio

Cape Clear; IBM;
SQLData Systems

SOAP/XML/HTTP

Web-Based Services

Typical Web Services

Interface
(WSDL)

Generator

Source: Gartner Research

SOA and Web Services
Web services are often seen as architecture, yet at their minimal level, Web services
are a set of standards not amounting to an architecture. As the number of proposed
standards increases and expands the scope of application behavior issues that are
covered under the umbrella of Web services, and as there emerge organizations that
are responsible for managing and certifying Web services standards, Web services may
yet consolidate into a new application architecture.

The use of Web services standards does not guarantee that the resulting application is
service-oriented; a service-oriented application can be implemented without any use of
Web services standards. Still, the industry momentum of Web services and the affinity
of WSDL to SOA link the two initiatives. Most new SOA application projects intend to
use Web services, and most Web services projects intend to use SOA. Unfortunately for
many projects there is also an erroneous assumption that the two are one and the same
and that use of Web services guarantees the benefits of SOA. In reality, good SOA

- 94 -

NIH Enterprise Architecture
enterprisearchitecture@mail.nih.gov

 Application Integration Technology
Architecture Report_v1.0

application requires a systematic design effort and, for more demanding enterprise
projects, the quality of service guarantees. Many new standards are proposed and will
be delivered in products through 2006 to fulfill this requirement. Until then Web services
will remain the format of SOA, mostly applicable to smaller and simpler applications.

In an SOA scenario, Web services wrap around pre-defined normalized business
services running on an application server or TPM. Web services interface facades can
be added to complex, albeit fast-executing, business processes, engaging both SOA
and non-SOA applications. In this scenario, Web services invocations trigger the
execution of multistep business processes spanning multiple systems, within and
outside the enterprise, conducted through the cooperation of multiple middleware layers
providing the necessary integration infrastructure.

When To Use SOA
SOA is architecture of services. It is based on the premise that software components
operate as components (building blocks) of a larger immediately executing transaction
(unit of work). Services are designed to perform reusable partial processes on behalf of
a bigger transaction. Some styles of applications operate exactly in this manner. New
interactive multi-channel applications (multiple user devices or types of users) benefit
greatly from SOA design. All channels are able to access the same consistent and
available set of back-end functionality. Building composite applications — applications
that draw data from both new and old resources — is also well fit for SOA. Older
applications can be wrapped and modernized to expose their functionality through
programmatic interfaces — then accessed from new calling applications. Multi-channel
and composite applications — are the best candidates for SOA.

SOA is not intended for building autonomous business components, those that operate
independently, not on behalf of a larger immediate unit of work. These off-line
processes (disconnected from the originator, yet possibly real or near-real time) are
required for back-end post-transaction processing, for processing that is triggered by
time or by changes of state. Services are not the right architecture for this software,
although many of these applications are service consumers and thus are still
participants in SOA. The architecture of events is often the best fit for off-line application
styles.

Table 16. When To Use SOA

Best Practice SOA:
 Composite applications
 New request-reply applications
 Multi-channel applications
 Information retrieval

Consider Alternatives:

 Process-monitoring applications
 B2B applications
 Post-transaction, batch processing
 Robotic (human-less) applications
 Less predictable, state-dependent processes

- 95 -

NIH Enterprise Architecture
enterprisearchitecture@mail.nih.gov

 Application Integration Technology
Architecture Report_v1.0

Benefits of SOA: Reality vs. Hype

Benefits

 Incremental development and deployment of business software
 Reuse of business components in multiple user experiences (channels)
 Low-cost assembly of new business processes
 Clarity of application topology.

Hype

 Simple software engineering
 Free interoperability
 Free integration
 Technology-independence
 Vendor-independence
 Ultimate architecture for the enterprise
 SOA = SOAP.

- 96 -

NIH Enterprise Architecture
enterprisearchitecture@mail.nih.gov

 Application Integration Technology
Architecture Report_v1.0

Selecting the Proper SOA Integration
Platform

Service-oriented composite applications and Web services conceptually fit perfectly with
one another. However, the perfect pair today works only in limited cases due to Web
services’ current limitations. To link service provider and consumer platforms, adapter
products take advantage of proprietary protocols, screen-scraping techniques and
standard protocols. Most adapter products are well-known and proven, even in very
large, high-performance, business-critical projects. Therefore, they can also be used for
composite applications, even in demanding, high-performance and scalability scenarios.
In a many-to-many integration scenario, a communication middleware-based
decoupling layer is needed to reduce the number of point-to-point links, provide a
consistent set of APIs and simplify operations and management. Integration broker
suites (IBSs), Enterprise service buses (ESBs) and programmatic integration servers
are powerful integration middleware platforms that will extensively be adopted in the
most complex service-oriented composite application scenarios, although IBSs and
ESBs are not specifically optimized for high-performance service-oriented
interoperability, and programmatic integration servers have a limited track record in
large-scale projects.

- 97 -

Telephone: +1-703-226-4779

Client Contact Information
John F. Jones, Jr.
Chief IT Architect
Telephone: +1-301-402-6759
E-mail: jonesjf@mail.nih.gov

Gartner (Contractor Support) Contact Information
Terry McKittrick
Gartner Consulting

Facsimile: +1-703-226-4702
E-mail: Terry.McKittrick@gartner.com

	Appendix A — Glossary of Terms
	Appendix B — Current State Survey Results
	
	Presentation Layer
	Process Layer
	Data Integration Layer
	eRA Current State
	CTEP-ESYS

	Appendix C: Introduction to Web Services
	What is a Web Service?
	What is SOAP?
	What is WSDL?
	What is UDDI?

	Appendix D — Introduction to Service�Oriented Ar
	Services and SOA
	Service Implementation
	Service Invocation
	SOA and Web Services
	When To Use SOA
	Benefits of SOA: Reality vs. Hype
	
	Benefits
	Hype
	Selecting the Proper SOA Integration Platform

